GottWall Scalable Realtime Statistics

Aggregator Documentation
Release 0.2.10

GottWall team

October 10, 2015

Contents

Quickstart

1.1 Environment configuration e e e e e e e e e e e e e e
1.2 Installation e e e e e e
1.3 Configuration e e e e e e e e e e e
1.4 Startings SErViCes v it e e e e e e e e e e
Available Storages

2.1 Storagedevelopment Lo e e e e
2.2 Third party StOTages L e
Available Clients

3.1 Client Criteria v v ittt e e e e e e e e e e e e e
Contibuting

4.1 Environmentot e
42 Profiling e e e e e e
cProfile

plop

Writing a Client
7.1 Client Usage (End-user)

Indices and tables

AR W WW

RN |

11
11
11

13

15

17
17

19

GottWall Scalable Realtime Statistics Aggregator Documentation, Release 0.2.10

Users Guide:

Contents 1

GottWall Scalable Realtime Statistics Aggregator Documentation, Release 0.2.10

2 Contents

CHAPTER 1

Quickstart

Some basic prerequisites which you’ll need in order to run GottWall:
* Python 2.6, or 2.7
* python-setuptools, python-dev

 Likely a UNIX-based operating system

1.1 Environment configuration

We recomended to install GottWall to separated environment.

The first thing you’ll need is the Python virtualenv package. You probably already have this, but if not, you can
install it with:

‘easy_install -U virtualenv

Once that’s done, choose a location for the environment, and create it with the virtualenv command. For our
guide, we’re going to choose /www/gottwall/:

’virtualenv /www/gottwall

Finally, activate your virtualenv:

’source /www/gottwall/bin/activate

Note: Activating the environment adjusts your PATH, so that things like easy_install now install into the virtualenv
by default.

1.2 Installation

After environment activation install GottWall package to your env via easy_install:

’easy_install -U gottwall

or pip:

’pip install gottwall

After installation you can execute command in console gottwall -h, it’s show gottwall manager documentation.

GottWall Scalable Realtime Statistics Aggregator Documentation, Release 0.2.10

1.2.1 Installation storage backend

You can use different storages to save you data. We recommend to use gottwall-storage-redis:

’easy_install -U gottwall-storage-redis ‘

or via pip:

’pip install gottwall-storage-redis ‘

1.3 Configuration

Now you’ll need to create the default configuration.

Execute gottwall init config.py ~/.gottwall/gottwall.conf.py or examples/config.py
to your location (as example ~/.gottwall/gottwall.conf.py.)

STORAGE = 'gw_storage_redis.storage.RedisStorage'

BACKENDS = {
}

TEMPLATE_DEBUG = True
STORAGE_SETTINGS = dict (
HOST = 'localhost',

PORT = 6379,

PASSWORD = None,
DB = 2

REDIS = {"CHANNEL": "gottwall"}

USERS = ["you@email.com"]

SECRET_KEY = "very secret key"

PROJECTS = {"test_project": "my_public_key",
"another_project": "public_key2"}

cookie_secret="fkerwerwerwerw

TEMPLATE_DEBUG = True

PREFIX = ""

1.4 Startings services

GottWall have 2 independent parts. Web interface application and aggregator application (application that process
data).

4 Chapter 1. Quickstart

GottWall Scalable Realtime Statistics Aggregator Documentation, Release 0.2.10

To run web application execute command: gottwall --config="examples/config.py" server
start
To run aggregator application execute command: gottwall --config="examples/config.py"

aggregator start

1.4. Startings services 5

GottWall Scalable Realtime Statistics Aggregator Documentation, Release 0.2.10

6 Chapter 1. Quickstart

CHAPTER 2

Available Storages

Storage is a component of system that store calculated metrics data and performs calculation operations.
GottWall supports several storages in core package.
The following storages are supported current GottWall server:

* gottwall.storages.memory.Memory - stored metrics in memory

e gottwall.storages.memory.Redis - stored metrics in redis database

To use specified store need to setup STORAGE variable in GottWall config.

2.1 Storage development

Also you can develop custom storage for your own server. You need make package that included backend class
inherited from gottwall.storages.base.BaseBackend.

Custom storage must override methods:

class CustomStorage (gottwall.storages.base.BaseBackend)

incr (project, name, timestamp, value=1, filters={}, xxkwargs):
Add count for metric name and filters

decr ()
Sub value from metric name in project

slise_data()
Get data by range and filters

metrics ()
Get metrics list

2.2 Third party storages

GottWall Scalable Realtime Statistics Aggregator Documentation, Release 0.2.10

8 Chapter 2. Available Storages

CHAPTER 3

Available Clients

The following clients are officially recognized as production-ready, and support the current Sentry protocol:

* stati-redis (stati-redis-python) with redis transport.

3.1 Client Criteria

If you’re developing a client for your platform, there’s several things we highly encourage:
¢ It should fully implement the current version of the GottWall protocol.
¢ It should conform to the standard DSN configuration method.
* It should contain an acceptable level of documentation and tests.
* The client should be properly packaged, and named stati-<lang>-<transport-name>.

Developers:

http://github.com/GottWall/stati-redis-python

GottWall Scalable Realtime Statistics Aggregator Documentation, Release 0.2.10

10 Chapter 3. Available Clients

CHAPTER 4

Contibuting

1. Check for open issues or open a fresh issue to start a discussion around a feature idea or a bug. There is a
Contributor Friendly tag for issues that should be ideal for people who are not very familiar with the codebase
yet.

2. Fork the repository on Github to start making your changes to the develop branch (or branch off of it).
3. Write a test which shows that the bug was fixed or that the feature works as expected.

4. Send a pull request and bug the maintainer until it gets merged and published.

4.1 Environment

We created environment vagrant kit for contributors.

It’s named gottwall vagrant dev kit. You need to clone this repository to local system, initialize submodules and
execute vagrant up in repository directory. This cookbooks configure virtual box node, installed needed services:
postgresql, redis, rabbitmg.

4.2 Profiling

Stability and performance is a main priotitets. We working on its every day.

We use next utils to profile aplication:

11

https://github.com/GottWall/GottWall/
https://github.com/GottWall/gottwall-vagrant-test-kit

GottWall Scalable Realtime Statistics Aggregator Documentation, Release 0.2.10

12 Chapter 4. Contibuting

CHAPTER 5

cProfile

Most power tool to profile python applications.

1. To start profiling application need run next command:

python -m cProfile -o profiling/gottwall_aggregator.prof gottwall/runner.py —--confilg=examples/cc

2. After you need to send data for aggregation via clients.

3. Next step need to analyze profiling results via pstats:

python -m pstats profiling/gottwall_aggregator.prof

Also many helpful to use results map image.

To convert cProfile result to img need execute:

python tools/gprof2dot.py —-f pstats profiling/gottwall_aggregator.prof | dot -Tpng -o p#ofiling/aggre

13

http://docs.python.org/2/library/profile.html

GottWall Scalable Realtime Statistics Aggregator Documentation, Release 0.2.10

14 Chapter 5. cProfile

CHAPTER 6

plop

Another tool to profile python application.

To profile an entire Python script, run:

python -m plop.collector gottwall/runner.py —--config=examples/config.py server start -h|0.0.0.0 —--re.

This will write the profile to /tmp/plop.out

To use the viewer, run:

cp /tmp/plop.out ./profiles/x

python -m plop.viewer --datadir=profiles

and go to http://localhost:8888

15

https://github.com/bdarnell/plop
http://localhost:8888

GottWall Scalable Realtime Statistics Aggregator Documentation, Release 0.2.10

16 Chapter 6. plop

CHAPTER 7

Writing a Client

A client at its core is simply a set of utilities for capturing various logging parameters. Given these parameters, it then
builds a JSON payload which it will send to a GottWall server using some sort of authentication method.

The following items are expected of production-ready clients:
* DSN configuration
¢ Graceful failures

Additionally, the following features are highly encouraged:

* Non-blocking event submission

7.1 Client Usage (End-user)

Generally, a client consists of three steps to the end user, which should look almost identical no matter the language:

1. Creation of the client (sometimes this is hidden to the user)

var my_client = new RedisClient ('http://public_key:secret_key@example.com/default')|;

or

var my_client = new RedisClient(private_key="private_key’’, public_key="public_key”,
project="project_name”, host="host”)

2. Send data

nm.n

my_client.incr (name="metric_name", wvalue=2, timestamp=ts, filters={"status": "New",| "user":"regi

17

GottWall Scalable Realtime Statistics Aggregator Documentation, Release 0.2.10

18 Chapter 7. Writing a Client

CHAPTER 8

Indices and tables

¢ genindex
* modindex

e search

19

GottWall Scalable Realtime Statistics Aggregator Documentation, Release 0.2.10

20 Chapter 8. Indices and tables

Index

C

CustomStorage (built-in class), 7

D

decr() (CustomStorage method), 7

M

metrics() (CustomStorage method), 7

S

slise_data() (CustomStorage method), 7

21

	Quickstart
	Environment configuration
	Installation
	Configuration
	Startings services

	Available Storages
	Storage development
	Third party storages

	Available Clients
	Client Criteria

	Contibuting
	Environment
	Profiling

	cProfile
	plop
	Writing a Client
	Client Usage (End-user)

	Indices and tables

