

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Goldilocks 0.0.8 Beta documentation

Welcome to Goldilocks’s documentation!

Contents:

	Goldilocks
	What is it?

	What can I use it for?

	Why should I use it?

	Requirements

	Installation

	Citation

	License

	Installation

	Command Line Usage
	Usage

	Example

	Basic Package Usage
	Importing

	Providing Sequence Data as Dictionary

	Providing Sequence Data as FASTA

	Conducting a Census

	Getting the Regions

	Sorting Regions

	Setting Number of Processes

	Full Example

	Advanced Package Usage
	Filtering Regions

	Excluding Regions

	Limiting Regions

	Full Example

	Exporting
	Census Data

	FASTA

	Plotting

	Custom Strategies

	Examples
	Example One

	Example Two

	Example Three

	Example Four

	Example Five

	Example Six

	Example Seven

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.0.80 (2015-08-10)

	0.0.71 (2015-07-11)

	0.0.6 (2015-06-23)

	Beta (2014-10-08)

	0.0.2 (2014-08-18)

	0.0.1 (2014-08-18)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Sam Nicholls.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Goldilocks 0.0.8 Beta documentation

Goldilocks

[image: https://badge.fury.io/py/goldilocks.png]
 [http://badge.fury.io/py/goldilocks][image: https://travis-ci.org/SamStudio8/goldilocks.png?branch=master]
 [https://travis-ci.org/SamStudio8/goldilocks][image: https://coveralls.io/repos/SamStudio8/goldilocks/badge.png?branch=master]
 [https://coveralls.io/r/SamStudio8/goldilocks]Locating genomic regions that are “just right”.

	Documentation: http://goldilocks.readthedocs.org.

What is it?

Goldilocks is a Python package providing functionality for locating ‘interesting’
genomic regions for some definition of ‘interesting’. You can import it to your
scripts, pass it sequence data and search for subsequences that match some criteria
across one or more samples.

Goldilocks was developed to support our work in the investigation of quality
control for genetic sequencing. It was used to quickly locate
regions on the human genome that expressed a desired level of variability,
which were “just right” for later variant calling and comparison.

The package has since been made more flexible and can be used to find regions
of interest based on other criteria such as GC-content, density of target k-mers,
defined confidence metrics and missing nucleotides.

What can I use it for?

Given some genetic sequences (from one or more samples, comprising of one or more
chromosomes), Goldilocks will shard each chromosome in to subsequences of a
desired size which may or may not overlap as required. For each chromosome from
each sample, each subsequence or ‘region’ is passed to the user’s chosen strategy.

The strategy simply defines what is of interest to the user in a language that
Goldilocks can understand. Goldilocks is currently packaged with the following
strategies:

	Strategy
	Census Description

	GCRatioStrategy
	Calculate GC-ratio for subregions across the
genome.

	NucleotideCounterStrategy
	Count given nucleotides for subregions across
the genome.

	KMerCounterStrategy
	Search for one or more particular k-mers of
interest of any and varying size in subregions
across the genome.

	ReferenceConsensusStrategy
	Calculate the (dis)similarity to a given
reference across the genome.

	PositionCounterStrategy
	Given a list of base locations, calculate
density of those locations over subregions
across the genome.

Once all regions have been ‘censused’, the results may be sorted by one of four
mathematical operations: max, min, median and mean. So you may be interested
in subregions of your sequence(s) that feature the most missing nucleotides, or
subregions that contain the mean or median number of SNPs or the lowest GC-ratio.

Why should I use it?

Goldilocks is hardly the first tool capable of calculating GC-content across a
genome, or to find k-mers of interest, or SNP density, so why should you use it
as part of your bioinformatics pipeline?

Whilst not the first program to be able to conduct these tasks, it is the first
to be capable of doing them all together, sharing the same interfaces. Every strategy
can quickly be swapped with another by changing one line of your code. Every strategy
returns regions in the same format and so you need not waste time munging data to
fit the rest of your pipeline.

Strategies are also customisable and extendable, those even vaguely familiar with
Python should be able to construct a strategy to meet their requirements.

Goldilocks is maintained, documented and tested, rather than that hacky perl
script that you inherited years ago from somebody who has now left your lab.

Requirements

To use;

	numpy

To test;

	tox

	pytest

For coverage;

	nose

	python-coveralls

Installation

$ pip install goldilocks

Citation

Citation pending...

[image: Join the chat at https://gitter.im/SamStudio8/goldilocks]
 [https://gitter.im/SamStudio8/goldilocks?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

License

Goldilocks is distributed under the MIT license, see LICENSE.

 Copyright 2014, Sam Nicholls.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Goldilocks 0.0.8 Beta documentation

Installation

At the command line:

$ pip install goldilocks

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv goldilocks
$ pip install goldilocks

 Copyright 2014, Sam Nicholls.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Goldilocks 0.0.8 Beta documentation

Command Line Usage

Goldilocks is also packaged with a basic command line tool to demonstrate
some of its capabilities and to provide access to base functionality without
requiring users to author a script of their own. For more complicated queries,
you’ll need to import Goldilocks as a package to a script of your own.
But for simple use-cases the tool might be enough for you.

Usage

Goldilocks is invoked as follows:

goldilocks <strategy> <sort-op> [--tracks TRACK1 [TRACK2 ...]] -l LENGTH -s STRIDE [-@ THREADS] FAIDX1 [FAIDX2 ...]

Where a strategy is a census strategy listed as available...

$ goldilocks list
Available Strategies
 * gc
 * ref
 * motif
 * nuc

...and a sort operation is one of:

	max

	min

	mean

	median

	none

Example

Tabulate all regions and their associated counts of nucleotides A, C, G, T and N.
Window size 100Kbp, overlap 50Kbp. Census will spawn 4 processes. Regions in
table will be sorted by co-ordinate:

goldilocks nuc none --tracks A C G T N -l 100000 -s 50000 -@ 4 /store/ref/hs37d5.fa.fai

Tabulate all regions and their associated GC-content. Same parameters as previous
example but table will be sorted by maximum GC-content descending:

goldilocks gc max -l 100000 -s 50000 -@ 4 /store/ref/hs37d5.fa.fai

 Copyright 2014, Sam Nicholls.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Goldilocks 0.0.8 Beta documentation

Basic Package Usage

The following example assumes basic Python programming experience (and
that you have installed Goldilocks), skip to the
end if you think you know what you’re doing.

Importing

To use Goldilocks you will need to import the goldilocks.goldilocks.Goldilocks
class and your desired census strategy (e.g. NucleotideCounterStrategy) from
goldilocks.strategies to your script:

from goldilocks.goldilocks import Goldilocks
from goldilocks.strategies import NucleotideCounterStrategy

Providing Sequence Data as Dictionary

If you do not have FASTA files, the goldilocks.goldilocks.Goldilocks class
allows you to provide sequence data in the following structure:

sequence_data = {
 "sample_name_or_identifier": {
 "chr_name_or_number": "my_actual_sequence",
 }
}

For example:

sequence_data = {
 "my_sample": {
 2: "NANANANANA",
 "one": "CATCANCAT",
 "X": "GATTACAGATTACAN"
 },
 "my_other_sample": {
 2: "GANGANGAN",
 "one": "TATANTATA",
 "X": "GATTACAGATTACAN"
 }
}

The sequences are stored in a nested structure of Python dictionaries, each
key of the sequence_data dictionary represents the name or an otherwise unique
identifier for a particular sample (e.g. “my_sample”, “my_other_sample”), the
value is a dictionary whose own keys represent chromosome names or numbers [1]
and the corresponding values are the sequences themselves as a string [2].
Regardless of how the chromosomes are identified, they must match across samples
if one wishes to make comparisons across samples.

	[1]	Goldilocks has no preference for use of numbers or strings for chromosome names but it would be sensible to use numbers where possible for cases where you might wish to sort by chromosome.

	[2]	In future it is planned that sequences may be further nested in a dictionary to fully support polyploid species.

Providing Sequence Data as FASTA

If your sequences are in FASTA format, you must first index them with samtools faidx,
then for each sample, pass the path to the index to Goldilocks in the following
structure:

sequence_data = {
 "my_sequence": {"idx": "/path/to/fastaidx/1.fa.fai"},
 "my_other_sequence": {"idx": "/path/to/fastaidx/2.fa.fai"},
 "my_other_other_sequence": {"idx": "/path/to/fastaidx/3.fa.fai"},
}

When supplying sequences in this format, note the following:

	is_faidx=True must be passed to the Goldilocks constructor (see below),

	It is assumed that the FASTA will be in the same directory with the same name as its index, just without the ”.fai” extension,

	The key in the sequence data dictionary for each sample, must be idx,

	The i-th sequence in each FASTA will be censused together, thus the order in which your sequences appear matters.

It is anticipated in future these assumptions will be circumvented by additional
options to the Goldilocks constructor.

To specify the is_faidx argument, call the constructor like so:

g = Goldilocks(NucleotideCounterStrategy(["N"]), sequence_data, length=3, stride=1, is_faidx=True)

Now Goldilocks will know to expect to open these idx values as FASTA indexes,
not sequence data!

Conducting a Census

Once you have organised your sequence data in to the appropriate structure, you
may conduct the census with Goldilocks by passing your strategy (e.g. NucleotideCounterStrategy)
and sequence data to the imported goldilocks.goldilocks.Goldilocks class:

g = Goldilocks(NucleotideCounterStrategy(["N"]), sequence_data, length=3, stride=1)

Make sure you add the brackets after the name of the imported strategy, this
‘creates’ a usuable strategy for Goldilocks to work with.

For each chromosome (i.e. ‘one’, ‘X’ and 2) Goldilocks will split each sequence
from the corresponding chromosome in each of the two example samples in to triplets
of bases (as our specified region length is 3) with an offset of 1 (as our stride is 1).
For example, chromosome “one” of “my_sample” will be split as follows:

CAT
 ATC
 TCA
 CAN
 ANC
 NCA
 CAT

In our example, the NucleotideCounterStrategy will then count the number of N bases that
appear in each split, for each sample, for each chromosome.

Getting the Regions

Once the census is complete, you can extract all of the censused regions directly
from your Goldilocks object. The example below demonstrates the format of the
returned regions dictionary for the example data above:

> g.regions
{
 0: {
 'chr': 2,
 'ichr': 0,
 'pos_end': 3,
 'pos_start': 1,
 'group_counts': {
 'my_sample': {'default': 2},
 'my_other_sample': {'default': 1},
 'total': {'default': 3}
 },
 }

 ...

 27: {
 'chr': 'one',
 'ichr': 6,
 'pos_end': 9,
 'pos_start': 7,
 'group_counts': {
 'my_sample': {'default': 0},
 'my_other_sample': {'default': 0},
 'total': {'default': 0}
 },
 }
}

The returned structure is a dictionary whose keys represent the id of each region,
with values corresponding to a dictionary of metadata for that particular id.
The id is assigned incrementally (starting at 0) as each region is encountered
by Goldilocks during the census and isn’t particularly important.

Each region dictionary has the following metadata [3]:

	Key
	Value

	id
	A unique id assigned to the region by Goldilocks

	chr
	The chromosome the region appeared on (as found in the input data)

	ichr
	This region is the ichr-th to appear on this chromosome (0-indexed)

	pos_start
	The 1-indexed base of the sequence where the region begins (inclusive)

	pos_end
	The 1-indexed base of the sequence where the region ends (inclusive)

	[3]	Goldilocks used to feature a group_counts dictionary as part of the region
metadata as shown in the example above, this was removed as it duplicated
data stored in the group_counts variable in the Goldilocks object needlessly.
It has not been removed in the example output above as it helps explain
what regions represent.

In the example output above, the first (0th) censused region appears on
chromosome 2 [4] and includes bases 1-3. It is the first (0th) region to appear on this
chromosome and over those three bases, the corresponding subsequence for “my_sample”
contained 2 N bases and the corresponding subsequence for “my_other_sample” contained
1. In total, over both samples, on chromosome 2, over bases 1-3, 3 N bases appeared.

The last region, region 27 (28th) appears on chromosome “one” [5] and includes
bases 7-9. It is the seventh (6th by 0-index) found on this chromosome and over
those three bases neither of the two samples contained an N base.

	[4]	As numbers are ordered before strings like “one” and “X” in Python.

	[5]	As “X” is ordered before “one” in Python.

Sorting Regions

Following a census, Goldilocks allows you to sort the regions found by four
mathematical operations: max, min, mean and median.

g_max = g.query("max")
g_min = g.query("min")
g_mean = g.query("mean")
g_median = g.query("median")

The result of a query is the original goldilocks.goldilocks.Goldilocks object
with masked and sorted internal data. You can view a table-based representation
of the regions with goldilocks.goldilocks.Goldilocks.export_meta().

> g_max.export_meta(sep='\t', group="total")
[NOTE] Filtering values between 0.00 and 3.00 (inclusive)
[NOTE] 28 processed, 28 match search criteria, 0 excluded, 0 limit
chr pos_start pos_end total_default
2 1 3 3.0
2 3 5 3.0
2 5 7 3.0
2 7 9 3.0
2 2 4 2.0
2 4 6 2.0
2 6 8 2.0
2 8 10 2.0
X 13 15 2.0
one 4 6 2.0
one 5 7 2.0
one 3 5 1.0
one 6 8 1.0
X 1 3 0.0
X 2 4 0.0
X 3 5 0.0
X 4 6 0.0
X 5 7 0.0
X 6 8 0.0
X 7 9 0.0
X 8 10 0.0
X 9 11 0.0
X 10 12 0.0
X 11 13 0.0
X 12 14 0.0
one 1 3 0.0
one 2 4 0.0
one 7 9 0.0

Note the regions in g_max are now sorted by the number
of N bases that appeared. Ties are currently resolved by the region that was seen
first (has the lowest id).

Setting Number of Processes

Goldilocks supports multiprocessing and can spawn some number of additional processes to perform
the census steps before aggregating all the region counters and answering queries.
To specify the number of processes Goldilocks should use, specify a processes
argument to the constructor:

g = Goldilocks(NucleotideCounterStrategy(["N"]), sequence_data, length=3, stride=1, processes=4)

Full Example

Census an example sequence for appearance of ‘N’ bases:

from goldilocks.goldilocks import Goldilocks
from goldilocks.strategies import NucleotideCounterStrategy

sequence_data = {
 "my_sample": {
 2: "NANANANANA",
 "one": "CATCANCAT",
 "X": "GATTACAGATTACAN"
 },
 "my_other_sample": {
 2: "GANGANGAN",
 "one": "TATANTATA",
 "X": "GATTACAGATTACAN"
 }
}

g = Goldilocks(NucleotideCounterStrategy(["N"]), sequence_data, length=3, stride=1, processes=4)

g_max_n_bases = g.query("max")
g_min_n_bases = g.query("min")
g_median_n_bases = g.query("median")
g_mean_n_bases = g.query("mean")

 Copyright 2014, Sam Nicholls.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Goldilocks 0.0.8 Beta documentation

Advanced Package Usage

The following assumes basic Python programming experience (and
that you have installed Goldilocks and familiarised yourself
with the basics), skip to the end if you think you know what you’re doing.

Filtering Regions

Group

By default when returning region data the “total” group is used, in our running
example of counting missing nucleotides, this would represent the total number
of ‘N’ bases seen in sequence data across each sample in the same genomic region
on the same chromosome. But if you are more interested in a particular sample:

g.query("max", group="my_sample")

Track

When using tracks (for strategies that calculate multiple distinct values for
each genomic region - such as different nucleotide bases or k-mers), you may wish
to extract regions based on scores for a certain track:

g.query("max", track="AAA")

Absolute distance

You may be interested in regions within some distance of the mean:

g.query("mean", acutal_distance=10)

Percentile distance

Or perhaps the “top 10%”, or the “middle 25%” around the mean:

g.query("max", percentile_distance=10)
g.query("mean", percentile_distance=25)

When not using max or min, by default both actual and percentile differences
calculate ‘around’ the mean or median value instead. If you’d like to control
this behaviour you can specify a direction: Let’s fetch regions that have values
falling within 25% above or below the mean respectively:

g.query("mean", percentile_distance=25, direction=1)
g.query("mean", percentile_distance=25, direction=-1)

Multiple criteria

You can of course use these at the same time (though actual and percentile distances
are mutually exclusive), let’s fetch the top 10% of regions that contain the most
“AAA” k-mers for all chromosomes in a hypothetical sample called “my_kmer_example”:

g.query("max", group="my_sample", track="N", percentile_distance=10)

Excluding Regions

The filter function also allows users to specify a dictionary of exclusion criteria.

Starting position

To filter regions based on the 1-indexed starting position greater than or equal to 3:

g.query("min", exclusions={
 "start_gte": 3,
 })

Ending position

To filter regions based on the 1-indexed ending position less than or equal to 9:

g.query("min", exclusions={
 "end_lte": 9,
 })

Chromosome

You can filter regions that appear on particular chromosomes completely by providing a list:

g.query("min", exclusions={
 "chr": ["X", 6],
 })

Value of another count group

When using groups, one may wish to exclude results where the value of another group
is less than the one selected by the query. For example, for each region the following
would result in regions where the count for my-other-sample is greater than my-sample:

g.query("min", group="my-sample", exclusions={
 "region_group_lte": "my-other-sample",
 })

Multiple Criteria

You may want to use such exclusion criteria at the same time. Let’s say we have
a bunch of sequence data from a species whose chromosomes all feature centromeres
between bases 500-1000. Let’s ignore regions from that area. Let’s also exclude
anything from chromosome ‘G’. If a single one of these criteria are true, a region
will be excluded:

g.query("mean", exclusions={
 "start_gte": 500,
 "end_lte": 1000,
 "chr": ['G'],
 })

What if you want to exclude based on multiple criteria that should all be true?
Let’s exclude regions that start before or on base 100 on chromosome X or Y [1].
Note the use of use_and=True! [2]

g.query("mean", exclusions={
 "start_lte": 100,
 "chr": ['X', 'Y'],
 }, use_and=True)

Chromosome specific criteria

Finally applying exclusions across all chromosomes might seem quite naive, what
if we want to ignore centromeres on a real species? Introducing chromosome
dependent exclusions; the syntax is the same as previously, just the exclusions
dictionary is a dictionary of dictionaries with keys representing each chromosome.
Note the use of use_chrom=True:

g.query("median", exclusions={
 "one": {
 "start_lte": 3,
 "end_gte": 4
 },
 2: {
 "start_gte": 9
 },
 "X": {
 "chr": True
 }}, use_chrom=True)

It is important to note that currently Goldilocks does not sanity check the contents of
the exclusions dictionary including the spelling of exclusion names or whether you
have correctly set use_chrom if you are providing chromosome specific filtering.
However, on this latter point, if Goldilocks detects a key in the exclusions dictionary
matches the name of a chromosome, it will print a warning (but continue regardless).

	[1]	Support for chromosome matching is still ‘or’ based even when using use_and=True,
a region can’t appear on more than one chromosome and so this seemed a more
natural and useful behaviour.

	[2]	Apart from the above caveat on chromosome matching always being or-based,
currently there is no support for more complicated queries such as exclude
if (statement1 and statement2) or statement3. It’s or, or and on all criteria!

Limiting Regions

One may also limit the number of results returned by Goldilocks:

g.query("mean", limit=10)

Full Example

Almost all of these options can be used together! Let’s finish off our examples
by finding the top 5 regions that are within an absolute distance of 1.0 from
the maximum number of ‘N’ bases seen across all subsequences over the ‘my_sample’
sample. We’ll exclude any region that appears on chromosome “one” and any regions on
chromosome 2 that start on a base position greater than or equal to 5 and end on
a base position less than or equal to 10. Although when filtering the default
track is indeed ‘default’, we’ve explicity set that here too.:

g.query("max",
 group="my_sample",
 track="default",
 actual_distance=1,
 exclusions={
 2: {
 "start_gte": 5,
 "end_lte": 10
 },
 "one": {
 "chr":True
 }
 },
 use_chrom=True,
 use_and=True,
 limit=5
).export_meta(sep="\t")

[NOTE] Filtering values between 1.00 and 2.00 (inclusive)
[NOTE] 28 processed, 12 match search criteria, 7 excluded, 5 limit
chr pos_start pos_end my_other_sample_default my_sample_default
2 1 3 1.0 2.0
2 3 5 1.0 2.0
2 2 4 1.0 1.0
2 4 6 1.0 1.0
X 13 15 1.0 1.0

 Copyright 2014, Sam Nicholls.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Goldilocks 0.0.8 Beta documentation

Exporting

Goldilocks provides functions for the exporting of all censused regions metadata
or for filtered regions resulting from a query. The examples below follow
on from the basic usage instructions earlier in the documentation.

Census Data

For a given sample one may export basic metadata for all regions that included
sequence data from that particular sample. The header is as follows:

	Key
	Value

	id
	A unique id assigned to the region by Goldilocks

	track1
	The value for the region as calculated by the strategy used.
By default if a list of tracks is not specified when the
strategy is created, there will be just one track named
‘default’.
For the majority of ‘basic’ strategies this will be the case.

	[track2 ... trackN]
	Optional further fields will appear for additional tracks,
the column header will feature the name of the track.
For example, a k-mer counting strategy would feature a
column for each k-mer specified to the strategy.

	chr
	The chromosome the region appeared on (as found in the
input data)

	pos_start
	The 1-indexed base of the sequence where the
region begins (inclusive)

	pos_end
	The 1-indexed base of the sequence where the region ends (inclusive)

Using the my_sample data:

...
g.export_meta("my_sample", sep="\t")

id default chr pos_start pos_end
0 2 2 1 3
1 1 2 2 4
2 2 2 3 5
3 1 2 4 6
4 2 2 5 7
5 1 2 6 8
6 2 2 7 9
7 1 2 8 10
8 0 X 1 3
9 0 X 2 4
10 0 X 3 5
11 0 X 4 6
12 0 X 5 7
13 0 X 6 8
14 0 X 7 9
15 0 X 8 10
16 0 X 9 11
17 0 X 10 12
18 0 X 11 13
19 0 X 12 14
20 1 X 13 15
21 0 one 1 3
22 0 one 2 4
23 0 one 3 5
24 1 one 4 6
25 1 one 5 7
26 1 one 6 8
27 0 one 7 9

FASTA

From any sorting or filtering operation on censused regions, a new Goldilocks
object is returned, providing function to output filtered sequence data to FASTA format.

Following on from the example introduced earlier, the example below shows the
subsequences of my_sample in the FASTA format, ordered by their appearance in
the filtered candidates list, from the highest number of ‘N’ bases, to the
lowest.

...
candidates = g.query("max", group="my_sample")
candidates.export_fasta("my_sample")

>my_sample|Chr2|Pos1:3
NAN
>my_sample|Chr2|Pos3:5
NAN
>my_sample|Chr2|Pos5:7
NAN
>my_sample|Chr2|Pos7:9
NAN
>my_sample|Chr2|Pos2:4
ANA
>my_sample|Chr2|Pos4:6
ANA
>my_sample|Chr2|Pos6:8
ANA
>my_sample|Chr2|Pos8:10
ANA
>my_sample|ChrX|Pos13:15
CAN
>my_sample|Chrone|Pos4:6
CAN
>my_sample|Chrone|Pos5:7
ANC
>my_sample|Chrone|Pos6:8
NCA
>my_sample|ChrX|Pos1:3
GAT
>my_sample|ChrX|Pos2:4
ATT
>my_sample|ChrX|Pos3:5
TTA
>my_sample|ChrX|Pos4:6
TAC
>my_sample|ChrX|Pos5:7
ACA
>my_sample|ChrX|Pos6:8
CAG
>my_sample|ChrX|Pos7:9
AGA
>my_sample|ChrX|Pos8:10
GAT
>my_sample|ChrX|Pos9:11
ATT
>my_sample|ChrX|Pos10:12
TTA
>my_sample|ChrX|Pos11:13
TAC
>my_sample|ChrX|Pos12:14
ACA
>my_sample|Chrone|Pos1:3
CAT
>my_sample|Chrone|Pos2:4
ATC
>my_sample|Chrone|Pos3:5
TCA
>my_sample|Chrone|Pos7:9
CAT

 Copyright 2014, Sam Nicholls.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Goldilocks 0.0.8 Beta documentation

Plotting

 Copyright 2014, Sam Nicholls.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Goldilocks 0.0.8 Beta documentation

Custom Strategies

 Copyright 2014, Sam Nicholls.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Goldilocks 0.0.8 Beta documentation

Examples

The following includes some simple examples of what Goldilocks can be used for.

Example One

Read a pair of 1-indexed base position lists and output all regions falling
within 2 of the maximum count of positions in regions across both, in a table.

from goldilocks.goldilocks import Goldilocks
from goldilocks.strategies import PositionCounterStrategy
data = {
 "my_positions": {
 1: [1,2,5,10,15,15,18,25,30,50,51,52,53,54,55,100]
 },
 "my_other_positions": {
 1: [1,3,5,7,9,12,15,21,25,51,53,59,91,92,93,95,99,100]
 }
}
g = Goldilocks(PositionCounterStrategy(), data, is_pos=True, length=10, stride=1)

g.query("max", actual_distance=2).export_meta(sep="\t", group="total")

Example Two

Read a short sequence, census GC-ratio and output the top 5 regions as FASTA.

from goldilocks.goldilocks import Goldilocks
from goldilocks.strategies import GCRatioStrategy
data = {
 "my_sequence": {
 1: "ACCGAGAGATTT"
 }
}
g = Goldilocks(GCRatioStrategy(), data, 3, 1)

g.query("max", limit=5).export_fasta()

Example Three

Read a short sequence and census the appearance of the “AAA” and “CCC” motif.
Output a table of regions with the most occurrences of CCC (and at least one)
and another table of regions featuring the most appearances of both motifs.
Output only the maximum region (actual_distance = 0) displaying both motifs to
FASTA.

from goldilocks.goldilocks import Goldilocks
from goldilocks.strategies import KMerCounterStrategy
data = {
 "my_sequence": {
 1: "CCCAAACCCGGGCCCGGGAGAAACCC"
 }
}
g = Goldilocks(KMerCounterStrategy(["AAA", "CCC"]), data, 9, 1)

g.query("max", track="CCC", gmin=1).export_meta(sep="\t")
g.query("max", group="total").export_meta(sep="\t", group="total", track="default")

g.query("max", group="total", actual_distance=0).export_fasta()

Example Four

Read two samples of three short chromosomes and search for ‘N’ nucleotides.
List and export a FASTA of regions that contain at least one N, sorted by number
of N’s appearing across both samples. Below, an example of complex filtering.

from goldilocks.goldilocks import Goldilocks
from goldilocks.strategies import NucleotideCounterStrategy
data = {
 "sample_one": {
 1: "ANAGGGANACAN",
 2: "ANAGGGANACAN",
 3: "ANANNNANACAN",
 4: "NNNNAANNAANN"
 },
 "sample_two": {
 1: "ANAGGGANACAN",
 2: "ANAGGGANACAN",
 3: "ANANNNANACAN",
 4: "NNNANNAANNAA"
 }
}
g = Goldilocks(NucleotideCounterStrategy(["N"]), data, 3, 1)

g_max = g.query("max", gmin=1)
g_max.export_meta(sep="\t")
g_max.export_fasta()

g.query("min",
 gmin = 1,
 exclusions={
 # Filter any region with a starting position <= 3 or >= 10
 "start_lte": 3,
 "start_gte": 10,

 # Filter any regions on Chr1
 1: {
 "chr": True
 },

 # Filter NO regions on Chr2
 # NOTE: This also prevents the superexclusions above being applied.
 2: {
 "chr": False
 },

 # Filter any region on Chr3 with an ending postion >= 9
 3: {
 "start_lte": 5 # NOTE: This overrides the start_lte applied above
 }
 }, use_chrom=True).export_meta(sep="\t")

Example Five

Read in four simple chromosomes from one sample and census the GC ratio.
Plot both a scatter plot of all censused regions over both of the provided
samples with position over the x-axis and value on the y-axis.
Produce a second plot drawing a panel with a line graph for each chromosome
with the same axes but data from one sample only.
For the combined result of both samples and chromosomes, organise the result
of the census for each region into desired bins and plot the result as a histogram.
Repeat the process for the my_sequence sample and produce a panelled histogram
for each chromosome.

from goldilocks.goldilocks import Goldilocks
from goldilocks.strategies import GCRatioStrategy
data = {
 "my_sequence": {
 1: "ANAGGGANACANANAGGGANACANANAGGGANACANANAGGGANACANANAGGGACGCGCGCGGGGANACAN"*500,
 2: "ANAGGCGCGCNANAGGGANACGCGGGGCCCGACANANAGGGANACANANAGGGACGCGCGCGCGCCCGACAN"*500,
 3: "ANAGGCGCGCNANAGGGANACGCGGGGCCCGACANANAGGGANACANANAGGGACGCGCGCGCGCCCGACAN"*500,
 4: "GCGCGCGCGCGCGCGCGGGGGGGGGCGCCGCCNNNNNNNNNNNNNNNNGCGCGCGCGCGCGCGNNNNNNNNN"*500
 },
 "my_same_sequence": {
 1: "ANAGGGANACANANAGGGANACANANAGGGANACANANAGGGANACANANAGGGACGCGCGCGGGGANACAN"*500,
 2: "ANAGGCGCGCNANAGGGANACGCGGGGCCCGACANANAGGGANACANANAGGGACGCGCGCGCGCCCGACAN"*500,
 3: "ANAGGCGCGCNANAGGGANACGCGGGGCCCGACANANAGGGANACANANAGGGACGCGCGCGCGCCCGACAN"*500,
 4: "GCGCGCGCGCGCGCGCGGGGGGGGGCGCCGCCNNNNNNNNNNNNNNNNGCGCGCGCGCGCGCGNNNNNNNNN"*500
 }
}
g = Goldilocks(GCRatioStrategy(), data, 50, 10)

g.plot()
g.plot("my_sequence")
g.profile(bins=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])
g.profile("my_sequence", bins=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])

Example Six

Read a set of simple chromosomes from two samples and tabulate the top 10% of
regions demonstrating the worst consensus to the given reference over both samples.
Plot the lack of consensus as line graphs for each chromosome, for each sample,
then over all chromosomes for all samples on one graph.

from goldilocks.goldilocks import Goldilocks
from goldilocks.strategies import ReferenceConsensusStrategy
data = {
 "first_sample": {
 1: "NNNAANNNNNCCCCCNNNNNGGGGGNNNNNTTTTTNNNNNAAAAANNNNNCCCCCNNNNNGGGGGNNNNNTTTTTNNNNN",
 2: "NNNNNCCCCCNNNNNTTTTTNNNNNAAAAANNNNNGGGGGNNNNNCCCCCNNNNNTTTTTNNNNNAAAAANNNNNGGGGN"
 },
 "second_sample": {
 1: "NNNNNNNNNNCCCCCCCCCCNNNNNNNNNNTTTTTTTTTTNNNNNNNNNNCCCCCCCCCCNNNNNNNNNNTTTTTTTTTT",
 2: "NNCCCCCCCCNNNNNNNNNNAAAAAAAAAANNNNNNNNNNCCCCCCCCCCNNNNNNNNNNAAAAAAAAAANNNNNNNNNN"
 }
}
ref = {
 1: "AAAAAAAAAACCCCCCCCCCGGGGGGGGGGTTTTTTTTTTAAAAAAAAAACCCCCCCCCCGGGGGGGGGGTTTTTTTTTT",
 2: "CCCCCCCCCCTTTTTTTTTTAAAAAAAAAAGGGGGGGGGGCCCCCCCCCCTTTTTTTTTTAAAAAAAAAAGGGGGGGGGG"
}

g = Goldilocks(ReferenceConsensusStrategy(reference=ref, polarity=-1), data, stride=10, length=10)
g.query("max", percentile_distance=10).export_meta(group="total", track="default")

g.plot("first_sample")
g.plot("second_sample")
g.plot()

Example Seven

Read a pair of 1-indexed base position lists from two samples. Sort regions
with the least number of marked positions on Sample 1 and subsort by max marked
positions in Sample 2.

from goldilocks.goldilocks import Goldilocks
from goldilocks.strategies import PositionCounterStrategy
data = {
 "my_positions": {
 1: [1,2,3,4,5,6,7,8,9,10,
 11,13,15,17,19,
 21,
 31,39,
 41]
 },
 "other_positions": {
 1: [21,22,23,24,25,26,27,28,
 31,33,39,
 41,42,43,44,45,46,47,48,49,50]
 }
}
g = Goldilocks(PositionCounterStrategy(), data, is_pos=True, length=10, stride=5)

g.query("max", group="my_positions").query("max", group="other_positions").export_meta(sep="\t")

 Copyright 2014, Sam Nicholls.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Goldilocks 0.0.8 Beta documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/samstudio8/goldilocks/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Goldilocks could always use more documentation, whether as part of the
official Goldilocks docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/samstudio8/goldilocks/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up goldilocks for local development.

	Fork the goldilocks repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/goldilocks.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv goldilocks
$ cd goldilocks/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 goldilocks tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, and 3.3, 3.4, and for PyPy. Check
https://travis-ci.org/samstudio8/goldilocks/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_goldilocks

 Copyright 2014, Sam Nicholls.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Goldilocks 0.0.8 Beta documentation

Credits

Development Lead

	Sam Nicholls <sam@samnicholls.net>

Contributors

None yet. Why not be the first?

 Copyright 2014, Sam Nicholls.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Goldilocks 0.0.8 Beta documentation

History

0.0.80 (2015-08-10)

	Added multiprocessing capabilities during census step.

	Added a simple command line interface.

	Removed prepare-evaluate paradigm from strategies and now perform counts
directly on input data in one step.

	Skip slides (and set all counts to 0) if their end_pos falls outside of
the region on that particular genome’s chromosome/contig.

	Rename KMerCounterStrategy to MotifCounterStrategy

	Fixed bug causing use_and to not work as expected for chromosomes not
explicitly listed in the exceptions dict when also using use_chrom.

	Support use of FASTA files which must be supplied with a samtools faidx style index.

	Stopped supporting Python 3 due to incompatability with buffer and memoryview.

	Prevent query from deep copying itself on return. Note this means that a query
will alter the original Goldilocks object.

	Now using a 3D numpy matrix to store counters with memory shared to
support multiprocessing during census.

	Removed StrategyValue as these cannot be stored in shared memory. This makes
ratio-based strategies a bit of a hack currently (but still work...)

	tldr; Goldilocks is at least 2-4x faster than previously, even without multiprocessing

0.0.71 (2015-07-11)

	Officially add MIT license to repository.

	Deprecate _filter.

	Update and tidy examples.py.

	is_seq argument to initialisation removed and replaced with is_pos.

	Use is_pos to indicate the expected input is positional, not sequence.

	Force use of PositionCounterStrategy when is_pos is True.

	
	Sequence data now read in to 0-indexed arrays to avoid the overhead of string

	re-allocation by having to append a padding character to the beginning of very
long strings.

	Region metadata continues to use 1-indexed positions for user output.

	VariantCounterStrategy now PositionCounterStrategy.

	
	PositionCounterStrategy expects 1-indexed lists of positions;

	prepare populates the listed locations with 1 and then evaluate
returns the sum as before.

	
	test_regression2 updated to account for converting 1-index to 0-index when

	manually handling the sequence for expected results.

	query accepts gmax and gmin arguments to filter candidate regions by
the group-track value.

	CandidateList removed and replaced with simply returning a new Goldilocks.

0.0.6 (2015-06-23)

	Goldilocks.sorted_regions stores a list of region ids to represent the result
of a sorting operation following a call to query.

	Regions in Goldilocks.regions now always have a copy of their “id” as a key.

	__check_exclusions now accepts a group and track for more complex
exclusion-based operations.

	region_group_lte and region_group_gte added to usable exclusion fields to
remove regions where the value of the desired group/track combination is
less/greater than or equal to the value of the group/track set by the
current query.

	query now returns a new Goldilocks instance, rather than a CandidateList.

	Goldilocks.candidates property now allows access to regions, this property
will maintain the order of sorted_regions if it has one.

	export_meta now allows group=None

	CandidateList class deleted.

	Test data that is no longer used has been deleted.

	Scripts for generating test data added to test_gen/ directory.

	Tests updated to reflect the fact CandidateList lists are no longer returned
by query.

	_filter is to be deprecated in favour of query by 0.0.7

Beta (2014-10-08)

	Massively updated! Compatability with previous versions very broken.

	Software retrofitted to be much more flexible to support a wider range of problems.

0.0.2 (2014-08-18)

	Remove incompatible use of print

0.0.1 (2014-08-18)

	Initial package

 Copyright 2014, Sam Nicholls.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	Goldilocks 0.0.8 Beta documentation

 Python Module Index

 g

 			

 		
 g	

 	
 	
 goldilocks	

 Copyright 2014, Sam Nicholls.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	Goldilocks 0.0.8 Beta documentation

Index

 G

G

 	

 	goldilocks (module)

 Copyright 2014, Sam Nicholls.
 Created using Sphinx 1.2.3.

 _static/file.png

_static/down.png

_static/comment.png

goldilocks.html

 Navigation

 		
 index

 		
 modules |

 		Goldilocks 0.0.8 Beta documentation »

goldilocks package

Submodules

goldilocks.goldilocks module

goldilocks.strategies module

Module contents

 © Copyright 2014, Sam Nicholls.
 Created using Sphinx 1.2.3.

search.html

 Navigation

 		
 index

 		
 modules |

 		Goldilocks 0.0.8 Beta documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Sam Nicholls.
 Created using Sphinx 1.2.3.

modules.html

 Navigation

 		
 index

 		
 modules |

 		Goldilocks 0.0.8 Beta documentation »

goldilocks

		goldilocks package
		Submodules

		goldilocks.goldilocks module

		goldilocks.strategies module

		Module contents

 © Copyright 2014, Sam Nicholls.
 Created using Sphinx 1.2.3.

_static/up.png

_static/ajax-loader.gif

_static/plus.png

_static/comment-bright.png

_static/up-pressed.png

_static/minus.png

_static/down-pressed.png

_static/comment-close.png

