
Gofer Documentation
Release 0.76

Jeff Ortel

Jun 29, 2018

Contents

1 Release Notes 3
1.1 gofer 2.11 . 3
1.2 gofer 2.10 . 3
1.3 gofer 2.9 . 3
1.4 gofer 2.8 . 4
1.5 gofer 2.7 . 4
1.6 gofer 2.6 . 5
1.7 gofer 2.5 . 5
1.8 gofer 2.4 . 6
1.9 gofer 2.3 . 6
1.10 gofer 2.2 . 7
1.11 gofer 2.1 . 7
1.12 gofer 2.0 . 7
1.13 gofer 1.4 . 8

2 Overview 9

3 Installation 11
3.1 Packages . 11
3.2 Development . 11

4 Getting Started 13
4.1 Installation . 13
4.2 Writing A Plugin . 14
4.3 Interactive Testing . 16

5 Tools 19
5.1 Command Line Interface . 19

6 Design 23
6.1 Approach . 23
6.2 Messaging . 24

7 Messaging Adapters 29
7.1 Supported . 29

8 Configuration 31

i

8.1 Agent Configuration . 31
8.2 Plugin Descriptors . 32
8.3 Examples . 34

9 Options 35
9.1 Summary . 35
9.2 Details . 35

10 Plugin Decorators 39
10.1 @action . 39
10.2 @remote . 39
10.3 @direct . 40
10.4 @fork . 40
10.5 @pam . 40
10.6 @user . 41

11 Plugin Extension 43
11.1 Extending . 43
11.2 Inheritance . 44
11.3 Delegation . 45

12 Python Examples 47
12.1 Server-side . 47
12.2 Define Agent-side . 47
12.3 Synchronous Invocation . 48
12.4 Synchronous Invocation (specify timeout) . 49
12.5 Asynchronous (fire & forget) Invocation . 49
12.6 Asynchronous (callback) Invocation . 50
12.7 Class Constructor Arguments . 52
12.8 Security . 53
12.9 Progress Reporting . 54
12.10 Testing . 55

13 QPID Configuration 59
13.1 LINKS . 59
13.2 RPMS . 59
13.3 Certificates . 59
13.4 Configuration . 61

14 Indices and tables 63

ii

Gofer Documentation, Release 0.76

Contents:

Contents 1

Gofer Documentation, Release 0.76

2 Contents

CHAPTER 1

Release Notes

1.1 gofer 2.11

Notes:

• Exit handler terminate threads.

Fixes:

• Fix compatibility python-amqp 2.1.4 Channel.wait().

• [2.11.5] Reload plugin when queue not-found or no-route condition is detected.

Deprecated:

1.2 gofer 2.10

Notes:

• Added support for soft plugin shutdown. Mainly internal API enhancement but improves behavior of plugin
unload and reload. Both operations now do a soft shutdown by default.

• The thread-pool design improved.

Fixes:

• The hard plugin/thread-pool shutdown aborted threads which caused reply messages to silently never be sent.
Only affected unload and reload operations.

Deprecated:

1.3 gofer 2.9

Notes:

3

Gofer Documentation, Release 0.76

• Added direct and fork plugin decorators used to specify the RMI invocation model. Using one of these
decorators is preferred to using the model= parameter to the remote decorator.

• Added memory profiler to metrics.

• Added context manager to Timer and associated decorator.

Fixes:

Deprecated:

1.4 gofer 2.8

Notes:

• Added support for RMI invocation models. The direct model is the default and invokes the remote method
within the goferd process. This is the model used by <= 2.7. The new fork model spawns a child process
for each method invocation. Invoking the method in a separate process provides isolation and better cancellation
behavior. The isolation protects goferd against memory leaks and corruption potentially introduced by plugins
(or code used by plugins). When using the fork model, RMI cancellation is implemented by killing the child
process. As a result cancellation is certain and immediate regardless of whether cancellation is implemented by
the method. See: direct and fork decorators.

Fixes:

• Proton message sending reliability regression introduced in 2.7.

Deprecated:

1.5 gofer 2.7

Notes:

• Add gofer command for interaction with goferd. See: man gofer for details. Packaged in gofer-tools. See
newly added [management] section of /etc/pulp/agent.conf.

• Plugin monitoring removed. Use gofer.agent.PluginContainer.load() and gofer.agent.PluginContainer.unload()
instead.

• Added @load and @unload decorators. Plugins can participate in plugin loading and unloading.

• The package plugin has been rewritten to shell out instead of using the yum library. Much simpler.

• The gofer.rmi.shell module added. This can be used by plugins to easily and consistently provide functionality
when using external commands is needed. Supports cancellation, progress reporting and returns stdout and
stderr. The system and package plugins converted to use this.

• Improved debug logging in messaging adaptor reliability packages. This helps with troubleshooting AMQP
issues.

• Added latency property to the [main] section of the plugin descriptor. Adding latency can be used for throttling
and widening the request cancellation window.

• Canceled RMI requests discarded just prior to execution. Plugin still responsible for canceling requests already
in progress.

• Reference plugins no longer packaged. The test plugin renamed to demo and not enabled by default.

• Dynamic plugin loading, reloading and unloading improved.

4 Chapter 1. Release Notes

Gofer Documentation, Release 0.76

• As with every release, better unit test coverage.

Fixes:

• Minor memory leak fixed. The leak was ~384 bytes per request.

• Fixes issue whereby locally stored requests are routed to a plugin that no longer specifies a URL. The requests
are discarded.

• AMQP connections used by plugin thread pool workers closed between requests. These connections can be
idle/unused for long periods. Closing them reduces the number of open network connections.

Deprecated:

• The uuid in the [messaging] section of the plugin descriptor has been deprecated. Use [model] queue instead.

• The @initializer decorator has been deprecated. Use @load instead.

• Authorization has been support. It will continue to support authentication. This includes:

– Shared secret. The secret option in the @remote decorator.

– The @pam decorator.

– The @user decorator.

– The pam property in the message.

1.6 gofer 2.6

Notes:

• Fixed recursion issue in proton adapter reconnect logic.

• Add support for dynamic plugin loading, reloading and unloading.

• Add plugin monitoring. When enabled in agent.conf, the agent container will monitor the /etc/gofer/plugins
directory for changes to plugin descriptors. When a descriptor has changed, the plugin is reloaded. When a new
descriptor is found, the plugin is loaded. When a plugin descriptor is deleted, the plugin is unloaded. See [main]
monitor property in agent.conf.

• Decentralized RMI scheduling. Each plugin has its own scheduler.

• Add support for RMI request forwarding to other plugins. Requests can be forwarded to other plugins when
they cannot be satisfied by the target plugin. See [main] accept and forward properties for details.

• Much better AMQP connection management. When plugins are unloaded, all associated AMQP connections
are closed.

• Add services API to the system plugin. The Service class supports start, restart, stop and status operations on
services.

• The python-gofer-qpid package Requires: python-ssl. Needed so that python-qpid will support SSL.

Deprecated:

• The maintenance window feature and associated properties.

1.7 gofer 2.5

Notes:

1.6. gofer 2.6 5

Gofer Documentation, Release 0.76

• Added the python-gofer-proton messaging adapter. The adapter supports AMQP 1.0 and use the Apache Qpid
proton library.

• The gofer.messaging.Exchange and gofer.messaging.Queue now support an additional url parameter which is
used when url is not passed to specific method.

• NotFound raised when an AMQP node (queue) does not exist. See messaging.adapter.model for details on
affected methods.

Deprecated:

• Using gofer.proxy.agent() has been deprecated.

1.8 gofer 2.4

Notes:

• AMQP Message durability fixed in python-amqp adapter.

• Added support for plugin descriptor properties that specifies the level to which the agent manages the broker
model. Specifically, how the agent manages its request queue. The [messaging] exchange property was
replace by support in the new [model] section documented below. See: descriptor documentation for details.

• Thread pool distribution fixed so that idle worker threads are selected when available.

• The python-amqplib AMQP library is no longer supported. It was redundant to support for python-amqp which
is better maintained and widely available. This means that the python-gofer-amqplib package is no longer
provided. Further that, AMQP-0-8 is no longer supported. This functionality can be resurrected on community
request.

• The amqp adapter (python-amqp) updated to use EPOLL and basic_consume() instead of using dynamic polling
and basic_get().

• By default, the proxy (caller) will no longer declare the agent queue. Since the address really specifies AMQP
routing (exchange/queue), gofer cannot assume the queue name or properties. The agent declaration and binding
is the responsibility of the agent or the (caller) application.

• The qpid adapter enables qpid heartbeat option on connections.

Added [model] section with the following properties:

• managed - Defines level of broker model management.

• queue - The name of the request queue.

• exchange - An (optional) exchange. The exchange is not declared/deleted.

1.9 gofer 2.3

Notes:

• Support for custom AMQP exchanges added. This includes an additional exchange option passed by callers to
indicate the exchange to be used for temporary queues used for synchronous replies. For plugins, the descriptor
was augmented to support an exchange property in the [messaging] section.

6 Chapter 1. Release Notes

Gofer Documentation, Release 0.76

1.10 gofer 2.2

Not Released.

1.11 gofer 2.1

Not Released.

1.12 gofer 2.0

The 2.0 major release and contains API changes, minor message format changes and the removal of deprecated func-
tionality. The goal of this release was to overhaul and streamline may major component and flows. This release also
contains hundreds of new unit integration and unit tests as part of a major effort to reach 100% test coverage.

Overhauled:

• The agent thread pool was replaced with Queue based approach.

• Support for multiple messaging libraries. Standard messaging adapter model that uses delegation pattern instead
of python meta-classes. Much better.

1.12.1 Concept changes

• The transport concept was replaced with messaging adapters. Each adapter implements an interface defined in
the adapter model and provides integration with 3rd part AMQP messaging libraries. The transport option and
descriptor property replaced with rich protocol handler support in the URL. See documented URL.

• All options are only supported when creating the agent proxy. They are no longer supported when constructing
the stub. This semantic is not reserved for passing arguments to the remote object (class) constructor.

• The agent uuid is being phased out. RMI calls are routed to the agent based on the queue on which it was
received. This term is being replaced by more AMQP related terms and concepts. An address has the format of:
exchange/queue or queue.

• Support for agent broadcast was removed. This feature was deemed as not useful since most applications do not
track requests using the serial number. Also, this can be easily implemented by the caller. Removed to make
code paths and the API simpler.

1.12.2 API changes

There are API changes that affect both RMI calling (proxy) and the Plugin object exposed to agent plugins. Proxy
changes pertain to the options passed to the Agent class and the Stubs created.

The Agent constructor changed from: Agent(uuid, **options) to: Agent(url, address, **options).

Example (adapter = qpid):

url = qpid+amqp://localhost

Option changes:

• async - Removed.

• wait - Added and indicates how long the caller is blocked on calls.

1.10. gofer 2.2 7

Gofer Documentation, Release 0.76

• timeout - Replaced by ttl.

• ttl - Added and replaces timeout. Strictly applies to request (and message) TTL.

• ctag - Replaced by reply.

• reply - Replaces ctag and is an AMQP address that specifies where RMI replies are sent.

• any - Removed and replaced by data.

• data - User defined data that is round-tripped back to the caller. Replaces any.

• transport - Replaced with rich protocol handlers supported by the URL.

1.12.3 Plugin (class) changes

All accessor methods replaced with @property and appear as attributes.

Here are a few major methods affected:

• enabled()

• get_uuid()

• get_url()

• get_cfg()

1.13 gofer 1.4

Here is a summary of 1.0 changes:

• Support for multiple transports was added.

• Message authentication added.

• The accepted status reply was added.

• The watchdog as removed.

• An ISO 8601 timestamp is included in all reply messages.

8 Chapter 1. Release Notes

CHAPTER 2

Overview

Gofer provides an extensible, light weight, universal python agent. It has no relation to the Gopher protocol. The
gofer core agent is a python daemon (service) that provides infrastructure for exposing a remote API and for running
Recurring Actions. The APIs contributed by plugins are accessible by Remote Method Invocation (RMI). The transport
for RMI is AMQP using the QPID message broker. Actions are also provided by plugins and are executed at the
specified interval.

License: LGPLv2

Gofer provides:

• An agent (daemon)

• Plugin Container

• Remote access to API provided by plugins

• Action scheduling

Plugins provide:

• Remote API.

• Recurring (scheduled) actions

• Agent identity (optional)

9

http://en.wikipedia.org/wiki/Gopher_%28protocol%29
http://qpid.apache.org/

Gofer Documentation, Release 0.76

10 Chapter 2. Overview

CHAPTER 3

Installation

3.1 Packages

Gofer is packaged into RPMs for Linux. These packages are as follows:

• gofer - The gofer agent (goferd).

• python-gofer - The common library.

• python-gofer-qpid - The python-qpid messaging adapter.

• python-gofer-amqp - The python-amqp messaging adapter.

Depending on system capabilities, the gofer package registers goferd with systemd or upstart service managers.

3.1.1 python optimizations

By default, goferd runs python with optimizations enabled. If you want to disable those optimizations, this can
be done by altering the environment file for this service, /etc/sysconfig/goferd, and setting the value of
PYTHONOPTIMIZE to zero: PYTHONOPTIMIZE=0

3.2 Development

The gofer project is hosted by Github. To install from source, you must first clone the git repository. The python
library can be installed using something like pip. Once installed, the goferd daemon can be installed.

Cloning the repository:

$ git clone https://github.com/jortel/gofer.git

In the examples below, <git> is the directory containing the cloned repository.

Files can be link or copied.

11

Gofer Documentation, Release 0.76

3.2.1 goferd

To install goferd:

cp <git>/gofer/bin/goferd /usr/bin

3.2.2 systemd

To register goferd with systemd:

cp <git>/gofer/usr/lib/systemd/system/goferd.service /usr/lib/systemd/system

3.2.3 upstart

To register goferd with upstart:

cp <git>/gofer/etc/init.d/goferd /etc/init.d
chkconfig --add goferd

12 Chapter 3. Installation

CHAPTER 4

Getting Started

4.1 Installation

First, install and start QPID (qpidd)

Then,

1. Install gofer.

yum install gofer python-gofer-qpid

2. Edit the /etc/gofer/plugins/demo.conf and set the url to point at your broker. Then, set queue=123.
Or, look in /var/log/messages to find the auto-assigned UUID for your system.

[main]

enabled = 1

[messaging] url=qpid+amqp://localhost

[model] queue=123

3. Start the goferd service.

service goferd start

4. Now, invoke the remote operations provided by the demo plugin:

4.1.1 Python

>>> from gofer.proxy import Agent
>>>
>>> url = 'amqp://localhost'
>>> agent = Agent(url, '123')

(continues on next page)

13

Gofer Documentation, Release 0.76

(continued from previous page)

>>> admin = agent.Admin()
>>> print admin.help()

Plugins:
demo

Actions:
demo.TestAction.hello() 0:10:00

Methods:
Admin.hello()
Admin.help()
Shell.run()

Functions:
demo.echo()

4.2 Writing A Plugin

The installing plugins is done in 6 easy steps.

1. Write your plugin descriptor.

2. Write your plugin module.

3. Copy (or symlink) the plugin descriptor (myplugin.conf) to /etc/gofer/plugins/

4. Copy (or symlink) the plugin module (myplugin.py) to /usr/lib/gofer/plugins/

5. Restart goferd

6. Add server side code to invoke remote methods

Let’s create a plugin named myplugin.

4.2.1 Step 1

Create your plugin descriptor (myplugin.conf) as follows:

[main]
enabled = 1

[messaging]
url=qpid+amqp://localhost

[model]
queue=123

4.2.2 Step 2

Write your plugin. It will be defined in a module named myplugin.py and would look something like this:

from gofer.decorators import *

class MyClass:

@remote
(continues on next page)

14 Chapter 4. Getting Started

Gofer Documentation, Release 0.76

(continued from previous page)

def hello(self):
return 'MyPlugin says, "hello".'

Stand alone (plain) functions may be decorated as remote.

Your class may have constructor arguments.

from gofer.decorators import *

@remote
def hello(self):

return 'MyPlugin says, "hello".'

4.2.3 Step 3

Install or update your plugin descriptor.

cp myplugin.conf /etc/gofer/plugins

4.2.4 Step 4

Install or update your plugin.

cp myplugin.py /usr/lib/gofer/plugins

4.2.5 Step 5

Restart the gofer daemon.

sudo /etc/sbin/service goferd restart

4.2.6 Step 6

Add server-side code to invoke methods on your plugin.

This is done by instantiating a proxy for the agent. You need to specifying the uuid of the agent (plugin).

...
your server code
from gofer.proxy import Agent

url = 'amqp://localhost'
uuid = '123'
agent = Agent(url, uuid)
myclass = agent.MyClass()
myclass.hello()

Invoke the stand alone function. Instead of instantiating the remote class, the function is invoked directly using the
plugin module’s namespace:

4.2. Writing A Plugin 15

Gofer Documentation, Release 0.76

...
your server code
from gofer.proxy import Agent

url = 'amqp://localhost'
uuid = '123'
agent = Agent(url, uuid)
agent.myplugin.hello()

4.3 Interactive Testing

After adding classes or methods in myplugin.py, you’ll want to test them. First, ensure the plugin is still loading
properly. The easiest way to do this is by examining the gofer log file at: /var/log/gofer/agent. At start up, you should
see something like:

2010-11-08 08:49:04,909 [INFO][MainThread] __import() @ plugin.py:103 - plugin
→˓"myplugin", imported as: "myplugin"

The gofer log (/var/log/messages) may be examined to verify that Actions are running as expected. Also, RMI requests
(massages) are logged upon receipt in the gofer agent log.

Testing added remote methods, can be done easily using an interactive python (shell). Be sure your changes to your
plugin have been picked up by Gofer by restarting goferd. Let’s say you added a new class named “Foo” that has a
remote method named . . . you guessed it: “bar”. You can test your new stuff as follows:

[jortel@localhost pulp]$ python
Python 2.6.2 (r262:71600, Jun 4 2010, 18:28:04)
[GCC 4.4.3 20100127 (Red Hat 4.4.3-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from gofer.proxy import Agent
>>>
>>> url = 'amqp://localhost'
>>> uuid = '123'
>>> agent = Agent(url, uuid)
>>> myclass = agent.MyClass()
>>> print myclass.hello()
MyPlugin says, "hello".

Another useful tool, it invoke Admin.help() from within interactive python as follows:

[jortel@localhost pulp]$ python
Python 2.6.2 (r262:71600, Jun 4 2010, 18:28:04)
[GCC 4.4.3 20100127 (Red Hat 4.4.3-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from gofer.proxy import Agent
>>>
>>> url = 'amqp://localhost'
>>> uuid = '123'
>>> agent = Agent(url, uuid)
>>> admin = agent.Admin()
>>> print admin.help()

Plugins:
demo
myplugin

(continues on next page)

16 Chapter 4. Getting Started

Gofer Documentation, Release 0.76

(continued from previous page)

Actions:
demo.TestAction 0:10:00

Methods:
myplugin.MyClass.hello()
demo.AgentAdmin.hello()
demo.AgentAdmin.help()
demo.Shell.run()

Functions:
demo.echo()

>>>

4.3.1 Security

The @remote decorator and gofer infrastructure supports (1) option:

• secret (default=None): A shared secret used for authentication. The value may be:

– str

– [str,..]

– (str,..)

– callable

In this example, MyClass.hello() must provide the secret to be invoked.

c = agent.MyClass(secret='mycathas9lives')
c.hello()

from gofer.decorators import *

class MyClass:

@remote(secret='mycathas9lives')
def hello(self):

return 'MyPlugin says, "hello".'

The decorator also support the secret being a callable that returns the secret matched to the request.

Example:

from gofer.decorators import *

def getsecret():
...
return secret

class MyClass:

@remote(secret=getsecret)
def hello(self):

return 'MyPlugin says, "hello".'

4.3. Interactive Testing 17

Gofer Documentation, Release 0.76

18 Chapter 4. Getting Started

CHAPTER 5

Tools

The gofer project includes the follow tools.

5.1 Command Line Interface

The gofer CLI provides both management (MGT) of goferd and remote method invocation (RMI). The management
tool may be used to get the status of goferd and to dynamically load, reload and unload plugins. The management
tool connects to goferd on the management port as defined in /etc/gofer/agent.conf. Management must be
explicitly enabled.

[management]
enabled=1
host=localhost
port=5650

The RMI tool may be used to remotely invoke methods provided by plugins. It does not need management to be
enabled.

Note: The CLI is new in gofer 2.7

5.1.1 Examples

The following are example of what can be done using gofer. It’s assumed that management has been enabled on
the default port and the host name is localhost. When configured with these defaults, the (-h|--host) and
(-p|--port) are not necessary but shown in the examples for for better illustration.

See: man gofer for complete details.

19

Gofer Documentation, Release 0.76

Show the status of goferd

$ gofer mgt -h localhost -p 5650 -s
Plugins:

<plugin> package
Classes:
<class> Package

methods:
install(name)
remove(name)
update(name)

Functions:

<plugin> virt
Classes:
<class> Virt

methods:
getDomainID(name)
isAlive(id)
listDomains()
shutdown(id)
start(id)

Functions:

<plugin> __builtin__
Classes:
<class> Admin

methods:
cancel(sn, criteria)
echo(text)
hello()
help()

Functions:

<plugin> system
Classes:
<class> Shell

methods:
run(cmd)

<class> System
methods:
cancel()
halt(when)
reboot(when)

<class> Service
methods:
restart()
start()
status()
stop()

<class> Script
methods:
run(user, password, *options)

Functions:

<plugin> demo

(continues on next page)

20 Chapter 5. Tools

Gofer Documentation, Release 0.76

(continued from previous page)

Classes:
<class> Demo
methods:
demo()
echo(something)
hello()

Functions:

Actions:

Load a plugin

Plugins can be dynamically loaded using the path to its descriptor.

$ gofer mgt -h localhost -p 5650 -s
Plugins:
Actions:

$ gofer mgt -h localhost -p 5650 -l /opt/gofer/plugins/package.conf
$ gofer mgt -h localhost -p 5650 -s

Plugins:

<plugin> package
Classes:
<class> Package

methods:
install(name)
remove(name)
update(name)

Functions:

Actions:

Reload a plugin

Plugins can be dynamically reloaded by name or path to its descriptor.

$ gofer mgt -h localhost -p 5650 -r package

Unload a plugin

Plugins can be dynamically unloaded by name or using the path to its descriptor.

$ gofer mgt -h localhost -p 5650 -s
Plugins:

<plugin> package
Classes:
<class> Package

methods:
install(name)
remove(name)

(continues on next page)

5.1. Command Line Interface 21

Gofer Documentation, Release 0.76

(continued from previous page)

update(name)
Functions:

Actions:

$ gofer mgt -h localhost -p 5650 -u package
$ gofer mgt -h localhost -p 5650 -s

Plugins:
Actions:

5.1.2 Remote Method Invocation

The following examples assume a plugin is loaded in goferd at the URL of qpid+amqp://localhost and sub-
scribed to the demo queue. So -a demo will be the address used. Further, it’s assumed that the plugin provides the
following API.

class Dog(object):

@remote
def bark(self, words):

return 'Yes master. I will bark because that is what dogs do. "%s"' % words

@remote
def wag(self, n):

for i in range(0, n):
print 'wag'

return 'Yes master. I will wag my tail because that is what dogs do.'

Synchronous RMI

$ gofer rmi -u qpid+amqp://localhost -a demo -t Dog.bark howdy

Yes master. I will bark because that is what dogs do. "howdy"

$ gofer rmi -u qpid+amqp://localhost -a demo -t Dog.wag 3

Yes master. I will wag my tail because that is what dogs do.

Asynchronous RMI

The following uses the -r <address option to specify that the reply is to be sent to the replies AMQP address
(queue).

$ gofer rmi -u qpid+amqp://localhost -a demo -r replies -t Dog.bark howdy

719d234f-480d-4035-9c2b-b08d17d77f13

22 Chapter 5. Tools

CHAPTER 6

Design

6.1 Approach

The preferred approach is to leverage a Message Bus and possibly a Messaging Framework that uses the message bus
for transport. The advantages over home grown and/or point-to-point solutions are as follows:

• Hub and Spoke topology. Each node knows the address of the broken but not each other.

• Key-based routing. Nodes are associated with properties instead of IP addresses.

• Reliable message delivery.

• Message queueing.

• Automatic reconnect behaviour.

• And probably others . . .

23

Gofer Documentation, Release 0.76

Dispatch Architecture:

6.2 Messaging

A Messaging Framework provides RMI (Remote Method Invocation) & Event semantics on top of messaging. This
gives application developers an easy to use abstraction and hides some of the complexities of exchange and dispatching.
Especially in OO applications, invoking a method remotely on an agent without regard for message exchange and

24 Chapter 6. Design

Gofer Documentation, Release 0.76

routing enhances reliability and productivity.

Requirements Summary:

• Key-based routing based on consumer ID.

• Synchronous RMI.

• Asynchronous RMI.

• Fire and Forget

• Callbacks

• Returned values.

• Exception propagation.

• Easy to use.

• Easy to extend classes/method exposed for RMI.

• Events

• Support multiple API versions.

6.2.1 Synchronous RMI:

6.2. Messaging 25

Gofer Documentation, Release 0.76

6.2.2 Asynchronous RMI:

6.2.3 Messages

The message format is json:

• Security-Wrapper:

– signature - A base64 encoded signature.

– message - A json message with stricture of: (Request | Result | Exception)

• Envelope:

– sn - Serial Number (uuid).

– version - The API version.

– routing - A tuple containing the amqp (sender, destination).

– secret - The (optional) shared secret used for request authentication. DEPRECATED in 2.7.

– pam - The (optional) PAM authentication credentials. DEPRECATED in 2.7.

– replyto - The reply amqp address (optional).

– one of

* request - An RMI request. See: Request.

* result - An RMI result. Has value of: (Result | Exception).

* status - An RMI request status report. See: Status.

– timestamp - An ISO-8601 reply timestamp (UTC).

– data - User defined data.

• Request(Envelope):

– classname - The target class name.

– cntr - The (optional) remote class constructor arguments. format: ([],{}).

26 Chapter 6. Design

Gofer Documentation, Release 0.76

– method - The target instance method name.

– args[] - The list of parameters passed to method

– kws{} - The named keyword arguments passed to method.

• Status(Envelope):

– status - A request status with value of

* accepted - Accepted by the agent and queued.

* rejected - Rejected by the agent.

* started - The request has started execution.

* progress - Progress is begin reported. See: Progress.

• Progress(Status):

– total - The total number of items to be completed.

– completed - The number of items completed.

– details - Reported details. Can be anything.

• Result(Envelope):

– retval - The returned data. Can be anything.

• Exception(Envelope)

– exval - The formatted exception (including trace).

– xmodule - The exception module name.

– xclass - The exception class.

– xstate - The exception state. Contains the exception __dict__.

– xargs - The exception args attribute when subclass of Exception.

Example RMI request message:

{
"sn": "e7e91fb6-611b-4284-a9ed-ac1636b2c709",
"routing": [

"cfa806a4-919a-495f-b1dd-3fc11be9a8d0" ,
"19802a28-a18c-4ae3-ac57-b7a2e78a427a"

],
"replyto": "cfa806a4-919a-495f-b1dd-3fc11be9a8d0",
"version": "0.2"
"request": {

"classname": "Dog",
"method": "bark"
"args": ["hello"],
"kws": {}

}
}

Example reply:

{
"sn": "e7e91fb6-611b-4284-a9ed-ac1636b2c709",
"version": "0.2",
"result": {

(continues on next page)

6.2. Messaging 27

Gofer Documentation, Release 0.76

(continued from previous page)

"retval": "Yes master. I will bark because that is what dogs do."
}

}

Example status reply:

{
"origin": "123",
"status": "accepted",
"version": "0.2",
"sn": "985cb165-d291-47de-ab34-ecb20895384e",
"data": "group 2"

}

28 Chapter 6. Design

CHAPTER 7

Messaging Adapters

Each adapter is a standardized integration with an external messaging library. They are a specialized plugin that
provides communication with message brokers supported by the library.

7.1 Supported

7.1.1 python-qpid

This adapter uses the qpid.messaging library.

• AMQP - 0-10

• package - gofer.messaging.adapter.qpid

• provides:

– amqp-0-10

– qpid.messaging

– qpid

7.1.2 proton

This adapter uses the proton library.

• AMQP - 1.0

• package - gofer.messaging.adapter.proton

• provides:

– amqp-1-0

– proton

29

Gofer Documentation, Release 0.76

– qpid

7.1.3 python-amqp

This adapter uses the amqp library.

• AMQP - 0-9-1

• package - gofer.messaging.adapter.amqp

• provides:

– amqp-0-9-1

– rabbitmq

– rabbit

30 Chapter 7. Messaging Adapters

CHAPTER 8

Configuration

The gofer agent and plugins are configured using ini style configuration files located in /etc/gofer.

8.1 Agent Configuration

The agent configuration is specified in: /etc/gofer/agent.conf and through files located in /etc/gofer/
conf.d. During startup, gofer first reads agent.conf. Then, reads and merges in values found in the conf.d
files.

All configuration files support the following sections and properties:

8.1.1 [management]

Defines agent management properties.

• enabled - Management is (1=enabled|0=disabled).

• host - The host (interface) the manager listens on. Defaults to: localhost.

• port - The port the manager listens on. Defaults to: 5650.

8.1.2 [logging]

This section sets logging properties. Currently, the logging level can be set for each gofer package as follows:

<package>=<level>

The special root package may be used to set the logging level for all packages.

Levels (may be lower case):

• CRITICAL

• DEBUG

31

Gofer Documentation, Release 0.76

• ERROR

• FATAL

• INFO

• WARN

• WARNING

Gofer packages:

• agent

• messaging

• rmi

Examples:

[logging]
agent=DEBUG
messaging=WARNING

[logging]
root=ERROR

8.1.3 [pam]

• service - The (optional) service to be used for PAM authentication.

8.2 Plugin Descriptors

Each plugin has a configuration located in /etc/gofer/plugins. Plugin descriptors are ini style configuration
files that require the following sections and properties:

8.2.1 [main]

Defines basic plugin properties.

• name - The (optional) plugin name. The basename of the descriptor is used when not specified.

• plugin - The (optional) fully qualified path to the module to be loaded from the PYTHON path. When plugin
is not specified, the plugin is loaded by searching the following directories for a module with the same name as
the plugin:

– /usr/share/gofer/plugins

– /usr/lib/gofer/plugins

– /usr/lib64/gofer/plugins

– /opt/gofer/plugins

• enabled - The plugin is (1=enabled|=0disabled).

• threads - The (optional) number of threads for the RMI dispatcher.

• latency - The (optional) latency (seconds) to be introduced into RMI execution.

32 Chapter 8. Configuration

Gofer Documentation, Release 0.76

• accept - Accept forwarding list. Comma ‘,’ separated list of plugin names.

• forward - Forwarding list. Comma ‘,’ separated list of plugin names.

The latency property is intended to be used to create a cancellation window or provide throttling. Adding latency,
increases the opportunity for an RMI request to be canceled prior to being started.

8.2.2 [messaging]

• authenticator - The (optional) fully qualified path to a message Authenticator to be loaded from the PYTHON
path.

• uuid - The agent identity. This value also specifies the queue name.

• ‘url - The (optional) broker connection URL. No value indicates the plugin should not connect to broker. format:
<adapter>+<protocol>://<user>:<password>@<host>:<port>/<virtual-host>, proto-
col is one of:

– tcp: non-SSL protocol

– amqp: non-SSL protocol

– ssl: SSL protocol

– amqps: SSL protocol

The <adapter>, <user>:<password> and /<virtual-host> are optional. See: Messaging Adapters for list of sup-
ported adapters.

The <port> is optional and defaults based on the protocol when not specified:

– (amqp|tcp) port:5672

– (amqps|ssl) port:5671

• cacert - The (optional) SSL CA certificate used to validate the server certificate.

• clientkey - The (optional) SSL client private key.

• clientcert - The (optional) SSL client certificate. A (PEM) file may contain both the private key and certificate.

• host_validation - The (optional) flag indicates SSL host validation should be performed. Default to (1) when
not specified.

• heartbeat - The (optional) AMQP heartbeat in seconds. (default:10).

File extensions just be (.conf|.json).

8.2.3 [model]

• managed - The model is manged. Default:2

– 0: Not managed.

– 1: The queue is declared on attach and bound the the exchange as needed.

– 2: The queue is declared on attach and bound the the exchange as needed and drained and deleted on
explicit detach.

• queue - The (optional) AMQP queue name. This has precedent over uuid. Format: <exchange>/<queue> where
exchange is optional.

• expiration - The (optional) auto-deleted queue expiration (seconds).

8.2. Plugin Descriptors 33

Gofer Documentation, Release 0.76

8.3 Examples

This example enables messaging and defines the uuid:

[main]
enabled=1

[messaging]
url=qpid+amqp://localhost

[model]
queue=123

This example enables messaging and does not define the uuid. It is expected that the plugin defines an @load decorated
method/function that provides the url and queue:

[main]
enabled=1
accept=*

This example does not enable messaging for this plugin. This would be done when the plugin does not need to specify
an additional identity. This example also specifies a user defined sections to be used by the plugin:

[main]
enabled=1

[messaging]
url=qpid+amqp://localhost

[model]
queue=123

[foobar]
timeout=100

However, additional user defined sections and properties are supported and made available to the plugin(s) as follows:

from gofer.agent.plugin import Plugin
...
class MyPlugin:

...
def mymethod(self):

cfg = Plugin.find(__name__).cfg()
timeout = cfg.foobar.timeout
...

34 Chapter 8. Configuration

CHAPTER 9

Options

The RMI options can be passed to the proxy.agent() function and the Agent or Stub constructor. When options passed
to either the proxy.agent() or Agent constructor, they apply to all RMI calls unless they are overridden in the Stub
constructor.

These options are as follows:

9.1 Summary

reply The asynchronous RMI reply address. Eg: amq.direct/test-queue

trigger Specifies trigger used for RMI calls. (0=auto <default>, 1=manual)

secret The shared secret (security)

ttl The TTL (seconds) for the agent to accept the RMI request.

wait The time (seconds) to wait (block) for a result.

progress A progress callback specified for synchronous RMI. Must have signature: fn(report).

user A user (name), used for PAM authenticated access to remote methods.

password A password, used for PAM authenticated access to remote methods.

authenticator A subclass of pulp.messaging.auth.Authenticator that provides message authentication.

data User defined data associated with the RMI request and is round-tripped.

9.2 Details

9.2.1 reply

The reply option specifies the reply address. When specified, it implies all requests are asynchronous and that all
replies are sent to the AMQP address.

35

Gofer Documentation, Release 0.76

Example: Assume a reply listener on the topic or queue named: “foo”:

Passed to Agent() and apply to all RMI calls.

from gofer.proxy import Agent

agent = Agent(url, uuid, reply='foo')

9.2.2 trigger

The trigger option specifies the trigger used for asynchronous RMI. When the trigger is specified as manual, the RMI
calls return a trigger object instead of the request serial number. Each trigger contains a sn (serial number) property
that can be used for reply correlation. The trigger is pulled by calling the trigger as: trigger().

Trigger values:

• 0 = Automatic (default)

• 1 = Manual

Passed to Agent() and apply to all RMI calls.

from gofer.proxy import Agent

agent = Agent(uuid, trigger=1)
dog = agent.Dog()
trigger = dog.bark('delayed!')
print trigger.sn # do something with serial number
trigger() # pull the trigger

9.2.3 secret

The secret option is used to provide shared secret credentials to each RMI call. This option is only used for agent
plugin RMI methods where a secret is specified as required.

Examples: Assume the agent has a plugin with methods decorated with a secret=’foobar’

Passed to Agent() and apply to all RMI calls.

from gofer.proxy import Agent

agent = Agent(url, uuid, secret='foobar')

9.2.4 ttl and wait

The ttl option is used to specify the RMI call lifespan. The ttl is the time in seconds for the agent to accept the request.
The message TTL (time-to-live) is set to the ttl for both synchronous and asynchronous RMI calls. Additionally, for
synchronous RMI, the caller is blocked for the number of seconds specified in the wait option. The default timeout is
10 seconds and the default wait for synchronous RMI is 90 seconds. A wait=0 indicates that the stub should not block
and wait for a reply.

The timeout and wait can be a string and supports a suffix to define the unit of time. The supported units are as follows:

• s : seconds

• m : minutes

36 Chapter 9. Options

Gofer Documentation, Release 0.76

• h : hours

• d : days

Passed to Agent() and apply to all RMI calls.

from gofer.proxy import Agent

TTL 5 seconds
agent = Agent(url, uuid, ttl=5)

TTL 5 minutes
agent = Agent(url, uuid, ttl=5m)

TTL 30 seconds, wait for 5 seconds
agent = Agent(url, uuid, ttl=30, wait=5)

9.2.5 user/password

The user and password options are used to provide PAM authentication credentials to each RMI call. This option is
only used for agent plugin RMI methods decorated with @pam or @user. This is really just a short-hand for the pam
option.

Examples: Assume the agent has a plugin with methods decorated with @pam(user=’root’)

Passed to Agent() and apply to all RMI calls.

from gofer.proxy import Agent

agent = Agent(url, uuid, user='root', password='xxx')

9.2. Details 37

Gofer Documentation, Release 0.76

38 Chapter 9. Options

CHAPTER 10

Plugin Decorators

Decorators for remote methods/functions provided by plugins. All decorators may be stacked.

10.1 @action

The action decorator is used to designate a function or class method to treated as a recurring action.

Options:

• interval (one of):

– days

– seconds

– minutes

– hours

– weeks

• required: Yes

• type: int

• default: n/a

10.2 @remote

The remote decorator is used to designate a function or class method as being remotely accessible.

Options:

• secret - used to specify a shared secret that must be passed for authorization.

– required: No

39

Gofer Documentation, Release 0.76

– type: str|callable

– default: None

– note: DEPRECATED in 2.7

• model - the RMI execution model (direct|fork). The fork model spawns a child process for each method invo-
cation.

– required: No

– type: str

– default: direct

– note: Added in 2.8

10.3 @direct

The direct decorator is used to designate a function to use the direct invocation model. With this model, the function
is invoked within the goferd process.

Added: 2.8

10.4 @fork

The fork decorator is used to designate a function to use the fork invocation model. With this model, the function is
invoked in a newly spawned child process. This model may be used to insulate the goferd process from unwanted side
effects such as memory and filedes leaks, global configuration changes and core dumps.

Added: 2.8

10.5 @pam

The pam decorator is used to specify PAM authentication criteria for access to a function or class method. This
additional authentication may be used in conjunction with shared secrets.

DEPRECATED in 2.7

Options:

• user - specified user name.

– required: Yes

– type: str

– default: n/a

• service - used to specify the PAM service to be used for the authentication.

– required: No

– type: str

– default: passwd

40 Chapter 10. Plugin Decorators

Gofer Documentation, Release 0.76

10.6 @user

The user decorator is used to specify PAM authentication criteria for access to a function or class method. This
additional authentication may be used in conjunction with shared secrets. This is an alias for the @pam decorator.

DEPRECATED in 2.7

Options:

• name - specified user name.

– required: Yes

– type: str

– default: n/a

10.6. @user 41

Gofer Documentation, Release 0.76

42 Chapter 10. Plugin Decorators

CHAPTER 11

Plugin Extension

As gofer plugins are written and shared throughout the open source community, it seems likely that rather than writing
your plugin from scratch, it would be useful to be able to extend one that already exists. Plugins have an API for
extending their remote API with remote objects provided by other plugins. Plugin extension can also be specified in
the plugin descriptor using the extends property

11.1 Extending

What can be imported:

• class object

• function object

Using the descriptor property:

Example:

plugin: dog can extend the animals plugin. Using this method will add all of the dog API to the animals API.

[main]
enabled=1
extends=animals

Using the API:

Example:

plugin: animals

class Dog:
@remote
def bark(self):

pass

plugin: myplugin

43

Gofer Documentation, Release 0.76

from gofer.agent.plugin import Plugin

animals = Plugin.find('animals')
plugin = Plugin.find(__name__)

just import Dog
plugin += animals['Dog']

import everything
plugin += animals

11.2 Inheritance

Imported class objects may be used as if imported using the standard import directive. When used as a superclass, the
inherited methods will be exposed (@remote) as decorated in the superclass.

Examples:

from gofer.agent.plugin import Plugin

import Dog from animals plugin

animals = Plugin.find('animals')
Dog = animals['Dog']

class Retriever(Dog):
@remote(secret='wagf')
def fetch(self):

pass

Results in the following remote API:

Retriever:

• bark()

– auth: None

• fetch()

– auth: shared secret

However, notice that the auth on the inherited bark() is different than fetch(). To change this, simply override the
method and re-decorate as needed:

from gofer.agent.plugin import Plugin

import Dog from animals plugin

animals = Plugin.find('animals')
Dog = animals['Dog']

class Retriever(Dog):

@remote(secret='wag')
def bark(self):

Dog.bark(self)

(continues on next page)

44 Chapter 11. Plugin Extension

Gofer Documentation, Release 0.76

(continued from previous page)

@remote(secret='wag')
def fetch(self):

pass

11.3 Delegation

In many cases, plugins may choose to leverage imported objects by delegation rather than inheritance.

In this example, the Old McDonald toy does not extend Dog but rather delegates the functionality of a dog bark() to
an instance of Dog:

from gofer.agent.plugin import Plugin

import Dog from animals plugin

animals = Plugin.find('animals')
Dog = animals['Dog']

Old McDonald toy
class Toy:

@remote
def theDog(self):

dog = Dog()
dog.bark()

11.3. Delegation 45

Gofer Documentation, Release 0.76

46 Chapter 11. Plugin Extension

CHAPTER 12

Python Examples

12.1 Server-side

Sample server-side code:

from gofer.proxy import Agent

url = 'amqp://localhost'
address = 'test'
agent = Agent(url, address)

12.2 Define Agent-side

Sample agent-side code. This module is placed in /user/share/gofer/plugins/ along with a plugin descrip-
tor in /etc/gofer/plugins/

Plugin descriptor: /etc/gofer/plugins/plugin.conf

[main]
enabled=1

[messaging]
url=amqp://localhost
uuid=test

Code: /user/share/gofer/plugins/plugin.py

from gofer.decorators import remote
from gofer.rmi.model.FORK
from gofer.agent.plugin import Plugin

(optional) access to the plugin descriptor

(continues on next page)

47

Gofer Documentation, Release 0.76

(continued from previous page)

which you can use to define custom sections/properties

plugin = Plugin.find(__name__)

class Dog:

@remote
def bark(self, words):

woof = cfg.dog.bark_noise
print '%s %s' % (woof, words)
return 'Yes master. I will bark because that is what dogs do.'

@remote(model=FORK)
def wag(self, n):

for i in range(0, n):
print 'wag'

return 'Yes master. I will wag my tail because that is what dogs do.'

The plugin may be loaded from the PYTHON path by specifying the plugin property in descriptor as follows:

[main]
enabled=1
plugin=application.agent.plugin.py

[messaging]
url=amqp://localhost
uuid=zoo

12.3 Synchronous Invocation

Sample of server code invoking synchronously methods (remotely) on the agent. This is the default behaviour and the
timeout is 90 seconds by default.

12.3.1 Python

from gofer.proxy import Agent

agent = Agent('amqp://localhost', 'test')

invoke methods on the agent (remotely)

dog = agent.Dog()
print dog.bark('hello')
print dog.wag(3)
print dog.bark('hello')

methods that raise exceptions

try:
print dog.sit()

except Exception, e:
print repr(e)

(continues on next page)

48 Chapter 12. Python Examples

Gofer Documentation, Release 0.76

(continued from previous page)

try:
print dog.not_permitted()

except Exception, e:
print repr(e)

12.3.2 Using the CLI

$ gofer rmi -u 'amqp://localhost' -a test -t Dog.bark hello
$ gofer rmi -u 'amqp://localhost' -a test -t Dog.wag 3
$ gofer rmi -u 'amqp://localhost' -a test -t Dog.bark hello

12.4 Synchronous Invocation (specify timeout)

Sample of server code invoking synchronously methods (remotely) on the agent with a timeout of 180 seconds.

12.4.1 Python

from gofer.proxy import Agent

amqp://localhost
agent = Agent('amqp://localhost', 'test', wait=180) # specify timeout

invoke methods on the agent (remotely)
dog = agent.Dog()
dog.bark('hello')
dog.wag(3)
dog.bark('hello')

12.4.2 Using the CLI

$ gofer rmi -u 'amqp://localhost' -a test -w 180 -t Dog.bark hello
$ gofer rmi -u 'amqp://localhost' -a test -w 180 -t Dog.wag 3
$ gofer rmi -u 'amqp://localhost' -a test -w 180 -t Dog.bark hello

12.5 Asynchronous (fire & forget) Invocation

Sample of server code invoking synchronously methods (remotely) on the agent. This works the same for asyn-
chronous fire-and-forget where not reply is wanted. Asynchronous invocation returns the serial number of the request.

12.5.1 Python

12.4. Synchronous Invocation (specify timeout) 49

Gofer Documentation, Release 0.76

from gofer.proxy import Agent

create an agent where user data = 'task_id'
agent = Agent('amqp://localhost', 'test', wait=0)

invoke methods on the agent (remotely)
dog = agent.Dog()
dog.bark('hello')
dog.wag(3)
print dog.bark('hello')

'e688f50b-3108-43dd-9a57-813f434749a8'

methods that raise exceptions
try:

print dog.sit()
except Exception, e:

print repr(e)

try:
print dog.not_permitted()

except Exception, e:
print repr(e)

12.5.2 Using the CLI

$ gofer rmi -u 'amqp://localhost' -a test -w 0 -t Dog.bark hello
e688f50b-3108-43dd-9a57-813f434749a8

12.6 Asynchronous (callback) Invocation

Sample of server code invoking asynchronously methods (remotely) on the agent. The is the callback form of asyn-
chronous invocation. This example uses a Listener class. But, the listener can also be any callable. Asynchronous
invocation returns the serial number of the request to be used by the caller to further correlate request & response.

12.6.1 Python

from gofer.proxy import Agent
from gofer.messaging.async import ReplyConsumer

specify a reply address to be used for asynchronous responses.

reply_to = 'tasks'

create my listener class

class Listener:
"""
An asynchronous operation callback listener.
"""

def succeeded(self, reply):

(continues on next page)

50 Chapter 12. Python Examples

Gofer Documentation, Release 0.76

(continued from previous page)

"""
Async request succeeded.
:param reply: The reply data.
:type reply: Succeeded.
"""
pass

def failed(self, reply):
"""
Async request failed (raised an exception).
:param reply: The reply data.
:type reply: Failed.
"""
pass

def accepted(self, reply):
"""
Async request has been accepted.
:param reply: The request.
:type reply: Accepted.
"""
pass

def rejected(self, reply):
"""
Async request has been rejected.
:param reply: The request.
:type reply: Accepted.
"""
pass

def started(self, reply):
"""
Async request has started.
:param reply: The request.
:type reply: Started.
"""
pass

def progress(self, reply):
"""
Async progress report.
:param reply: The request.
:type reply: Progress.
"""
pass

create my reply consumer using the reply to and my listener

reader = ReplyConsumer(reply_to)
reader.start(Listener())

create an agent where user data is {'task_id': 1234} and
setup for asynchronous invocation with my reply address.

agent = Agent('amqp://localhost', 'test', reply=reply_to)
(continues on next page)

12.6. Asynchronous (callback) Invocation 51

Gofer Documentation, Release 0.76

(continued from previous page)

invoke methods on the agent (remotely)
dog = agent.Dog()
dog.bark('hello')
dog.wag(3)
print dog.bark('hello')

'e688f50b-3108-43dd-9a57-813f434749a8'

Same asynchronous example except specify a callable as the listener. Also, it uses the throw() method on reply.

specify a reply address to be used for responses.

reply_to = 'tasks'

create my listener

def callback(reply):
try:

reply.throw()
...
print reply.retval # succeeded, do something with return value.
...

except Exception, ex:
handle general exception
pass

create my reply consumer using the reply address and my callback

reader = ReplyConsumer(reply_to)
reader.start(callback)
...

12.6.2 Using the CLI

Note: -r tasks

$ gofer rmi -u 'amqp://localhost' -a test -w 0 -r tasks -t Dog.bark hello
e688f50b-3108-43dd-9a57-813f434749a8

12.7 Class Constructor Arguments

Classes defined in the agent can have constructor arguments. Though, remember, an instance is constructed for each
request so remote objects are stateless. The stub provides for passing __init__() arguments by calling the stub.

Examples:

In the plugin:

class Dog:

def __init__(self, name, age=1):
self.name = name
self.age = age

(continues on next page)

52 Chapter 12. Python Examples

Gofer Documentation, Release 0.76

(continued from previous page)

@remote
def bark(self):
pass

@remote
def wag():
pass

Calling:

...
dog = agent.Dog() # stub constructor, pass gofer options here.
dog('rover', age=10) # constructor arguments set here.
dog.bark('hello')
dog.wag()

change the constructor arguments and call something else.

dog('max', age=5) # changing constructor arguments.
dog.bark('howdy')

Subsequent calls simply update the constructor arguments.

This:

dog('rover', age=10)

equals this (in the agent):

dog = Dog('rover', age=10)

12.8 Security

When remote methods or functions are decorated to require a shared secret for request authentication, it must be passed
as an option.

Example:

from gofer.proxy import Agent
from gofer.messaging.dispatcher import NotAuthorized

agent = Agent('amqp://localhost', 'test', secret='mycathas9lives')
invoke methods on the agent (remotely)
dog = agent.Dog()
try:

dog.bark('secure hello')
except NotAuthorized:

log.error('wrong secret')

12.8. Security 53

Gofer Documentation, Release 0.76

12.9 Progress Reporting

In gofer 0.72+ remote method progress can be reported by plugins. In the case of synchronous RMI, the caller can
specify a callback for progress reporting by specifying the progress option. The callback must take a single (dict)
parameter (report).

The report has the following keys:

• sn - serial number

• any - user data

• total - the number total units

• completed - the number of completed units

• details - arbitrary details

For asynchronous RMI, the listener is called with progress reports.

Examples:

from gofer.proxy import Agent

def progress_reported(report)
pass

agent = Agent('amqp://localhost', 'test')
dog = agent.Dog(progress=progress_reported)
dog.bark('howdy')

On the agent, plugins report progress from with a method by using the Progress object defined within the current call
Context.

Example:

from gofer.agent.rmi import Context
from gofer.decorators import remote

class MyClass:

@remote
def foo(self):

"""
Do something reports progress
"""
total = 10
get the call context
ctx = Context.current()
ctx.progress.total = total
demo reporting progress for 10 units
for n in range(0, total):

ctx.progress.completed += 1
sleep(1)

@remote
def bar(self):

"""
Do something reports progress with details.
"""

(continues on next page)

54 Chapter 12. Python Examples

Gofer Documentation, Release 0.76

(continued from previous page)

total = 10
get the call context
ctx = Context.current()
ctx.progress.total = total
demo reporting progress for 10 units
for n in range(0, total):

ctx.progress.completed += 1
ctx.progress.details='for: %d' % n)
sleep(1)

12.10 Testing

12.10.1 Logs

After adding/updating classes or methods in myplugin.py, you’ll want to test them. First, ensure the plugin is still
loading properly. The easiest way to do this is by examining the gofer log file at: /var/log/gofer/agent. At
start up, you should see something like:

2010-11-08 08:49:04,491 [WARNING][MainThread] __mangled() @ plugin.py:122 - "pulp"
→˓found in python-path
2010-11-08 08:49:04,503 [INFO][MainThread] __mangled() @ plugin.py:123 - "pulp"
→˓mangled to avoid collisions
2010-11-08 08:49:04,909 [INFO][MainThread] __import() @ plugin.py:103 - plugin "pulp",
→˓ imported as: "pulp_plugin"

Either the gofer log or the pulp client.log may be examined to verify that Actions are running as expected.

12.10.2 Interactive Shell

Testing added/updated remote methods, can be done easily using an interactive python (shell). Be sure your changes
to the pulp plugin have been picked up by Gofer by restarting goferd. Let’s say you added a new class named “Foo”
that has a remote method named . . . you guessed it: “bar”.

You can test your new stuff as follows:

[jortel@localhost pulp]$ python
Python 2.6.2 (r262:71600, Jun 4 2010, 18:28:04)
[GCC 4.4.3 20100127 (Red Hat 4.4.3-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from gofer.proxy import Agent
>>> uuid = <your consumer ID>
>>> agent = Agent('amqp://localhost', uuid)
>>> foo = agent.Foo()
>>> print foo.bar()

Or, using the proxy module API:

[jortel@localhost pulp]$ python
Python 2.6.2 (r262:71600, Jun 4 2010, 18:28:04)
[GCC 4.4.3 20100127 (Red Hat 4.4.3-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from gofer import proxy

(continues on next page)

12.10. Testing 55

Gofer Documentation, Release 0.76

(continued from previous page)

>>> uuid = <your consumer ID>
>>> agent = proxy.agent('amqp://localhost', uuid)
>>> foo = agent.Foo()
>>> print foo.bar()

12.10.3 Admin.help()

Another useful tool, it invoke Admin.help() from within interactive python as follows:

[jortel@localhost pulp]$ python
Python 2.6.2 (r262:71600, Jun 4 2010, 18:28:04)
[GCC 4.4.3 20100127 (Red Hat 4.4.3-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from pulp.server.agent import Agent
>>> uuid = <your consumer ID>
>>> agent = Agent('amqp://localhost', uuid)
>>> admin = agent.Admin()
>>> print admin.help()

Plugins:
demo
pulp [pulp_admin]

Actions:
demo.TestAction 0:10:00

Methods:
custom.Dog.bark()
custom.Dog.wag()
demo.Admin.hello()
demo.Admin.help()
demo.Shell.run()

Functions:
demo.echo()

>>>

12.10.4 Test Main

The test/main.py module provides a good testing entry point that does not require the process owner to be root.

12.10.5 Mocks

The gofer mock feature provides better testability. Essentially, it allows uses to test the server-side code that uses the
gofer proxy. Instead of calling through to the remote agent, RMI calls can be mocked-up.

Added 0.33.

The mock module provides an API for registering custom stub mocks.

Items that can be registered with mock.register():

• instance (object)

• class

• module

56 Chapter 12. Python Examples

Gofer Documentation, Release 0.76

Example:

from gofer.messaging import mock
mock.install()
from gofer.proxy import Agent

agent = Agent('xyz')

define mock impl for testing
class Dog:

def bark(self, msg):
return 'mock Dog, called with: [%s]' % msg

register our mock class
mock.register(Dog=Dog)

call bark()

dog = agent.Dog()

print dog.bark('hello')
'mock Dog, called with: [hello]'

print dog.bark('world')
'mock Dog, called with: [world]'

#
now, let look at the call history
#

h = dog.bark.history()
print h
'[("hello",),{}), ("world",),{})]'

get last call
last = h[-1]

look at the passed args
print last.args[0]
'world'

look at the keyword args
print last.kwargs
'{}'

It’s very important to note the difference between registering a class (as a stub) and an instance (as a stub). In short,
nstances are shared across all mock agents and classes are associated to the instance of the mock agent that created
them. That way, call history is scoped to mock agent as well.

In some cases, it’s useful to have a stub method raise an exception. Here’s how it’s done:

from gofer.messaging import mock
mock.install()
from gofer.proxy import Agent

agent = Agent('amqp://localhost', 'xyz')

define mock impl for testing

(continues on next page)

12.10. Testing 57

Gofer Documentation, Release 0.76

(continued from previous page)

class Dog:

def bark(self, msg):
return 'mock Dog, called with: [%s]' % msg

register our mock class
mock.register(Dog=Dog)

dog = agent.Dog()

call bark() normally
print dog.bark('hello')

now, let's have it raise an exception

dog.bark.push(Exception('no more barking'))
try:

dog.bark('hello')
except Exception, e:
print e
'"no more barking'"

58 Chapter 12. Python Examples

CHAPTER 13

QPID Configuration

This page describes qpidd SSL configuration.

13.1 LINKS

Here are some helpful links:

• http://www.mail-archive.com/qpid-commits@incubator.apache.org/msg06212.html

• http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html

• http://rajith.2rlabs.com/2010/03/01/apache-qpid-securing-connections-with-ssl/

13.2 RPMS

The SSL configuration for QPID is based on NSS. So, the certutil tool needs to be installed to manage the NSS
certificate databases. Also, the qpidd-ssl package needs to be installed to enable SSL on the qpid broker.

Fedora:

• nss-tools - contains certutil used to manage NSS database for SSL.

• qpidd-ssl - contains ssl.so which enables SSL.

13.3 Certificates

The easiest way to create the NSS DB and SSL certificates needed, is to run the nss-db-gen in <gofer.git>/tools.

59

http://www.mail-archive.com/qpid-commits@incubator.apache.org/msg06212.html
http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html
http://rajith.2rlabs.com/2010/03/01/apache-qpid-securing-connections-with-ssl/

Gofer Documentation, Release 0.76

[jortel@~]$ cd git/gofer/tools
[jortel@localhost tools]$ nss-db-gen
bash: nss-db-gen: command not found
[jortel@localhost tools]$./nss-db-gen

Working in: /tmp/tmp20823

Please specify a directory into which the created NSS database
and associated certificates will be installed.

Enter a directory [/tmp/redhat/qpid]:
/tmp/redhat/qpid

Enter NSS database password:

Please specify a CA. Generated if not specified.

Enter a path:

Password file created.

Database created.

Creating CA certificate:

Generating key. This may take a few moments...

CA created

Creating BROKER certificate:

Generating key. This may take a few moments...

Broker certificate created.

Creating CLIENT certificate:

Generating key. This may take a few moments...

Client certificate created.
Enter Password or Pin for "NSS Certificate DB":
Enter Password or Pin for "NSS Certificate DB":
Enter password for PKCS12 file:
Re-enter password:
pk12util: PKCS12 EXPORT SUCCESSFUL
Enter Import Password:
MAC verified OK
Client key & certificate exported

Artifacts copied to: /tmp/redhat/qpid.

Please update /etc/qpidd.conf as follows:

(continues on next page)

60 Chapter 13. QPID Configuration

Gofer Documentation, Release 0.76

(continued from previous page)

....
auth=no
....
SSL
require-encryption=yes
ssl-require-client-authentication=yes
ssl-cert-db=/tmp/redhat/qpid/nss
ssl-cert-password-file=/tmp/redhat/qpid/nss/password
ssl-cert-name=broker
ssl-port=5674
...

Please configure gofer as follows:

...
[messaging]
url=ssl://<host>:5674
cacert=/tmp/redhat/qpid/ca.crt
clientcert=/tmp/redhat/qpid/client.crt

Files generated by the script:

redhat/
redhat/qpid
redhat/qpid/broker.crt
redhat/qpid/client.crt
redhat/qpid/nss
redhat/qpid/nss/secmod.db
redhat/qpid/nss/password
redhat/qpid/nss/key3.db
redhat/qpid/nss/cert8.db
redhat/qpid/ca.crt

Notes:

• The “Enter a directory [/tmp/redhat/qpid]:” can be defined as any directory.

• The passwords can be anything.

13.4 Configuration

13.4.1 QPID

Edit /etc/qpidd.conf:

auth Require authentication. (value: no)

require-encryption Require all connections to use SSL. (value: yes)

ssl-require-client-authentication Require client SSL certificates for all SSL connections. (value: yes)

ssl-cert-db The fully qualified path to the NSS DB. (example: /tmp/redhat/qpid/nss)

ssl-cert-password-file The fully qualified path to the password file used to access the NSS DB. (example:
/tmp/redhat/qpid/nss/password)

13.4. Configuration 61

Gofer Documentation, Release 0.76

ssl-cert-name The name of the certificate in the NSS DB to be used by the qpid broker. (example: broker)

ssl-port The port to be use for SSL connections. (example: 5671)

13.4.2 Gofer Agent

Edit /etc/gofer/plugins/<yourplugin>.conf and under the [messaging] section:

url The URL to the qpid broker. Protocol choices: tcp=plain, ssl=SSL. (example: ssl://<host>:5671)

cacert The fully qualified path to the CA certificate used to validate the broker. (example:
/tmp/redhat/qpid/ca.crt)

clientcert The fully qualified path a file containing both the client private key and certificate. (example:
/tmp/redhat/qpid/client.crt)

62 Chapter 13. QPID Configuration

CHAPTER 14

Indices and tables

• genindex

• modindex

• search

63

	Release Notes
	gofer 2.11
	gofer 2.10
	gofer 2.9
	gofer 2.8
	gofer 2.7
	gofer 2.6
	gofer 2.5
	gofer 2.4
	gofer 2.3
	gofer 2.2
	gofer 2.1
	gofer 2.0
	gofer 1.4

	Overview
	Installation
	Packages
	Development

	Getting Started
	Installation
	Writing A Plugin
	Interactive Testing

	Tools
	Command Line Interface

	Design
	Approach
	Messaging

	Messaging Adapters
	Supported

	Configuration
	Agent Configuration
	Plugin Descriptors
	Examples

	Options
	Summary
	Details

	Plugin Decorators
	@action
	@remote
	@direct
	@fork
	@pam
	@user

	Plugin Extension
	Extending
	Inheritance
	Delegation

	Python Examples
	Server-side
	Define Agent-side
	Synchronous Invocation
	Synchronous Invocation (specify timeout)
	Asynchronous (fire & forget) Invocation
	Asynchronous (callback) Invocation
	Class Constructor Arguments
	Security
	Progress Reporting
	Testing

	QPID Configuration
	LINKS
	RPMS
	Certificates
	Configuration

	Indices and tables

