

Welcome to Gofer’s documentation!

Contents:

	Release Notes
	gofer 2.11

	gofer 2.10

	gofer 2.9

	gofer 2.8

	gofer 2.7

	gofer 2.6

	gofer 2.5

	gofer 2.4

	gofer 2.3

	gofer 2.2

	gofer 2.1

	gofer 2.0

	gofer 1.4

	Overview

	Installation
	Packages

	Development

	Getting Started
	Installation

	Writing A Plugin

	Interactive Testing

	Tools
	Command Line Interface

	Design
	Approach

	Messaging

	Messaging Adapters
	Supported

	Configuration
	Agent Configuration

	Plugin Descriptors

	Examples

	Options
	Summary

	Details

	Plugin Decorators
	@action

	@remote

	@direct

	@fork

	@pam

	@user

	Plugin Extension
	Extending

	Inheritance

	Delegation

	Python Examples
	Server-side

	Define Agent-side

	Synchronous Invocation

	Synchronous Invocation (specify timeout)

	Asynchronous (fire & forget) Invocation

	Asynchronous (callback) Invocation

	Class Constructor Arguments

	Security

	Progress Reporting

	Testing

	QPID Configuration
	LINKS

	RPMS

	Certificates

	Configuration

Indices and tables

	Index

	Module Index

	Search Page

Release Notes

gofer 2.11

Notes:

	Exit handler terminate threads.

Fixes:

	Fix compatibility python-amqp 2.1.4 Channel.wait().

	[2.11.5] Reload plugin when queue not-found or no-route condition is detected.

Deprecated:

gofer 2.10

Notes:

	Added support for soft plugin shutdown. Mainly internal API enhancement but improves
behavior of plugin unload and reload. Both operations now do a soft shutdown by default.

	The thread-pool design improved.

Fixes:

	The hard plugin/thread-pool shutdown aborted threads which caused reply messages to silently
never be sent. Only affected unload and reload operations.

Deprecated:

gofer 2.9

Notes:

	Added direct and fork plugin decorators used to specify the RMI invocation model.
Using one of these decorators is preferred to using the model= parameter to the
remote decorator.

	Added memory profiler to metrics.

	Added context manager to Timer and associated decorator.

Fixes:

Deprecated:

gofer 2.8

Notes:

	Added support for RMI invocation models. The direct model is the default and
invokes the remote method within the goferd process. This is the model used by
<= 2.7. The new fork model spawns a child process for each method invocation.
Invoking the method in a separate process provides isolation and better cancellation
behavior. The isolation protects goferd against memory leaks and corruption
potentially introduced by plugins (or code used by plugins). When using the fork
model, RMI cancellation is implemented by killing the child process. As a result
cancellation is certain and immediate regardless of whether cancellation is implemented
by the method. See: direct and fork decorators.

Fixes:

	Proton message sending reliability regression introduced in 2.7.

Deprecated:

gofer 2.7

Notes:

	Add gofer command for interaction with goferd. See: man gofer for
details. Packaged in gofer-tools. See newly added [management] section
of /etc/pulp/agent.conf.

	Plugin monitoring removed. Use gofer.agent.PluginContainer.load()
and gofer.agent.PluginContainer.unload() instead.

	Added @load and @unload decorators. Plugins can participate in
plugin loading and unloading.

	The package plugin has been rewritten to shell out instead of using the
yum library. Much simpler.

	The gofer.rmi.shell module added. This can be used by plugins to easily and
consistently provide functionality when using external commands is needed.
Supports cancellation, progress reporting and returns stdout and stderr.
The system and package plugins converted to use this.

	Improved debug logging in messaging adaptor reliability packages.
This helps with troubleshooting AMQP issues.

	Added latency property to the [main] section of the plugin descriptor.
Adding latency can be used for throttling and widening the request cancellation window.

	Canceled RMI requests discarded just prior to execution. Plugin still responsible for
canceling requests already in progress.

	Reference plugins no longer packaged. The test plugin renamed to demo and
not enabled by default.

	Dynamic plugin loading, reloading and unloading improved.

	As with every release, better unit test coverage.

Fixes:

	Minor memory leak fixed. The leak was ~384 bytes per request.

	Fixes issue whereby locally stored requests are routed to a plugin that no
longer specifies a URL. The requests are discarded.

	AMQP connections used by plugin thread pool workers closed between requests.
These connections can be idle/unused for long periods. Closing them reduces
the number of open network connections.

Deprecated:

	The uuid in the [messaging] section of the plugin descriptor has been
deprecated. Use [model] queue instead.

	The @initializer decorator has been deprecated. Use @load instead.

	Authorization has been support. It will continue to support
authentication. This includes:

	Shared secret. The secret option in the @remote decorator.

	The @pam decorator.

	The @user decorator.

	The pam property in the message.

gofer 2.6

Notes:

	Fixed recursion issue in proton adapter reconnect logic.

	Add support for dynamic plugin loading, reloading and unloading.

	Add plugin monitoring. When enabled in agent.conf, the agent container will monitor
the /etc/gofer/plugins directory for changes to plugin descriptors. When a descriptor
has changed, the plugin is reloaded. When a new descriptor is found, the plugin is
loaded. When a plugin descriptor is deleted, the plugin is unloaded.
See [main] monitor property in agent.conf.

	Decentralized RMI scheduling. Each plugin has its own scheduler.

	Add support for RMI request forwarding to other plugins. Requests can be forwarded
to other plugins when they cannot be satisfied by the target plugin.
See [main] accept and forward properties for details.

	Much better AMQP connection management. When plugins are unloaded, all associated
AMQP connections are closed.

	Add services API to the system plugin. The Service class supports start,
restart, stop and status operations on services.

	The python-gofer-qpid package Requires: python-ssl. Needed so that python-qpid
will support SSL.

Deprecated:

	The maintenance window feature and associated properties.

gofer 2.5

Notes:

	Added the python-gofer-proton messaging adapter. The adapter supports AMQP 1.0
and use the Apache Qpid proton library.

	The gofer.messaging.Exchange and gofer.messaging.Queue now support an additional
url parameter which is used when url is not passed to specific method.

	NotFound raised when an AMQP node (queue) does not exist. See messaging.adapter.model
for details on affected methods.

Deprecated:

	Using gofer.proxy.agent() has been deprecated.

gofer 2.4

Notes:

	AMQP Message durability fixed in python-amqp adapter.

	Added support for plugin descriptor properties that specifies the level to which
the agent manages the broker model. Specifically, how the agent manages its
request queue. The [messaging] exchange property was replace by support in the
new [model] section documented below. See: descriptor documentation for details.

	Thread pool distribution fixed so that idle worker threads are selected when available.

	The python-amqplib AMQP library is no longer supported. It was redundant to support
for python-amqp which is better maintained and widely available. This means that the
python-gofer-amqplib package is no longer provided. Further that, AMQP-0-8 is no longer
supported. This functionality can be resurrected on community request.

	The amqp adapter (python-amqp) updated to use EPOLL and basic_consume() instead of
using dynamic polling and basic_get().

	By default, the proxy (caller) will no longer declare the agent queue. Since the address
really specifies AMQP routing (exchange/queue), gofer cannot assume the queue name
or properties. The agent declaration and binding is the responsibility of the agent
or the (caller) application.

	The qpid adapter enables qpid heartbeat option on connections.

Added [model] section with the following properties:

	managed - Defines level of broker model management.

	queue - The name of the request queue.

	exchange - An (optional) exchange. The exchange is not declared/deleted.

gofer 2.3

Notes:

	Support for custom AMQP exchanges added. This includes an additional exchange option
passed by callers to indicate the exchange to be used for temporary queues used for
synchronous replies. For plugins, the descriptor was augmented to support an exchange
property in the [messaging] section.

gofer 2.2

Not Released.

gofer 2.1

Not Released.

gofer 2.0

The 2.0 major release and contains API changes, minor message format changes
and the removal of deprecated functionality. The goal of this release was to overhaul
and streamline may major component and flows. This release also contains hundreds of new unit
integration and unit tests as part of a major effort to reach 100% test coverage.

Overhauled:

	The agent thread pool was replaced with Queue based approach.

	Support for multiple messaging libraries. Standard messaging adapter model that
uses delegation pattern instead of python meta-classes. Much better.

Concept changes

	The transport concept was replaced with messaging adapters. Each adapter implements
an interface defined in the adapter model and provides integration with 3rd part AMQP
messaging libraries. The transport option and descriptor property replaced with
rich protocol handler support in the URL. See documented URL.

	All options are only supported when creating the agent proxy. They are no longer supported
when constructing the stub. This semantic is not reserved for passing arguments to the remote
object (class) constructor.

	The agent uuid is being phased out. RMI calls are routed to the agent based on the
queue on which it was received. This term is being replaced by more AMQP related
terms and concepts. An address has the format of: exchange/queue or queue.

	Support for agent broadcast was removed. This feature was deemed as not useful since
most applications do not track requests using the serial number. Also, this can be
easily implemented by the caller. Removed to make code paths and the API simpler.

API changes

There are API changes that affect both RMI calling (proxy) and the Plugin object exposed
to agent plugins. Proxy changes pertain to the options passed to the Agent class and the
Stubs created.

The Agent constructor changed from: Agent(uuid, **options) to: Agent(url, address, **options).

Example (adapter = qpid):

url = qpid+amqp://localhost

Option changes:

	async - Removed.

	wait - Added and indicates how long the caller is blocked on calls.

	timeout - Replaced by ttl.

	ttl - Added and replaces timeout. Strictly applies to request (and message) TTL.

	ctag - Replaced by reply.

	reply - Replaces ctag and is an AMQP address that specifies where RMI replies are sent.

	any - Removed and replaced by data.

	data - User defined data that is round-tripped back to the caller. Replaces any.

	transport - Replaced with rich protocol handlers supported by the URL.

Plugin (class) changes

All accessor methods replaced with @property and appear as attributes.

Here are a few major methods affected:

	enabled()

	get_uuid()

	get_url()

	get_cfg()

gofer 1.4

Here is a summary of 1.0 changes:

	Support for multiple transports was added.

	Message authentication added.

	The accepted status reply was added.

	The watchdog as removed.

	An ISO 8601 timestamp is included in all reply messages.

Overview

Gofer provides an extensible, light weight, universal python agent. It has no
relation to the Gopher [http://en.wikipedia.org/wiki/Gopher_%28protocol%29] protocol.
The gofer core agent is a python daemon (service) that provides infrastructure
for exposing a remote API and for running Recurring Actions. The APIs contributed by
plugins are accessible by Remote Method Invocation (RMI). The transport for RMI is
AMQP using the QPID [http://qpid.apache.org/] message broker. Actions are also provided
by plugins and are executed at the specified interval.

License: LGPLv2

Gofer provides:

	An agent (daemon)

	Plugin Container

	Remote access to API provided by plugins

	Action scheduling

Plugins provide:

	Remote API.

	Recurring (scheduled) actions

	Agent identity (optional)

[image: _images/agent.png]

Installation

Packages

Gofer is packaged into RPMs for Linux. These packages are as follows:

	gofer - The gofer agent (goferd).

	python-gofer - The common library.

	python-gofer-qpid - The python-qpid messaging adapter.

	python-gofer-amqp - The python-amqp messaging adapter.

Depending on system capabilities, the gofer package registers goferd
with systemd or upstart service managers.

python optimizations

By default, goferd runs python with optimizations enabled. If you want to disable those
optimizations, this can be done by altering the environment file for this service,
/etc/sysconfig/goferd, and setting the value of PYTHONOPTIMIZE to zero:
PYTHONOPTIMIZE=0

Development

The gofer project is hosted by Github. To install from source, you must first clone the
git repository. The python library can be installed using something like pip. Once installed,
the goferd daemon can be installed.

Cloning the repository:

$ git clone https://github.com/jortel/gofer.git

In the examples below, <git> is the directory containing the cloned repository.

Files can be link or copied.

goferd

To install goferd:

cp <git>/gofer/bin/goferd /usr/bin

systemd

To register goferd with systemd:

cp <git>/gofer/usr/lib/systemd/system/goferd.service /usr/lib/systemd/system

upstart

To register goferd with upstart:

cp <git>/gofer/etc/init.d/goferd /etc/init.d
chkconfig --add goferd

Getting Started

Installation

First, install and start QPID (qpidd)

Then,

	Install gofer.

yum install gofer python-gofer-qpid

	Edit the /etc/gofer/plugins/demo.conf and set the url to point at your broker.
Then, set queue=123. Or, look in /var/log/messages to find the auto-assigned UUID
for your system.

[main]

enabled = 1

[messaging]
url=qpid+amqp://localhost

[model]
queue=123

	Start the goferd service.

service goferd start

	Now, invoke the remote operations provided by the demo plugin:

Python

>>> from gofer.proxy import Agent
>>>
>>> url = 'amqp://localhost'
>>> agent = Agent(url, '123')
>>> admin = agent.Admin()
>>> print admin.help()
 Plugins:
 demo
 Actions:
 demo.TestAction.hello() 0:10:00
 Methods:
 Admin.hello()
 Admin.help()
 Shell.run()
 Functions:
 demo.echo()

Writing A Plugin

The installing plugins is done in 6 easy steps.

	Write your plugin descriptor.

	Write your plugin module.

	Copy (or symlink) the plugin descriptor (myplugin.conf) to /etc/gofer/plugins/

	Copy (or symlink) the plugin module (myplugin.py) to /usr/lib/gofer/plugins/

	Restart goferd

	Add server side code to invoke remote methods

Let’s create a plugin named myplugin.

Step 1

Create your plugin descriptor (myplugin.conf) as follows:

[main]
enabled = 1

[messaging]
url=qpid+amqp://localhost

[model]
queue=123

Step 2

Write your plugin. It will be defined in a module named myplugin.py and would look
something like this:

from gofer.decorators import *

class MyClass:

 @remote
 def hello(self):
 return 'MyPlugin says, "hello".'

Stand alone (plain) functions may be decorated as remote.

Your class may have constructor arguments.

from gofer.decorators import *

@remote
def hello(self):
 return 'MyPlugin says, "hello".'

Step 3

Install or update your plugin descriptor.

cp myplugin.conf /etc/gofer/plugins

Step 4

Install or update your plugin.

cp myplugin.py /usr/lib/gofer/plugins

Step 5

Restart the gofer daemon.

sudo /etc/sbin/service goferd restart

Step 6

Add server-side code to invoke methods on your plugin.

This is done by instantiating a proxy for the agent. You need to specifying the uuid of the
agent (plugin).

...
your server code
from gofer.proxy import Agent

url = 'amqp://localhost'
uuid = '123'
agent = Agent(url, uuid)
myclass = agent.MyClass()
myclass.hello()

Invoke the stand alone function. Instead of instantiating the remote class, the function
is invoked directly using the plugin module’s namespace:

...
your server code
from gofer.proxy import Agent

url = 'amqp://localhost'
uuid = '123'
agent = Agent(url, uuid)
agent.myplugin.hello()

Interactive Testing

After adding classes or methods in myplugin.py, you’ll want to test them. First, ensure the plugin is
still loading properly. The easiest way to do this is by examining the gofer log file
at: /var/log/gofer/agent. At start up, you should see something like:

2010-11-08 08:49:04,909 [INFO][MainThread] __import() @ plugin.py:103 - plugin "myplugin", imported as: "myplugin"

The gofer log (/var/log/messages) may be examined to verify that Actions are running as expected.
Also, RMI requests (massages) are logged upon receipt in the gofer agent log.

Testing added remote methods, can be done easily using an interactive python (shell). Be sure your
changes to your plugin have been picked up by Gofer by restarting goferd. Let’s say you added
a new class named “Foo” that has a remote method named … you guessed it: “bar”. You can test your
new stuff as follows:

[jortel@localhost pulp]$ python
Python 2.6.2 (r262:71600, Jun 4 2010, 18:28:04)
[GCC 4.4.3 20100127 (Red Hat 4.4.3-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from gofer.proxy import Agent
>>>
>>> url = 'amqp://localhost'
>>> uuid = '123'
>>> agent = Agent(url, uuid)
>>> myclass = agent.MyClass()
>>> print myclass.hello()
MyPlugin says, "hello".

Another useful tool, it invoke Admin.help() from within interactive python as follows:

[jortel@localhost pulp]$ python
Python 2.6.2 (r262:71600, Jun 4 2010, 18:28:04)
[GCC 4.4.3 20100127 (Red Hat 4.4.3-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from gofer.proxy import Agent
>>>
>>> url = 'amqp://localhost'
>>> uuid = '123'
>>> agent = Agent(url, uuid)
>>> admin = agent.Admin()
>>> print admin.help()

Plugins:
 demo
 myplugin
Actions:
 demo.TestAction 0:10:00
Methods:
 myplugin.MyClass.hello()
 demo.AgentAdmin.hello()
 demo.AgentAdmin.help()
 demo.Shell.run()
Functions:
 demo.echo()
>>>

Security

The @remote decorator and gofer infrastructure supports (1) option:

	secret (default=None): A shared secret used for authentication. The value may be:

	str

	[str,..]

	(str,..)

	callable

In this example, MyClass.hello() must provide the secret to be invoked.

c = agent.MyClass(secret='mycathas9lives')
c.hello()

from gofer.decorators import *

class MyClass:

 @remote(secret='mycathas9lives')
 def hello(self):
 return 'MyPlugin says, "hello".'

The decorator also support the secret being a callable that returns the secret matched to the request.

Example:

from gofer.decorators import *

def getsecret():
 ...
 return secret

class MyClass:

 @remote(secret=getsecret)
 def hello(self):
 return 'MyPlugin says, "hello".'

Tools

The gofer project includes the follow tools.

Command Line Interface

The gofer CLI provides both management (MGT) of goferd and remote method invocation (RMI).
The management tool may be used to get the status of goferd and to dynamically load, reload and
unload plugins. The management tool connects to goferd on the management port as defined in
/etc/gofer/agent.conf. Management must be explicitly enabled.

[management]
enabled=1
host=localhost
port=5650

The RMI tool may be used to remotely invoke methods provided by plugins. It does not need management
to be enabled.

Note

The CLI is new in gofer 2.7

Examples

The following are example of what can be done using gofer. It’s assumed that management has
been enabled on the default port and the host name is localhost. When configured with these
defaults, the (-h|--host) and (-p|--port) are not necessary but shown in the examples for
for better illustration.

See: man gofer for complete details.

Show the status of goferd

$ gofer mgt -h localhost -p 5650 -s
 Plugins:

 <plugin> package
 Classes:
 <class> Package
 methods:
 install(name)
 remove(name)
 update(name)
 Functions:

 <plugin> virt
 Classes:
 <class> Virt
 methods:
 getDomainID(name)
 isAlive(id)
 listDomains()
 shutdown(id)
 start(id)
 Functions:

 <plugin> __builtin__
 Classes:
 <class> Admin
 methods:
 cancel(sn, criteria)
 echo(text)
 hello()
 help()
 Functions:

 <plugin> system
 Classes:
 <class> Shell
 methods:
 run(cmd)
 <class> System
 methods:
 cancel()
 halt(when)
 reboot(when)
 <class> Service
 methods:
 restart()
 start()
 status()
 stop()
 <class> Script
 methods:
 run(user, password, *options)
 Functions:

 <plugin> demo
 Classes:
 <class> Demo
 methods:
 demo()
 echo(something)
 hello()
 Functions:

 Actions:

Load a plugin

Plugins can be dynamically loaded using the path to its descriptor.

$ gofer mgt -h localhost -p 5650 -s
 Plugins:
 Actions:

$ gofer mgt -h localhost -p 5650 -l /opt/gofer/plugins/package.conf
$ gofer mgt -h localhost -p 5650 -s
 Plugins:

 <plugin> package
 Classes:
 <class> Package
 methods:
 install(name)
 remove(name)
 update(name)
 Functions:

 Actions:

Reload a plugin

Plugins can be dynamically reloaded by name or path to its descriptor.

$ gofer mgt -h localhost -p 5650 -r package

Unload a plugin

Plugins can be dynamically unloaded by name or using the path to its descriptor.

$ gofer mgt -h localhost -p 5650 -s
 Plugins:

 <plugin> package
 Classes:
 <class> Package
 methods:
 install(name)
 remove(name)
 update(name)
 Functions:

 Actions:

$ gofer mgt -h localhost -p 5650 -u package
$ gofer mgt -h localhost -p 5650 -s
 Plugins:
 Actions:

Remote Method Invocation

The following examples assume a plugin is loaded in goferd at the URL of qpid+amqp://localhost
and subscribed to the demo queue. So -a demo will be the address used. Further, it’s assumed
that the plugin provides the following API.

class Dog(object):

 @remote
 def bark(self, words):
 return 'Yes master. I will bark because that is what dogs do. "%s"' % words

 @remote
 def wag(self, n):
 for i in range(0, n):
 print 'wag'
 return 'Yes master. I will wag my tail because that is what dogs do.'

Synchronous RMI

$ gofer rmi -u qpid+amqp://localhost -a demo -t Dog.bark howdy

 Yes master. I will bark because that is what dogs do. "howdy"

$ gofer rmi -u qpid+amqp://localhost -a demo -t Dog.wag 3

 Yes master. I will wag my tail because that is what dogs do.

Asynchronous RMI

The following uses the -r <address option to specify that the reply is to
be sent to the replies AMQP address (queue).

$ gofer rmi -u qpid+amqp://localhost -a demo -r replies -t Dog.bark howdy

 719d234f-480d-4035-9c2b-b08d17d77f13

Design

Approach

The preferred approach is to leverage a Message Bus and possibly a Messaging Framework
that uses the message bus for transport. The advantages over home grown and/or
point-to-point solutions are as follows:

	Hub and Spoke topology. Each node knows the address of the broken but not each other.

	Key-based routing. Nodes are associated with properties instead of IP addresses.

	Reliable message delivery.

	Message queueing.

	Automatic reconnect behaviour.

	And probably others …

[image: _images/topology.png]
Dispatch Architecture:

[image: _images/dispatch.png]

Messaging

A Messaging Framework provides RMI (Remote Method Invocation) & Event semantics on top of messaging.
This gives application developers an easy to use abstraction and hides some of the complexities of
exchange and dispatching. Especially in OO applications, invoking a method remotely on an agent
without regard for message exchange and routing enhances reliability and productivity.

Requirements Summary:

	Key-based routing based on consumer ID.

	Synchronous RMI.

	Asynchronous RMI.

	Fire and Forget

	Callbacks

	Returned values.

	Exception propagation.

	Easy to use.

	Easy to extend classes/method exposed for RMI.

	Events

	Support multiple API versions.

Synchronous RMI:

[image: _images/sync.png]

Asynchronous RMI:

[image: _images/async.png]

Messages

The message format is json:

	
	Security-Wrapper:

	
	signature - A base64 encoded signature.

	message - A json message with stricture of: (Request | Result | Exception)

	
	Envelope:

	
	sn - Serial Number (uuid).

	version - The API version.

	routing - A tuple containing the amqp (sender, destination).

	secret - The (optional) shared secret used for request authentication. DEPRECATED in 2.7.

	pam - The (optional) PAM authentication credentials. DEPRECATED in 2.7.

	replyto - The reply amqp address (optional).

	
	one of

	
	request - An RMI request. See: Request.

	result - An RMI result. Has value of: (Result | Exception).

	status - An RMI request status report. See: Status.

	timestamp - An ISO-8601 reply timestamp (UTC).

	data - User defined data.

	
	Request(Envelope):

	
	classname - The target class name.

	cntr - The (optional) remote class constructor arguments. format: ([],{}).

	method - The target instance method name.

	args[] - The list of parameters passed to method

	kws{} - The named keyword arguments passed to method.

	
	Status(Envelope):

	
	
	status - A request status with value of

	
	accepted - Accepted by the agent and queued.

	rejected - Rejected by the agent.

	started - The request has started execution.

	progress - Progress is begin reported. See: Progress.

	
	Progress(Status):

	
	total - The total number of items to be completed.

	completed - The number of items completed.

	details - Reported details. Can be anything.

	
	Result(Envelope):

	
	retval - The returned data. Can be anything.

	
	Exception(Envelope)

	
	exval - The formatted exception (including trace).

	xmodule - The exception module name.

	xclass - The exception class.

	xstate - The exception state. Contains the exception __dict__.

	xargs - The exception args attribute when subclass of Exception.

Example RMI request message:

{
 "sn": "e7e91fb6-611b-4284-a9ed-ac1636b2c709",
 "routing": [
 "cfa806a4-919a-495f-b1dd-3fc11be9a8d0" ,
 "19802a28-a18c-4ae3-ac57-b7a2e78a427a"
],
 "replyto": "cfa806a4-919a-495f-b1dd-3fc11be9a8d0",
 "version": "0.2"
 "request": {
 "classname": "Dog",
 "method": "bark"
 "args": ["hello"],
 "kws": {}
 }
}

Example reply:

{
 "sn": "e7e91fb6-611b-4284-a9ed-ac1636b2c709",
 "version": "0.2",
 "result": {
 "retval": "Yes master. I will bark because that is what dogs do."
 }
}

Example status reply:

{
 "origin": "123",
 "status": "accepted",
 "version": "0.2",
 "sn": "985cb165-d291-47de-ab34-ecb20895384e",
 "data": "group 2"
}

Messaging Adapters

Each adapter is a standardized integration with an external messaging library.
They are a specialized plugin that provides communication with message brokers
supported by the library.

Supported

python-qpid

This adapter uses the qpid.messaging library.

	AMQP - 0-10

	package - gofer.messaging.adapter.qpid

	
	provides:

	
	amqp-0-10

	qpid.messaging

	qpid

proton

This adapter uses the proton library.

	AMQP - 1.0

	package - gofer.messaging.adapter.proton

	
	provides:

	
	amqp-1-0

	proton

	qpid

python-amqp

This adapter uses the amqp library.

	AMQP - 0-9-1

	package - gofer.messaging.adapter.amqp

	
	provides:

	
	amqp-0-9-1

	rabbitmq

	rabbit

Configuration

The gofer agent and plugins are configured using ini style configuration
files located in /etc/gofer.

Agent Configuration

The agent configuration is specified in: /etc/gofer/agent.conf and through
files located in /etc/gofer/conf.d. During startup, gofer first reads
agent.conf. Then, reads and merges in values found in the conf.d files.

All configuration files support the following sections and properties:

[management]

Defines agent management properties.

	enabled - Management is (1=enabled|0=disabled).

	host - The host (interface) the manager listens on. Defaults to: localhost.

	port - The port the manager listens on. Defaults to: 5650.

[logging]

This section sets logging properties. Currently, the logging level can be set for each
gofer package as follows:

<package>=<level>

The special root package may be used to set the logging level for all packages.

Levels (may be lower case):

	CRITICAL

	DEBUG

	ERROR

	FATAL

	INFO

	WARN

	WARNING

Gofer packages:

	agent

	messaging

	rmi

Examples:

[logging]
agent=DEBUG
messaging=WARNING

[logging]
root=ERROR

[pam]

	service - The (optional) service to be used for PAM authentication.

Plugin Descriptors

Each plugin has a configuration located in /etc/gofer/plugins. Plugin descriptors
are ini style configuration files that require the following sections and properties:

[main]

Defines basic plugin properties.

	name - The (optional) plugin name. The basename of the descriptor is used when not specified.

	plugin - The (optional) fully qualified path to the module to be loaded from the PYTHON path.
When plugin is not specified, the plugin is loaded by searching the following directories for a
module with the same name as the plugin:

	/usr/share/gofer/plugins

	/usr/lib/gofer/plugins

	/usr/lib64/gofer/plugins

	/opt/gofer/plugins

	enabled - The plugin is (1=enabled|=0disabled).

	threads - The (optional) number of threads for the RMI dispatcher.

	latency - The (optional) latency (seconds) to be introduced into RMI execution.

	accept - Accept forwarding list. Comma ‘,’ separated list of plugin names.

	forward - Forwarding list. Comma ‘,’ separated list of plugin names.

The latency property is intended to be used to create a cancellation window or
provide throttling. Adding latency, increases the opportunity for an RMI request
to be canceled prior to being started.

[messaging]

	authenticator - The (optional) fully qualified path to a message Authenticator to be
loaded from the PYTHON path.

	uuid - The agent identity. This value also specifies the queue name.

	‘url - The (optional) broker connection URL.
No value indicates the plugin should not connect to broker.
format: <adapter>+<protocol>://<user>:<password>@<host>:<port>/<virtual-host>,
protocol is one of:

	tcp: non-SSL protocol

	amqp: non-SSL protocol

	ssl: SSL protocol

	amqps: SSL protocol

The <adapter>, <user>:<password> and /<virtual-host> are optional.
See: Messaging Adapters for list of supported adapters.

The <port> is optional and defaults based on the protocol when not specified:

	(amqp|tcp) port:5672

	(amqps|ssl) port:5671

	cacert - The (optional) SSL CA certificate used to validate the server certificate.

	clientkey - The (optional) SSL client private key.

	clientcert - The (optional) SSL client certificate.
A (PEM) file may contain both the private key and certificate.

	host_validation - The (optional) flag indicates SSL host validation should be performed.
Default to (1) when not specified.

	heartbeat - The (optional) AMQP heartbeat in seconds. (default:10).

File extensions just be (.conf|.json).

[model]

	managed - The model is manged. Default:2

	0: Not managed.

	1: The queue is declared on attach and bound the the exchange as needed.

	2: The queue is declared on attach and bound the the exchange as needed and
drained and deleted on explicit detach.

	queue - The (optional) AMQP queue name. This has precedent over uuid.
Format: <exchange>/<queue> where exchange is optional.

	expiration - The (optional) auto-deleted queue expiration (seconds).

Examples

This example enables messaging and defines the uuid:

[main]
enabled=1

[messaging]
url=qpid+amqp://localhost

[model]
queue=123

This example enables messaging and does not define the uuid. It is expected
that the plugin defines an @load decorated method/function that provides the
url and queue:

[main]
enabled=1
accept=*

This example does not enable messaging for this plugin. This would be done when the
plugin does not need to specify an additional identity. This example also specifies a user defined
sections to be used by the plugin:

[main]
enabled=1

[messaging]
url=qpid+amqp://localhost

[model]
queue=123

[foobar]
timeout=100

However, additional user defined sections and properties are supported and made available to
the plugin(s) as follows:

from gofer.agent.plugin import Plugin
...
class MyPlugin:
 ...
 def mymethod(self):
 cfg = Plugin.find(__name__).cfg()
 timeout = cfg.foobar.timeout
 ...

Options

The RMI options can be passed to the proxy.agent() function and the Agent or Stub constructor.
When options passed to either the proxy.agent() or Agent constructor, they apply to all RMI
calls unless they are overridden in the Stub constructor.

These options are as follows:

Summary

	reply

	The asynchronous RMI reply address. Eg: amq.direct/test-queue

	trigger

	Specifies trigger used for RMI calls. (0=auto <default>, 1=manual)

	secret

	The shared secret (security)

	ttl

	The TTL (seconds) for the agent to accept the RMI request.

	wait

	The time (seconds) to wait (block) for a result.

	progress

	A progress callback specified for synchronous RMI. Must have signature: fn(report).

	user

	A user (name), used for PAM authenticated access to remote methods.

	password

	A password, used for PAM authenticated access to remote methods.

	authenticator

	A subclass of pulp.messaging.auth.Authenticator that provides message authentication.

	data

	User defined data associated with the RMI request and is round-tripped.

Details

reply

The reply option specifies the reply address. When specified, it implies all requests
are asynchronous and that all replies are sent to the AMQP address.

Example: Assume a reply listener on the topic or queue named: “foo”:

Passed to Agent() and apply to all RMI calls.

from gofer.proxy import Agent

agent = Agent(url, uuid, reply='foo')

trigger

The trigger option specifies the trigger used for asynchronous RMI.
When the trigger is specified as manual, the RMI calls return a trigger
object instead of the request serial number.
Each trigger contains a sn (serial number) property that can be used for reply correlation.
The trigger is pulled by calling the trigger as: trigger().

Trigger values:

	0 = Automatic (default)

	1 = Manual

Passed to Agent() and apply to all RMI calls.

from gofer.proxy import Agent

agent = Agent(uuid, trigger=1)
dog = agent.Dog()
trigger = dog.bark('delayed!')
print trigger.sn # do something with serial number
trigger() # pull the trigger

secret

The secret option is used to provide shared secret credentials to each RMI call. This option is
only used for agent plugin RMI methods where a secret is specified as required.

Examples: Assume the agent has a plugin with methods decorated with a secret=’foobar’

Passed to Agent() and apply to all RMI calls.

from gofer.proxy import Agent

agent = Agent(url, uuid, secret='foobar')

ttl and wait

The ttl option is used to specify the RMI call lifespan. The ttl is the time in seconds
for the agent to accept the request. The message TTL (time-to-live) is set to the ttl for both
synchronous and asynchronous RMI calls. Additionally, for synchronous RMI, the caller is blocked for
the number of seconds specified in the wait option. The default timeout is 10 seconds and the
default wait for synchronous RMI is 90 seconds. A wait=0 indicates that the stub should not
block and wait for a reply.

The timeout and wait can be a string and supports a suffix to define the unit of time.
The supported units are as follows:

	s : seconds

	m : minutes

	h : hours

	d : days

Passed to Agent() and apply to all RMI calls.

from gofer.proxy import Agent

TTL 5 seconds
agent = Agent(url, uuid, ttl=5)

TTL 5 minutes
agent = Agent(url, uuid, ttl=5m)

TTL 30 seconds, wait for 5 seconds
agent = Agent(url, uuid, ttl=30, wait=5)

user/password

The user and password options are used to provide PAM authentication credentials to each RMI call.
This option is only used for agent plugin RMI methods decorated with @pam or @user.
This is really just a short-hand for the pam option.

Examples: Assume the agent has a plugin with methods decorated with @pam(user=’root’)

Passed to Agent() and apply to all RMI calls.

from gofer.proxy import Agent

agent = Agent(url, uuid, user='root', password='xxx')

Plugin Decorators

Decorators for remote methods/functions provided by plugins. All decorators may be stacked.

@action

The action decorator is used to designate a function or class method to treated as
a recurring action.

Options:

	
	interval (one of):

	
	days

	seconds

	minutes

	hours

	weeks

	required: Yes

	type: int

	default: n/a

@remote

The remote decorator is used to designate a function or class method as being remotely accessible.

Options:

	
	secret - used to specify a shared secret that must be passed for authorization.

	
	required: No

	type: str|callable

	default: None

	note: DEPRECATED in 2.7

	model - the RMI execution model (direct|fork).
The fork model spawns a child process for each method invocation.

	required: No

	type: str

	default: direct

	note: Added in 2.8

@direct

The direct decorator is used to designate a function to use the direct invocation model.
With this model, the function is invoked within the goferd process.

Added: 2.8

@fork

The fork decorator is used to designate a function to use the fork invocation model.
With this model, the function is invoked in a newly spawned child process. This model may be used
to insulate the goferd process from unwanted side effects such as memory and filedes leaks,
global configuration changes and core dumps.

Added: 2.8

@pam

The pam decorator is used to specify PAM authentication criteria for access to a function or class
method. This additional authentication may be used in conjunction with shared secrets.

DEPRECATED in 2.7

Options:

	
	user - specified user name.

	
	required: Yes

	type: str

	default: n/a

	
	service - used to specify the PAM service to be used for the authentication.

	
	required: No

	type: str

	default: passwd

@user

The user decorator is used to specify PAM authentication criteria for access to a function or class
method. This additional authentication may be used in conjunction with shared secrets. This is an
alias for the @pam decorator.

DEPRECATED in 2.7

Options:

	
	name - specified user name.

	
	required: Yes

	type: str

	default: n/a

Plugin Extension

As gofer plugins are written and shared throughout the open source community, it seems likely that
rather than writing your plugin from scratch, it would be useful to be able to extend one that already
exists. Plugins have an API for extending their remote API with remote objects provided by other
plugins. Plugin extension can also be specified in the plugin descriptor using the extends
property

Extending

What can be imported:

	class object

	function object

Using the descriptor property:

Example:

plugin: dog can extend the animals plugin. Using this method will add all of the dog API
to the animals API.

[main]
enabled=1
extends=animals

Using the API:

Example:

plugin: animals

class Dog:
 @remote
 def bark(self):
 pass

plugin: myplugin

from gofer.agent.plugin import Plugin

animals = Plugin.find('animals')
plugin = Plugin.find(__name__)

just import Dog
plugin += animals['Dog']

import everything
plugin += animals

Inheritance

Imported class objects may be used as if imported using the standard import directive. When used
as a superclass, the inherited methods will be exposed (@remote) as decorated in the superclass.

Examples:

from gofer.agent.plugin import Plugin

import Dog from animals plugin

animals = Plugin.find('animals')
Dog = animals['Dog']

class Retriever(Dog):
 @remote(secret='wagf')
 def fetch(self):
 pass

Results in the following remote API:

Retriever:

	
	bark()

	
	auth: None

	
	fetch()

	
	auth: shared secret

However, notice that the auth on the inherited bark() is different than fetch().
To change this, simply override the method and re-decorate as needed:

from gofer.agent.plugin import Plugin

import Dog from animals plugin

animals = Plugin.find('animals')
Dog = animals['Dog']

class Retriever(Dog):

 @remote(secret='wag')
 def bark(self):
 Dog.bark(self)

 @remote(secret='wag')
 def fetch(self):
 pass

Delegation

In many cases, plugins may choose to leverage imported objects by delegation rather than inheritance.

In this example, the Old McDonald toy does not extend Dog but rather delegates the functionality
of a dog bark() to an instance of Dog:

from gofer.agent.plugin import Plugin

import Dog from animals plugin

animals = Plugin.find('animals')
Dog = animals['Dog']

Old McDonald toy
class Toy:
 @remote
 def theDog(self):
 dog = Dog()
 dog.bark()

Python Examples

Server-side

Sample server-side code:

from gofer.proxy import Agent

url = 'amqp://localhost'
address = 'test'
agent = Agent(url, address)

Define Agent-side

Sample agent-side code. This module is placed in /user/share/gofer/plugins/ along with a plugin
descriptor in /etc/gofer/plugins/

Plugin descriptor: /etc/gofer/plugins/plugin.conf

[main]
enabled=1

[messaging]
url=amqp://localhost
uuid=test

Code: /user/share/gofer/plugins/plugin.py

from gofer.decorators import remote
from gofer.rmi.model.FORK
from gofer.agent.plugin import Plugin

(optional) access to the plugin descriptor
which you can use to define custom sections/properties

plugin = Plugin.find(__name__)

class Dog:

 @remote
 def bark(self, words):
 woof = cfg.dog.bark_noise
 print '%s %s' % (woof, words)
 return 'Yes master. I will bark because that is what dogs do.'

 @remote(model=FORK)
 def wag(self, n):
 for i in range(0, n):
 print 'wag'
 return 'Yes master. I will wag my tail because that is what dogs do.'

The plugin may be loaded from the PYTHON path by specifying the plugin property in
descriptor as follows:

[main]
enabled=1
plugin=application.agent.plugin.py

[messaging]
url=amqp://localhost
uuid=zoo

Synchronous Invocation

Sample of server code invoking synchronously methods (remotely) on the agent. This is the default
behaviour and the timeout is 90 seconds by default.

Python

from gofer.proxy import Agent

agent = Agent('amqp://localhost', 'test')

invoke methods on the agent (remotely)

dog = agent.Dog()
print dog.bark('hello')
print dog.wag(3)
print dog.bark('hello')

methods that raise exceptions

try:
 print dog.sit()
except Exception, e:
 print repr(e)

try:
 print dog.not_permitted()
except Exception, e:
 print repr(e)

Using the CLI

$ gofer rmi -u 'amqp://localhost' -a test -t Dog.bark hello
$ gofer rmi -u 'amqp://localhost' -a test -t Dog.wag 3
$ gofer rmi -u 'amqp://localhost' -a test -t Dog.bark hello

Synchronous Invocation (specify timeout)

Sample of server code invoking synchronously methods (remotely) on the agent with a
timeout of 180 seconds.

Python

from gofer.proxy import Agent

amqp://localhost
agent = Agent('amqp://localhost', 'test', wait=180) # specify timeout

invoke methods on the agent (remotely)
dog = agent.Dog()
dog.bark('hello')
dog.wag(3)
dog.bark('hello')

Using the CLI

$ gofer rmi -u 'amqp://localhost' -a test -w 180 -t Dog.bark hello
$ gofer rmi -u 'amqp://localhost' -a test -w 180 -t Dog.wag 3
$ gofer rmi -u 'amqp://localhost' -a test -w 180 -t Dog.bark hello

Asynchronous (fire & forget) Invocation

Sample of server code invoking synchronously methods (remotely) on the agent. This works the same for
asynchronous fire-and-forget where not reply is wanted. Asynchronous invocation returns the serial
number of the request.

Python

from gofer.proxy import Agent

create an agent where user data = 'task_id'
agent = Agent('amqp://localhost', 'test', wait=0)

invoke methods on the agent (remotely)
dog = agent.Dog()
dog.bark('hello')
dog.wag(3)
print dog.bark('hello')
 'e688f50b-3108-43dd-9a57-813f434749a8'

methods that raise exceptions
try:
 print dog.sit()
except Exception, e:
 print repr(e)

try:
 print dog.not_permitted()
except Exception, e:
 print repr(e)

Using the CLI

$ gofer rmi -u 'amqp://localhost' -a test -w 0 -t Dog.bark hello
e688f50b-3108-43dd-9a57-813f434749a8

Asynchronous (callback) Invocation

Sample of server code invoking asynchronously methods (remotely) on the agent. The is the callback
form of asynchronous invocation. This example uses a Listener class. But, the listener can also
be any callable. Asynchronous invocation returns the serial number of the request to be used by
the caller to further correlate request & response.

Python

from gofer.proxy import Agent
from gofer.messaging.async import ReplyConsumer

specify a reply address to be used for asynchronous responses.

reply_to = 'tasks'

create my listener class

class Listener:
 """
 An asynchronous operation callback listener.
 """

 def succeeded(self, reply):
 """
 Async request succeeded.
 :param reply: The reply data.
 :type reply: Succeeded.
 """
 pass

 def failed(self, reply):
 """
 Async request failed (raised an exception).
 :param reply: The reply data.
 :type reply: Failed.
 """
 pass

 def accepted(self, reply):
 """
 Async request has been accepted.
 :param reply: The request.
 :type reply: Accepted.
 """
 pass

 def rejected(self, reply):
 """
 Async request has been rejected.
 :param reply: The request.
 :type reply: Accepted.
 """
 pass

 def started(self, reply):
 """
 Async request has started.
 :param reply: The request.
 :type reply: Started.
 """
 pass

 def progress(self, reply):
 """
 Async progress report.
 :param reply: The request.
 :type reply: Progress.
 """
 pass

create my reply consumer using the reply to and my listener

reader = ReplyConsumer(reply_to)
reader.start(Listener())

create an agent where user data is {'task_id': 1234} and
setup for asynchronous invocation with my reply address.

agent = Agent('amqp://localhost', 'test', reply=reply_to)

invoke methods on the agent (remotely)
dog = agent.Dog()
dog.bark('hello')
dog.wag(3)
print dog.bark('hello')
 'e688f50b-3108-43dd-9a57-813f434749a8'

Same asynchronous example except specify a callable as the listener. Also, it uses the throw()
method on reply.

specify a reply address to be used for responses.

reply_to = 'tasks'

create my listener

def callback(reply):
 try:
 reply.throw()
 ...
 print reply.retval # succeeded, do something with return value.
 ...
 except Exception, ex:
 # handle general exception
 pass

create my reply consumer using the reply address and my callback

reader = ReplyConsumer(reply_to)
reader.start(callback)
...

Using the CLI

Note: -r tasks

$ gofer rmi -u 'amqp://localhost' -a test -w 0 -r tasks -t Dog.bark hello
e688f50b-3108-43dd-9a57-813f434749a8

Class Constructor Arguments

Classes defined in the agent can have constructor arguments. Though, remember, an instance is constructed
for each request so remote objects are stateless. The stub provides for passing __init__() arguments by
calling the stub.

Examples:

In the plugin:

class Dog:

 def __init__(self, name, age=1):
 self.name = name
 self.age = age

 @remote
 def bark(self):
 pass

 @remote
 def wag():
 pass

Calling:

...
dog = agent.Dog() # stub constructor, pass gofer options here.
dog('rover', age=10) # constructor arguments set here.
dog.bark('hello')
dog.wag()

change the constructor arguments and call something else.

dog('max', age=5) # changing constructor arguments.
dog.bark('howdy')

Subsequent calls simply update the constructor arguments.

This:

dog('rover', age=10)

equals this (in the agent):

dog = Dog('rover', age=10)

Security

When remote methods or functions are decorated to require a shared secret for request authentication,
it must be passed as an option.

Example:

from gofer.proxy import Agent
from gofer.messaging.dispatcher import NotAuthorized

agent = Agent('amqp://localhost', 'test', secret='mycathas9lives')
invoke methods on the agent (remotely)
dog = agent.Dog()
try:
 dog.bark('secure hello')
except NotAuthorized:
 log.error('wrong secret')

Progress Reporting

In gofer 0.72+ remote method progress can be reported by plugins. In the case of synchronous RMI, the caller
can specify a callback for progress reporting by specifying the progress option. The callback must
take a single (dict) parameter (report).

The report has the following keys:

	sn - serial number

	any - user data

	total - the number total units

	completed - the number of completed units

	details - arbitrary details

For asynchronous RMI, the listener is called with progress reports.

Examples:

from gofer.proxy import Agent

def progress_reported(report)
 pass

agent = Agent('amqp://localhost', 'test')
dog = agent.Dog(progress=progress_reported)
dog.bark('howdy')

On the agent, plugins report progress from with a method by using the Progress object defined within
the current call Context.

Example:

from gofer.agent.rmi import Context
from gofer.decorators import remote

class MyClass:

 @remote
 def foo(self):
 """
 Do something reports progress
 """
 total = 10
 # get the call context
 ctx = Context.current()
 ctx.progress.total = total
 # demo reporting progress for 10 units
 for n in range(0, total):
 ctx.progress.completed += 1
 sleep(1)

 @remote
 def bar(self):
 """
 Do something reports progress with details.
 """
 total = 10
 # get the call context
 ctx = Context.current()
 ctx.progress.total = total
 # demo reporting progress for 10 units
 for n in range(0, total):
 ctx.progress.completed += 1
 ctx.progress.details='for: %d' % n)
 sleep(1)

Testing

Logs

After adding/updating classes or methods in myplugin.py, you’ll want to test them. First, ensure the
plugin is still loading properly. The easiest way to do this is by examining the gofer log file
at: /var/log/gofer/agent. At start up, you should see something like:

2010-11-08 08:49:04,491 [WARNING][MainThread] __mangled() @ plugin.py:122 - "pulp" found in python-path
2010-11-08 08:49:04,503 [INFO][MainThread] __mangled() @ plugin.py:123 - "pulp" mangled to avoid collisions
2010-11-08 08:49:04,909 [INFO][MainThread] __import() @ plugin.py:103 - plugin "pulp", imported as: "pulp_plugin"

Either the gofer log or the pulp client.log may be examined to verify that Actions are
running as expected.

Interactive Shell

Testing added/updated remote methods, can be done easily using an interactive python (shell).
Be sure your changes to the pulp plugin have been picked up by Gofer by restarting goferd.
Let’s say you added a new class named “Foo” that has a remote method named … you guessed it: “bar”.

You can test your new stuff as follows:

[jortel@localhost pulp]$ python
Python 2.6.2 (r262:71600, Jun 4 2010, 18:28:04)
[GCC 4.4.3 20100127 (Red Hat 4.4.3-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from gofer.proxy import Agent
>>> uuid = <your consumer ID>
>>> agent = Agent('amqp://localhost', uuid)
>>> foo = agent.Foo()
>>> print foo.bar()

Or, using the proxy module API:

[jortel@localhost pulp]$ python
Python 2.6.2 (r262:71600, Jun 4 2010, 18:28:04)
[GCC 4.4.3 20100127 (Red Hat 4.4.3-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from gofer import proxy
>>> uuid = <your consumer ID>
>>> agent = proxy.agent('amqp://localhost', uuid)
>>> foo = agent.Foo()
>>> print foo.bar()

Admin.help()

Another useful tool, it invoke Admin.help() from within interactive python as follows:

[jortel@localhost pulp]$ python
Python 2.6.2 (r262:71600, Jun 4 2010, 18:28:04)
[GCC 4.4.3 20100127 (Red Hat 4.4.3-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from pulp.server.agent import Agent
>>> uuid = <your consumer ID>
>>> agent = Agent('amqp://localhost', uuid)
>>> admin = agent.Admin()
>>> print admin.help()

Plugins:
 demo
 pulp [pulp_admin]
Actions:
 demo.TestAction 0:10:00
Methods:
 custom.Dog.bark()
 custom.Dog.wag()
 demo.Admin.hello()
 demo.Admin.help()
 demo.Shell.run()
Functions:
 demo.echo()
>>>

Test Main

The test/main.py module provides a good testing entry point that does not require the process owner
to be root.

Mocks

The gofer mock feature provides better testability. Essentially, it allows uses to test the
server-side code that uses the gofer proxy. Instead of calling through to the remote agent,
RMI calls can be mocked-up.

Added 0.33.

The mock module provides an API for registering custom stub mocks.

Items that can be registered with mock.register():

	instance (object)

	class

	module

Example:

from gofer.messaging import mock
mock.install()
from gofer.proxy import Agent

agent = Agent('xyz')

define mock impl for testing
class Dog:
 def bark(self, msg):
 return 'mock Dog, called with: [%s]' % msg

register our mock class
mock.register(Dog=Dog)

call bark()

dog = agent.Dog()

print dog.bark('hello')
 'mock Dog, called with: [hello]'

print dog.bark('world')
 'mock Dog, called with: [world]'

#
now, let look at the call history
#

h = dog.bark.history()
print h
 '[("hello",),{}), ("world",),{})]'

get last call
last = h[-1]

look at the passed args
print last.args[0]
 'world'

look at the keyword args
print last.kwargs
 '{}'

It’s very important to note the difference between registering a class (as a stub) and an instance
(as a stub). In short, nstances are shared across all mock agents and classes are associated to
the instance of the mock agent that created them. That way, call history is scoped to mock
agent as well.

In some cases, it’s useful to have a stub method raise an exception. Here’s how it’s done:

from gofer.messaging import mock
mock.install()
from gofer.proxy import Agent

agent = Agent('amqp://localhost', 'xyz')

define mock impl for testing
class Dog:

 def bark(self, msg):
 return 'mock Dog, called with: [%s]' % msg

register our mock class
mock.register(Dog=Dog)

dog = agent.Dog()

call bark() normally
print dog.bark('hello')

now, let's have it raise an exception

dog.bark.push(Exception('no more barking'))
try:
 dog.bark('hello')
except Exception, e:
 print e
 '"no more barking'"

QPID Configuration

This page describes qpidd SSL configuration.

LINKS

Here are some helpful links:

	http://www.mail-archive.com/qpid-commits@incubator.apache.org/msg06212.html

	http://www.mozilla.org/projects/security/pki/nss/tools/certutil.html

	http://rajith.2rlabs.com/2010/03/01/apache-qpid-securing-connections-with-ssl/

RPMS

The SSL configuration for QPID is based on NSS. So, the certutil tool needs to be installed
to manage the NSS certificate databases. Also, the qpidd-ssl package needs to be installed to
enable SSL on the qpid broker.

Fedora:

	nss-tools - contains certutil used to manage NSS database for SSL.

	qpidd-ssl - contains ssl.so which enables SSL.

Certificates

The easiest way to create the NSS DB and SSL certificates needed, is to run the nss-db-gen
in <gofer.git>/tools.

[jortel@~]$ cd git/gofer/tools
[jortel@localhost tools]$ nss-db-gen
bash: nss-db-gen: command not found
[jortel@localhost tools]$./nss-db-gen

Working in: /tmp/tmp20823

Please specify a directory into which the created NSS database
and associated certificates will be installed.

Enter a directory [/tmp/redhat/qpid]:
/tmp/redhat/qpid

Enter NSS database password:

Please specify a CA. Generated if not specified.

Enter a path:

Password file created.

Database created.

Creating CA certificate:

Generating key. This may take a few moments...

CA created

Creating BROKER certificate:

Generating key. This may take a few moments...

Broker certificate created.

Creating CLIENT certificate:

Generating key. This may take a few moments...

Client certificate created.
Enter Password or Pin for "NSS Certificate DB":
Enter Password or Pin for "NSS Certificate DB":
Enter password for PKCS12 file:
Re-enter password:
pk12util: PKCS12 EXPORT SUCCESSFUL
Enter Import Password:
MAC verified OK
Client key & certificate exported

Artifacts copied to: /tmp/redhat/qpid.

Please update /etc/qpidd.conf as follows:

....
auth=no
....
SSL
require-encryption=yes
ssl-require-client-authentication=yes
ssl-cert-db=/tmp/redhat/qpid/nss
ssl-cert-password-file=/tmp/redhat/qpid/nss/password
ssl-cert-name=broker
ssl-port=5674
...

Please configure gofer as follows:

...
[messaging]
url=ssl://<host>:5674
cacert=/tmp/redhat/qpid/ca.crt
clientcert=/tmp/redhat/qpid/client.crt

Files generated by the script:

redhat/
redhat/qpid
redhat/qpid/broker.crt
redhat/qpid/client.crt
redhat/qpid/nss
redhat/qpid/nss/secmod.db
redhat/qpid/nss/password
redhat/qpid/nss/key3.db
redhat/qpid/nss/cert8.db
redhat/qpid/ca.crt

Notes:

	The “Enter a directory [/tmp/redhat/qpid]:” can be defined as any directory.

	The passwords can be anything.

Configuration

QPID

Edit /etc/qpidd.conf:

	auth

	Require authentication. (value: no)

	require-encryption

	Require all connections to use SSL. (value: yes)

	ssl-require-client-authentication

	Require client SSL certificates for all SSL connections. (value: yes)

	ssl-cert-db

	The fully qualified path to the NSS DB. (example: /tmp/redhat/qpid/nss)

	ssl-cert-password-file

	The fully qualified path to the password file used to access the NSS DB.
(example: /tmp/redhat/qpid/nss/password)

	ssl-cert-name

	The name of the certificate in the NSS DB to be used by the qpid broker. (example: broker)

	ssl-port

	The port to be use for SSL connections. (example: 5671)

Gofer Agent

Edit /etc/gofer/plugins/<yourplugin>.conf and under the [messaging] section:

	url

	The URL to the qpid broker. Protocol choices: tcp=plain, ssl=SSL. (example: ssl://<host>:5671)

	cacert

	The fully qualified path to the CA certificate used to validate the broker.
(example: /tmp/redhat/qpid/ca.crt)

	clientcert

	The fully qualified path a file containing both the client private key and certificate.
(example: /tmp/redhat/qpid/client.crt)

Index

 _static/up-pressed.png

_static/up.png

_images/dispatch.png
Consumer

Q- avescsontrens oo

T toread

P
rveed
ﬁ wis-1) g 1)
|Pending (queue) Scheduler o
Consumer ! —
wis=2) > tooe
’— T
Consumer —
(o) |L dispatch() {pool)
2 o
3. reply()

_images/sync.png
TANQP envelope]
header={consurmeric:

et
RepoLib
pea
B Jo=xrz] / wpdate()
Repolin Dispatcher Dog
<namespace> g <class>
c 3 [l
update() ﬁ bark))
- QACP vl
Dog (broker)
<namespace>
bark)) AP g1y emvelope]
wagl) queue=123

Torver
Tent

_images/agent.png
messaging

dispatcher

plugin oader

actions
(container)

python module

L~ Cpyfie)

= plugin descriptor

(cont fle)
N

ctass wyoperation
I aremote
et foo0)

@
@elcass myacton

@action(hours=240)
def invoke):

_images/async.png
(AMQP message)

Agent (id=123)
<proxy>

Repolib
<namespace>

update()

Task (id=44)
<async>

Y

o-123
(syme)

Dog
<namespace>
bark()
wagl)

ReplyConsumer

succeeded(task=44)

(tag=Tasks)

Q=Tasks
(tag)

Server

QPID/ANGP.
(broker)

(AMQP reply message)

Rgent

Repolib
<class>

. / wpdate()

Dispatcher |T°§
.

\ bark()
wag()

\—Uﬁl—/

_images/topology.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Gofer’s documentation!

 		
 Release Notes

 		
 gofer 2.11

 		
 gofer 2.10

 		
 gofer 2.9

 		
 gofer 2.8

 		
 gofer 2.7

 		
 gofer 2.6

 		
 gofer 2.5

 		
 gofer 2.4

 		
 gofer 2.3

 		
 gofer 2.2

 		
 gofer 2.1

 		
 gofer 2.0

 		
 Concept changes

 		
 API changes

 		
 Plugin (class) changes

 		
 gofer 1.4

 		
 Overview

 		
 Installation

 		
 Packages

 		
 python optimizations

 		
 Development

 		
 goferd

 		
 systemd

 		
 upstart

 		
 Getting Started

 		
 Installation

 		
 Python

 		
 Writing A Plugin

 		
 Step 1

 		
 Step 2

 		
 Step 3

 		
 Step 4

 		
 Step 5

 		
 Step 6

 		
 Interactive Testing

 		
 Security

 		
 Tools

 		
 Command Line Interface

 		
 Examples

 		
 Remote Method Invocation

 		
 Design

 		
 Approach

 		
 Messaging

 		
 Synchronous RMI:

 		
 Asynchronous RMI:

 		
 Messages

 		
 Messaging Adapters

 		
 Supported

 		
 python-qpid

 		
 proton

 		
 python-amqp

 		
 Configuration

 		
 Agent Configuration

 		
 [management]

 		
 [logging]

 		
 [pam]

 		
 Plugin Descriptors

 		
 [main]

 		
 [messaging]

 		
 [model]

 		
 Examples

 		
 Options

 		
 Summary

 		
 Details

 		
 reply

 		
 trigger

 		
 secret

 		
 ttl and wait

 		
 user/password

 		
 Plugin Decorators

 		
 @action

 		
 @remote

 		
 @direct

 		
 @fork

 		
 @pam

 		
 @user

 		
 Plugin Extension

 		
 Extending

 		
 Inheritance

 		
 Delegation

 		
 Python Examples

 		
 Server-side

 		
 Define Agent-side

 		
 Synchronous Invocation

 		
 Python

 		
 Using the CLI

 		
 Synchronous Invocation (specify timeout)

 		
 Python

 		
 Using the CLI

 		
 Asynchronous (fire & forget) Invocation

 		
 Python

 		
 Using the CLI

 		
 Asynchronous (callback) Invocation

 		
 Python

 		
 Using the CLI

 		
 Class Constructor Arguments

 		
 Security

 		
 Progress Reporting

 		
 Testing

 		
 Logs

 		
 Interactive Shell

 		
 Admin.help()

 		
 Test Main

 		
 Mocks

 		
 QPID Configuration

 		
 LINKS

 		
 RPMS

 		
 Certificates

 		
 Configuration

 		
 QPID

 		
 Gofer Agent

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

