
GOcats Documentation
Release 1.2.1

Eugene Hinderer

Jun 16, 2023

Contents:

1 GOcats 1
1.1 Citation . 1
1.2 Installation . 1

1.2.1 Install on Linux . 2
1.2.2 Install on Windows . 2

1.3 Quickstart . 2
1.4 License . 3
1.5 Authors . 3

1.5.1 The GOcats API Reference . 3
1.5.2 User Guide . 18
1.5.3 The GOcats Tutorial . 21

2 Indices and tables 27

Python Module Index 29

Index 31

i

ii

CHAPTER 1

GOcats

GOcats is an Open Biomedical Ontology (OBO) parser and categorizing utility–currently specialized for the Gene On-
tology (GO)–which can help scientists interpret large-scale experimental results by organizing redundant and highly-
specific annotations into customizable, biologically-relevant concept categories. Concept subgraphs are defined by
lists of keywords created by the user.

Currently, the GOcats package can be used to:

• Create subgraphs of GO which each represent a user-specified concept.

• Map specific, or fine-grained, GO terms in a Gene Annotation File (GAF) to an arbitrary number of concept
categories.

• Remap ancestor Gene Ontology term relationships and the gene annotations with a set of user defined
relationships.

• Explore the Gene Ontology graph within a Python interpreter.

1.1 Citation

Please cite the following papers when using GOcats:

Hinderer EW, Moseley NHB. GOcats: A tool for categorizing Gene Ontology into subgraphs of user-defined concepts.
PLoS One. 2020;15(6):1-29.

Hinderer EW, Flight RM, Dubey R, Macleod JN, Moseley HNB. Advances in Gene Ontology utilization improve
statistical power of annotation enrichment. PLoS One. 2019;14(8):1-20.

1.2 Installation

GOcats runs under Python 3.4+ and is available through python3-pip. Install via pip or clone the git repo and install
the following dependencies and you are ready to go!

1

GOcats Documentation, Release 1.2.1

1.2.1 Install on Linux

Pip installation

Dependencies should be automatically installed using this method. It is strongly recommended that you install with
this method. .. code:: bash

pip3 install gocats

GitHub Package installation

Make sure you have git installed:

cd ~/
git clone https://github.com/MoseleyBioinformaticsLab/GOcats.git

Dependencies

GOcats requires the following Python libraries:

• docopt for creating the gocats command-line interface.

• JSONPickle for saving Python objects in a JSON serializable form and outputting to a file.

To install dependencies manually:

pip3 install docopt
pip3 install jsonpickle

1.2.2 Install on Windows

GOcats can also be installed on windows through pip.

1.3 Quickstart

For instructions on how to format your keyword list and advanced argument usage, consult the tutorial, guide, and API
documentation at readthedocs.

Subgraphs can be created from the command line.

python3 -m gocats create_subgraphs /path_to_ontology_file ~/GOcats/gocats/exampledata/
→˓examplecategories.csv ~/Output --supergraph_namespace=cellular_component --subgraph_
→˓namespace=cellular_component --output_termlist

Mapping files can be found in the output directory:

• GC_content_mapping.json_pickle # A python dictionary with category-defining GO terms as keys and a list of
all subgraph contents as values.

• GC_id_mapping.json_pickle # A python dictionary with every GO term of the specified namespace as keys and
a list of category root terms as values.

GAF mappings can also be made from the command line:

2 Chapter 1. GOcats

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git/
https://github.com/docopt/docopt
https://github.com/jsonpickle/jsonpickle
http://gocats.readthedocs.io/

GOcats Documentation, Release 1.2.1

python3 -m gocats categorize_dataset YOUR_GAF.goa YOUR_OUTPUT_DIRECTORY/GC_id_mapping.
→˓json_pickle YOUR_OUTPUT_DIRECTORY MAPPED_DATASET_NAME.goa

Gene to GO Term remappings with consideration of has_part relationships can created from the command line:

python3 -m gocats remap_goterms /path_to_ontology_file.obo /path_to_gaf.goa ancestors_
→˓output.json namespace_output.json --allowed_relationships=is_a,part_of,has_part --
→˓identifier_column=1

Gene to GO terms will be in JSON format in ancestor_output.json, and new GO term to namespace in
namespace_output.json.

1.4 License

Made available under the terms of The Clear BSD License. See full license in LICENSE.

The Clear BSD License

Copyright (c) 2017, Eugene W. Hinderer III, Hunter N.B. Moseley All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted (subject to the limita-
tions in the disclaimer below) provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY’S PATENT RIGHTS ARE GRANTED BY THIS LI-
CENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, IN-
DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

1.5 Authors

• Eugene W. Hinderer III - ehinderer

• Hunter N.B. Moseley - hunter-moseley

1.5.1 The GOcats API Reference

The following are located in /GOcats/gocats.

1.4. License 3

https://github.com/ehinderer
https://github.com/hunter-moseley

GOcats Documentation, Release 1.2.1

The Gene Ontology Categories Suite (GOcats)

This module provides methods for the creation of directed acyclic concept subgraphs of Gene Ontology, along with
methods for evaluating those subgraphs.

gocats.gocats.build_graph(args)
Not yet implemented

Try build_graph_interpreter to create a GO graph object to explore within a Python interpreter.

gocats.gocats.build_graph_interpreter(database_file, supergraph_namespace=None,
allowed_relationships=None, relation-
ship_directionality=’gocats’)

Creates a graph object of GO, which can be traversed and queried within a Python interpreter.

Parameters

• database_file (file_handle) – Ontology database file.

• supergraph_namespace (str) – Optional - Filter graph to a sub-ontology namespace.

• allowed_relationships (list) – Optional - Filter graph to use only those relation-
ships listed.

• relationship_directionality – Optional - Any string other than ‘gocats’ will
retain all original GO relationship directionalities. Defaults to reverseing has_part direction.

Returns A Graph object of the ontology provided.

Return type class

gocats.gocats.categorize_dataset(dataset_file, term_mapping, output_directory,
mapped_dataset_filename, dataset_type=’GAF’, en-
tity_col=0, go_col=1, retain_unmapped_annotations=False)

Reads in a Gene Annotation File (GAF) and maps the annotations contained therein to the categories organized
by GOcats or other methods. Outputs a mapped GAF and a list of unmapped genes in the specified output
directory.

Parameters

• dataset_file – A file containing gene annotations.

• term_mapping – A dictionary mapping category-defining ontology terms to their sub-
graph children terms. May be produced by GOcats or another method.

• output_directory – The directory where the output file will be stored.

• mapped_dataset_filename – The desired name of the mapped GAF.

• dataset_type – Enter file type for dataset [GAF|TSV|CSV]. Defaults to “GAF”.

• entity_col – If CSV or TSV file type, indicate which column the entity IDs are listed.
Defaults to 0.

• go_col – If CSV or TSV file type, indicate which column the GO IDs are listed. Defaults
to 1.

• retain_unmapped_annotations – If specified, annotations that are not mapped to a
concept are copied into the mapped dataset output file with its original annotation.

Returns None

Return type None

4 Chapter 1. GOcats

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None

GOcats Documentation, Release 1.2.1

gocats.gocats.create_subgraphs(database_file, keyword_file, output_directory, super-
graph_namespace=None, subgraph_namespace=None,
supergraph_relationships=[’is_a’, ’part_of’, ’has_part’],
subgraph_relationships=[’is_a’, ’part_of’, ’has_part’],
map_supersets=False, output_termlist=False,
go_basic_scoping=False, network_table_name=None,
test=False)

Creates a graph object of an ontology, processed into gocats.dag.OboGraph or to an object that inherits
from gocats.dag.OboGraph, and then extracts subgraphs which represent concepts that are defined by a
list of provided keywords. Each subgraph is processed into gocats.subdag.SubGraph.

Parameters

• database_file – Ontology database file.

• keyword_file – A CSV file with two columns: column 1 naming categories, and column
2 listing search strings (no quotation marks, separated by semicolons).

• output_directory – The directory where results are stored.

• supergraph_namespace – a supergraph sub-ontology to filter e.g. cellu-
lar_component, optional

• subgraph_namespace – a subgraph sub-ontology to filter e.g. cellular_component,
optional

• supergraph_relationships – a list of relationships to limit in the supergraph e.g.
[‘is_a’, ‘part_of’], optional

• subgraph_relationships – a list of relationships to limit in subgraphs e.g. [‘is_a’,
‘part_of’], optional

• map_supersets – whether to allow subgraphs to subsume other subgraphs, logical, op-
tional

• output_termlist – whether to create a translation of ontology terms to their names to
improve interpretability of dev test results, logical, optional

• go-basic-scoping – whether to create a GO graph similar to go-basic with only
scoping-type relationships (is_a and part_of), logical, optional

• network_table_name – whether to make a specific name for the network table pro-
duced from the subgraphs (defaults to NetworkTable.csv)

Returns None

Return type None

gocats.gocats.find_category_subsets(subgraph_collection)
Finds subgraphs which are subsets of other subgraphs to remove redundancy, when specified.

Parameters subgraph_collection – A dictionary of subgraph objects (keys: subgraph name,
values: subgraph object).

Returns A dictionary relating which subgraph objects are subsets of other subgraphs (keys: subset
subgraph, values: superset subgraphs).

Return type dict

gocats.gocats.json_format_graph(graph_object, graph_identifier)
Creates a dictionary representing the edges in the graph and formats it in such a way that it can be encoded into
JSON for comparing the graph objects between versions of GOcats.

1.5. Authors 5

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict

GOcats Documentation, Release 1.2.1

gocats.gocats.remap_goterms(go_database, goa_gaf, ancestor_filename, namespace_filename, al-
lowed_relationships, identifier_column)

Reads in a Gene Ontology relationship file, and a Gene Annotation File (GAF), and follows the GOcats rules
for allowed term-to-term relationships. Generates as output a new GAF, and a new term to ontology namespace
mapping.

Parameters

• go_database – the gene ontology dataset

• goa_gaf – the gene annotation file

• ancestor_filename – the output file containing new gene to ontology mappings

• namespace_filename – the output file containing the term to ontology mappings

• allowed_relationships – what term to term relationships will be considered
(is_a,part_of,has_part)

• identifier_column – which column is being used for the gene identifiers (1)

Returns None

Return type None

Directed Acyclic Graph (DAG)

Contains necessary objects for creating a Directed Acyclic Graph (DAG) object to represent Open Biomedical Ontolo-
gies (OBO).

class gocats.dag.OboGraph(namespace_filter=None, allowed_relationships=None)
A pythonic graph of a generic Open Biomedical Ontology (OBO) directed acyclic graph (DAG).

__init__(namespace_filter=None, allowed_relationships=None)
OboGraph initializer. Leave namespace_filter and allowed_relationship as None to create the entire on-
tology graph. Otherwise, provide filters to limit what information is pulled into the graph.

Parameters

• namespace_filter (str) – Specify the namespace of a sub-ontology namespace, if
one is available for the ontology.

• allowed_relationships (list) – Specify a list of relationships to utilize in the
graph, other relationships will be ignored.

orphans
property defining a set of nodes in the graph which have no parents. When the graph is modified, calls
_update_graph() to repopulate the sets of orphan and leaf nodes.

Returns Set of ‘orphan’ gocats.dag.AbstractNode objects.

Return type set

leaves
property defining a set of nodes in the graph which have no children. When the graph is modified, calls
_update_graph() to repopulate the sets of orphan and leaf nodes.

Returns Set of ‘leaf’ gocats.dag.AbstractNode objects.

Return type set

valid_node(node)
Defines condition of a valid node. Node is valid if it is not obsolete and is contained within the given
ontology namespace constraint.

6 Chapter 1. GOcats

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/stdtypes.html#set

GOcats Documentation, Release 1.2.1

Parameters node – A gocats.dag.AbstractNode object

Returns True if node is valid, False otherwise

Return type True or False

valid_edge(edge)
Defines condition of a valid edge. Edge is valid if it is within the list of allowed edges and connects two
nodes that are both contained in the graph in question.

Parameters edge – A gocats.dag.AbstractEdge object

Returns True if node is valid, False otherwise

Return type True or False

_update_graph()
Repopulates graph orphans and leaves sets.

Returns None

Return type None

add_node(node)
Adds a node object to the graph, adds an object pointer to the vocabulary index to reference nodes to every
word in the node name and definition. Sets modification state to True.

Parameters node – A gocats.dag.AbstractNode object.

Returns None

Return type None

remove_node(node)
Removes a node from the graph and deletes node references from all entries in the vocabulary index. Sets
modification state to True.

Parameters node – A gocats.dag.AbstractNode object.

Returns None

Return type None

add_edge(edge)
Adds an edge object to the graph, and counts the edge relationship type. Sets modification state to True.

Parameters edge – A gocats.dag.AbstractEdge object.

Returns None

Return type None

remove_edge(edge)
Removes an edge object from the graph, and removes references to that edge from the node objects in-
volved. Sets modification state to True.

Parameters edge – A gocats.dag.AbstractEdge object.

Returns None

Return type None

add_relationship(relationship)
Adds a gocats.dag.AbstractRelationship object to the graph’s relationship index, referenced
by that relationships ID. Sets modification state to True.

Parameters relationship – A gocats.dag.AbstractRelationship object.

1.5. Authors 7

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True

GOcats Documentation, Release 1.2.1

Returns None

Return type None

instantiate_valid_edges()
Add all edge references to their respective nodes and vice versa if both nodes of the edge are in the
graph. This is carried out by AbstractEdge.connect_nodes(). Also adds gocats.dag.
AbstractRelationship object reference to each edge. If both nodes are not in the graph, the edge
is deleted from the graph. Sets modification state to True.

Returns None

Return type None

node_depth(sample_node)
Returns an integer representing how many nodes are between the given node and the root node of the graph
(depth level).

Parameters sample_node – A gocats.dag.AbstractNode object.

Returns Depth level.

Return type int

filter_nodes(search_string_list)
Returns a list of node objects that contain vocabulary matching the keywords provided in the search string
list. Nodes are selected by searching through the vocablary index.

Parameters search_string_list – A list of search strings provided in the key-
word_file provided to gocats.gocats.create_subgraphs().

Returns A list of gocats.dag.AbstractNode objects.

Return type list

filter_edges(filtered_nodes)
Returns a list of edges in the graph that connect the nodes provided in the filtered nodes list.

Parameters filtered_nodes – List of filtered nodes provided by filter_nodes().

Returns A list of gocats.dag.AbstractEdge objects.

Return type list

nodes_between(start_node, end_node)
Returns a set of nodes that occur along all paths between the start node and the end node. If no paths exist,
an empty set is returned.

Parameters

• start_node – gocats.dag.AbstractNode object to start the paths.

• end_node – gocats.dag.AbstractNode object to end the paths.

Returns A set of gocats.dag.AbstractNode objects if there is at least one path between
the parameters, an empty set otherwise.

Return type set

__weakref__
list of weak references to the object (if defined)

class gocats.dag.AbstractNode
A node containing all basic properties of an OBO node. The parsing object, gocats.ontologyparser.
OboParser currently has direct access to data members (id, name, definition, namespace, edges, and obsolete)
so that information from the database file can be added to the object.

8 Chapter 1. GOcats

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#set

GOcats Documentation, Release 1.2.1

__init__()
AbstractNode initializer

descendants
property defining a set of nodes in the graph that are recursively reverse of a node with a scoping-type
relationship. When the node is modified, calls gocats.dag.AbstractNode._update_node() to
repopulate the sets of descendants and ancestors. This represents a “lazy” evaluation of node descendants.

Returns Set of gocats.dag.AbstractNode objects

Return type set

ancestors
property defining a set of nodes in the graph that are recursively forward of a node with a scoping-type
relationship. When the node is modified, calls gocats.dag.AbstractNode._update_node() to
repopulate the sets of descendants and ancestors. This represents a “lazy” evaluation of node ancestors.

Returns Set of gocats.dag.AbstractNode objects

Return type set

_update_node()
Repopulates ancestor and descendant sets for a node. Sets modification state to True.

Returns None

Return type None

add_edge(edge, allowed_relationships)
Adds a given gocats.dag.AbstractEdge to a each gocats.dag.AbstractNode objects that
the edge connects. If there is a filter for the types of relationships allowed, edges with non-allowed rela-
tionship types are not processed. Sets modification state to True.

Returns None

Return type None

remove_edge(edge)
Removes a given gocats.dag.AbstractEdge the gocats.dag.AbstractNode object. Also
removes parent or child node references that the edge referenced. Sets modification state to True.

Returns None

Return type None

_update_descendants()
Used for the lazy evaluation of graph descendants of the current gocats.dag.AbstractNode object.
Creates internal set variable, descendant_set. Iterates through node children until the bottom of the graph
is reached. The descendant_set is a set of all nodes across all paths encountered from the current node.

Returns None

Return type None

_update_ancestors()
Used for the lazy evaluation of graph ancestors of the current gocats.dag.AbstractNode object.
Creates internal set variable, ancestors_set. Iterates through node parents until the top of the graph is
reached. The ancestors_set is a set of all nodes across all paths encountered from the current node.

Returns None

Return type None

__weakref__
list of weak references to the object (if defined)

1.5. Authors 9

https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/constants.html#None

GOcats Documentation, Release 1.2.1

class gocats.dag.AbstractEdge(node1_id, node2_id, relationship_id, node_pair=None)
An OBO edge which links two ontology term nodes and contains a relationship type describing now the two
nodes are related.

__init__(node1_id, node2_id, relationship_id, node_pair=None)
AbstractEdge initializer. Node pair refers to a tuple of gocats.dag.AbstractNode objects that
are connected by the edge. Defaults to None and is later populated.

Parameters

• node1_id (str) – The ID of the first term referenced from the ontology file’s relation-
ship line.

• node2_id (str) – The ID of the second term referenced from the ontology file’s rela-
tionship line.

• relationship_id (str) – The ID of the relationship in the ontology file’s relation-
ship line.

• node_pair (tuple) – Default-None, provide a tuple containing two gocats.
dag.AbstractNode objects if they are already created and able to be referenced.

json_edge
property which returns a tuple where position 0 is a unique string representation of the edge made by
combining the ID of the reverse node and the id of the forward nodes and where position 1 is a list of two
node IDs: the reverse and forward node.

Returns tuple of a unique AbstractEdge ID and a list of that edge object’s reverse and
forward node IDs, respectively. Returns an empty :py:obj:str at a position for which there are
no forward or reverse nodes in the graph.

Return type tuple

parent_id
property defining the ID of the node forward of the current gocats.dag.AbstractEdge object.

Returns str ID of the forward node in the node_pair associated with the edge if the edge’s
relationship is assigned, None otherwise.

Return type str or None

child_id
property defining the ID of the node reverse of the current gocats.dag.AbstractEdge object.

Returns str ID of the reverse node in the node_pair associated with the edge if the edge’s
relationship is assigned, None otherwise.

Return type str or None

forward_node
property defining the gocats.dag.AbstractNode object forward of the current gocats.dag.
AbstractEdge object.

Returns gocats.dag.AbstractNode object of the forward node in the node_pair asso-
ciated with the edge if the edge’s relationship is assigned, the node_pair is assigned, and
the type of relationship is instantiated by gocats.dag.DirectionalRelationship
None otherwise.

Return type gocats.dag.AbstractNode or None

reverse_node
property defining the gocats.dag.AbstractNode object reverse of the current gocats.dag.
AbstractEdge object.

10 Chapter 1. GOcats

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#property

GOcats Documentation, Release 1.2.1

Returns gocats.dag.AbstractNode object of the reverse node in the node_pair asso-
ciated with the edge if the edge’s relationship is assigned, the node_pair is assigned, and
the type of relationship is instantiated by gocats.dag.DirectionalRelationship
None otherwise.

Return type gocats.dag.AbstractNode or None

parent_node
property defining the gocats.dag.AbstractNode object forward of the current gocats.dag.
AbstractEdge object. This designation will be unique to scoping-type relationships, although this is
not yet specified.

Returns gocats.dag.AbstractNode object of the forward node in the node_pair asso-
ciated with the edge if the edge’s relationship is assigned, the node_pair is assigned, and
the type of relationship is instantiated by gocats.dag.DirectionalRelationship
None otherwise.

Return type gocats.dag.AbstractNode or None

child_node
property defining the gocats.dag.AbstractNode object reverse of the current gocats.dag.
AbstractEdge object. This designation will be unique to scoping-type relationships, although this is
not yet specified.

Returns gocats.dag.AbstractNode object of the reverse node in the node_pair asso-
ciated with the edge if the edge’s relationship is assigned, the node_pair is assigned, and
the type of relationship is instantiated by gocats.dag.DirectionalRelationship
None otherwise.

Return type gocats.dag.AbstractNode or None

actor_node
not yet implemented

Returns None

Return type None

recipient_node
not yet implemented

Returns None

Return type None

ordinal_prior_node
not yet implemented

Returns None

Return type None

ordinal_post_node
not yet implemented

Returns None

Return type None

other_node
not yet implemented

Returns None

Return type None

1.5. Authors 11

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

GOcats Documentation, Release 1.2.1

connect_nodes(node_pair, allowed_relationships)
Adds the current edge object to the gocats.dag.AbstractNode objects that are connected by the
edge. Populates the node_pair with gocats.dag.AbstractNode objects.

Returns None

Return type None

__weakref__
list of weak references to the object (if defined)

class gocats.dag.AbstractRelationship
A relationship as defined by a [typedef] stanza in an OBO ontology and augmented by GOcats to better interpret
semantic correspondence.

__init__()
AbstractRelationship initializer.

__weakref__
list of weak references to the object (if defined)

class gocats.dag.DirectionalRelationship
A singly-directional relationship edge connecting two nodes in the graph. The two nodes are designated ‘for-
ward’ and ‘reverse.’ The ‘forward’ node semantically succeeds the ‘reverse’ node in a way that depends on the
context of the type of relationship describing the edge to which it is applied.

__init__()
DirectionalRelationship initializer.

forward(pair)
Returns the forward node in a node pair that semantically succeeds the other and is independent of the
directionality of the edge. Default position is the second position [1].

Parameters pair (tuple) – A pair of gocats.dag.AbstractNode objects.

Returns The forward gocats.dag.AbstractNode object as determined by the pre-defined
semantic directionality of the relationship.

reverse(pair)
Returns the reverse node in a node pair that semantically precedes the other and is independent of the
directionality of the edge. Default position is the second position [1].

Parameters pair (tuple) – A pair of gocats.dag.AbstractNode objects.

Returns The reverse gocats.dag.AbstractNode object as determined by the pre-defined
semantic directionality of the relationship.

class gocats.dag.NonDirectionalRelationship
A non-directional relationship whose edge directionality is either non-existent or semantically irrelevant.

__init__()
NonDirectionalRelationship initializer.

Gene Ontology Directed Acylic Graph (GODAG)

Defines a Gene Ontology-specific graph which may have special properties when compared to other OBO formatted
ontologies.

class gocats.godag.GoGraph(namespace_filter=None, allowed_relationships=None)
A Gene-Ontology-specific graph. GO-specific idiosyncrasies go here.

12 Chapter 1. GOcats

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple

GOcats Documentation, Release 1.2.1

__init__(namespace_filter=None, allowed_relationships=None)
GoGraph initializer. Inherits and specializes properties from gocats.dag.OboGraph.

Parameters

• namespace_filter (str) – Specify the namespace of a sub-ontology namespace, if
one is available for the ontology.

• allowed_relationships (list) – Specify a list of relationships to utilize in the
graph, other relationships will be ignored.

class gocats.godag.GoGraphNode
Extends AbstractNode to include GO relevant information.

__init__()
GoGraphNode initializer. Inherits all properties from gocats.dag.AbstractNode.

Directed Acyclic Subgraph (SubDAG)

A subgraph object of an OBOGraph object.

class gocats.subdag.SubGraph(super_graph, namespace_filter=None, al-
lowed_relationships=None)

A subgraph of a provided supergraph with node contents.

__init__(super_graph, namespace_filter=None, allowed_relationships=None)
SubGraph initializer. Creates a subgraph object of :class:‘gocats.dag.OboGraph. Leave namespace_filter
and allowed_relationship as None to create the entire ontology graph. Otherwise, provide filters to limit
what information is pulled into the subgraph.

Parameters

• super_graph (obj) – A supergraph object i.e. gocats.godag.GoGraph.

• namespace_filter (str) – Specify the namespace of a sub-ontology namespace, if
one is available for the ontology.

• allowed_relationships (list) – Specify a list of relationships to utilize in the
graph, other relationships will be ignored.

root_id_mapping
Property describing a mapping dict that relates every ontology term ID of subgraphs in gocats.dag.
OboGraph to a list of root gocats.subdag.CategoryNode IDs.

Returns dict of gocats.subdag.SubGraphNode IDs mapped to a list of root
gocats.subdag.CategoryNode IDs.

Return type dict

root_node_mapping
Property describing a mapping dict that relates every ontology gocats.subdag.SubGraphNode
object of subgraphs in gocats.subdag.SubGraph to a list of root gocats.subdag.
CategoryNode objects.

Returns dict of gocats.subdag.SubGraphNode objects mapped to a list of root
gocats.subdag.CategoryNode objects.

Return type dict

content_mapping
Property describing a mapping dict that relates every root gocats.subdag.CategoryNode IDs of
subgraphs in a gocats.subdag.SubGraph to a list of their subgraph nodes’ IDs.

1.5. Authors 13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

GOcats Documentation, Release 1.2.1

Returns dict of gocats.dag.AbstractNode IDs mapped to a list' of
:class:`gocats.dag.AbstractNode IDs.

Return type dict

subnode(super_node)
Defines a gocats.subdag.SubGraph node object. Calls add_node() to convert a supergraph node
into a gocats.subdag.SubGraphNode and add this node to the subgraph.

Parameters super_node – A node object from the supergraph i.e. gocats.godag.
GoGraphNode.

Returns A gocats.subdag.SubGraphNode object.

Return type class

add_node(super_node)
Converts a supergraph node into a gocats.subdag.SubGraphNode and adds this node to the sub-
graph. Sets modification state to True.

Parameters super_node (obj) – A node object from the supergraph i.e. gocats.godag.
GoGraphNode.

Returns None

Return type None

connect_subnodes()
Analogous to gocats.dag.instantiate_valid_edges() and gocats.dag.
AbstractEdge.connect_nodes(). Updates child and parent node sets for each gocats.
subdag.SubGraphNode in the gocats.subdag.SubGraph. Adds edge object references to
nodes and node object references to edges. Counts instances of relationship IDs and sets modification
state to True.

Returns None

Return type None

greedily_extend_subgraph()
Extends a seeded subgraph to include all supergraph descendants of the nodes. Searches through the
supergraph to add new SubGraphNode objects.

Returns None

Return type None

conservatively_extend_subgraph()
Not currently in use.* Needs to be updated to handle CategoryNode.

Extends a seeded subgraph to include only nodes in the supergraph that occur along paths between nodes
in the subgraph. Searches through the supergraph to add new node objects.

Returns None

Return type None

remove_orphan_paths()
Not currently in use. Needs to be updated ot handle CategoryNode.

Removes nodes and their descendants from the subgraph which do not root to the category-representative
node.

Returns None

Return type None

14 Chapter 1. GOcats

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

GOcats Documentation, Release 1.2.1

static find_representative_nodes(subgraph, search_string_list)
Compiles a list candidate gocats.subdag.SubGraphNode objects from the gocats.subdag.
SubGraph object based on a list of search strings matching strings in the names of the nodes (using
regular expressions). Returns a list containing a single candidate node with the highest number of descen-
dants when possible, returns the sole node if the subgraph only contains one node, returns a list of all
seeded nodes when choosing candidates is impossible, or aborts if the subgraph is empty.

Parameters

• subgraph – A gocats.subdag.SubGraph object.

• search_string_list – A list of search term str entries.

Returns A list of one or more candidate term gocats.subgraph.SubGraphNode chosen
as the subgraph’s representative ontology term(s).

static from_filtered_graph(super_graph, subgraph_name, keyword_list, names-
pace_filter=None, allowed_relationships=None, exten-
sion=’greedy’)

Staticmethod for extracting a subgraph from the supergraph by selecting nodes that contain vocabu-
lary in the supplied keyword list. Leave namespace_filter and allowed_relationship as None to create
the entire ontology graph. Otherwise, provide filters to limit what information is pulled into the sub-
graph. Graph extension variable defaults to ‘greedy’ which calls greedily_extend_subgraph()
to add nodes to the subgraph after instantiation. Conversely, ‘conservative’ may be used to call
conservatively_extend_subgraph() for this function.

Parameters

• super_graph (obj) – A supergraph object i.e. gocats.godag.GoGraph.

• subgraph_name (str) – The name of the subgraph being created; will be used as the
id of the gocats.subdag.CategoryNode.

• keyword_list – A list of str entries used to query the supergraph for concepts to
be extracted into subgraphs.

• namespace_filter (str) – Specify the namespace of a sub-ontology namespace, if
one is available for the ontology.

• allowed_relationships (list) – Specify a list of relationships to utilize in the
graph, other relationships will be ignored.

• extension (str) – Specify ‘greedy’ or ‘conservative’ to determine how subgraphs will
be extended after creation (defaults to greedy).

Returns A gocats.subdag.SubGraph object.

class gocats.subdag.SubGraphNode(super_node=None, allowed_relationships=None)
An instance of a node within a subgraph of an OBO ontology (supergraph)

__init__(super_node=None, allowed_relationships=None)
SubGraphNode initializer. Inherits from gocats.dag.AbstractNode and contains a reference to the
supergraph node it represents e.g. gocats.godag.GoGraphNode.

Parameters

• super_node – A node from the supergraph.

• allowed_relationships – Not currently used Used to specify a list of allowable
relationships evaluated between nodes.

super_edges

1.5. Authors 15

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

GOcats Documentation, Release 1.2.1

property describing the set of edges referenced in the supergraph node, filtered to only those
edges with nodes in the subgraph node.

Returns A set of gocats.subgraph.SubGraphNode edges that were copied from the
supergraph node.

Return type set

id
property describing the ID of the supernode

Returns The ID of a supernode e.g. gocats.godag.GoGraphNode

Return type str

name
property describing the name of the supernode

Returns The name of a supernode e.g. gocats.godag.GoGraphNode

Return type str

definition
property describing the definition of the supernode

Returns The definition of a supernode e.g. gocats.godag.GoGraphNode

Return type str

namespace
property describing the namespace of the supernode

Returns A namespace of a supernode e.g. gocats.godag.GoGraphNode

Return type str

obsolete
property describing whether or not supernode is marked as obsolete.

Returns True or False

update_parents(parent_set)
Updates the parent_node_set with a set of new parents provided. Sets modification state to True.

Parameters parent_set – A set of parent nodes to be added to this objects parent_node set.

Returns None

Return type None

update_children(child_set)
Updates the child_node_set with a set of new children provided. Sets modification state to True.

Parameters child_set – A set of child nodes to be added to this objects child_node set.

Returns None

Return type None

class gocats.subdag.CategoryNode(category_name, representative_node_list, names-
pace_filter=None)

A special node added to the subgraph which contains all representative nodes identified and serves as the single
representative of the subgraph which represents a concept.

__init__(category_name, representative_node_list, namespace_filter=None)
AbstractNode initializer

16 Chapter 1. GOcats

https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None

GOcats Documentation, Release 1.2.1

Ontology Parser

A parser which reads ontologies in the OBO format and calls appropriate graph objects to store information in a graph
representation. Separate parsing classes within this module operate on distinct ontologies in the OBO Foundry to
handle any subtle differences among ontologies.

class gocats.ontologyparser.OboParser
A scaffolding for parsing OBO formatted ontologies. Contains regular expressions for the basic stanzas and
information pertinent for creating a graph object of an ontology.

__init__()
OboParser initializer. Contains Regular Expressions for identifying crucial information from OBO for-
matted ontologies.

__weakref__
list of weak references to the object (if defined)

class gocats.ontologyparser.GoParser(database_file, go_graph, relation-
ship_directionality=’gocats’)

An ontology parser specific to Gene Ontology

__init__(database_file, go_graph, relationship_directionality=’gocats’)
GoParser initializer. Parses a Gene Ontology database file and adds properties found therein to a godag.
GoGraph object. Importantly: includes descriptions of semantic directionality of all GO relationships.
:param file_handle database_file: Specify the location of a Gene Ontology .obo file. :param go_graph:
gocats.godag.GoGraph object. :return: None :rtype: None

parse()
Parses the ontology database file and accesses the ontology graph object to add information found in the
database. Once all information is added, this function calls the graph’s instantiate_valid_edges function to
connect all nodes in the graph by their edges.

Returns None

Return type None

Tools

Functions for handling some file input and output and reformatting tasks in GOcats.

gocats.tools.json_save(obj, filename)
Takes a Python object, converts it into a JSON serializable object (if it is not already), and saves it to a file that
is specified.

Parameters

• obj – A Python obj.

• filename (file_handle) – A path to output the resulting JSON file.

gocats.tools.jsonpickle_save(obj, filename)
Takes a Python object, converts it into a JsonPickle string, and writes it out to a file.

Parameters

• obj – A Python obj

• filename (file_handle) – A path to output the resulting JsonPickle file.

gocats.tools.jsonpickle_load(filename)
Takes a JsonPickle file and loads in the JsonPickle object into a Python object.

1.5. Authors 17

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

GOcats Documentation, Release 1.2.1

Parameters filename (file_handle) – A path to a JsonPickle file.

gocats.tools.list_to_file(filename, data)
Makes a text document from a list of data, with each line of the document being one item from the list and
outputs the document into a file.

Parameters

• filename (file_handle) – A path to the output file.

• data – A Python list.

gocats.tools.write_out_gaf(data, filename)
Writes out an object representing a Gene Annotation File (GAF) to a file.

Parameters

• data (list) – A list object representing a GAF. Each item in the list represents a row.

• filename (file_handle) – A path and name for the GAF.

gocats.tools.parse_gaf(filename)
Converts a Gene Annotation File (GAF) into a list object where every item is a row from the GAF.

Parameters filename (file_handle) – Specify the location of the GAF.

Returns A list representing the GAF.

Return type list

1.5.2 User Guide

Description

GOcats is an Open Biomedical Ontology (OBO) parser and categorizing utility–currently specialized for the Gene
Ontology (GO)–which can help scientists interpret large-scale experimental results by organizing redundant and
highly- specific annotations into customizable, biologically-relevant concept categories. Concept subgraphs are de-
fined by lists of keywords created by the user.

Currently, the GOcats package can be used to:

• Create subgraphs of GO which each represent a user-specified concept.

• Map specific, or fine-grained, GO terms in a Gene Annotation File (GAF) to an arbitrary number of concept
categories.

• Reorganize GO terms based on allowed term-term relationships, and re-create the gene to all direct and
ancestor GO terms.

• Explore the Gene Ontology graph within a Python interpreter.

Installation

GOcats runs under Python 3.4+ and is available through python3-pip. Install via pip or clone the git repo and install
the following dependencies and you are ready to go!

18 Chapter 1. GOcats

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

GOcats Documentation, Release 1.2.1

Install on Linux

Pip installation (method 1)

Dependencies should automatically be installed using this method. It is strongly recommended that you install with
this method.

pip3 install gocats

GitHub Package installation (method 2)

Make sure you have git installed:

cd ~/
git clone https://github.com/MoseleyBioinformaticsLab/GOcats.git

Dependencies

GOcats requires the following Python libraries:

• docopt for creating the gocats command-line interface.

• JSONPickle for saving Python objects in a JSON serializable form and outputting to a file.

To install dependencies manually:

pip3 install docopt
pip3 install jsonpickle

Install on Windows

Windows version not yet available. Sorry about that.

Basic usage

To see command line arguments and options, navigate to the project directory and run the –help option:

cd ~/GOcats
python3 -m gocats --help

gocats can be used in the following ways:

• To extract subgraphs of Gene Ontology that represent user-defined concepts and create mappings
between high level concepts and their subgraph content terms.

1. Create a CSV file, where column 1 is the name of the concept category (this can be
anything) and column 2 is a list of keywords/phrases delineating that concept (separated
by semicolons). See The GOcats Tutorial for more information.

2. Download a Gene Ontology database obo file

1.5. Authors 19

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git/
https://github.com/docopt/docopt
https://github.com/jsonpickle/jsonpickle
http://www.geneontology.org/page/download-ontology

GOcats Documentation, Release 1.2.1

3. To create mappings, run the GOcats command, gocats.gocats.
create_subgraphs(). If you installed by cloning the repository from GitHub,
first navigate to the GOcats project directory or add the directory to the PYTHONPATH.

python3 -m gocats create_subdags <ontology_database_file>
→˓<keyword_file> <output_directory>

4. Mappings can be found in your specified <output_directory>:

– GC_content_mapping.json_pickle # A python dictionary with category-defining GO
terms as keys and a list of all subgraph contents as values.

– GC_id_mapping.json_pickle # A python dictionary with every GO term of the spec-
ified namespace as keys and a list of category root terms as values.

• To map gene annotations in a Gene Annotation File (GAF) to a set of user-defined categories.

1. Create mapping files as defined in the previous section.

2. Run the gocats.gocats.categorize_dataset() to map terms to their cat-
egories:

NOTE: Use the GC_id_mapping.jsonpickle file.
python3 -m gocats categorize_dataset <GAF_file> <term_mapping_
→˓file> <output_directory> <mapped_gaf_filename>

3. The output GAF will have the specified <mapped_gaf_filename> in the <out-
put_directory>

• To reorganize parent - child Gene Ontology terms relationships and the gene annotations
with a set of user defined relationships.

This has been shown to increase statistical power in GO enrichment calculations (see Hin-
derer).

1. Download a Gene Ontology database obo file.

2. Download a Gene Ontology gene annotation format gaf file.

3. Run the gocats.gocats.remap_goterms() to generate new gene to an-
notation relationships:

python3 -m gocats remap_goterms <go_database> <goa_gaf>
→˓<ancestor_filename> <namespace_filename> [--allowed_
→˓relationships=<relationships> --identifier_column=<column>]

4. --allowed_relationships should be a comma separated string: is_a,
part_of,has_part

5. The output <ancestor_filename> will be in JSON format, with genes as the keys,
and annotated GO terms as the set.

• Within the Python interpreter to explore the Gene Ontology graph (advanced usage, see The GOcats
Tutorial for more information).

1. If you’ve installed GOcats via pip, importing should work as expected. Otherwise,
navigate to the Git project directory, open a Python 3.4+ interpreter, and import GOcats:

>>> from gocats import gocats as gc

2. Create the graph object using gocats.gocats.
build_graph_interpreter():

20 Chapter 1. GOcats

https://doi.org/10.1371/journal.pone.0220728
https://doi.org/10.1371/journal.pone.0220728
http://www.geneontology.org/page/download-ontology
http://current.geneontology.org/products/pages/downloads.html

GOcats Documentation, Release 1.2.1

>>> # May filter to GO sub-ontology or to a set of relationships.
>>> my_graph = gc.build_graph_interpreter("path_to_database_file")

You may now access all properties of the Gene Ontology graph
→˓object. Here are a couple of examples:

>>> # See the descendants of a term node, GO:0006306
>>> descendant_set = my_graph.id_index['GO:0006306'].descendants
>>> [node.name for node in descendant_set]
>>> # Access all graph leaf nodes
>>> leaf_nodes = my_graph.leaves
>>> [node.name for node in leaf_nodes]

1.5.3 The GOcats Tutorial

Currently, GOcats can be used to:

• Create subgraphs of the Gene Ontology (GO) which each represent a user-specified concept.

• Map specific, or fine-grained, GO terms in a Gene Annotation File (GAF) to an arbitrary number of concept
categories.

• Remap ancestor Gene Ontology term relationships and the gene annotations with a set of user defined
relationships.

• Explore the Gene Ontology graph within a Python interpreter.

In this document, each use case will be explained in-depth.

Using GOcats to create subgraphs representing user-specified concepts

Before starting, it is important to decide what concepts you as the user wish to extract from the Gene Ontology.
You may have an investigation that is focused on concepts like “DNA repair” or “autophagy,” or you may simply be
interested in enumerating many arbitrary categories and seeing how ontology terms are shared between concepts. As
an example to use in this tutorial, let’s consider a goal of extracting subgraphs that represent some typical subcellular
locations of a eukaryotic cell.

Create a keyword file

The phrase “keyword file” might be slightly misleading because GOcats does not only handle keywords, but also short
phrases that may be used to define a concept. Therefore, both may be used in combination in the keyword CSV file.

The CSV file is formatted as so:

• Each row represents a separate concept.

• Column 1 is the name of the concept (this is for reference and will not be used to parse GO).

• Column 2 is a list of keywords or short phrases used to describe the concept in question.

– Each item in column 2 is separated by a semicolon (;) with no whitespace around the semicolon.

Here is an example of what the file contents should look like (do not include the header row in the actual file):

1.5. Authors 21

GOcats Documentation, Release 1.2.1

Concept Keywords/phrases
mitochondria mitochondria;mitochondrial;mitochondrion
nucleus nucleus;nuclei;nuclear
lysosome lysosome;lysosomal;lysosomes
vesicle vesicle;vesicles
er endoplasmic;sarcoplasmic;reticulum
golgi golgi; golgi apparatus
extracellular extracellular;secreted
cytosol cytosol;cytosolic
cytoplasm cytoplasm;cytoplasmic
cell membrane plasma;plasma membrane
cytoskeleton cytoskeleton;cytoskeletal

We’ll imagine this file is located in the home directory and is called cell_locations.csv.

Download the Gene Ontology .obo file

The go.obo file is available here: http://www.geneontology.org/page/download-ontology. Be sure to download the
.obo-formatted version. All releases of GO in this format as of Jan 2015 have been verified to be compatible with
GOcats. We’ll assume this database file is located in the home directory and is called go.obo.

Extract subgraphs and create concept mappings

This is where GOcats does the heavy lifting. We’ll assume GOcats was already installed via pip or the repository was
already cloned into the home directory (refer to User Guide for instructions on how to install GOcats). We can now
use Python to run the gocats.gocats.create_subgraphs() function. We can also specify that we only want
to parse the cellular_component sub-ontology of GO (the supergraph_namespace), since we are only interested
in concepts of this type. Although it is redundant, we can also play it safe and limit subgraph creation to only consider
terms listed in cellular_component as well (the subgraph_namespace). Run the following if you hav installed via
pip (if running from the Git repository navigate to the GOcats directory or add this directory to your PYTHONPATH
beforehand).

python3 -m gocats create_subgraphs ~/go.obo ~/cell_locations.csv ~/cell_
→˓locations_output --supergraph_namespace=cellular_component --subgraph_
→˓namespace=cellular_component

The results will be output to ~/cell_locations_output.

Let’s look at the output files

In the output directory (i.e. ~/cell_locations_output) we can see several files. The following table describes
what can be found in each:

22 Chapter 1. GOcats

http://www.geneontology.org/page/download-ontology

GOcats Documentation, Release 1.2.1

File Name Description
GC_content_mapping.json JSON version of Python dictionary (keys: concept root nodes, values:

list of subgraph term nodes).
GC_content_mapping.json_pickleSame as above, but a JSONPickle version of the dictionary.
GC_id_mapping.json JSON version of Python dictionary (keys: subgraph term nodes, values:

list of concept roots).
GC_id_mapping.json_pickle Same as above, but a JSONPickle version of the dictionary.
id_translation.json_pickle A JSONPickle version of a Python dictionary mapping GO IDs to the

name of the term.
NetworkTable.csv A csv version of id_translation for visualizing in Cytoscape (best results

with –map_supersets)
subgraph_report.txt A summary of the subgraphs extracted for mapping. See below for

more details.

We can look in subgraph_report.txt to get an overview of what our subgraphs contain, how they were constructed, and
how they compare to the overall GO graph.

subgraph_report.txt

The first few lines give an overview of the subgraphs and supergraph (which is the full GO graph, unless a super-
graph_namespace filter was used). In our example case, the supergraph is the cellular_component ontology of GO.

In each divided section, the first line indicates the subgraph name (the one provided from column 1 in the keyword
file) . The following describes the meaning of the values in each section:

• Subgraph relationships: the prevalence of relationship types in the subgraph.

• Seeded size: how many GO terms were initially filtered from GO with the keyword list.

• Representative node: the name of the GO term chosen as the root for that concept’s subgraph.

• Nodes added: the number of GO terms added when extending the seeded subgraph to descendants not captured
by the initial search.

• Non-subgraph hits (orphans): GO terms that were captured by the keyword search, but do not belong to the
subgraph.

• Total nodes: the total number of GO terms in the subgraph.

Loading mapping files programmatically (optional)

While GOcats can use the mapping files described in the previous section to map terms in a GAF, it may also be
useful to load them into your own scripts for use. Since the mappings are saved in JSON and JSONPickle formats, it
is relatively simple to load them in programmatically:

>>># Loading a JSON file
>>>import json
>>>with open('path_to_json_file', 'r') as json_file:
>>> json_str = json_file.read()
>>> json_obj = json.loads(json_str)
>>>my_mapping = json_obj

>>># Loading a JSONPickle file
>>>import jsonpickle
>>>with open('path_to_jsonpickle_file', 'r') as jsonpickle_file:

(continues on next page)

1.5. Authors 23

GOcats Documentation, Release 1.2.1

(continued from previous page)

>>> jsonpickle_str = jsonpickle_file.read()
>>> jsonpickle_obj = jsonpickle.decode(jsonpickle_str, keys=True)
>>>my_mapping = jsonpickle_obj

Using GOcats to map specific gene annotations in a GAF to custom categories

With mapping files produced from the previous steps, it is possible to create a GAF with annotations mapped to
the categories, or concepts, that we define. Let’s consider our current cell_locations example and imagine that we
have some gene set containing annotations in a GAF called dataset_GAF.goa in the home directory. To map
these annotations, use the gocats.gocats.categorize_dataset() function. Again, this should work from
any location if you’ve installed via pip, otherwise navigate to the GOcats directory or add this directory to your
PYTHONPATH and run the following:

Note that you need to use the GC_id_mapping.json_pickle file for this step
python3 -m gocats categorize_dataset ~/datasetGAF.goa ~/cell_locations_output/GC_id_
→˓mapping.json_pickle ~/mapped_dataset mapped_GAF.goa

Here, we named the output directory ~/mapped_dataset and we named the mapped GAF mapped_GAF.goa.
The mapped gaf and a list of unmapped genes will be stored in the output directory.

Using GOcats to remap ancestor Gene Ontology term relationships and the gene annotations with
a set of user defined relationships

As noted in the last two examples, GOcats can consider has_part relationships properly, in addition to the is_a and
part_of relationships normally used for generating gene annotations to ancestor GO terms. We have previously shown
that doing this can improve the statistical power of GO term enrichment (see Hinderer). In this case, we need a Gene
Ontology obo file, as well as a gene annotation format gaf file.

python3 -m gocats remap_goterms ~/go.obo ~/goa_human.gaf ~/ancestors.json ~/namespace.
→˓json --allowed_relationships=is_a,part_of,has_part --identifier_column=1

The output in ancestors.json will be a JSON list, where each gene is the name of a JSON vector of annotated
GO terms. namespace.json provides the new namespace for each GO term. In contrast to the API in Python, the
--allowed_relationships takes a comma separated list of relationships to use. In the GAF files, there will
often be two identifiers, the database identifier (Uniprot) for human, and gene symbol. --identifier_column
allows the user to select to use the database (1) or gene symbol (2) as the identifier in the output.

Exploring Gene Ontology graph in a Python interpreter or in your own Python project

If you’ve installed GOcats via pip, importing should work as expected. Otherwise, navigate to the Git project directory,
open a Python 3.4+ interpreter, and import GOcats:

>>> import gocats

Next, create the graph object using gocats.gocats.build_graph_interpreter(). Since we have been
looking at the cellular_component sub-ontology in this example, we can specify that we only want to look at that
part of the graph with the supergraph_namespace option. Additionally we can filter the relationship types using the
allowed_relationships option (only is_a, has_part, and part_of exist in cellular_component, so this is just
for demonstration):

24 Chapter 1. GOcats

https://doi.org/10.1371/journal.pone.0220728
http://www.geneontology.org/page/download-ontology
http://current.geneontology.org/products/pages/downloads.html

GOcats Documentation, Release 1.2.1

>>> # May filter to GO sub-ontology or to a set of relationships.
>>> my_graph = gocats.gocats.build_graph_interpreter("~/go.obo", supergraph_namespace=
→˓"cellular_component", allowed_relationships=["is_a", "has_part", "part_of"])
>>> full_graph = gocats.gocats.build_graph_interpreter("~/go.obo")

The filtered graph (my_graph) and the full GO graph (full_graph) can now be explored.

The graph object contains an id_index which allows one to access node objects by GO IDs like so:

>>>my_node = my_graph.id_index['GO:0004567']

It also contains a node_list and an edge_list.

Edges and nodes in the graph are objects themselves.

>>>print(my_node.name)

Here is a list of some important graph, node, and edge data members and properties:

Graph

• node_list: list of node objects in the graph.

• edge_list: list of edge objects in the graph.

• id_index: dictionary of node IDs that point to their respective node objects.

• vocab_index: dictionary listing every word used in the gene ontology, pointing to node objects those words
can be found in.

• relationship_index: dictionary of relationships in the supergraph, pointing to their respective relationship
objects.

• root_nodes: a set of root nodes of the supergraph.

• orphans: a set of nodes which have no parents.

• leaves: a set of nodes which have no children.

Node

• id

• name

• definition

• namespace

• edges: a set of edges that connect the node.

• parent_node_set

• child_node_set

• descendants: a set of recursive graph children.

• ancestors: a set of recursive graph parents.

Edge

• node_pair_id: tuple of IDs of the nodes connected by the edge.

• node_pair: a tuple of the node objects connected by the edge.

• relationship_id: the ID of the relationship type (i.e. the name of the relationship).

1.5. Authors 25

GOcats Documentation, Release 1.2.1

• relationship: the relationship object used to describe the edge

• parent_id

• parent_node

• child_id

• child_node

• forward_node: see The GOcats API Reference

• reverse_node: see The GOcats API Reference

Plotting subgraphs in Cytoscape for visualization

Coming soon!

26 Chapter 1. GOcats

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

27

GOcats Documentation, Release 1.2.1

28 Chapter 2. Indices and tables

Python Module Index

g
gocats.dag, 6
gocats.gocats, 3
gocats.godag, 12
gocats.ontologyparser, 17
gocats.subdag, 13
gocats.tools, 17

29

GOcats Documentation, Release 1.2.1

30 Python Module Index

Index

Symbols
__init__() (gocats.dag.AbstractEdge method), 10
__init__() (gocats.dag.AbstractNode method), 8
__init__() (gocats.dag.AbstractRelationship

method), 12
__init__() (gocats.dag.DirectionalRelationship

method), 12
__init__() (gocats.dag.NonDirectionalRelationship

method), 12
__init__() (gocats.dag.OboGraph method), 6
__init__() (gocats.godag.GoGraph method), 12
__init__() (gocats.godag.GoGraphNode method), 13
__init__() (gocats.ontologyparser.GoParser

method), 17
__init__() (gocats.ontologyparser.OboParser

method), 17
__init__() (gocats.subdag.CategoryNode method),

16
__init__() (gocats.subdag.SubGraph method), 13
__init__() (gocats.subdag.SubGraphNode method),

15
__weakref__ (gocats.dag.AbstractEdge attribute), 12
__weakref__ (gocats.dag.AbstractNode attribute), 9
__weakref__ (gocats.dag.AbstractRelationship

attribute), 12
__weakref__ (gocats.dag.OboGraph attribute), 8
__weakref__ (gocats.ontologyparser.OboParser at-

tribute), 17
_update_ancestors() (gocats.dag.AbstractNode

method), 9
_update_descendants() (go-

cats.dag.AbstractNode method), 9
_update_graph() (gocats.dag.OboGraph method), 7
_update_node() (gocats.dag.AbstractNode method),

9

A
AbstractEdge (class in gocats.dag), 9
AbstractNode (class in gocats.dag), 8

AbstractRelationship (class in gocats.dag), 12
actor_node (gocats.dag.AbstractEdge attribute), 11
add_edge() (gocats.dag.AbstractNode method), 9
add_edge() (gocats.dag.OboGraph method), 7
add_node() (gocats.dag.OboGraph method), 7
add_node() (gocats.subdag.SubGraph method), 14
add_relationship() (gocats.dag.OboGraph

method), 7
ancestors (gocats.dag.AbstractNode attribute), 9

B
build_graph() (in module gocats.gocats), 4
build_graph_interpreter() (in module go-

cats.gocats), 4

C
categorize_dataset() (in module gocats.gocats),

4
CategoryNode (class in gocats.subdag), 16
child_id (gocats.dag.AbstractEdge attribute), 10
child_node (gocats.dag.AbstractEdge attribute), 11
connect_nodes() (gocats.dag.AbstractEdge

method), 11
connect_subnodes() (gocats.subdag.SubGraph

method), 14
conservatively_extend_subgraph() (go-

cats.subdag.SubGraph method), 14
content_mapping (gocats.subdag.SubGraph at-

tribute), 13
create_subgraphs() (in module gocats.gocats), 4

D
definition (gocats.subdag.SubGraphNode attribute),

16
descendants (gocats.dag.AbstractNode attribute), 9
DirectionalRelationship (class in gocats.dag),

12

F
filter_edges() (gocats.dag.OboGraph method), 8

31

GOcats Documentation, Release 1.2.1

filter_nodes() (gocats.dag.OboGraph method), 8
find_category_subsets() (in module go-

cats.gocats), 5
find_representative_nodes() (go-

cats.subdag.SubGraph static method), 14
forward() (gocats.dag.DirectionalRelationship

method), 12
forward_node (gocats.dag.AbstractEdge attribute),

10
from_filtered_graph() (go-

cats.subdag.SubGraph static method), 15

G
gocats.dag (module), 6
gocats.gocats (module), 3
gocats.godag (module), 12
gocats.ontologyparser (module), 17
gocats.subdag (module), 13
gocats.tools (module), 17
GoGraph (class in gocats.godag), 12
GoGraphNode (class in gocats.godag), 13
GoParser (class in gocats.ontologyparser), 17
greedily_extend_subgraph() (go-

cats.subdag.SubGraph method), 14

I
id (gocats.subdag.SubGraphNode attribute), 16
instantiate_valid_edges() (go-

cats.dag.OboGraph method), 8

J
json_edge (gocats.dag.AbstractEdge attribute), 10
json_format_graph() (in module gocats.gocats), 5
json_save() (in module gocats.tools), 17
jsonpickle_load() (in module gocats.tools), 17
jsonpickle_save() (in module gocats.tools), 17

L
leaves (gocats.dag.OboGraph attribute), 6
list_to_file() (in module gocats.tools), 18

N
name (gocats.subdag.SubGraphNode attribute), 16
namespace (gocats.subdag.SubGraphNode attribute),

16
node_depth() (gocats.dag.OboGraph method), 8
nodes_between() (gocats.dag.OboGraph method), 8
NonDirectionalRelationship (class in go-

cats.dag), 12

O
OboGraph (class in gocats.dag), 6
OboParser (class in gocats.ontologyparser), 17

obsolete (gocats.subdag.SubGraphNode attribute), 16
ordinal_post_node (gocats.dag.AbstractEdge at-

tribute), 11
ordinal_prior_node (gocats.dag.AbstractEdge at-

tribute), 11
orphans (gocats.dag.OboGraph attribute), 6
other_node (gocats.dag.AbstractEdge attribute), 11

P
parent_id (gocats.dag.AbstractEdge attribute), 10
parent_node (gocats.dag.AbstractEdge attribute), 11
parse() (gocats.ontologyparser.GoParser method), 17
parse_gaf() (in module gocats.tools), 18

R
recipient_node (gocats.dag.AbstractEdge at-

tribute), 11
remap_goterms() (in module gocats.gocats), 5
remove_edge() (gocats.dag.AbstractNode method), 9
remove_edge() (gocats.dag.OboGraph method), 7
remove_node() (gocats.dag.OboGraph method), 7
remove_orphan_paths() (go-

cats.subdag.SubGraph method), 14
reverse() (gocats.dag.DirectionalRelationship

method), 12
reverse_node (gocats.dag.AbstractEdge attribute),

10
root_id_mapping (gocats.subdag.SubGraph at-

tribute), 13
root_node_mapping (gocats.subdag.SubGraph at-

tribute), 13

S
SubGraph (class in gocats.subdag), 13
SubGraphNode (class in gocats.subdag), 15
subnode() (gocats.subdag.SubGraph method), 14
super_edges (gocats.subdag.SubGraphNode at-

tribute), 15

U
update_children() (gocats.subdag.SubGraphNode

method), 16
update_parents() (gocats.subdag.SubGraphNode

method), 16

V
valid_edge() (gocats.dag.OboGraph method), 7
valid_node() (gocats.dag.OboGraph method), 6

W
write_out_gaf() (in module gocats.tools), 18

32 Index

	GOcats
	Citation
	Installation
	Install on Linux
	Install on Windows

	Quickstart
	License
	Authors
	The GOcats API Reference
	User Guide
	The GOcats Tutorial

	Indices and tables
	Python Module Index
	Index

