

 [image: _images/gomap.png]

Welcome to GOMAP documentation!

Danger

This documentation is a work in progress and will be completed soon. Please bear with us untill the documentation catches up with code development

Contents:

	Introduction
	What is GOMAP?

	What annotation methods are used to assign GO terms?
	Sequence-similarity based methods

	Domain-presence based methods

	Mixed-method pipelines or tools

	Requirements
	What are the requirements that need to be installed to run GOMAP?

	What are the software tools needed to run specific annotation methods?

	Setup
	What are the steps needed to setup the pipeline?

	Running GOMAP
	How to run GOMAP?

	What are the steps needed to setup the pipeline?

	How to run the GOMAP?

Introduction

What is GOMAP?

Gene Ontology - Meta Annotator for Plants
(GOMAP) is a pipeline that annotates GO terms to plant protein
sequences. The pipeline uses 3 different approaches to annotate GO terms
to plant proteins and uses a mix of custom code and existing software
tools to assign GO terms. The pipeline was designed to create a high
confidence GO annotation dataset for reference proteomes, and it is
recommended that the pipeline in it’s current form used to annotate
proteomes. The main pipeline is written in Python and R, and other
software tools used will be briefly described in the next Section.

What annotation methods are used to assign GO terms?

Sequence-similarity based methods

Sequence-similarity based GO annotations were performed using the
reciprocal-best-hit method against two different datasets, namely TAIR
and UniProt. The NCBI BLASTP tool will be used reciprocally to search
for similar sequences between the protein sequences of target species
being annotated and other datasets. The results from BLASTP search will
be processed using R script to determine the reciprocal-best-hits and
assign GO terms from TAIR and UniProt to the target species.

Domain-presence based methods

Putative protein domains will be assigned to the protein sequence using
InterProScan5 pipeline. InterProScan5 is a java based pipeline that
finds protein domain signatures in target sequences and assigns GO terms
based on the presence of the protein signatures.

Mixed-method pipelines or tools

Three top performing pipelines/tools which have competed in the first
iteration of the CAFA [http://biofunctionprediction.org] competition
will be used to assign GO terms to proteins. These tools are
Argot2.5 [http://www.medcomp.medicina.unipd.it/Argot2-5/], and
PANNZER [http://ekhidna.biocenter.helsinki.fi/pannzer].
Each of the tools have specific requirements, setup instructions and
pre-processing steps. The details of these steps will be explained in
the following sections.

Requirements

The [DOI release] of the GOMAP pipeline contains code, software, and
data files to run the pipeline. Although, there are some basic
requirements which need to be installed. The requirements that have to
be installed are listed below.

What are the requirements that need to be installed to run GOMAP?

	Hardware

	Storage

	minimum: 250GB

	recommended: \(\geq\)300GB

	Memory

	minimum: 16 GB

	recommended: \(\geq\)32 GB

	Software

	OS

	linux

	Programming Languages

	R v3.4

	Python v2

	Java v1.8

	Perl

	Software

	MATLAB \(\geq\)v2016a

	MySQL/MariaDB

	Python Packages

	biopython

	numpy

	scipy

	MySQL-python

	R packages

	ontologyIndex

	data.table

	ggplot2

	futile.logger

	jsonlite

What are the software tools needed to run specific annotation methods?

	Sequence-similarity

	BLASTP

	Domain-presence

	InterProScan5

	Mixed-method Pipelines

	FANN-GO

	MATLAB\(^\dagger\)

	BLASTP

	PANNZER

	MySQL/MariaDB\(^\dagger\)

	BLASTP

	Argot2

	Hmmer

	BLASTP

	Web browser\(^{\dagger\ddagger}\)

\(^\dagger\)Part of requirements installed as mentioned in this
section

\(^\ddagger\)To submit jobs to batch processing

The pipeline file downloaded from CyVerse contains the data files and
software tools to run the process on a given protein sequence fasta
file. The disk space required for the pipeline is large (~160GB) and
when it runs it will require close to 300GB of disk space.

Setup

What are the steps needed to setup the pipeline?

	Install dependencies

	Install required packages for R and Python

	A shell script is provided to make the installation of the packages
easy.

	Run bash install/install_packages.sh from GAMER-pipeline
directory

	Users with a python2 virtual environment please activate before
running the script

	Setup MySQL database for Pannzer

	Create a database named pannzer

	Create a user names pannzer and grant all privileges on the database
pannzer

	The password should be pannzer

	If you decide to change any of this, please update the config.json
[mix-meth.PANNZER.database] file accordingly.

Running GOMAP

How to run GOMAP?

GOMAP is run in two steps using pipeline1.py and pipleine2.py.
First part of the pipeline runs the Sequence-similarity methods and
domain-based methods, and FANN-GO and PANNZER. It also runs the
pre-processing steps for Argot2.5. Second part of the pipeline processes
results from different methods and compiles the final GO annotation
dataset from all differnt approaches. The main steps are given below.

	Add the protein fasta file to input/raw/

	Make necessary changes to the config.json file

	Update the work_dir in the pipeline section

	Update the input section

	Give the correct input FASTA file name

	If the fasta contains multiple transcripts per gene then put the
fasta in the input/raw directory and set the raw_fasta
parameter

	If the fasta file contains only on transcript per gene put it in
the input/filt directory, and set the fasta parameter

	Update the species, inbred and version parameters for your species

	[Optional] Update the seq-sim section

	(All the files should be already processed in this section)

	[Optional] Update the mix-meth section

	(All the files and fields should be already set, except changes to
database section for PANNZER)

	[Optional] Update blast and hmmer sections

	This is to enable the correct number cpu threads for these
software

	All other sections should only be updated if things have been
drastically changed.

	execute python pipeline1.py config.json

	The pipeline will generate a number of intermidiate output files

	Especially the mixed-method tools will require the input fasta to be
split into smaller chunks. the chunks will be numbered serially.
(e.g. test.1.fa, test.2.fa)

	Argot 2.5 tool will NOT be executed within the pipeline

	Submit the files in mixed-meth/argot2.5/blast and
mixed-meth/argot2.5/hmmer using correct pairing

	Extract the Argot2.5 result files for each job, in the
mixed-meth/argot2.5/results directory and rename with correct
prefix

	Argot2.5 names all results as argot_results_ts0.tsv so the file
should be renamed correctly (e.g. test.1.tsv, test.2.tsv)

	Please do not leave any other file in the argot2.5 results directory,
otherwise it will influence certain metrics.

	execute python pipeline2.py config.json

What are the steps needed to setup the pipeline?

	Install dependencies

	Install required packages for R and Python

	A shell script is provided to make the installation of the packages
easy.

	Run bash install/install_packages.sh from GOMAP
directory

	Users with a python2 virtual environment please activate before
running the script

	Setup MySQL database for Pannzer

	Create a database named pannzer

	Create a user names pannzer and grant all privileges on the database
pannzer

	The password should be pannzer

	If you decide to change any of this, please update the config.json
[mix-meth.PANNZER.database] file accordingly.

How to run the GOMAP?

GOMAP is run in two steps using pipeline1.py and pipleine2.py.
First part of the pipeline runs the Sequence-similarity methods and
domain-based methods, and FANN-GO and PANNZER. It also runs the
pre-processing steps for Argot2.5. Second part of the pipeline processes
results from different methods and compiles the final GO annotation
dataset from all differnt approaches. The main steps are given below.

	Add the protein fasta file to input/raw/

	Make necessary changes to the config.json file

	Update the work_dir in the pipeline section

	Update the input section

	Give the correct input FASTA file name

	If the fasta contains multiple transcripts per gene then put the
fasta in the input/raw directory and set the raw_fasta
parameter

	If the fasta file contains only on transcript per gene put it in
the input/filt directory, and set the fasta parameter

	Update the species, inbred and version parameters for your species

	[Optional] Update the seq-sim section

	(All the files should be already processed in this section)

	[Optional] Update the mix-meth section

	(All the files and fields should be already set, except changes to
database section for PANNZER)

	[Optional] Update blast and hmmer sections

	This is to enable the correct number cpu threads for these
software

	All other sections should only be updated if things have been
drastically changed.

	execute python pipeline1.py config.json

	The pipeline will generate a number of intermidiate output files

	Especially the mixed-method tools will require the input fasta to be
split into smaller chunks. the chunks will be numbered serially.
(e.g. test.1.fa, test.2.fa)

	Argot 2.5 tool will NOT be executed within the pipeline

	Submit the files in mixed-meth/argot2.5/blast and
mixed-meth/argot2.5/hmmer using correct pairing

	Extract the Argot2.5 result files for each job, in the
mixed-meth/argot2.5/results directory and rename with correct
prefix

	Argot2.5 names all results as argot_results_ts0.tsv so the file
should be renamed correctly (e.g. test.1.tsv, test.2.tsv)

	Please do not leave any other file in the argot2.5 results directory,
otherwise it will influence certain metrics.

	execute python pipeline2.py config.json

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 code	

 	
 	
 code.gomap_aggregate	

 	
 	
 code.gomap_setup	

 	
 	
 code.pipeline	

 	
 	
 code.pipeline.make_aggregate	

 	
 	
 code.pipeline.mixed2gaf	

 	
 	
 code.pipeline.run_pannzer	

 	
 	
 code.process	

 	
 	
 code.utils	

 	
 	
 code.utils.basic_utils	

 	
 	
 code.utils.get_longest_transcript	

 	
 	
 code.utils.split_fa	

Index

 A
 | C
 | F
 | G
 | I
 | M
 | R
 | S

A

 	
 	aggregate() (in module code.gomap_aggregate)

 	
 	aggregate_datasets() (in module code.pipeline.make_aggregate)

C

 	
 	check_output_and_run() (in module code.utils.basic_utils)

 	clean_duplicate() (in module code.pipeline.make_aggregate)

 	clean_redundant() (in module code.pipeline.make_aggregate)

 	code (module)

 	code.gomap_aggregate (module)

 	code.gomap_setup (module)

 	code.pipeline (module)

 	code.pipeline.make_aggregate (module)

 	
 	code.pipeline.mixed2gaf (module)

 	code.pipeline.run_pannzer (module)

 	code.process (module)

 	code.utils (module)

 	code.utils.basic_utils (module)

 	code.utils.get_longest_transcript (module)

 	code.utils.split_fa (module)

 	copy_blast() (in module code.pipeline.run_pannzer)

 	copy_input() (in module code.utils.basic_utils)

F

 	
 	filter_mixed() (in module code.pipeline.mixed2gaf)

G

 	
 	get_files_with_ext() (in module code.utils.basic_utils)

 	
 	get_longest_transcript() (in module code.utils.get_longest_transcript)

I

 	
 	init_dirs() (in module code.utils.basic_utils)

M

 	
 	make_dir() (in module code.utils.basic_utils)

 	
 	mixed2gaf() (in module code.pipeline.mixed2gaf)

R

 	
 	run_pannzer() (in module code.pipeline.run_pannzer)

S

 	
 	setup() (in module code.gomap_setup)

 	
 	split_fasta() (in module code.utils.split_fa)

Introduction

What is GOMAP?

Gene Ontology - Meta Annotator for Plants
(GOMAP) is a pipeline that annotates GO terms to plant protein
sequences. The pipeline uses 3 different approaches to annotate GO terms
to plant proteins and uses a mix of custom code and existing software
tools to assign GO terms. The pipeline was designed to create a high
confidence GO annotation dataset for reference proteomes, and it is
recommended that the pipeline in it’s current form used to annotate
proteomes. The main pipeline is written in Python and R, and other
software tools used will be briefly described in the next Section.

What annotation methods are used to assign GO terms?

Sequence-similarity based methods

Sequence-similarity based GO annotations were performed using the
reciprocal-best-hit method against two different datasets, namely TAIR
and UniProt. The NCBI BLASTP tool will be used reciprocally to search
for similar sequences between the protein sequences of target species
being annotated and other datasets. The results from BLASTP search will
be processed using R script to determine the reciprocal-best-hits and
assign GO terms from TAIR and UniProt to the target species.

Domain-presence based methods

Putative protein domains will be assigned to the protein sequence using
InterProScan5 pipeline. InterProScan5 is a java based pipeline that
finds protein domain signatures in target sequences and assigns GO terms
based on the presence of the protein signatures.

Mixed-method pipelines or tools

Three top performing pipelines/tools which have competed in the first
iteration of the CAFA [http://biofunctionprediction.org] competition
will be used to assign GO terms to proteins. These tools are
Argot2.5 [http://www.medcomp.medicina.unipd.it/Argot2-5/],
PANNZER [http://ekhidna.biocenter.helsinki.fi/pannzer], and
FANN-GO [http://montana.informatics.indiana.edu/fanngo/fanngo.html].
Each of the tools have specific requirements, setup instructions and
pre-processing steps. The details of these steps will be explained in
the following sections [TODO]

Requirements to be installed

The [DOI release] of the GOMAP pipeline contains code, software, and
data files to run the pipeline. Although, there are some basic
requirements which need to be installed. The requirements that have to
be installed are listed below.

What are the requirements that need to be installed to run GOMAP?

	Hardware

	Storage

	minimum: 250GB

	recommended: \(\geq\)300GB

	Memory

	minimum: 16 GB

	recommended: \(\geq\)32 GB

	Software

	OS

	linux

	Programming Languages

	R v3.4

	Python v2

	Java v1.8

	Perl

	Software

	MATLAB \(\geq\)v2016a

	MySQL/MariaDB

	Python Packages

	biopython

	numpy

	scipy

	MySQL-python

	R packages

	ontologyIndex

	data.table

	ggplot2

	futile.logger

	jsonlite

What are the software tools needed to run specific annotation methods?

	Sequence-similarity

	BLASTP

	Domain-presence

	InterProScan5

	Mixed-method Pipelines

	FANN-GO

	MATLAB\(^\dagger\)

	BLASTP

	PANNZER

	MySQL/MariaDB\(^\dagger\)

	BLASTP

	Argot2

	Hmmer

	BLASTP

	Web browser\(^{\dagger\ddagger}\)

\(^\dagger\)Part of requirements installed as mentioned in this
section

\(^\ddagger\)To submit jobs to batch processing

The pipeline file downloaded from CyVerse contains the data files and
software tools to run the process on a given protein sequence fasta
file. The disk space required for the pipeline is large (~160GB) and
when it runs it will require close to 300GB of disk space.

Setting up GOMAP

What are the steps needed to setup the pipeline?

	Install dependencies

	Install required packages for R and Python

	A shell script is provided to make the installation of the packages
easy.

	Run bash install/install_packages.sh from GAMER-pipeline
directory

	Users with a python2 virtual environment please activate before
running the script

	Setup MySQL database for Pannzer

	Create a database named pannzer

	Create a user names pannzer and grant all privileges on the database
pannzer

	The password should be pannzer

	If you decide to change any of this, please update the config.json
[mix-meth.PANNZER.database] file accordingly.

Running GOMAP

How to run the GAMER-pipeline?

GAMER-pipeline is run in two steps using pipeline1.py and pipleine2.py.
First part of the pipeline runs the Sequence-similarity methods and
domain-based methods, and FANN-GO and PANNZER. It also runs the
pre-processing steps for Argot2.5. Second part of the pipeline processes
results from different methods and compiles the final GO annotation
dataset from all differnt approaches. The main steps are given below.

	Add the protein fasta file to input/raw/

	Make necessary changes to the config.json file

	Update the work_dir in the pipeline section

	Update the input section

	Give the correct input FASTA file name

	If the fasta contains multiple transcripts per gene then put the
fasta in the input/raw directory and set the raw_fasta
parameter

	If the fasta file contains only on transcript per gene put it in
the input/filt directory, and set the fasta parameter

	Update the species, inbred and version parameters for your species

	[Optional] Update the seq-sim section

	(All the files should be already processed in this section)

	[Optional] Update the mix-meth section

	(All the files and fields should be already set, except changes to
database section for PANNZER)

	[Optional] Update blast and hmmer sections

	This is to enable the correct number cpu threads for these
software

	All other sections should only be updated if things have been
drastically changed.

	execute python pipeline1.py config.json

	The pipeline will generate a number of intermidiate output files

	Especially the mixed-method tools will require the input fasta to be
split into smaller chunks. the chunks will be numbered serially.
(e.g. test.1.fa, test.2.fa)

	Argot 2.5 tool will NOT be executed within the pipeline

	Submit the files in mixed-meth/argot2.5/blast and
mixed-meth/argot2.5/hmmer using correct pairing

	Extract the Argot2.5 result files for each job, in the
mixed-meth/argot2.5/results directory and rename with correct
prefix

	Argot2.5 names all results as argot_results_ts0.tsv so the file
should be renamed correctly (e.g. test.1.tsv, test.2.tsv)

	Please do not leave any other file in the argot2.5 results directory,
otherwise it will influence certain metrics.

	execute python pipeline2.py config.json

What are the steps needed to setup the pipeline?

	Install dependencies

	Install required packages for R and Python

	A shell script is provided to make the installation of the packages
easy.

	Run bash install/install_packages.sh from GAMER-pipeline
directory

	Users with a python2 virtual environment please activate before
running the script

	Setup MySQL database for Pannzer

	Create a database named pannzer

	Create a user names pannzer and grant all privileges on the database
pannzer

	The password should be pannzer

	If you decide to change any of this, please update the config.json
[mix-meth.PANNZER.database] file accordingly.

How to run the GAMER-pipeline?

GAMER-pipeline is run in two steps using pipeline1.py and pipleine2.py.
First part of the pipeline runs the Sequence-similarity methods and
domain-based methods, and FANN-GO and PANNZER. It also runs the
pre-processing steps for Argot2.5. Second part of the pipeline processes
results from different methods and compiles the final GO annotation
dataset from all differnt approaches. The main steps are given below.

	Add the protein fasta file to input/raw/

	Make necessary changes to the config.json file

	Update the work_dir in the pipeline section

	Update the input section

	Give the correct input FASTA file name

	If the fasta contains multiple transcripts per gene then put the
fasta in the input/raw directory and set the raw_fasta
parameter

	If the fasta file contains only on transcript per gene put it in
the input/filt directory, and set the fasta parameter

	Update the species, inbred and version parameters for your species

	[Optional] Update the seq-sim section

	(All the files should be already processed in this section)

	[Optional] Update the mix-meth section

	(All the files and fields should be already set, except changes to
database section for PANNZER)

	[Optional] Update blast and hmmer sections

	This is to enable the correct number cpu threads for these
software

	All other sections should only be updated if things have been
drastically changed.

	execute python pipeline1.py config.json

	The pipeline will generate a number of intermidiate output files

	Especially the mixed-method tools will require the input fasta to be
split into smaller chunks. the chunks will be numbered serially.
(e.g. test.1.fa, test.2.fa)

	Argot 2.5 tool will NOT be executed within the pipeline

	Submit the files in mixed-meth/argot2.5/blast and
mixed-meth/argot2.5/hmmer using correct pairing

	Extract the Argot2.5 result files for each job, in the
mixed-meth/argot2.5/results directory and rename with correct
prefix

	Argot2.5 names all results as argot_results_ts0.tsv so the file
should be renamed correctly (e.g. test.1.tsv, test.2.tsv)

	Please do not leave any other file in the argot2.5 results directory,
otherwise it will influence certain metrics.

	execute python pipeline2.py config.json

What are the outputs of GAMER-pipeline?

GO annotations from GAMER-pipeline will be presented in Go Annotation
2.0 Format (GAF). All the annotations from different methods will
converted to GAF format files and will be saved in sub folders in the
gaf directory. The sub-directory structure in gaf is as follows -
mixed-method (Raw output from mixed-method piplines) - raw (Raw output
from Sequence-similarity and Domain-presence based methods, mixed-method
output filtered to exclude low quality annotations from mixed-method
pipelines) - uniq (Unique annotations from each tool cleaned by removing
duplicate annotations from the raw annotation files) - non_red
(Non-redundant annotations filtered by removing ancestral GO terms from
the unique annotation files) - agg (Final aggregate dataset created by
combining annotations from all 6 Non-redundant annotation datasets)

code.pipeline package

Submodules

code.pipeline.clean_input module

code.pipeline.make_aggregate module

	
code.pipeline.make_aggregate.aggregate_datasets(config)

	

	
code.pipeline.make_aggregate.clean_duplicate(config)

	

	
code.pipeline.make_aggregate.clean_redundant(config)

	

code.pipeline.mixed2gaf module

	
code.pipeline.mixed2gaf.filter_mixed(config)

	

	
code.pipeline.mixed2gaf.mixed2gaf(config)

	

code.pipeline.run_argot2 module

code.pipeline.run_iprs module

code.pipeline.run_mm_preproc module

code.pipeline.run_pannzer module

	
code.pipeline.run_pannzer.copy_blast(config)

	

	
code.pipeline.run_pannzer.run_pannzer(config)

	

code.pipeline.run_rbh_blast module

Module contents

code.process package

Submodules

code.process.clean_tair module

code.process.clean_uniprot module

Module contents

code.utils package

Submodules

code.utils.basic_utils module

	
code.utils.basic_utils.check_output_and_run(outfile, command, stdin_file=None, stdout_file=None)

	

	
code.utils.basic_utils.copy_input(config)

	

	
code.utils.basic_utils.get_files_with_ext(in_dir, extension='fa')

	

	
code.utils.basic_utils.init_dirs(config)

	

	
code.utils.basic_utils.make_dir(file)

	

code.utils.blast_utils module

code.utils.get_longest_transcript module

	
code.utils.get_longest_transcript.get_longest_transcript(input, output, gene_start, trans_pattern='\\.[0-9]+')

	

code.utils.split_fa module

	
code.utils.split_fa.split_fasta(input, num_seqs, outbase=None, suffix='fa')

	

Module contents

code package

Subpackages

	code.pipeline package
	Submodules

	code.pipeline.clean_input module

	code.pipeline.make_aggregate module

	code.pipeline.mixed2gaf module

	code.pipeline.run_argot2 module

	code.pipeline.run_iprs module

	code.pipeline.run_mm_preproc module

	code.pipeline.run_pannzer module

	code.pipeline.run_rbh_blast module

	Module contents

	code.process package
	Submodules

	code.process.clean_tair module

	code.process.clean_uniprot module

	Module contents

	code.utils package
	Submodules

	code.utils.basic_utils module

	code.utils.blast_utils module

	code.utils.get_longest_transcript module

	code.utils.split_fa module

	Module contents

Submodules

code.gomap_aggregate module

This file includes the steps to aggregate

	
code.gomap_aggregate.aggregate(config)

	

code.gomap_preprocess module

code.gomap_setup module

This submodule lets the user download the data files necessary for running the GOMAP pipline from CyVerse

Currently the files are stored in Gokul’s personal directory so the download has to be initiated by gokul’s own CyVerse account with icommands

	
code.gomap_setup.setup(config)

	

Module contents

GOMAP

	code package

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/gomap.png
[HIMAF

_static/minus.png

_images/gomap.png
[HIMAF

_static/ajax-loader.gif

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to GOMAP documentation!

 		
 Introduction

 		
 What is GOMAP?

 		
 What annotation methods are used to assign GO terms?

 		
 Sequence-similarity based methods

 		
 Domain-presence based methods

 		
 Mixed-method pipelines or tools

 		
 Requirements

 		
 What are the requirements that need to be installed to run GOMAP?

 		
 What are the software tools needed to run specific annotation methods?

 		
 Setup

 		
 What are the steps needed to setup the pipeline?

 		
 Running GOMAP

 		
 How to run GOMAP?

 		
 What are the steps needed to setup the pipeline?

 		
 How to run the GOMAP?

_static/up.png

_static/up-pressed.png

