

 Navigation

 	
 index

 	
 next |

 	Set of script leveraging piecash 0.0.3 documentation

Welcome to the gnucash-utilities documentation!

	Release:	0.0.3

	Date:	November 13, 2016

	Authors:	sdementen

	Project page:	https://github.com/sdementen/gnucash-utilities

	What’s new

Contents:

	Documentation
	Report creation (Linux and Windows, python >=3.5)

The complete api documentation (apidoc) :

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015 sdementen.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Set of script leveraging piecash 0.0.3 documentation

What’s new

In development

	system to add python report to gnucash

 Copyright 2015 sdementen.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 previous |

 	Set of script leveraging piecash 0.0.3 documentation

Documentation

This project provides a suite of scripts to work on GnuCash files stored in SQL (sqlite3 and Postgres, not tested in MySQL).

Report creation (Linux and Windows, python >=3.5)

Installation & use

You first need to install the gnucash-utilities with:

$ pip install gnucash-utilities

Once installed, you can add python reports to gnucash by adding python files of the form ‘report_name-of-report.py’
to your $HOME/.gnucash folder.

Everytime a python report is added or the signature of the report function is modified
(change of report metadata, addition/change/removal of an option), you should
run the gc_report script:

For windows
$ gc_report

For linux
$ gc_report.py

This script generates the scheme wrapper around the python report (it has the same name
as the python report file but with a .scm extension) and register the report in the $HOME/.gnucash/config.user file.

A simple report

The simplest report has the form of

from piecash_utilities.report import report, execute_report

@report(
 title="My simplest report",
 name="piecash-simple-report",
 menu_tip="This simple report ever",
 options_default_section="general",
)
def generate_report(
 book_url,
):
 return "<html><body>Hello world from python !</body></html>"

if __name__ == '__main__':
 execute_report(generate_report)

The core reporting logic is defined in the function ‘generate_report’ that:

1. is decorated with the 'report' decorator
2. takes one argument 'book_url' which is the book URL
3. takes optional arguments representing the report options
4. returns a string with html. This html is what gnucash will display as the result of the report execution.

Warning

The report system provided by the gnucash-utilities has currently no way to identify the book that is
running in gnucash (this can be fixed if a guile function is able to return the gnucash URI of the currently opened book).
Hence, it uses a hack. It will look in the registry (for windows) or dconf (for linux) to find the last opened file and uses
this a the “active gnucash book” (ie the ‘book_url’ argument of the ‘generate_report’ function).

This hack will fail a.o. if you work with multiple gnucash book at the same time.

A report with options

If you want to define options for your report, you can do it with type annotations as in

from piecash_utilities.report import report, RangeOption, DateOption, StringOption, execute_report

@report(
 title="My simplest report with parameters",
 name="piecash-simple-report-parameters",
 menu_tip="A simple report with parameters",
 options_default_section="general",
)
def generate_report(
 book_url,
 a_number: RangeOption(
 section="main",
 sort_tag="a",
 documentation_string="This is a number",
 default_value=3),
 a_str: StringOption(
 section="main",
 sort_tag="c",
 documentation_string="This is a string",
 default_value="with a default value"),
 a_date: DateOption(
 section="main",
 sort_tag="d",
 documentation_string="This is a date",
 default_value="(lambda () (cons 'absolute (cons (current-time) 0)))"),
 another_number: RangeOption(
 section="main",
 sort_tag="b",
 documentation_string="This is a number",
 default_value=3)
):
 return """<html>
 <body>
 Hello world from python !

 Parameters received:

 a_number = {a_number}
 a_str = {a_str}
 a_date = {a_date}
 another_number = {another_number}

 </body>
 </html>""".format(
 a_str=a_str,
 another_number=another_number,
 a_date=a_date,
 a_number=a_number,
)

if __name__ == '__main__':
 execute_report(generate_report)

Each option is an additional argument to the ‘generate_report’ function with its type defined through python type annotations.

Options currently supported are:

	date with DateOption

	float with RangeOption

	str with StringOption

A report that access the book

Most of the report will want to access the gnucash book. You can use piecash to open the book thanks to the ‘book_url’ argument
that the ‘generate_report’ function gets automatically as illustrated in the following example

import piecash

from piecash_utilities.report import report, execute_report

@report(
 title="My simplest report with a book",
 name="piecash-simple-report-book",
 menu_tip="A simple report that opens a book",
 options_default_section="general",
)
def generate_report(
 book_url,
):
 with piecash.open_book(book_url, readonly=True, open_if_lock=True) as book:
 return """<html>
 <body>
 Hello world from python !

 Book : {book_url}

 List of accounts : {accounts}
 </body>
 </html>""".format(
 book_url=book_url,
 accounts=[acc.fullname for acc in book.accounts],
)

if __name__ == '__main__':
 execute_report(generate_report)

A full fledged example with jinja2 to generate the html

You can use the command ‘gc_create_report name-of-report’ (under windows) or ‘gc_create_report.py name-of-report’ (under linux)
to create a set of files ‘report_name-of-report.py’ and ‘report_name-of-report.html’ that use the jinja2 templating logic to
generate the report. For any moderately complex report, this is the suggested approach.

You can also generate a sample file automatically by executing:

For windows
$ gc_report_create name-of-report

For linux
$ gc_report_create.py name-of-report

Testing your report from the command line

You can test a report by just running the ‘report_name-of-report.py’ python file and piping the options to it as:

$ cat inputs | python report_name-of-report.py

with inputs being a file like

a_number|3
a_str|with a default value
a_date|1479026587
another_number|3

The inputs should be in line with the options required by the report.

How does it work ?

The python report mechanism works as following:

	At report creation:

	user creates a report by writing a python script as $HOME/.gnucash/report_name.py

	users launches the gc_report command that:
	generates a scheme wrapper as $HOME/.gnucash/report_name.scm

	adds the report to the file $HOME/.gnucash/config.user to have it loaded at each start of gnucash

	At runtime:

	gnucash starts, loads $HOME/.gnucash/config.user and registers the report declared in the .scm files

	user launches a python report

	the scheme wrapper is called and:

	it starts a python subprocess “python report_name.py”

	it retrieves and serialises each report option in the format “option_name|option_value” and pipes it to the standard input of the python subprocess

	the python subprocesses:

	deserialises the options => option arguments

	retrieves the “last open gnucash book” => book_url argument

	calls the generate_report function with the arguments which returns an HTML string

	prints the HTML stringto the standard output

	it retrieves the standard output of the python subprocess as the HTML output of the report

 Copyright 2015 sdementen.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	Set of script leveraging piecash 0.0.3 documentation

Index

 Copyright 2015 sdementen.
 Created using Sphinx 1.2.

 search.html

 Navigation

 		
 index

 		Set of script leveraging piecash 0.0.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015 sdementen.
 Created using Sphinx 1.2.

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

