
GNSS Compare Documentation

Sebastian Ciuban Mateusz Krainski

Mar 10, 2019

GNSS Compare

1 Description 3
1.1 Project history . 3

2 Useful Links 5
2.1 Example of proposal . 5
2.2 Open source code on Github . 5

3 Download 7

4 Hall of Fame 9
4.1 Software Design . 10
4.2 GNSS Signal Processing . 11
4.3 Contact . 12

5 Glossary 13
5.1 Global Navigation Satellite Systems Glossary . 13
5.2 Android Glossary . 16
5.3 Software Engineering Glossary . 16

6 Acknowledgements 17

7 Newsletter 19

8 Introduction 21

9 Getting started with the User Interface 23
9.1 Application’s Views . 23
9.2 Processing schemes . 24

10 Getting started with the code 31
10.1 Importing the project to Android Studio . 31
10.2 Using the Google Maps Viewer . 32

11 GNSS basics 33
11.1 Constellation . 33
11.2 Corrections . 33
11.3 PVT Estimator . 34

i

12 Android GNSS raw measurements 35
12.1 Galileo . 35
12.2 GPS . 36

13 Implemented PVT Algorithms 39
13.1 Extended Kalman Filter . 39
13.2 Weighted Least Squares . 43

14 Example of analysis 45
14.1 Static user . 45
14.2 Pedestrian user . 47
14.3 Dynamic user . 48

ii

GNSS Compare Documentation

GNSS Compare now supports the Dual-Frequency Xiaomi Mi 8 smartphone!

Welcome to GNSS Compare’s documentation!

Please stay tuned, this is still a beta version, and we’re making updates on a daily basis. . .

Check out the app on Play Store. Please note that you need Android 7.0+ to run
the application. Also, please note that not all Android 7.0+ phones support the Galileo Satellite System or crucial for
this project raw GNSS measurements. The list of compatible phones can be found here.

So far we’ve been testing the application on:

• Samsung Galaxy S8

• Samsung Galaxy S8+

• Samsung Galaxy Note 8

• Xiaomi Mi 8

And we are very happy with the results!

If you want to be kept up to date with our updates, you can sign up to our newsletter!

GNSS Compare 1

https://play.google.com/store/apps/details?id=com.galfins.gnss_compare
https://play.google.com/store/apps/details?id=com.galfins.gnss_compare
https://developer.android.com/guide/topics/sensors/gnss
https://goo.gl/forms/Ws96HE3J703Khrdp2

GNSS Compare Documentation

2 GNSS Compare

CHAPTER 1

Description

The purpose of GNSS Compare is to make the life of developers and reasearchers easier. It’s an easy to use and easy
to extend Android-based framework for calculating the PVT based on the raw GNSS measurements.

1.1 Project history

GNSS Compare is the winning Android application developed by the Galfins as part of the internal European Space
Agency (ESA) competition called Galileo Smartphone App Challenge introduced in November 2017. The Challenge
was about creating a smartphone application, which will allow the user to choose which satellite constellation to use
for Position, Velocity and Time estimation. The aim was to increase the awareness about ESA’s Galileo programme
and also to allow users from common public to compare the performance of Galileo signals with the performance from
other global satellite navigation constellations.

3

http://esa.int
http://esa.int
http://www.esa.int/Our_Activities/Navigation/ESA_trainees_compete_in_inaugural_Galileo_app_contest
https://www.esa.int/Our_Activities/Navigation/Galileo/What_is_Galileo

GNSS Compare Documentation

4 Chapter 1. Description

CHAPTER 2

Useful Links

In this section we have put some links that can be useful for the competitors of the 2nd Edition of the Galileo Android
App Competition (ran by the European Space Agency (ESA), European GNSS Agency (GSA), European Commision
(EC) and supported also by Google):

2.1 Example of proposal

Feel free to use our original proposal, which we have submitted to the first edition of the Galileo Android App Compe-
tition, as a source of inspiration. It’s available to download here. Just remember - our idea has changed in the course
of the project, so not everything in that document is up to date!

2.2 Open source code on Github

Click here.

5

https://www.esa.int/Our_Activities/Navigation/European_students_and_researchers_compete_in_our_new_Galileo_app_competition
https://www.esa.int/Our_Activities/Navigation/European_students_and_researchers_compete_in_our_new_Galileo_app_competition
https://m.esa.int/Our_Activities/Navigation/ESA_trainees_compete_in_inaugural_Galileo_app_contest
https://m.esa.int/Our_Activities/Navigation/ESA_trainees_compete_in_inaugural_Galileo_app_contest
https://github.com/TheGalfins/GNSS_Compare/

GNSS Compare Documentation

6 Chapter 2. Useful Links

CHAPTER 3

Download

GNSS Compare is always available on the Google Play Store: Please note that
you need Android 7.0+ to run the application. Also, please note that not all Android 7.0+ phones support the Galileo
Satellite System. The list of Galileo compatible phones can be found here.

So far we’ve been testing the application on:

• Samsung Galaxy S8

• Samsung Galaxy S8+

• Samsung Galaxy Note 8

• Xiaomi Mi 8

And we are very happy with the results!

7

https://play.google.com/store/apps/details?id=com.galfins.gnss_compare
https://play.google.com/store/apps/details?id=com.galfins.gnss_compare
http://galileognss.eu/is-your-phone-using-galileo/

GNSS Compare Documentation

8 Chapter 3. Download

CHAPTER 4

Hall of Fame

In this section we present you the amazing people that were fueled by enormous amounts of tea*0 in order to develop
GNSS Compare!

And here they are! From the left to right we have: Mareike Burba, Sebastian Ciuban, Dominika Perz and Mateusz
Krainski.

They all have an impressive set of skills that brought the 1st prize for GNSS Compare at the European Space Agency
Galileo Smartphone App Challenge. Their knowledge and experience related to Software Design and GNSS Signal
Processing are presented in short biographies so you can have an idea who is behind GNSS Compare!

0 Typically it’s coffee, but we like to approach things differently.

9

http://www.esa.int/Our_Activities/Navigation/ESA_trainees_compete_in_inaugural_Galileo_app_contest

GNSS Compare Documentation

4.1 Software Design

4.1.1 Mateusz Krainski

Polish Young Graduate Trainee in the Directorate of Human Spaceflight and Robotic Exploration, at ESTEC, where
he supports the European Robotic Arm (ERA) team. His main duties regard designing, developing and validating a
robotic testbed for testing of ERA’s on-board smart cameras. During his studies, Mateusz was one of the key board
members of a robotic student society, where he managed numerous projects ranging from small teams for quick
projects (this includes a Space Startup Weekend, an Android app hackathon and few duringstudies assignments),
organizing robotic tournaments (with a team of over 15 people), up to technical projects counting over 30 people.
Thanks to the Toastmasters International community, Mateusz has developed highly his public speaking skills. He not
only helped start the first English speaking club in the area, but also received awards in presenting competitions on a
semi-national level.

4.1.2 Dominika Perz

Polish Young Graduate Trainee in the Technology, Engineering and Quality Directorate at ESTEC, ESA. Currently
working as a Project Manager for the Lunar Exploration Mission - internal project to determine a preliminary GNC
(Guidance, Navigation and Control) design for the ascent, rendezvous and docking with the Deep Space Gateway
station orbiting a Moon in the highly elliptical orbit. Her background is mainly in robotics and programming. She
completed Control Engineering and Robotics master studies in Poland, during which she spent one semester in Madrid,
Spain as an Erasmus exchange student. As a first international carrier experience, Dominika did a 6 weeks internship
in R&D team at Venderlande (Eindhoven, Netherlands), where she worked on optimisation of the search algorithm.
During holidays in 2016 she participated in the Aerospace Information Technology Summer School in Würzburg,
Germany. Before coming to ESA, Dominika worked for a year at a software company GlobalLogic as a Junior
Software Developer for embedded systems.

10 Chapter 4. Hall of Fame

GNSS Compare Documentation

4.2 GNSS Signal Processing

4.2.1 Sebastian Ciuban

Romanian Young Graduate Trainee in the Directorate of Navigation at the European Space Research and Technology
Centre (ESTEC) working on the Galileo project. He holds a Master of Science degree in Aerospace Systems – Naviga-
tion and Telecommunications granted by the French Civil Aviation University (ENAC) from Toulouse, France. After
his first year of master studies he worked a summer (2016) at Acorde Technologies in Spain in the area of GPS/INS
integration. During the second year of studies he developed his master thesis at the German Aerospace Center (DLR)
in Oberpfaffenhofen. While being at DLR he was responsible with designing and implementing algorithms that fused
the Precise Point Positioning (PPP) technique with Inertial Navigation Systems (INS) in a tight coupling architecture.
Moreover, he has also developed suitable integrity monitoring algorithms in order to measure the reliability of the
designed fused systems in terms of fault detection sensitivity and protection level stability. His research interests are
related to precise positioning, sensor fusion, integrity monitoring and GNSS receiver signal processing.

4.2.2 Mareike Burba

German National Trainee with EOP-SMS, currently working on the atmospheric correction for the Fluorescence Ex-
plorer (FLEX). She holds a M.Sc. in Meteorology with a minor in Scientific Computing from the University of
Hamburg. Her Master’s thesis was about optimizing the numerical computation of atmospheric radiative transfer for
the Infrared Atmospheric Sounding Interferometer (IASI) on MetOp. Mareike previously joined the World Climate
Research Program Joint Planning Staff in the World Meteorological Organization for a 6 months internship in the
framework of the Carlo Schmid program. Thanks to her studies and jobs as student research assistent, she speaks flu-
ently Python, Matlab, Bash and Fortran, is communicative in C, Java and IDL, and has some experience with parallel
computing.

4.2. GNSS Signal Processing 11

GNSS Compare Documentation

4.3 Contact

If you would like to reach any of the GNSS Compare developers, here are their e-mails:

• Mateusz Krainski: mateusz@krainski.eu

• Dominika Perz: dominika.perz@gmail.com

• Sebastian Ciuban: ciuban.sebastian@gmail.com

• Mareike Burba: mareikeburba@gmail.com

12 Chapter 4. Hall of Fame

mailto:mateusz@krainski.eu
mailto:dominika.perz@gmail.com
mailto:ciuban.sebastian@gmail.com
mailto:mareikeburba@gmail.com

CHAPTER 5

Glossary

The aim of this section is to provide a small glossary on the subject of satellite navigation, Android and software
engineering in general. You can find below descriptions of all used technical terms in this documentation.

5.1 Global Navigation Satellite Systems Glossary

5.1.1 Global Navigation Satellite Systems

A search on the internet about GNSS will give plenty of information about everything one needs to know. In this
section we will briefly present the current status of the existing global satellite navigation systems.

Galileo

Galileo is the European GNSS with the following status and characteristics:

• In orbit satellites: 22 (the launch of another 4 satellites being scheduled for 25th of July 2018)

• Satellites orbit: Medium Earth Orbit (MEO) with an altitude of approximately 23000 kilometers

• Orbit inclination: 56 degrees to the equator

• Orbital planes: 3

• Time System : Galileo System Time (GST)

• Used spread-spectrum technique: Code Division Multiple Access (CDMA)

GPS

GPS is the American GNSS with the following status and characteristics:

• In orbit satellites: 31

• Satellites orbit: MEO with an altitude of approximately 20000 kilometers

• Orbit inclination: 55 degrees to the equator

• Orbital planes: 6

13

GNSS Compare Documentation

• Time System : GPS Time (GPST)

• Used spread-spectrum technique: CDMA

GLONASS

GLONASS is the Russian GNSS with the following status and characteristics:

• In orbit satellites: 25

• Satellites orbit: MEO with an altitude of approximately 19000 kilometers

• Orbit inclination: 65 degrees to the equator

• Orbital planes: 3

• Time System : GLONASS Time (GLONASST)

• Used spread-spectrum technique: Frequency Division Multiple Access (FDMA) and CDMA (recently)

Beidou

Beidou is the Chinese GNSS with the following status and characteristics:

• In orbit satellites: 28 (13 satellites are not included in operational orbital constellation)

• Satellites orbit: Geostationary Orbit (GEO) and MEO

• Orbit inclination: 55.5 degrees to the equator for MEO

• Orbital planes: 3 (24 MEO)

• Time System : Beidou Time (BDT)

• Used spread-spectrum technique: CDMA

5.1.2 Pseudorange

For someone making his or hers first steps in the GNSS field, the term pseduorange might sound a little bit confusing.
Afterall, the word pseudo is synonym with false and considering this, one might ask: why use this type of information?
At the end of this section we hope to answer this question and also to make things more clear regarding this subject.

First let’s start thinking (in general terms) how the receiver determines the distances towards the observed satellites.
The range (R) is the difference between the time of signal reception and the time of signal transmission multiplied by
the speed of light (c):

𝑅 = 𝑐 · (𝑡𝑅 − 𝑡𝑆).

Although the clocks (atomic clocks) of the satellites are highly accurate, they are still not perfect which lead them to
be biased with respect to a certain GNSS time frame. Furthermore, considering that the quality of the clocks used in
the typical GNSS receiver is inferior to the ones of the satellites, there is also a (significantly larger) bias in its time
measurements. Therefore, let’s take this into account in our equation expressed above:

𝑅 = 𝑐 · [𝑡𝑅 + 𝛿𝑡𝑅 − (𝑡𝑆 + 𝛿𝑡𝑆)].

If we arrange a bit the newly obtained expression, we get:

𝑅 = 𝑐 · (𝑡𝑅 − 𝑡𝑆) + 𝑐 · (𝛿𝑡𝑅 − 𝛿𝑡𝑆).

Assuming that the time of signal reception and the time of signal transmission are free of their biases and other error
sources, then their difference multiplied by the speed of light can be viewed as the equivalent of the geometric distance
(rho) in 3D between the receiver and the observed satellite!

𝑅 = 𝜌 + 𝑐 · (𝛿𝑡𝑅 − 𝛿𝑡𝑆).

14 Chapter 5. Glossary

GNSS Compare Documentation

Now that we got this settled, we also need to account for the effects that disturb the signal’s travel from the satellite
to the receiver such as the ionosphere (I) and troposphere (T). The local effects like the receiver’s noise and multipath
which for the sake of simplicity we gather them in a single term (epsilon). The number of effects that introduce errors
in the range measurements is larger and we don’t cover them here.

𝑅 = 𝜌 + 𝑐 · (𝛿𝑡𝑅 − 𝛿𝑡𝑆) + 𝐼 + 𝑇 + 𝜖.

In the equation of the range above we correct for the effect of the satellite clock bias, ionosphere, troposphere mainly
by mathematical models. However, what we can’t remove directly is the receiver clock bias which is required to be
estimated. And that term will always be present in our measurements! Therefore, our range equation becomes the
pseudorange (PR) equation because of that.

𝑃𝑅 = 𝜌 + 𝑐 · (𝛿𝑡𝑅 − 𝛿𝑡𝑆) + 𝐼 + 𝑇 + 𝜖.

We do hope that the aspects related to this subject are more clear now.

5.1.3 Ephemeris

The process of obtaining the position in a certain coordinate system using GNSS technologies is based on a rather
simple principle, which is trilateration (not triangulation, please be aware of that). Given an unknown point in a
coordinate sytem from which we know the distances towards some known points in the same coordinate system, we
can work out the coordinates of our unknown point. One can try this concept by defining a 2D coordinate system in
which a triangle can be drew with two of its verticies having known coordinates. And the problem relies on finding
the coordinates of the third vertex.

We have already seen in the Pseudorange section that we can obtain the range information towards the observed
satellites. And what is missing is how to determine the coordinates of those satellites. To compute the coordinates of
the satellite we need some parameters that describe their orbits. For this we have to be grateful to the work of Johannes
Kepler on his law of planetary motion as he discovered the six parameters also known as the Keplerian elements that
define an orbit:

• Eccentricity,

• Semimajor axis,

• Inclination,

• Longitude of the ascending node,

• Argument of periapsis,

• True anomaly.

The definition of all of the above elements can be easily found with a quick search on any internet search engine.
The idea is that those parameters (and many others) are contained in the navigation message that is modulated on
the transmissed GNSS signals. The receiver will extract this information from the signal itself or get them from
external means (e.g., concept of Assisted GNSS) and feed them into specific algorithms that will determine the satellite
coordinates.

A good source for the satellite coordinate computation algorithms for Galileo and GPS is the book called ESA GNSS
Data Processing Volume I starting with page 57.

5.1.4 Position, Velocity and Time

In GNSS we are mostly interested in the parameters of the user that describe the position, velocity and also time.
Position is quite obvious - that’s the whole point of navigation, to know where the user is located. Velocity can be
estimated from consecutive postion measurements, but can also be calculated directly from the satellite signals, due

5.1. Global Navigation Satellite Systems Glossary 15

https://gssc.esa.int/navipedia/GNSS_Book/ESA_GNSS-Book_TM-23_Vol_I.pdf
https://gssc.esa.int/navipedia/GNSS_Book/ESA_GNSS-Book_TM-23_Vol_I.pdf

GNSS Compare Documentation

to the Doppler’s effect. It can be later used for more precise estimations of the user’s position, for highly dynamic
systems. Time is also crucial to be estimated, as the user’s receiver clock contains a bias with respect to a certain
GNSS time frame.

For more clarifications on how this process is handled, the reader is welcomed to check the Implemented PVT Algo-
rithms section.

5.1.5 Clock bias

In GNSS, when we talk about clock bias we usually refer to the satellite clock bias and/or to the receiver’s clock bias
with respect to a certain GNSS time frame (e.g., Galileo System Time, GPS Time).

Let’s take a look on how we correct for the satellite clock bias as explained in ESA GNSS Data Processing Volume I
(pages 104-105):

𝛿𝑡𝑆 = ̃︀𝛿𝑡𝑆 + ∆𝑡rel.

In the above equation we can see that the satellite clock bias is also affected by a small relativistic effect caused by the
orbit eccentricity. Is quite interesting to see that when dealing with time we do need to take into account these kind of
phenomena! The correction for that relativistic effect is computed in the following way:

∆𝑡rel = −2
r𝑆 · v𝑆

𝑐2
,

where at the numerator we have the dot product between the satellite position vector and the velocity vector and at the
denominator the speed of light squared.

And finally the satellite clock bias (without the relativistic effect) can be computed as:

̃︀𝛿𝑡𝑆 = 𝑎0 + 𝑎1(𝑡− 𝑡0) + 𝑎2(𝑡− 𝑡0)2,

where the coefficients (a0, a1 and a2) are contained in the navigation message and t0 represents a given reference
epoch.

Because we cannot account for the receiver clock bias beforehand we have to estimate it from the pseudorange equa-
tion:

𝑃𝑅 = 𝜌 + 𝑐 · (𝛿𝑡𝑅 − 𝛿𝑡𝑆) + 𝐼 + 𝑇 + 𝜖.

This one is more straight forward.

5.2 Android Glossary

5.3 Software Engineering Glossary

5.3.1 Polymorphism

According to Wikipedia, Polymorphism is the provision of a single interface to entities of different types. In Java this
is achieved due to class inheritance.

16 Chapter 5. Glossary

https://gssc.esa.int/navipedia/GNSS_Book/ESA_GNSS-Book_TM-23_Vol_I.pdf
https://en.wikipedia.org/wiki/Polymorphism_(computer_science)

CHAPTER 6

Acknowledgements

We would like to mention the libraries that we are using in the GNSS Compare software framework:

• Efficient Java Matrix Library (EJML) for linear algebra operations,

• goGPS for GNSS related computations (satellite coordinates and velocities, etc.),

• GNSS Logger for using the raw data logging format as a feature.

Also we would like to thank the European Space Agency for the continuous support throughout the development of
this application. Especially we would like to mention the ESA employees that shared their experience and knowledge
with us: Paolo Crosta, Nityaporn Sirikan, Gaetano Galluzzo and Paolo Zoccarato.

17

http://ejml.org/wiki/index.php?title=Main_Page
https://github.com/goGPS-Project/goGPS_Java
https://github.com/google/gps-measurement-tools/tree/master/GNSSLogger

GNSS Compare Documentation

18 Chapter 6. Acknowledgements

CHAPTER 7

Newsletter

Dual-Frequency capabailities for GNSS Compare are currently under development and testing. Stay tuned!

GNSS Compare is currently under heavy development. If you want to be up to date with our changes, sign up to the
newsletter here.

19

https://goo.gl/forms/Ws96HE3J703Khrdp2

GNSS Compare Documentation

20 Chapter 7. Newsletter

CHAPTER 8

Introduction

Let’s start with the basics. GNSS compare allows the user to calculate the phone’s location, based on the phone’s
GNSS pseudorange measurements. This is normally done by the phone automatically, however with the recent release
of Android API 24 and the GnssMeasurement class, developers gained access to unprocessed pseudorange measure-
ments. This can be used by GNSS scientists and researchers to come up with new, more precise or less resource intense
methods for precise positioning. GNSS Compare is basically a tool for such scientists to compare their algorithms.
And if you’re not an GNSS expert, it can be a tool for you to learn more on this subject. And believe me – there’s a lot
of interesting things to learn.

In order to fully understand what’s under the hood for GNSS Compare, we must introduce a few terms we are using
through the application. It’s going to be a very general explanation – if something will be not clear, please take a look
at our Glossary. We hope you’ll find answers to more detailed questions there. This section aims to provide a bridge
between general GNSS knowledge, software practices, and GNSS Compare.

21

https://developer.android.com/reference/android/location/GnssMeasurement

GNSS Compare Documentation

22 Chapter 8. Introduction

CHAPTER 9

Getting started with the User Interface

Here we show what you can see at the User Interface (UI) level and we also describe how to set up different processing
schemes/calculation modules, effect of which can be studied in real-time.

9.1 Application’s Views

We refer to a view as the current content displayed by the application. The user can change these views by swiping on
the phone’s screen. Curently we have the following views: Main View, Satellite signal strength, Positioning error
plot and Google Maps view.

9.1.1 Main View

When you launch the application this is the first view.

On top there is a blue “stripe” with the name of the application, a “+” and a “gearbox” icon. What are the functionalities
of those icons we will see in the Processing schemes part.

Next is the Constellation status header and the information below that shows what GNSS constellations and how
many satellites are used to compute PVT. In the GIF above we can see that a combination of Galileo+GPS, GPS only
and Galileo only are considered in the algorithms. Moreover, you can notice that not all Visible satellites are being
Used in the calculations. The reason behind this is explained in a dedicated chapter of this documentation called
Android GNSS raw measurements. Shortly, it is because not all obtained pseudoranges pass a criteria that would allow
them to be used in the PVT estimation.

Below the header called Calculation results are the results of the PVT estimators (EKF for this particular example)
in terms of: latitude (Lat), longitude (Lon), altitude (Alt) and the receiver’s clock bias (C.bias). The UI allows
it’s user to make some interesting analysis and to gain some intuitions about the importance of the number of the used
satellites in PVT. As example, because there are only 3 Galileo satellites used in the EKF we do expect the estimations
of the unknowns to be degraded, which is the case.

23

GNSS Compare Documentation

And lastly, the START RAW LOG allows the logging of the Android GNSS raw measurements in the exact same format
as the Google’s Application GNSS Logger. This feature allows you also to analyze your data in post-processing!

To get to the next view swipe from right to left.

9.1.2 Satellite signal strength

This view is quite straight forward. Here you can monitor the signal strenght of the satellites that are Used in the
calculations.

To get to the next view swipe from right to left or to return to the previous one, from left to right.

9.1.3 Positioning error plot

To have an idea of how well the position is estimated, we provide this view that contains a plot with the horizontal
position errors using as reference the Android FINE location (i.e., the best location output by the phone). The errors
are expressed in meters in the north and east direction (local frame).

Below the plot there is the legend with the specific colors for the chosen processing schemes.

To get to the next view swipe from right to left or to return to the previous one, from left to right.

9.1.4 Google Maps view

In the last view there is the Google Maps on which the position estimations are displayed to be monitored. This can be
useful especially when you are testing new PVT algorithms or change the settings of the existing ones (e.g., tunning
the EKF). In the GIF below are presented the position estimations by the EKF while the user was in a bus. In this
way you can study if your algorithms and their tunning are able to output estimations that follow your dynamics in
real-time.

Another useful study that can be made in this view is the comparison of different PVT algorithms. In the example
below, one can gain insights about the difference between WLS and EKF. It is interesting to see the performance of an
estimator that relies only on measurements relative to an estimator that uses a dynamic model in addition.

To get to the the previous view swipe from left to right.

9.2 Processing schemes

By a processing scheme or a calculation module we refer to a set of settings that are considered for the estimation of
the smartphone’s position. The user can create a processing scheme in which he/she can choose the following:

• Constellation: Galileo+GPS, GPS, Galileo

• Correction modules: Tropospheric correction, Klobuchar Iono Correction (only for GPS), Relativistic path
range correction

• Positioning method: Weighted Least Squares, Static EKF, Dynamic EKF, Pedestrian EKF

• Logging format: Simple format, NMEA

24 Chapter 9. Getting started with the User Interface

https://github.com/google/gps-measurement-tools/tree/master/GNSSLogger

GNSS Compare Documentation

• Name: The user shall specify the name of the processing scheme

We will continue to show how to create a processing scheme or modify an existing one at the UI level.

9.2.1 Creating a new one

From the Main View select the “+” icon on the top right corner as shown below. A new view will prompt that will
allow you to select among the available options.

Let’s begin by selecting the desired Constellation and Correction modules, one at a time.

9.2. Processing schemes 25

GNSS Compare Documentation

Next we would like to select the Positioning method and the Logging format.

26 Chapter 9. Getting started with the User Interface

GNSS Compare Documentation

Finally we have to give a Name to the processing scheme and then press Create.

9.2. Processing schemes 27

GNSS Compare Documentation

9.2.2 Modifying an existing one

To modify an existing processing scheme, from the Main View press the “gearbox” icon as shown below.

28 Chapter 9. Getting started with the User Interface

GNSS Compare Documentation

In the right image you can find the created processing schemes. Additionally, there is a summary for each scheme
with the chosen options. To change the settings of an existing scheme, press Modify and choose among the existing
options. Moreover, in this view you also can enable/disable a processing scheme by pressing the Activate switch or
enable/disable data logging with the Save log switch. A dedicated section will be made regarding the logging formats
of GNSS Compare.

9.2. Processing schemes 29

GNSS Compare Documentation

30 Chapter 9. Getting started with the User Interface

CHAPTER 10

Getting started with the code

10.1 Importing the project to Android Studio

It’s not necessary to use Android Studio to make modifications and build code, there are many other IDE’s for Android
development. It has been our choice so far, so we will be focusing our tutorials on that IDE at the moment.

Before importing the project, you have to clone the project repository. The directory GNSS_Compare within that
repository is the Android Studio project.

To import the project into Android Studio, find the Import Project option. It should be either under File -> New ->
Import Project, or somewhere on the main screen of Android Studio. Navigate to the GNSS_Compare directory. You
should find the GNSS_Compare project folder with the Android Studio logo next to it, as shown on image below.

Mark it, click Ok. The project should open and gradle will start to synchronize everything and genrate its configuration
files. This can take a moment. . . After gradle has finished, you’re free to connect your phone and build the application
by pressing the Run app button in the top, right corner.

31

https://developer.android.com/studio/
https://github.com/TheGalfins/GNSS_Compare

GNSS Compare Documentation

10.2 Using the Google Maps Viewer

In order to use the Google Maps Viewer in GNSS Comapre, you’ll need to get your own Google Maps API key and
paste it into the Android manifest (kind of).

To get the Google Maps SDK key, follow this guide.

After you have the key (it will look like a string of random characters, starting with AIza), all you need to do is to
copy and paste it to the map_api_key.xml file located in the res/values directory. Find the lines containing
the following:

<string name="map_api_key">YOUR_API_KEY</string>

And replace YOUR_API_KEY with your API key. It should work right away. If not – you might need to clean and
rebuild your project, or manually uninstall the application on your phone.

Remember not to share the api key with anyone! If you’re using git, you can mark that file as one which should not be
tracked with

git update-index --assume-unchanged GNSS_Compare/app/src/main/res/values/map_api_key.
→˓xml

This way, the file will remain in your repository, but any changes made to it will be not pushed to the remote.

32 Chapter 10. Getting started with the code

https://developers.google.com/maps/documentation/android-sdk/signup

CHAPTER 11

GNSS basics

11.1 Constellation

There are a few Global Navigation Satellite Systems on the planet. Or actually - around the planet: the Global
Positioning System (GPS), owned by the US Government, GLONASS, owned by the Russian Federation, Chineese
system BeiDou, and of course Galileo, owned by the European Union, which is set to soon become fully operational.

Each of those constellations consists of a set of 20-30 satellites orbiting above our heads at an altitude of around 20000
km. So many satellites are needed, because the system operator assures that from each spot on Earth, at any time
of the day, at least four satellites are visible (and usually a lot more). Those satellites are constantly broadcasting
a signal, which among other parameters contains a timestamp. The receiver then receives the signal, compares the
timestamp with the current time, and thanks to that is able to calculate the distance to the satellite. Knowing the time
of transmission and the satellites orbital parameters (retrieved from a special server in the form of ephemeris data or
extracted from the received signal iteself) it’s also possible to calcualte the satellite’s position in space. Of course, the
details of how those calculations are performed vary slightly from constellation to constellation.

In the context of GNSS Compare, a Constellation, is a class, which defines those two properties:

• is capable of converting the raw measurements extracted from the phone into pseudoranges,

• is able to calculate satellite’s position in the time of transmission.

In this context, the constellations can be treated individually, e.g. we separate GPS from Galileo, and perform position
determinating calculations for them separately, or they can be treated together, as in our Galileo+GPS example.
Developers must take care as combining constellations is not always that easy!

11.2 Corrections

As the signal travels from the satellite, it’s prone to a number of sources of error (e.g., ionosphere, troposphere), which
the user will have to take into account. For a more accurate positioning, we need to estimate the distance to the satellite
with as good as possible, so we need to remove from the signal any disturbances we might know of.

33

https://www.gps.gov/
https://www.gps.gov/
https://www.glonass-iac.ru/en/
http://en.chinabeidou.gov.cn/
https://www.gsa.europa.eu/european-gnss/galileo/galileo-european-global-satellite-based-navigation-system

GNSS Compare Documentation

Those disturbances are estimated using various, more or less complicated, mathematical models of the natural phe-
nomena. Those models allow us to calculate corrections, which are later applied to the pseudoranges. The most
commonly used corrections are for the ionosphere, troposphere and for those including the relativistic effects.

In the context of GNSS Compare, a Correction is a class, which provides a method to calculate the value of the
correction, based on few parameters, which include:

• time of signal reception,

• receiver’s approximate position,

• the satellite’s position,

• additional data, stored in the ephemeris data

The general rule is simple – the more corrections are applied, the more accurate the final position.

11.3 PVT Estimator

The PVT estimators are algorithms which take as input satellite positions and pseudoranges to those satellites and aim
to estimate the receiver’s position, velocity and time. In some applications, it’s sufficient to estimate just the position
and time. Let’s take a look at the parameters we wish to estimate. Position is quite obvious - that’s what we would
want to get from this whole process. In some cases, we can use the signal characteristics to improve the estimation
of the receiver’s velocity (e.g., using doppler measurements), thus increasing the accuracy of the position estimations.
Additionally to the position related parameters we also need to estimate the receiver clock bias with respect to a certain
GNSS time frame (e.g., Galileo System Time). This is handled by having the clock bias as one of the paramters to be
estimated alongside with the position and velocity.

In the context of GNSS Compare, the PvtMethod class does exactly that. It’s supposed to calculate the receiver’s
position, based on observed satellite parameters. Internally, it should be storing the calculated velocity and clock bias
for enhanced processing, but from the point of view of GNSS Compare’s framework, at the moment, the only value
used outside of the PvtMethod class is the calculated position. But hey – there’s of course room to improve.

34 Chapter 11. GNSS basics

CHAPTER 12

Android GNSS raw measurements

(To be updated to support GNSS Dual-Frequency Android phones)

In the following sections we describe the algorithms used to compute the pseudoranges taken into account the used
satellite navigation system. The following algorithms are based on the European GNSS Agency’s (GSA) White Paper
on using GNSS Raw Measurements on Android devices.

At the code level, you can find the algorithms in the following Java classes:

• GalileoConstellation

• GpsConstellation

The variable names used in the description of the algorithms are the same as the ones in the GNSS Compare’s code.
Moreover, the definition of each used variable (e.g., ReceivedSvTimeNanos) can be found on the Android Developer
webpage or in the white paper mentioned above. We will keep things straight forward in this section.

As an additional informative note, the pseduroanges computed here are based on the ranging codes that modulate the
L1 carrier signal.

12.1 Galileo

Roughly speaking, the pseudorange is the difference between the time of signal reception and the time of signal
transmission multiplied by the speed of light (for a more detailed definition check the Glossary). Therefore, let’s see
how we compute the time of signal reception with the Android GNSS raw parameters:

galileoTime = TimeNanos - (FullBiasNanos + BiasNanos);
tRxGalileoTOW = galileoTime % Constants.NUMBER_NANO_SECONDS_PER_WEEK;
tRxGalileoE1_2nd = galileoTime % Constants.NumberNanoSeconds100Milli;

It may look a bit strange that we compute two times of reception (tRxGalileoTOW and tRxGalileoE1_2nd) however
there is a reason behind this. We have to be aware of the fact that Galileo signals have more complex modulation
schemes if compared with the legacy signals of GPS. In this sense, processing Galileo signals requires more effort
from the GNSS receiver. Now in order to use the Galileo pseudoranges in the PVT estimation, these pseudoranges
have to pass some kind of health check. One of these checks looks if the Time Of Week (TOW) parameter is decoded

35

https://www.gsa.europa.eu/newsroom/news/available-now-white-paper-using-gnss-raw-measurements-android-devices
https://www.gsa.europa.eu/newsroom/news/available-now-white-paper-using-gnss-raw-measurements-android-devices
https://developer.android.com/reference/android/location/GnssMeasurement

GNSS Compare Documentation

or determined from other sources (e.g., mobile network), and the other one checks if the smartphone’s GNSS receiver
is locked on the Galileo E1 secondary code. We will see soon how this is handled. However, we will not deal with the
theoretical background in order to reason the approach presented here because it does require some advanced receiver
signal processing knowledge and at this point this is outside of our aims. In exchange, we can advise the curious
minds to check a book on GNSS signal structures, like Engineering Satellite-Based Navigation and Timing: Global
Navigation Satellite Systems, Signals and Receivers by John W. Betz.

Therefore we will use tRxGalileoTOW and tRxGalileoE1_2nd to compute two pseudoranges and we will use only one
of them, the one that manages to pass the health check of course! Now let’s compute the time of signal transmission:

tTxGalileo = ReceivedSvTimeNanos + TimeOffsetNanos;

The two pseudoranges are:

pseudorangeTOW = (tRxGalileoTOW - tTxGalileo) * 1e-9 * Constants.SPEED_OF_LIGHT;
pseudorangeE1_2nd = ((galileoTime - tTxGalileo) % Constants.
→˓NumberNanoSeconds100Milli) * 1e-9 * Constants.SPEED_OF_LIGHT;

We have said that we need to test these two pseudoranges for some criteria. And the Java variable containing the health
status or the states that we wish to find if they are true or not is:

int measState = measurement.getState();

With the help of the bitwise AND operation we can identify if the seeked states are true or not. Please check the
Android Developer website to have a better insight of this process:

boolean towKnown = (measState & GnssMeasurement.STATE_TOW_KNOWN) > 0;
boolean towDecoded = (measState & GnssMeasurement.STATE_TOW_DECODED) > 0;
boolean codeLock = (measState & GnssMeasurement.STATE_GAL_E1C_2ND_CODE_LOCK) > 0;

Finally, we do the following check and we decide which computed pseudorange we use:

if ((towKnown || towDecoded)) {

// use pseudorangeTOW

}else if (codeLock){

// use pseudorangeE1_2nd

}

12.2 GPS

We follow a similar approach for GPS also by starting to compute the time of signal reception:

gpsTime = TimeNanos - (FullBiasNanos + BiasNanos);
tRxGPS = gpsTime + TimeOffsetNanos;

In the next step we compute in a more straight forward way the GPS pseudorange:

weekNumberNanos = Math.floor((-1. * FullBiasNanos) / Constants.NUMBER_NANO_SECONDS_
→˓PER_WEEK)*onstants.NUMBER_NANO_SECONDS_PER_WEEK;
pseudorange = (tRxGPS - weekNumberNanos - ReceivedSvTimeNanos) / 1.0E9 * Constants.
→˓SPEED_OF_LIGHT;

36 Chapter 12. Android GNSS raw measurements

https://developer.android.com/reference/android/location/GnssMeasurement

GNSS Compare Documentation

We have to check if the computed pseudorange is usable in PVT or not. Therefore, we get the states status:

int measState = measurement.getState();

We apply again the bitwise AND operator to see if the TOW is decoded and if the receiver is locked on the signal’s
code:

boolean codeLock = (measState & GnssMeasurement.STATE_CODE_LOCK) > 0;
boolean towDecoded = (measState & GnssMeasurement.STATE_TOW_DECODED) > 0;

Additionaly we can add an extra criteria, a criteria that checks for the uncertainty in the determined TOW:

private static final int MAXTOWUNCNS = 50; // [nanoseconds]
boolean towUncertainty = measurement.getReceivedSvTimeUncertaintyNanos() <
→˓MAXTOWUNCNS;

Finally we decide to use the GPS pseduorange if the following check is true:

if(codeLock && towDecoded && towUncertainty && pseudorange < 1e9){

// use pseudorange

}

12.2. GPS 37

GNSS Compare Documentation

38 Chapter 12. Android GNSS raw measurements

CHAPTER 13

Implemented PVT Algorithms

In this section we provide the theoretical aspects behind the GNSS Compare’s PVT algorithms. The information here
can be associated with the following Java classes:

• StaticExtendedKalmanFilter

• DynamicExtendedKalmanFilter

• PedestrianStaticExtendedKalmanFilter - this one sounds a bit strange, however bear with us as
explanations will be given when the filter tunning is explained

• WeightedLeastSquares

13.1 Extended Kalman Filter

One of the estimation techniques implemented in the GNSS Compare framework is the Kalman Filter. Taking into
account that the measurement model is linearized about the time predicted position, in fact the implementation is an
Extended Kalman Filter (EKF).

In this section we describe the theoretical aspects of the EKF implementation such that the curious minds can under-
stand easily what is behind GNSS Compare’s awesome algorithms. We are interested to implement the EKF for two
types of users: a static user and a dynamic user.

Therefore we will describe how the state vector is defined, or in other words, the vector containing the parameters that
we wish to estimate (hint: the parameters are related to the GNSS Compare’s user position!), and also what dynamic
and measurements models we have considered. And as bonus we will also write about the tunning of the EKFs.

First things first! Let’s remember the Kalman Filter equations, the implemented ones, in order to make the rest of this
section more enjoyable.

We have the time prediction of the state vector (x) and it’s variance-covariance matrix (P):

x̂−
𝑘 = F𝑘x̂

+
𝑘−1

P−
𝑘 = F𝑘P

+
𝑘−1F

T
𝑘 + Q𝑘.

39

GNSS Compare Documentation

In the next step we can compute the innovation vector (gamma) and it’s variance-covariance matrix (S) with the help
of the obsevation vector (z), the observation matrix (H) and the measurement noise matrix (R):

𝛾𝑘 = z𝑘 −H𝑘x̂
−
𝑘

S𝑘 = H𝑘P
−
𝑘 H

T
𝑘 + R𝑘.

We are almost there, we just need to compute the famous Kalman gain (K)!

K𝑘 = P−
𝑘 H

T
𝑘S

−1
𝑘 .

Finally the measurement update step is:

x̂+
𝑘 = x̂−

𝑘 + K𝑘𝛾𝑘

P+
𝑘 = (I𝑘 −K𝑘H𝑘)P−

𝑘 .

However, before explaining how the EKF for the static user and the dynamic user was implemented, we still need to
talk about the measurement model based on the GNSS pseudoranges retrieved from the smartphone’s GNSS receiver.
If you are familiar with this concepts, you can skip the following section.

13.1.1 Pseudorange measurement model

For a code-based pseudorange (PRc) we have the following (non-linear) equation taking into account the satellite clock
bias (dtS), the delay caused by the ionosphere (dion), the delay caused by the troposphere (dtrop) and the receiver noise
(epsilon).

𝑃𝑅𝑐 = 𝜌 + 𝛿𝑡𝑅 − 𝛿𝑡𝑆 + 𝑑ion + 𝑑trop + 𝜖

We know, there are more effects that are perturbing the GNSS measurements, however we wish to keep things as
simple as possible and the interested persons can always consider more error sources in the GNSS Compare’s code.

The above equation is non-linear because of the geometric distance (rho) between the receiver and the GNSS satellite.
Luckly we can linearize it if we have knowledge about an approximated position of the receiver (X0, Y0, Z0), which
we do! We do have from the time prediction step of the EKF. Taking this into account and applying a first order Taylor
series expansion we obtain:

𝑃𝑅𝑐 − 𝜌0 + 𝛿𝑡𝑆 − 𝑑0,ion − 𝑑0,trop = −𝑋𝑆 −𝑋0

𝜌0
∆𝑋 − 𝑌 𝑆 − 𝑌0

𝜌0
∆𝑌 − 𝑍𝑆 − 𝑍0

𝜌0
∆𝑍 + 𝛿𝑡𝑅.

On the left side of the equation we have moved every term that can be computed. The subscript 0 means that those
parameters are estimated by using the approximate receiver position information. On the right hand side we have the
unknowns (dX, dY, dZ, dtR) and their coefficients. Based on the linearized pseudorange equation one can form the
observation matrix (H).

Practical advise: Take care that the unknowns from the linearized pseudorange equations are not the same as the
position related unknowns that we are estimating directly in the EKF state vector. Check the GNSS Compare code (
e.g., StaticExtendedKalmanFilter class) to understand how this is handled.

Good, now we can see how the EKF was implemented for the static user and the dynamic user!

13.1.2 Static user

In the case of a static user we have the following state vector at the epoch k:

x𝑘 =
(︁
𝑋 𝑌 𝑍 𝛿𝑡𝑅 𝛿𝑡𝑅

)︁T
.

40 Chapter 13. Implemented PVT Algorithms

GNSS Compare Documentation

In the above expression X, Y and Z are the coordinates in Earth Centered Earth Fixed (ECEF) frame and the last two
parameters are the receiver clock bias and the receiver clock drift. All the parameters are expressed in units of meters.

Now that the state vector is defined, we can move on by choosing the dynamic model. Before moving further let’s
think a bit about this aspect. A static user doesn’t change his/hers position, therefore this means that over time the X,
Y, Z coordinates remain the same! We only have to take care of how we model the dynamic behavior of the receiver’s
clock, which is approximated to be:

𝛿𝑡𝑅,𝑘 = 𝛿𝑡𝑅,𝑘−1 + ∆𝑇 𝛿𝑡𝑅,𝑘−1,

𝛿𝑡𝑅,𝑘 = 𝛿𝑡𝑅,𝑘−1.

Having in view all of this information we can define the transition matrix (F) of the filter as:

F𝑘 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 ∆𝑇
0 0 0 0 1

⎞⎟⎟⎟⎟⎠ .

We are almost done with the dynamic model elements. The only thing that we need now is the process noise matrix
(Q). Because the process noise matrix contains the uncertainty we have in the dynamic model that we consider, we
have to define it accordingly. In the static case we can assume that the user is not moving and that the receiver clock
has some frequency and phase errors. In order to fully understand this reasoning, the interested reader is advised to
check the following book: Introduction to Random Signals and Applied Kalman Filtering by Robert Grover Brown
and Patrick Y. C. Hwang.Therefore, the process noise matrix is approximated to be:

Q𝑘 =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 𝑆𝑓 +
𝑆𝑔 Δ𝑇 3

3
𝑆𝑔 Δ𝑇 2

2

0 0 0
𝑆𝑔 Δ𝑇 2

2 𝑆𝑔 ∆𝑇

⎞⎟⎟⎟⎟⎟⎠ .

In the above expression the receiver clock related parameters are expressed as:

𝑆𝑔 ≈ 2𝜋2ℎ−2,

𝑆𝑓 ≈ ℎ0

2
.

The parameter h-2 and h0 are the Power Spectral Densities (PSD) of the random walk frequency noise and of the
white noise, as defined in the suggested book above. Some typical values for a low quality Temperature Compensated
Crystal Oscillator (TCXO) are 2e-20 and 2e-19 (in seconds). A practical advise before using this values is to take care
that we are dealing with the parameters of a variance-covariance matrix and also that they have to be converted in units
of meters (remember that we have expressed the receiver clock states in units of meters).

So basically we are done with the static user case. That’s great as we can move to the dynamic one!

13.1.3 Dynamic user

In the case of a dynamic user there are few aspects that one has to consider. Let’s start again by defining the new state
vector:

x𝑘 =
(︁
𝑋 𝑈 𝑌 𝑉 𝑍 𝑊 𝛿𝑡𝑅 𝛿𝑡𝑅

)︁T
.

We can already observe that we have three more parameters to estimate (U, V, W) which are the velocities on the X,
Y and Z directions. If our state vector is modified (with respect to the static case) then our intuition will tell us that we

13.1. Extended Kalman Filter 41

GNSS Compare Documentation

need to define a new transition matrix and a new process noise matrix. Which is exactly what we are going to do next,
therefore:

F𝑘 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ∆𝑇 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 ∆𝑇 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 ∆𝑇 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 ∆𝑇
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For the process noise matrix we use the approach presented in the book of Robert Grover Brown and Patrick Y. C.
Hwang (Introduction to Random Signals and Applied Kalman Filtering). Indeed, is the third time we refer to this
book in the implemented PVT algorithms section, however you can trust us that is a very good one!

Q𝑘 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑆𝑋 Δ𝑇 3

3
𝑆𝑋 Δ𝑇 2

2 0 0 0 0 0 0
𝑆𝑋 Δ𝑇 2

2 𝑆𝑋 ∆𝑇 0 0 0 0 0 0

0 0 𝑆𝑌 Δ𝑇 3

3
𝑆𝑌 Δ𝑇 2

2 0 0 0 0

0 0 𝑆𝑌 Δ𝑇 2

2 𝑆𝑌 ∆𝑇 0 0 0 0

0 0 0 0 𝑆𝑍 Δ𝑇 3

3
𝑆𝑍 Δ𝑇 2

2 0 0

0 0 0 0 𝑆𝑍 Δ𝑇 2

2 𝑆𝑍 ∆𝑇 0 0

0 0 0 0 0 0 𝑆𝑓 +
𝑆𝑔 Δ𝑇 3

3
𝑆𝑔 Δ𝑇 2

2

0 0 0 0 0 0
𝑆𝑔 Δ𝑇 2

2 𝑆𝑔 ∆𝑇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The parameters Sx, Sy and Sz are the spectral amplitudes that reflect the position random process. Unfortunately,
setting their values is not as straigth forward as for the receiver clock states. We have to rely on what we call the
tunning process which is modifying the values in Q and R experimentally (i.e., trial and error). Just as a note, this can
be avoided by designing and implementing adaptive estimators. Who knows, maybe you (the reader) will decide to
implement some nice ideas now that this possibility is enabled with GNSS Compare’s flexible framework.

Practical advise: When the observation matrix (H) is being built do consider that it’s size is defined in the following
way: the number of rows is the number of measurements and the number of columns is the number of unknowns.
Therefore when switching from the static case to the dynamic case, H changes also. We mention this just to be sure
that a possible conceptual hiccup is avoided.

13.1.4 Filter tunning

Because at the moment we are dealing with a standard EKF and not an adaptive one this means that we have to assign
values in the process noise matrix (Q) and in the measurement noise matrix (R) such that the filter is tunned to our
situation.

Let’s start with the R matrix. We set R to be a diagonal matrix containing the variances of each pseudorange mea-
surement. The measurement noise matrix being diagonal relies on the assumption that there is no cross-correlation
between the measurements coming from different satellites (an assumption that is not entirely represeting the reality,
however it fits most of the applications). Therefore, the diagonal elements of the R matrix are:

R𝑖𝑖,𝑘 = 𝜎2
𝑖𝑖.

To keep things relatively simple, we can assign the value for the sigma 10 meters (don’t forget to square it before
putting it in R). Another assumption that is made is that the measurements received at the k-th epoch have equal
variances (ok, this assumption is not true at all). However here is an idea for you, maybe you can try investigating
some interesting measurement weigthing methods and then compare (the main keyword of the whole project) the
results you get with our not so realistic assumption. Let the researcher within you thrive!

42 Chapter 13. Implemented PVT Algorithms

GNSS Compare Documentation

Let’s move to the Q matrix now. For this we present three tunning examples: static, pedestrian and dynamic.

Static tunning

For the static case we have already seen that we only have to take care about the process noise of the receiver clock
states. So the values that we are assigning to the PSD of the random walk of the frequency noise and of the white noise
are:

ℎ−2 = 2𝑒− 20 𝑐2,

ℎ0 = 2𝑒− 19 𝑐2.

In the above we use the c notation for the speed of light.

Pedestrian tunning

Intuitively we should have used the EKF designed for a dynamic user in this situation. It would only make sense as
a pedestrian changes his/hers position over time. However, one must take into account that the raw measurements
delivered by the smartphone’s GNSS receiver are quite noisy and if there are no other means to detect the motion of
the user (e.g., using an Inertial Measurement Unit) then estimating the velocities can make our results not soo accurate.
Having this situation in view we have found a workaround: we use the EKF designed for a static user and we let some
process noise for the X and Y coordinates (unless one of our users is not Superman we are not that interested in the
Z direction). This means that we have the following Q matrix:

Q𝑘 =

⎛⎜⎜⎜⎜⎜⎝
0.2 0 0 0 0
0 0.2 0 0 0
0 0 0 0 0

0 0 0 𝑆𝑓 +
𝑆𝑔 Δ𝑇 3

3
𝑆𝑔 Δ𝑇 2

2

0 0 0
𝑆𝑔 Δ𝑇 2

2 𝑆𝑔 ∆𝑇

⎞⎟⎟⎟⎟⎟⎠ .

The value 0.2 was chosen by trial and error and it fits a slow walking pedestrian. We hope that the name of the Java
class PedestrianStaticExtendedKalmanFilter makes a little bit more sense now.

Dynamic tunning

Finally we have arrived at the final case regarding the tunning of the dynamic EKF. Again the following values were
determined empirically:

𝑆𝑋 = 𝑆𝑌 = 0.8,

𝑆𝑍 = 0.08.

13.2 Weighted Least Squares

GNSS Compare offers also the possibility to change the PVT estimator if the user whishes so. By not requiring
knowledge about the dynamics, Weighted Least Squares (WLS) can be used to estimate the position using only the
pseudorange measurements. However there are some drawbacks like: the quality of the estimations fully depends on
the quality of the measurements and also the WLS requires a minimum number of measurements (typically 4 if we
want to estimate the 3D position and the receiver clock bias).

Nevertheless is useful to have such an estimator as its behavior can be studied in real-time/post-processing in compar-
ison with an EKF. And all this thanks to GNSS Compare!

Altough the pseudorange measurement model was presented in the EKF description we will do it one more time just
for the sake of completion.

13.2. Weighted Least Squares 43

GNSS Compare Documentation

13.2.1 Pseudorange measurement model

The linearized code-based pseudorange measurement is:

𝑃𝑅𝑐 − 𝜌0 + (𝛿𝑡𝑆 − 𝑑0,ion − 𝑑0,trop)⏟ ⏞
𝐶𝑜𝑟𝑟

= −𝑋𝑆 −𝑋0

𝜌0
∆𝑋 − 𝑌 𝑆 − 𝑌0

𝜌0
∆𝑌 − 𝑍𝑆 − 𝑍0

𝜌0
∆𝑍 + 𝛿𝑡𝑅.

Let’s also express the unit line of sight vector and the position related unknowns as:

u =

[︂
−𝑋𝑆 −𝑋0

𝜌0
, −𝑌 𝑆 − 𝑌0

𝜌0
, −𝑍𝑆 − 𝑍0

𝜌0

]︂
,

𝛿r = [∆𝑋, ∆𝑌, ∆𝑍] .

For n observed satellites we have the following measurement model:⎛⎜⎜⎜⎝
𝑃𝑅1

𝑐 − 𝜌10 + 𝐶𝑜𝑟𝑟1

𝑃𝑅2
𝑐 − 𝜌20 + 𝐶𝑜𝑟𝑟2

...
𝑃𝑅𝑛

𝑐 − 𝜌𝑛0 + 𝐶𝑜𝑟𝑟𝑛

⎞⎟⎟⎟⎠
⏟ ⏞

z

=

⎛⎜⎜⎜⎝
u1 1
u2 1
...

...
u𝑛 1

⎞⎟⎟⎟⎠
⏟ ⏞

H

(︂
𝛿rT

𝛿𝑡𝑅

)︂
⏟ ⏞

x

.

To estimate the vector of unknowns (x) in the WLS sense, we proceed in the following way:

x̂WLS =
(︀
HTWH

)︀−1
HTWz.

Practical advise: In the WLS case, as the position is concerned, we are estimating the difference between the approx-
imated position and the true position until this difference is below a certain threshold. We encourage you to check the
WeightedLeastSquares class to see how this is handled.

44 Chapter 13. Implemented PVT Algorithms

CHAPTER 14

Example of analysis

(To be updated with an example of analysis for the GNSS Dual-Frequency Android phones)

This section provides information about the scenarios in which GNSS Compare was tested and the PVT performance
obtained from its estimation algorithms (e.g., Extended Kalman Filter). Furthermore, the analysis presented here
serves also as an example of how GNSS Compare can be used for algorithmic performance assessment. For a pre-
liminary PVT performance assessment the following scenarios were considered: Static user, Pedestrian user and
Dynamic user.

With this section we would like to give you an idea of how GNSS Compare can be used. The application allows data
logging (e.g., results of the PVT estimations) in different formats, like NMEA and a custom one. These files can be
retrieved from the phone and then processed in your favourit programming environment for analysis. More details
about the logging formats of GNSS Compare will be given soon.

Note 1: Please be aware that the results presented here are specific to the environment/time when they were generated
and they cannot be interpreted in a general sense.

Note 2: The Extended Kalman Filters were initialized with the Android FINE location.

14.1 Static user

Let’s take a look at some details about this scenario:

• Reference location: Latitude 52.16954469, Longitude 4.48089101, Altitude 55.48 m

• Data collection duration: approximately 4 minutes

• Enabled constellations: GPS, Galileo+GPS

• Number of used satellites: 4 Galileo and 5 GPS

After the results of the PVT estimations were obtained from the logged files of GNSS Compare, they were projected
in Google Earth as seen in the figure below for an initial analysis.

45

GNSS Compare Documentation

In this scenario one can observe in the above figure that the computations based on Galileo+GPS are closer to the
reference when compared with GPS only. In order to understand these aspects in a more detailed manner, the behavior
of the errors with respect to the reference can be studied. The errors are computed based on the cartesian coordinates
within the Earth Centered Earth Fixed (ECEF) frame.

The error evolutions for GPS only PVT are presented in the above figure and it can be directly observed that they are
quite large and with a high variance. Let’s see what happens if we add Galileo in the processing.

46 Chapter 14. Example of analysis

GNSS Compare Documentation

For the case when the PVT is computed using both Galileo and GPS, the above figure shows improvements when
compared with the solution based only on GPS.

14.2 Pedestrian user

This scenario is defined in the following way:

• User dynamics: Walking pedestrian

• Location: The European Space Research and Technology Centre (ESTEC)’s parking lot

• Data collection duration: approximately 4 and half minutes

• Enabled constellations: GPS, Galileo+GPS

• PVT estimator: Extended Kalman Filter

• Number of satellites: On average 3 Galileo and 8 GPS

As for this case there is no reference trajectory available the results are analyzed at the observed satellite level and at
the projection of the estimated position in Google Earth.

14.2. Pedestrian user 47

GNSS Compare Documentation

In the above figure the estimation of the trajectory that is based only on GPS does not follow too accurately the
real pedestrian motion. However when both Galileo and GPS satellites are used together the position estimation is
improved obtaining a pedestrian path closer to reality.

14.3 Dynamic user

And the last scenario has the following characteristics:

• User dynamics: Cycling user

• Location: ESTEC

• Data collection duration: approximately 3 minutes

• Enabled constellations: GPS, Galileo+GPS

48 Chapter 14. Example of analysis

GNSS Compare Documentation

• PVT estimator: Extended Kalman Filter

• Number of satellites: On average 4 Galileo and 8 GPS

Even with this rather simplistic analysis one can gain some interesting insights. We do hope that you have now a more
clear idea about the possibilities that GNSS Compare can open!

14.3. Dynamic user 49

	Description
	Project history

	Useful Links
	Example of proposal
	Open source code on Github

	Download
	Hall of Fame
	Software Design
	GNSS Signal Processing
	Contact

	Glossary
	Global Navigation Satellite Systems Glossary
	Android Glossary
	Software Engineering Glossary

	Acknowledgements
	Newsletter
	Introduction
	Getting started with the User Interface
	Application’s Views
	Processing schemes

	Getting started with the code
	Importing the project to Android Studio
	Using the Google Maps Viewer

	GNSS basics
	Constellation
	Corrections
	PVT Estimator

	Android GNSS raw measurements
	Galileo
	GPS

	Implemented PVT Algorithms
	Extended Kalman Filter
	Weighted Least Squares

	Example of analysis
	Static user
	Pedestrian user
	Dynamic user

