

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Description

This document describes how to add new languages.

Process

Lets say that we want to add a new Armenian translation of the page.

	Figure out the right 2-lettter ISO-639-1 code:

	https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

	Details: https://hexo.io/docs/configuration.html

	Create a new translation file:

	themes/navy/languages/hy.yml

	Update the list and names of languages in:

	source/_data/languages.yml

	Add the new language to the language list in both:

	_config.dev.yml and

	_config.prod.yml

	Build the project using npm run build

	Verify you see no templating errors.

EIP 1155 - Conditional tokens for the brave, true or false

This repo hosts the code for Gnosis’ conditional tokens documentation site, explaining our unique implementation of EIP 1155 in order to create conditional tokens ideally suited to prediction markets.

Anyone is free to add to or edit this code - the more documentation we get, the better.

Adding a New Page

If you want to add a page to specific section, rather than just edit an existing page, you’ll need to make sure your new page appears on the sidebar and is accessible to everyone.

	Add your page to source/<your_section>/<your_file_here>.md

	In source/_data/sidebars.yml add the appropriate text to the appropriate place.

	In themes/navy/languages/en.yml edit the sidebars section to make sure that your new text in sidebars.yml is rendered correctly.

Testing locally

Make sure you have node.js installed first.

	Open Terminal and navigate to the project root directory,

	Run npm install

	Run npm run build,

	In another terminal, run npm run serve.

Contributing More

	If you would like add new styles, you can find all the sass files in themes/navy/source/scss - add your own there and keep things modular, clean and performing well.

	If you would like to add some JS for animations of images, or other potential bounties, the place to do that is themes/navy/source/js.

	Changing the header, footer, mobile nav, or scripts (in after_footer) can be done in themes/navy/layout/partial.

	Each new subdirectory gets it’s own route, so if you want to add a new section like conditional-tokens/extensions or conditional-tokens/contribute, then just create a new directory in source, name it what you want the route to be called, and add an index.md file to it.

If you want it to have a unique layout, set it up something like this:

layout: extensions
title: MultiToken Gaming Tutorial
id: index

and then create the appropriate extensions.ejs layout file in themes/navy/layout. .ejs files are exactly like html - so just write html in there and don’t stress.

title: {{ title }}

title: {{ title }}

title: Conditional Tokens For All
description: We’ll teach you how to make conditional tokens and show you all the different ways they can be used
layout: index

title: Gnosis Conditional Tokens
lang: en

Gnosis Conditional Tokens

id: contract
title: Contract Overview

Conditional Token Overview

In order to understand conditional tokens [https://github.com/gnosis/conditional-tokens-contracts/blob/master/contracts/ConditionalTokens.sol], you need to grasp how they are used to construct positions. A “position” is a financial term which can be described as a buy or sell action that reflects someone’s belief in an asset’s, or multiple assets’, future price.

Positions

Positions consist of collateral (ERC-20 tokens) and one or more conditions with outcome collections. Positions become valuable precisely when all of its conditions are reported as true.

This is the basic flow of events in the contract:

	Anyone can call prepareCondition [https://github.com/gnosis/conditional-tokens-contracts/blob/master/contracts/ConditionalTokens.sol#L65], given that it is an external function.

	In order to do so, they must provide an “outcomeSlotCount” - that is, a description of the various possible outcomes which can be reported on by the oracle they must also pass in.

	People can then take a “position”, which simply means locking up some collateral in the contract and buying conditional tokens associated with one of the provided outcome slots.

	Once you have taken a position, you can then split that position to a “deeper” one, or merge it back to a “shallower” one. Importantly, this allows us to use the same collateral for many different markets and illustrates the power of decentralized prediction markets which can provide much improved liquidty for niche markets.

	Once the original condition can be answered, the orcal submits a “payout vector” which dictates which outcome slots were correct.

	The conditional tokens associated with those outcome slots are then redeemable for the underlying collateral.

If you’re struggling with all this text and prefer learning by example, head over to our tutorial on creating your own prediction markets and get your hands dirty there.

First Example

Consider a dollar (DAI) collateralized position with two conditions:

	Condition 1, with outcome collection [A, B, C]

	Condition 2, with outcome collection [HI, LO]

The contract will take collateral for either (or both!) of these conditions and create conditional tokens for each outcome. We denote collateralized positions as $:(A|B), meaning “collateral” (can be DAI, US Dollar equivalents, or another ERC-20 token) for the “A or B” outcome. Similarly, $:(LO) means collateral and the “LO” outcome. Most interestingly, we can merge these positions into a deeper position like $:(A|B)&(LO). This notation shows collateral staked on A or B for the first condition, and LO for the second condition. Moving between positions and trading on open markets has never been easier.

Focus on this critical point: a position is now a clearly defined mathematical construct on a public and decentralized network. Anybody can create a condition, and anybody can take a position on that condition. This construct allows as many markets to exist as there are tokens, and for each of those markets to benefit from a global pool of liquidity.

Conditions

Let’s take a step back. Before conditional tokens can exist, a condition must be prepared. Preparing a condition [https://github.com/gnosis/conditional-tokens-contracts/blob/master/contracts/ConditionalTokens.sol#L65] means that you must define several specifications for that condition, including how a specific oracle reports the condition’s outcome. The following function is used to prepare a condition, which will be decided when the oracle submits what we call a “payout vector”:

function prepareCondition(address oracle, bytes32 questionId, uint payoutDenominator, uint outcomeSlotCount) external

	oracle – The account assigned to report the result for the prepared condition.

	questionId – An identifier for the question to be answered by the oracle.

	payoutDenominator – What the payouts reported by the oracle must eventually sum up to.

	outcomeSlotCount – The number of outcome slots which should be used for this condition. Must not exceed 256.

You, the consumer of the contract, have to interpret the question ID correctly. For example, it could be an IPFS hash which can be used to retrieve a document specifying the question more fully. Allowing clients to choose their own mechanisms for generating questionIds and choosing orcales allows for more flexibility in the long run.

Simple Example

Say we have a question where only one out of multiple choices may be chosen:

Who out of the following will be chosen? [A, B, C, D, E]

Through some commonly agreed upon mechanism, the detailed description for this question becomes a 32 byte questionId: 0xabc1234

Let’s also suppose we trust the oracle with address 0x1337aBcdef1337abCdEf1337ABcDeF1337AbcDeF to deliver the answer for this question, and that the payoutDenominator should sum to 1 for simplicty.

To prepare this condition, the following code gets run:

await conditionalTokens.prepareCondition(
 '0x1337aBcdef1337abCdEf1337ABcDeF1337AbcDeF',
 '0xabc1234',
 1,
 5
)

Later, if the oracle makes a report that the payout vector for the condition is [0, 1, 0, 0, 0], it is stating that B was chosen, and the outcome slot associated with B would receive all of the payout.

Outcome Collections

An outcome collection is defined as a nonempty proper subset of a condition’s outcome slots which represents the sum total of all the contained slots payout values. Outcome collections are represented by an index set. An index set is a uint whose bits identify whether the nth outcome is present in the collection, starting from the lower weight bits. In the example above, the five trivial outcomes represented in binary are:

	(A): 0b00001

	(B): 0b00010

	(C): 0b00100

	(D): 0b01000

	(E): 0b10000

We are not limited to trivial collections, we can compose them:

	(A|B): 0b00011

	(A|C): 0b00101

	(A|E): 0b10001

	(C|E): 0b10100

	(A|B|D): 0b01011

	(A|B|C|D|E): 0b11111

This last one is called the fullIndexSet. It is calculated by bit-shifting, to make a number with as many 1s as there are outcomes. But why bother with an index set at all? First off, it allows us to enumerate all possible combinations of outcomes:

	0b0 represents no outcome

	0b11…11 represents all outcomes

	Any other combination is a number strictly between 0b0 and 0b11…11 in a one-to-one relationship.

Further, it is useful because of the bitwise operations it offers. For instance, if you want to merge the collections (A|D) and (D|E), you use OR, so in this case 0b01001 OR 0b11000 -> 0b11001. We recognise the new index set as (A|D|E), exactly what we are looking for. We can also check the intersection between index sets. For example, if we have (B|E) and (B|C|D), we can discover if they intersect in O(1) using AND. In this case 0b10010 AND 0b01110 -> 0b00010. The result represents the (B) outcome, which is where the collections intersect. It is > 0, so they intersect. The AND of two sets is == 0 if they do not intersect.

This logic allows us to partition outcome collections. A partition is outcome collections which do not intersect. A trivial partition is [(A), (B), (C), (D), (E)]. [(A|C), (B|D), (E)] is another. We could easily check for intersections in O(m^2), where m is the number of collections, but we do it in considerably more efficient O(m) fashion. The Gnosis prediction market contract tracks the outcomes that have not been mentioned yet in freeIndexSet. It starts as “all outcomes have not been mentioned yet”. Then, on every collection, it makes sure that this collection is fully inside the still available outcomes, then flips down the bits of the collection with the use of XOR. Bonus feature: when freeIndexSet == 0, meaning there remain no unmentioned outcomes, your list of index sets, referred to as your partition, is exhaustive.

Scalar Example

Let’s ask a question whose answer may lie in a range:

What will the score be? [0, 1000]

Assume the questionId is 0x777def777def777def777def777def777def777def777def777def777def7890, and that we trust the oracle 0xCafEBAbECAFEbAbEcaFEbabECAfebAbEcAFEBaBe to deliver the results for this question.

To prepare this condition, the following code gets run:

await conditionalTokens.prepareCondition(
 '0xCafEBAbECAFEbAbEcaFEbabECAfebAbEcAFEBaBe',
 '0x777def777def777def777def777def777def777def777def777def777def7890',
 1,
 2
)

This results in a collectionId of 0x52ff54f0f5616e34a2d4f56fb68ab4cc636bf0d92111de74d1ec99040a8da118.

We prepare the condition with two slots: one which represents the low end of the range (0) and another which represents the high end (1000). The payout vector should indicate how close the answer was to these endpoints. For example, if the oracle makes a report that the payout vector is [0.9, 0.1], then this means the score was 100 (the slot corresponding to the low end is worth nine times what the slot corresponding with the high end is worth, meaning the score should be nine times closer to 0 than it is close to 1000). Likewise, if the payout vector is reported to be [0, 1], then the oracle is saying that the score was at least 1000.

Now, let’s denote the enpoints 0 and 1000 as LO and HI respectively. Using the same method as above, we can find the collectionId for (LO) to be 0xd79c1d3f71f6c9d998353ba2a848e596f0c6c1a9f6fa633f2c9ec65aaa097cdc.

Finally, we can find the combined collectionId for the two different conditions from both our questions in an expression like (A|B)&(LO):

'0x' + BigInt.asUintN(256,
 0x52ff54f0f5616e34a2d4f56fb68ab4cc636bf0d92111de74d1ec99040a8da118n +
 0xd79c1d3f71f6c9d998353ba2a848e596f0c6c1a9f6fa633f2c9ec65aaa097cdcn
).toString(16)

This yields the value 0x2a9b72306758380e3b0a31125ed39a635432b283180c41b3fe8b5f5eb4971df4.

Compounding Conditions

Let’s add some collateral into the example now. We’ll use DAI to collateralize our positions, and pretend the contract exists at the address 0xD011ad011ad011AD011ad011Ad011Ad011Ad011A. We will denote this token with $. We can calculate the positionId for the position $:(A|B) via:

web3.utils.soliditySha3({
 t: 'address',
 v: '0xD011ad011ad011AD011ad011Ad011Ad011Ad011A'
}, {
 t: 'bytes32',
 v: '0x52ff54f0f5616e34a2d4f56fb68ab4cc636bf0d92111de74d1ec99040a8da118'
})

Which returns 0x6147e75d1048cea497aeee64d1a4777e286764ded497e545e88efc165c9fc4f0.

Similarly, $:(LO) is 0xfdad82d898904026ae6c01a5800c0a8ee9ada7e7862f9bb6428b6f81e06f53bb, and $:(A|B)&(LO) has an postionId of 0xcc77e750b61d29e158aa3193faa3673b2686ba9f6a16f51b5cdbea2a4f694be0.

The important point to grasp here is that DAI may be staked in the contract as collateral in order to take a position in either of our two examples, or indeed, both. In other words, there are shallow positions like $:(LO), or deep positions like $:(A|B)&(LO). Stake in shallow positions can only be obtained through locking collateral directly in the contract; stake in deeper positions may be accessed by burning stake in shallower positions.

It’s easiest to see this at work if we draw out the same graph as earlier, hopefully now with greater understanding:

[image: source/conditional-tokens/../img/outcomes.png]DAG

The resulting nested and interconnected positions are what we are talking about when we say that every one of the millions of future tokens ought to have a market associated with it that can genuinely survive due to its access to a global liquidity pool.

title: Get Started
id: get-started

Get Started

OK, enough about contracts and the many futures of conditional tokens. Let’s start building it already! For this section, you will need

	At least some familiarity with Solidity [https://solidity.readthedocs.io/], a language for programming smart contracts on Ethereum.

	A development framework called Truffle [https://www.trufflesuite.com/] and it’s accompanying “mock” blockchain tool, ganache-cli [https://github.com/trufflesuite/ganache-cli/blob/master/README] in order to follow along from here.

Make sure your node version is 8.9.4 or above, then run:

npm install -g truffle
npm install -g ganche-cli

	Before we try to integrate conditional tokens into anything, let’s just get familiar with working with them, as there are some subtleties to this enormously cool new standard and the way we use it to enable liquid markets.

mkdir Gnosis && cd Gnosis/
git clone https://github.com/gnosis/conditional-markets-interface.git
cd conditional-markets-interface
npm install

This will set you up with all the tools you require in order to start building your own prediction markets using conditional tokens. Follow along in the tutorials section to gain a deeper understanding of how it all fits together.

title: Introduction
id: index

Understanding Conditional Tokens

{% iframe https://www.youtube.com/embed/brFdf7pIYag 800 550 %}

Basics

Conditional tokens allow you to:

	Make simple markets on the likelihood of a given event.

	Make complex markets about how the likelihood of an event is affected by any other event. For example, how is the probability of a global recession affected by a trade war between the United States and China over the next year?

	Trade any asset under the condition that a specific event happens. For example, you can buy a tokenized equivalent of the British Pound but only under the condition that no hard Brexit happens. For market observers, these markets will surface asset prices in different possible futures.

Previously such instruments could only be created at a high cost by financial institutions. The arrival of conditional tokens on Ethereum brings down the costs to a few cents and give access to everyone. All conditional tokens can be globally accessible, and payouts are securely (and cheaply) executed through smart contracts.

Example

Consider a simple future event. Suppose Yang and Trump are engaged in a political election. How do we construct a market with economic incentives for correctly predicting the outcome?

First, we lock some collateral (e.g. DAI) into a contract in order and use it to mint conditional tokens. To then create a market, we must define a collection of outcomes for the condition. In this case, there are two possible outcomes: either Yang is elected or Trump is elected. For each DAI committed to the market, market participants receive conditional tokens representing all potential outcomes. The market contract holds the DAI tokens received as collateral until the outcome of the election is known.

Each participant begins in a neutral position, with both a “correct” and an “incorrect” token for each DAI locked as collateral. That is, fungible “Yang is elected” and “Trump is elected” tokens are issued to each participant who puts collateral into the contract. All “Yang is elected” tokens are fungible with other “Yang is elected” tokens. The “Trump is elected” tokens are materially different from “Yang is elected” tokens. They are fungible with other “Trump is elected” tokens. After the outcome is known, the contract will redeem each “correct” conditional token for the DAI held as collateral. The “incorrect” tokens are irredeemable.

Key Takeaway

This brings us to the central point of this section: trading conditional tokens is the same as predicting which outcome is more likely. Suppose a participant believes Yang will be elected. They may sell their “Trump is elected” tokens at whatever price the market will bear, and later redeem their “Yang is elected” tokens at par value when (and if) Yang is elected. Trading conditional tokens helps discover the price of different opinions in a neutral way, as highly probable outcomes trade close to their redeemable “par” value, and highly improbable outcomes naturally find their market price near zero.

Astute readers will notice that, implicitly, there are two ways to enter a prediction market. One way is to buy a conditional token from another participant. Another way is to collateralize the issuance of new tokens (all outcomes) and divest of the unwanted outcomes. That is, sell the outcomes one thinks are overpriced.

The supply and demand – buyers and sellers – of “Yang is elected” and “Trump is elected” tokens establishes, through price discovery, the market’s estimation of the relative probability of the possible outcomes.

Advantages

For example, building the conditional tokens standard on ERC-1155 has allowed Gnosis to pursue further 3 long-term goals:

	Counter low liquidity with DutchX [https://www.reddit.com/r/ethereum/comments/a3expm/slowtrade_is_live_on_mainnet_or_why_we_build_the/]. With the potential to create millions of distinct markets, individual market liquidity is likely to be low, but using conditional tokens based on ERC-1155 means we can still find a reliable price, as trading on a fully decentralized exchange will unlock a shared global liquidity pool.

	Interconnected price dynamics with our DEX prototype research [https://github.com/gnosis/dex-research]. Take (1) the price of an asset, (2) the price of said asset in future A, (3) the price of said asset in future B, and finally (4) the likelihood of futures A and B. While each of these could have an individual market, with an individual price, the prices themselves are not independent. In other words, any 3 of those 4 prices dictates the 4th price. Conditional tokens allow us to feed such information back into the market to make the mechanism itself more efficient.

	No dominant currency. In the future, many conventional asset classes will be tokenized, and these tokens will be used as collateral/currency in markets that previously only supported a single currency. Think of markets trading on geopolitical events using a basket of stocks as collateral. An efficient market mechanism will be able to bundle that liquidity while minimizing the cost paid to arbitrageurs.

The ERC-1155 token standard brings with it many other advantages, though these may differ between use cases [https://medium.com/sandbox-game/erc-1155-a-new-standard-for-the-sandbox-c95ee1e45072]. Batch sends, for instance, substantially decrease the gas costs for users, and so are ideal in gaming environments, with many different types of tokens and high-velocity economies. Another huge advantage, quoted directly from that link:

We helped fine tune the standard with a special focus on ERC-721 compatibility. This feature is important for us, as we want our creators to be able to create both NFTs (via ERC-721) which can work with the existing ecosystem, and fungible tokens (via ERC-1155) which offer them the ability to mint a collection of items they can sell for use in various gaming experiences.

You can already find a whole marketplace of these kind of ERC-1155 in-game assets over at OpenSea [https://medium.com/opensea/now-open-erc-1155-marketplace-816257ab0da7].

id: split-merge-redeem
title: Split, Merge, and Redeem Positions

Split, Merge, and Redeem Positions

It should be clear from the previous section that, by constructing conditions and outcome collections clearly, we can define positions in prediction markets. Because positions can be split or merged an almost arbitrary amount of times, it means that niche markets (or markets backed by less stable collateral) can still flourish by virtue of their access to global liquidity across all markets. Think about it like this: right now, you have to use your financial insitution as market maker when investing or trading your own money, and your stockbroker in order to trade equities and/or securities, and many other intermediaries in order to access other, more esoteric financial positions. You would also have to go to another entirely different market if you have a strong opinion on who will win the next election, which you feel is valuable to others given your access to information.

However, because ERC-1155 tokens give us an inherent ability to split and merge to deeper or shallower positions, making our predictions conditional upon as many different markets as we like; it means that what used to be entirely disparate markets are brought much closer together. Conditions connect markets, making digital trading and investment, securities exchanges, and election prediction possible, even for the long tail of markets and currencies. As the diagram below shows, entirely different markets can grow from the same pool of collateral, to the extent that the positions market participants take (i.e. the links in the graph) are conditional upon the results of other markets.

[image: source/conditional-tokens/../img/all-positions-from-two-conditions.png]DAG

Split

Staking collateral in the contract directly to take a shallow position, or burning stake in a shallow position to take a deeper position are both referred to as splitting a position. This is handled the following function:

 function splitPosition(IERC20 collateralToken, bytes32 parentCollectionId, bytes32 conditionId, uint[] calldata partition, uint amount)
 external

If splitting from the collateral, the function will attempt to transfer collateral amount from the message sender to itself. Otherwise, it will burn amount stake held by the message sender in the position being split. Regardless, if successful, amount stake will be minted in the split target positions. If any of the transfers, mints, or burns fail, the transaction will revert. The transaction will also revert if the given partition is trivial, invalid, or refers to more slots than the condition is prepared with.

To decipher this function, let’s consider what would be considered a valid split, and what would be invalid:

[image: source/conditional-tokens/../img/valid-vs-invalid-splits.png]Valid vs Invalid Positions

Basic Splits

Collateral $ can be split into outcome tokens in positions [https://github.com/gnosis/conditional-tokens-contracts/blob/master/contracts/ConditionalTokens.sol#L105] $:(A), $:(B), and $:(C). To do so, use the following code:

 const amount = 1e18 // could be any amount

 // user must allow conditionalTokens to
 // spend amount of DollaCoin, e.g. through
 // await dollaCoin.approve(conditionalTokens.address, amount)

 await conditionalTokens.splitPosition(
 // This is just DollaCoin's address
 '0xD011ad011ad011AD011ad011Ad011Ad011Ad011A',
 // For splitting from collateral, pass bytes32(0)
 '0x00',
 // conditionId from the previous section
 '0x67eb23e8932765c1d7a094838c928476df8c50d1d3898f278ef1fb2a62afab63',
 // Each element of this partition is an index set:
 // see Outcome Collections for explanation
 [0b001, 0b010, 0b100],
 // Amount of collateral token to submit for holding
 // in exchange for minting the same amount of
 // outcome token in each of the target positions
 amount
)

The effect of this transaction is to transfer amount DollaCoin from the message sender to the conditionalTokens to hold, and to mint amount of outcome token for the following positions:

Symbol	Position ID
——-	———
$:(A)	0x8c12fa3bb72c9c455acd4d6034989ec0ce9188afd7c89c8c42d064ed7fe5a9d8
$:(B)	0x21aec03d8dfd8b5f0a2750718fe491e439f3625816e383b66a05cabd56624b4c
$:(C)	0x8085f7c500098412ff2fc701a74174527e7b39a2b923cd0bca6ad2d5f7fa348d

Outcome tokens are not ERC-20 tokens, but ERC-1155 multi tokens, allowing for batch transfers and other useful, gas-saving functionality explained below.

Importantly, the set of (A), (B), and (C) is not the only nontrivial partition of outcome slots for the example categorical condition. For example, the set (B) (with index set 0b010) and (A|C) (with index set 0b101) also partitions these outcome slots, and consequently, splitting from $ to $:(B) and $:(A|C) is also valid and can be done with the following code:

 await conditionalTokens.splitPosition(
 '0xD011ad011ad011AD011ad011Ad011Ad011Ad011A',
 '0x00',
 '0x67eb23e8932765c1d7a094838c928476df8c50d1d3898f278ef1fb2a62afab63',
 // This partition differs from the previous example
 [0b010, 0b101],
 amount,
)

This transaction also transfers amount DollaCoin from the message sender to the conditionalTokens.sol to hold, and it mints amount of ERC-1155 outcome token for the following positions:

Symbol	Position ID
——-	———
$:(B)	0x21aec03d8dfd8b5f0a2750718fe491e439f3625816e383b66a05cabd56624b4c
$:(A or C)	0xb33b3d0035913315b76e85842f682920f78b32c43c7175768c4c67e3f31e6413

If non-disjoint index sets are supplied to splitPosition, the transaction will revert. Partitions must be valid. For example, you can’t split $ to $:(A|B) and $:(B|C) because (A|B) (0b011) and (B|C) (0b110) share outcome slot B (0b010).

Splits to Deeper Positions

Splitting a shallow position means burning outcome tokens in that position in order to acquire outcome tokens in deeper positions. For example, you can split $:(A|B) to target $:(A|B)&(LO) and $:(A|B)&(HI):

 await conditionalTokens.splitPosition(
 // Note that we're still supplying the same collateral token
 // even though we're going two levels deep.
 '0xD011ad011ad011AD011ad011Ad011Ad011Ad011A',
 // Here, instead of just supplying 32 zero bytes, we supply
 // the collection ID for (A|B).
 // This is NOT the position ID for $:(A|B)!
 '0x52ff54f0f5616e34a2d4f56fb68ab4cc636bf0d92111de74d1ec99040a8da118',
 // This is the condition ID for the example scalar condition
 '0x3bdb7de3d0860745c0cac9c1dcc8e0d9cb7d33e6a899c2c298343ccedf1d66cf',
 // This is the only partition that makes sense
 // for conditions with only two outcome slots
 [0b01, 0b10],
 amount,
)

This transaction burns amount of outcome token in position $:(A|B) (positionId 0x6147e75d1048cea497aeee64d1a4777e286764ded497e545e88efc165c9fc4f0) in order to mint amount of outcome token in the following positions:

Symbol	Position ID
——-	———
$:(A or B)&(LO)	0xcc77e750b61d29e158aa3193faa3673b2686ba9f6a16f51b5cdbea2a4f694be0
$:(A or B)&(HI)	0xbacf3ddf0474d567cd254ea0674fe52ab20a3e2ebca00ec71a846f3c48c5de9d

Splits on Partial Partitions

Supplying a partition which does not cover the set of all outcome slots for a condition, but rather a specific outcome collection, is also possible. For example, it is possible to split $:(B|C) (positionId 0x5d06cd85e2ff915efab0e7881432b1c93b3e543c5538d952591197b3893f5ce3) to $:(B) and $:(C):

 await conditionalTokens.splitPosition(
 '0xD011ad011ad011AD011ad011Ad011Ad011Ad011A',
 // Note that we also supply zeroes here, as the only aspect shared
 // between $:(B|C), $:(B) and $:(C) is the collateral token
 '0x00',
 '0x67eb23e8932765c1d7a094838c928476df8c50d1d3898f278ef1fb2a62afab63',
 // This partition does not cover the first outcome slot
 [0b010, 0b100],
 amount,
)

Merging Positions

Merging positions [https://github.com/gnosis/conditional-tokens-contracts/blob/master/contracts/ConditionalTokens.sol#L165] does precisely the opposite of splitting a position. It burns outcome tokens in the deeper positions to either mint outcome tokens in a shallower position, or send collateral to the message sender. You can see below that merging is the same as splitting, except in reverse:

[image: source/conditional-tokens/../img/merge-positions.png]Merging Positions

To merge positions, use the following function:

function mergePositions(IERC20 collateralToken, bytes32 parentCollectionId, bytes32 conditionId, uint[] calldata partition, uint amount) external

Querying and Transferring Stake

Because outcome tokens are ERC-1155 multi token, each one is indexed by an ID. In particular, positionIds are used to index outcome tokens. This is reflected in the balance querying function:

balanceOf(address owner, uint256 positionId) external view returns (uint256)

To transfer outcome tokens, the following functions may be used, as per ERC-1155. These have been shown to save on gas costs [https://github.com/ethereum/EIPs/issues/1155#issuecomment-399969060] and allow you to move many tokens at once, which shortens the process of settling positions after the oracle has submitted a payout vector.

safeTransferFrom(address from, address to, uint256 positionId, uint256 value, bytes data) external
safeBatchTransferFrom(address from, address to, uint256[] positionIds, uint256[] values, bytes data) external
safeMulticastTransferFrom(address[] from, address[] to, uint256[] positionIds, uint256[] values, bytes data) external

Redeeming Positions

Before this is possible, the payout vector must be submitted [https://github.com/gnosis/conditional-tokens-contracts/blob/master/contracts/ConditionalTokens.sol#L78] by the oracle:

function reportPayouts(bytes32 questionId, uint[] calldata payouts) external

This will emit the following event:

event ConditionResolution(bytes32 indexed conditionId, address indexed oracle, bytes32 indexed questionId, uint outcomeSlotCount, uint[] payoutNumerators)

Then positions containing this condition can be redeemed [https://github.com/gnosis/conditional-tokens-contracts/blob/master/contracts/ConditionalTokens.sol#L218] via:

function redeemPositions(IERC20 collateralToken, bytes32 parentCollectionId, bytes32 conditionId, uint[] calldata indexSets) external

This will trigger the following event:

event PayoutRedemption(address indexed redeemer, IERC20 indexed collateralToken, bytes32 indexed parentCollectionId, bytes32 conditionId, uint[] indexSets, uint payout)

Take a look at this chart to get a more visual understanding of the flow:

[image: source/conditional-tokens/../img/redemption.png]Redemption Process

id: erc-1155
title: ERC-1155

ERC-1155

You can read the full text and discussion here [https://github.com/ethereum/EIPs/issues/1155] or just follow along with this short, non-technical summary.

Introduction

ERC-1155 is a standard interface for contracts that manage multiple token types. A single deployed contract may include any combination of fungible tokens, non-fungible tokens or other configurations (e.g. semi-fungible tokens). This Multi Token Standard allows for each token ID to represent a new configurable token type, which may have its own metadata, supply and other attributes. The _id argument contained in each function’s argument set indicates a specific token or token type in a transaction.

With the rise of blockchain games, prediction markets, and other multi token applications, developers may be creating thousands of token types, and a new type of token standard is needed to support them all.

Motivation

Tokens standards like ERC-20 and ERC-721 require a separate contract to be deployed for each token type or collection. Deploying new contracts for new tokens in a gaming or prediction market environment results in high cost and complexity. It also creates a lot of redundant bytecode on Ethereum and limits functionality (like batch sends) simply by virtue of the fact that each token contract is deployed at its own permissioned address.

The new design of ERC-1155 makes it possible to transfer multiple token types at once, saving on transaction costs. Trading (escrow / atomic swaps) of multiple tokens can be built on top of the ERC-1155 standard and it removes the need to “approve” individual token contracts separately. It is also easy to describe and mix multiple fungible or non-fungible token types in a single contract. This shows that ERC-1155 is not specific to games and many other applications benefit from this flexibility.

Compatibility with other standards

There were requirements during the design discussions to have this standard be compatible with existing standards when sending to contract addresses, specifically ERC-721. To cater for this scenario, there is some leeway with the revert logic should a contract not implement the ERC1155TokenReceiver as per “Safe Transfer Rules” outlined in the GitHub issue linked above.

Metadata

Being able to associate metadata with your token has become increasingly important since the explosion of ERC-721, the Non-Fungible Token Standard. Fetching the correct and standardized metadata for each unique asset is critical not just to overall security, but also in terms of creating slick user experience when locating or transacting with these assets. As such, EIP-1155 builds on the JSON metadata schema outlined in ERC-721, but includes optional formatting to allow for ID substitution by clients. It also standardizes metadata localization, and does away with the old symbol and name fields from ERC-20, as the first is not useful, and the second causes unnecessary duplication.

The standard is also compatible with ERC-165 [https://github.com/ethereum/EIPs/blob/master/EIPS/eip-165], for which there is a metadata URI extension (i.e. checking which interface the contract implements.)

Reference Implementation

The ERC-1155 reference implementation can be found here [https://github.com/horizon-games/multi-token-standard].

layout: docs
title: Documentation

id: technical_documentation
title: Overview

Overview

We foresee a tokenized future — where no single currency is dominant and new tradable asset classes take on increasing informational complexity. Conditional tokens, that enable prediction markets, are one of these new asset classes.

ERC-1155 is a new standard that allows for the creation of multiple types of tokens in the same contract. Rather than deploying a new contract for each ERC-20 or ERC-721 token you need for your application, you can manage them all from one, logical place. The advantages of this are many: gas savings, batch transfers, lower complexity, deep and meaningful interoperability.

ERC-1155 tokens are intended for a host of applications which require multiple types of tokens: from games with many different kinds of in-game assets, rewards and incentives, to prediction markets, the most advanced of which require many different kinds of conditional tokens in order to function effectively.

This documentation will teach you what the conditional tokens standard is; discuss various ways in which it can be used to improve your decentralized application (dapp); show you how to encode conditionality so that you can plug into and create liquid prediction markets of your own; provide you with some basic tutorials for getting started with this standard and its many use cases; and connect you to the community of developers working with it.

Gnosis

In the coming world of multiple tokens and long tail currencies, we at Gnosis feel that there are three key parts to any platform attempting to be permissionless, transparent, fair and safe. Anyone MUST be able to:

	Create conditional tokens, a new asset class with richer informational capabilities that makes the outcome of any future event tradable.

	Trade those assets (and others) using fully decentralized market mechanisms (see DutchX [https://blog.gnosis.pm/the-dutchx-pilot-d8f3e2007ae4] and DEX research [https://github.com/gnosis/dex-research] for more).

	Hold those (and other) assets in the Gnosis Safe [https://safe.gnosis.io], the best way to store conditional and other ERC20 tokens and interact with the decentralized web.

While all of these are designed to work well together, each piece is permissionless and standalone. We hope they will become building blocks in platforms and applications that we have not yet imagined.

title: Get Involved
layout: get-involved

Get Involved

title: Developers
layout: developers

id: index
title: Research at Gnosis

Research at Gnosis

Take a wander through our latest research papers and get involved with cutting-edge development. This is your opportunity to work with the best and brightest working on blockchains.

Batch Auctions

Read more [https://github.com/gnosis/dex-research/blob/master/BatchAuctionOptimization/batchauctions.pdf] about the problem of multi-token batch auctions with uniform clearing prices as a price-finding mechanism proposed for a decentralized token trading platform. You’ll also find some solution approaches based on combinatorial optimization formulations, as well as some computational results.

Batch.Trade

Blockchains and specifically smart contracts are a promising tool to enable a secure and fair trading ecosystem. The first exchanges built on these technologies emulate the traditional continuous double auction design. Existing solutions that do not rely on a centralized operator face significant challenges with front-running.

This paper [https://github.com/gnosis/dex-research/blob/master/dFusion/dfusion.v1.pdf] proposes a new trading concept that uses discrete double auctions and time lapse order encryption. The protocol eliminates front-running, provides information symmetry for all participants, and is fully decentralized in the sense that there is no central party operating the system.

Fee Structures

Due to the design of the Batch protocol outlined above, we’ve also been researching possible fee structures [https://github.com/gnosis/dex-research/blob/master/fee-structure/fee-structure] for decentralized trading protocols.

Designing autonomous or semi-autonomous mechanisms for decentralized systems requires accommodating multiple tradeoffs under the overarching goal of ensuring ongoing operation in a trustless environment. Some objectives will be specifically defined as primary system goals, but the common objectives of security and ease of access tend to be somewhat in conflict in all systems, so a primary design principle is to find the right combination of the two that is not just a compromise.

This paper expresses some design process fundamentals by which a token-based system can ensure these goals are met. The fundamental paradox is outlined first and then we propose a process-based method to reach viability.

id: index
title: Tutorials

Your First Prediction Market

If you’ve been reading these docs in order, you should have already cloned the correct repo and installed the necessary dependencies. If not, go back a few steps and start with:

mkdir Gnosis && cd Gnosis/
git clone https://github.com/gnosis/conditional-markets-interface.git
cd conditional-markets-interface
npm install

We understand that all the financial and technical jargon - positions, conditions, outcome collections - can be a little confusing. Therefore, this tutorial will help you set up a similar interface to the one you can find on sight.pm [https://sight.pm/#markets], and you can practice setting up your own prediction markets for information you’re interested in. Future tutorials will take you through some other, broader use-cases for conditional tokens, but prediction markets are the obvious first place to start.

All you’ll need to do is edit the market.config.js [https://github.com/gnosis/conditional-markets-interface/blob/master/markets.config.js] file provided in the above git repo to create your own markets, and see what terms like “taking a position” really mean in practice! Here’s what it looks like, without editing the markets to stuff you might actually be interested in:

[image: source/tutorials/../img/tutorial_1.png]Your First Decentralised Prediction Market

Quick Start

Once all the node packages are in place, you need to start up Ganache in order to interact with your own “blockchain”. In a separate terminal, run:

ganache-cli -d -i 437894314313

This starts a local chain with the unique ID we’re passing in (to avoid any potential clash between your id and one of the actual networks Ganache can connect to). Once Ganache is up and running, return to your original terminal, and run the Truffle “migrations”, which deploy all the necessary contracts you’ll need for a simple prediction market onto your local, ganache chain:

npm run migrate

Note: you may find that you need to adjust L4 in migrations/utils/writeToConfig.js when working with local networks so that Truffle can find the correct files to overwrite once the migration has been successfully completed. If you have an issue with this, change that line to:

const CONFIG_FILE_PATH = path.join(__dirname, "..", "..", "app", "config.local.json");

Once the migration has been successfully completed and all the correct values have been written to file, it’s time to start the webpack dev server and get playing with all our new toys!

npm run start

Understanding Migrations and Markets

So, what have we actually done by running these neat little scripts that set everything up and let us look at a demo prediction market in just a few minutes? Let’s break it down:

	The questions which form the basis of the markets you can see are defined in the market.config.js [https://github.com/gnosis/conditional-markets-interface/blob/master/markets.config.js] file in the root of the project. Obviously, these would be dynamic in a production version, but you can create and take a position on any question you like by adjusting this file.

	Once defined, the conditions are then prepared in the migration [https://github.com/gnosis/conditional-markets-interface/blob/master/migrations/11_prepare_conditions.js#L9].

	1 ETH [https://github.com/gnosis/conditional-markets-interface/blob/master/migrations/utils/deploy-config.js#L2] is wrapped in WETH9 [https://github.com/gnosis/conditional-markets-interface/blob/master/migrations/12_create_lmsr_mm.js#L27] for use as collateral by the operator running the migrations (the migrater). As can be seen on the following line, the market maker’s factory needs to be approved to transfer ETH on behalf of the migrater.

	This creates the conditions required for you to be able to choose outcomes you think are likely, take a position on them with your ETH, and receive back even more magical internet tokens if your predictions turn out to be accurate!

	Notice how at the end, the app/config.json file is overwritten with the latest values of the migrations.

Understanding the UI

We only created 3 conditions in markets.config.js, so it is no surprise that they are the only ones which show up. “Your balance: 0 Ξ” is how you begin, as it displays your Wrapped ETH balance. This interface will allow you to wrap your ETH, allow the market maker to spend your wrapped ETH and purchase the position you choose.

Notice how the basic interface tells you that you will receive less than twice your wager if your prediction is correct. This is because you are purchasing both sets of tokens from the prediction market and selling to the market maker the tokens for the position you expect to lose for some % of the purchase price.

You’ll also see clearly how to create conditional tokens and positions in reality. If you choose to make one of your predictions conditional, you will see an if, then block pop up below it, and will be able to bet on another of 3 provided conditions based on your original position. In this case, if you think that the price of ETH will be over $200 by 23/09/2019, then it might make sense to set this as to Conditional and take a position on the number of users according to Dapp Radar based on your prediction about the price, as the two are likely correlated to some extent.

If you select Yes for the price of ETH being over $200, set this bet to be conditional and - based on the condition of ETH being over $200 - make a prediction about the number of users for cryptohands according to DApp Radar, you can see the actual mechanics at work:

	If both predictions turn out to be true, you stand to earn 1.3022 Ξ back on an initial bet of 1 Ξ.

	If ETH does not go over $200 by the specified date, you simply get your 1 Ξ back, as this is a conditional bet.

	If ETH is above $200, but cryptohands does not have at least 1200 users, then you lose your 1 Ξ bet.

For the mathematically inclined, what we see here are the economic expression of conditional probabilities, which are written as P(A|Y), the probability of A happening, when Y happens.

Resolving It All

As the deadline looms, and the actual outcome becomes self-evident, it is incumbent on the market maker operator to pause the operation. We can then resolve the markets by acting as an oracle, and make sure everyone gets paid.

First, you will need to run the appropriate script to resolve the markets you have taken positions in:

npx truffle exec scripts/resolve_eoa_oracles.js

Again, if you run into issues on your local chain, make sure to change L16 in the above script to target config.local.json rather than just config.json. This script will allow you to pick markets to resolve and set them to one of the possible options. Who needs Delphic figures and sulfurous vents when you can just use software?

Now that the markets you’re interested in have been resolved, we need to use the other script provided in order to close them and allow all participants to redeem their positions and convert their Wrapped ETH into ETH if they so choose to. Again, this is as simple as executing the script provided for you:

npx truffle exec scripts/operate_lmsr.js

This script will give you the option to refresh, pause or resolve the markets in question. Here, we are interested in resolving them so that we can redeem our incredibly insightful positions that we took in the beginning of this tutorial. If you made sure that the oracle script resolved the conditions in favor of the mock bets you made, you should be able to close the markets here and then redeem your winning positions from the UI.

With this exercise, we have seen:

	how we can take positions on outcomes,

	how different bets and conditions will yield different returns,

	how markets can be resolved and winners paid out.

If you have made it this far, congratulations! Please submit a PR to the repo, or get in contact with us to continue contributing to a future where we can collectively pursue the most optimal predictions about how a better, more open, liquid and fair society might actually function.

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

