gluetool Documentation
Release 1.1.dev18+gf01b014

mvadkerti@redhat.com

Mar 29, 2018

Contents

1 Installation

2 Table of contents
3 gluetool API

4 Indices and tables

Python Module Index

35

61

63

gluetool Documentation, Release 1.1.dev18+gf01b014

Gluetool 1.1 (1.1.dev18+gf01b014)

The gluetool command-line tool is an automation tool constructing a sequential pipeline on the command-line. It
is able to implement any sequential process when it’s divided into modules with minimal interaction between them,
gluing them together on the command-line to form a pipeline. It is implemented as an open gluetool framework.

The cool thing about having the pipeline on the command-line is that it can be easily copy-pasted to your local shell
for debugging/development, and such pipeline can be easily customized by changing options of the modules when
needed.

The tool optionally integrates with Sentry.io error logging platform for reporting issues, very useful when running
gluetool pipelines at larger scales.

Contents 1

https://sentry.io

gluetool Documentation, Release 1.1.dev18+gf01b014

2 Contents

CHAPTER 1

Installation

If you want to install gluetool on your machine, you have two options:

For just using gluetool, you can install package from pip:

pip install gluetool

If you want to change the code of gluetool and use your copy, follow our Development readme in the project root
folder.

gluetool Documentation, Release 1.1.dev18+gf01b014

4 Chapter 1. Installation

CHAPTER 2

Table of contents

The gluetool framework

The gluetool framework is a command-line centric, modular Python framework. It allows to quickly develop
modules which can be executed on the command-line by the gluet ool command, forming a sequential pipeline.

Architecture

The gluetool framework was created with various features in mind. These should provide an easy and straightfor-
ward way how to write, configure and execute modules.

Generic core

The core of the framework is completely decoupled from the modules and their specific functionality. It could be used
for implementation of other tools.

Modules

See How to: gluetool modules for more information about gluetool modules.

Configuration

The framework provides an easy way how to define configuration for the framework and the modules. The config-
uration files use the ConfigParser format. The configuration option key in the config file is the long option string as
defined in the opt i ons dictionary.

gluetool searches for configuration files in several directories, in specific order, and it opens relevant files in all of
them if they are present there, with, given the order in which directories are being examined, values from later files
replace those from the former ones.

https://docs.python.org/2/library/configparser.html

gluetool Documentation, Release 1.1.dev18+gf01b014

Following directories are examined (the list is defined as MODULE_CONF IG_PATHS):

e /etc/gluetool.d
e ~/.gluetool.d
e ./.gluetool.d

The configuration directory layout is:

~/.gluetool.d/
- gluetool
- config

- gluetool configuration
— per module configurations,
—unique module name
- <module_config_file>

one file per

Note:
according to the needs of the modules.

Note that this directory can be used for storing additional configuration files and directories

Configuration of gluetool

The gluetool file defines the default options for the gluetool command itself. It can be used to define defaults
for any of the supported options. The options need to be defined in the [default] section. You can view all the
supported options of gluetool by running the command gluetool -h. For example, to enable the debug mode

by default, we can use this configuration

$ cat ~/.gluetool.d/gluetool
[default]
debug True

Modules Configuration

The config subdirectory can define a default configuration for each module. The configuration filename must be the
same as the module’s name. All options must be defined in the [default] section of the configuration file. You

can view the module available options by running gluetool <module> -h,e.g
for the (hypothetical) openstack module.

Below is an example of configuration for this openstack module.

.gluetool openstack -h

$ cat ~/.gluetool.d/config/openstack
[default]
auth-url https://our—instance.openstack.com:13000/v2.0
batman

YOUR_SECRET_PASSWORD

project-name gotham_ci

ssh-key ~/.ssh/id_rsa

ssh-user = root

id_rsa

ip-pool-name 10.8.240.0

username

password

key—-name

Chapter 2. Table of contents

gluetool Documentation, Release 1.1.dev18+gf01b014

Shared Functions

Shared functions are the only way how modules can share data to the subsequent modules on the command-line
pipeline. Each module can define a shared function via the shared_functions list. The available shared functions
then can be easily called from any subsequent module being executed via the shared method.

To list all shared functions provided by the available modules, use the gluetool’s -L option

$ gluetool -L

Shared function names are unique, but different modules can expose the same shared function. This is useful for
generalization, where for example different modules can provide a provision - or any other name your team agreed
on - shared function returning a list of provisioned machines from different virtualization providers.

Shared functions can have arguments and they behave the same way as ordinary Python functions.

Note: The documentation of the shared function is generated automatically from the docstring of the
method and displayed in the help of the module. As an example, see the help of the dep-11ist module
by running gluetool dep-list —h. You'll see the module provides prepare_dependencies
shared function.

Uniform Logging

The gluetool framework provides uniform logging. Modules can use their own info, warn, debug and
verbose methods to log messages on different log levels. The log level can be changed using the —~d/--debug
and -v/-—verbose options of the gluetool command.

Note: Note that the —~d/--debug and -v/--verbose options will enable the logging after parsing
the command line and configuration. To enable the debug mode as early as possible, i.e. during the
initialization of the logging system, export the variable GLUETOOL_DEBUG to any value.

gluetool modules

All application specific functionality should be placed into modules. Modules are defined in one Python file and the
module class must inherit from the class gluetool.glue.Module.

Importing of modules

The framework searches for modules in the module path(s). By default the module path is gluetool/modules in
the project’s root directory. You can override the module path with the ——module—-path option on the command line
or via the gluetool configuration. The search algorithm tries to be clever about the import. It firstly parses the syntax
tree of all « . py files it finds in the modules path(s) and imports it only if it finds a class definition which inherits from
the gluetool.glue.Module class.

Note: The module importing logic requires that you always inherit from the gluetool.glue.
Modules class or your module will not be imported. So for example, if you want to extend an existing
module Ko ji to MyKoji, you need to use:

2.2. gluetool modules 7

gluetool Documentation, Release 1.1.dev18+gf01b014

class MyKoji(Koji, Module):

Basic attributes

Name and description

Module must define one or more unique names with the class variable name. This name identifies the module on the
command line. For more information about modules providing multiple names see the section Modules with multiple
names.

Module should also define description with the class variable descript ion, which will be displayed in the module
listing, i.e. gluetool -1.

Options

Modules can define an opt i ons dictionary, which defines their command line arguments and also the module con-
Jiguration at once. Modules can use their option method <gluetool.glue.Module.option> to access the option value.
The method returns None if option does not exist or it’s value is not defined.

Note: The gluetool framework currently provides support only for named options/arguments. It is
strongly advised to use named options only.

A module option value can be specified in 3 ways and in this precedence (later replaces the previously defined value):
¢ value defined by the default key in the option’s dictionary
¢ value read from the module configuration <modules_configuration>
¢ value read from the module’s command line argument

The first two possibilities are used to define the option defaults. The command line argument value is used to override
these if needed.

Modules can define a list of required options using the required_options class variable. The required options
specify which options need to be specified when executing the module.

Note: It is advised to use required_options list instead of argparse’s required option because the
latter will only require the option specified on the command line, while the required_options list
also takes into account values read from the module configuration <modules_configuration>.

Basic methods

Modules usually want to implement three main Module methods - sanity, execute and destroy.

The sanity methodis called after parsing the command line options and the configuration files before any module
is executed. The usual use-case for using the sanity method is to do additional actions before any module is executed.

The execute method is the main entrypoint for the module. This method usually implements the module’s main
functionality.

8 Chapter 2. Table of contents

gluetool Documentation, Release 1.1.dev18+gf01b014

The destroy method is called after the execution of all the modules specified in the pipeline. The destroy methods
are called in the opposite direction as the modules are executed and the methods are called also if the execution of the
pipeline did not finish (e.g. a module aborted the execution).

Shared functions

See the framework’s documentation for introduction into shared functions.

A module can define any number of shared functions by listing their name as a string in the gluetool.glue.
Module.shared_functions list. The shared functions are made available to other modules after the module has
been executed. This makes it possible for the module to redefine the previously defined shared functions with their
own version.

Here is an example of a simple module that exposes myapi shared function and takes one optional argument specifying
the api version.

import gluetool

class MyApiModule (gluetool.Module) :
name = 'myapi'

shared_functions = ['myapi']

def myapi(self, api_version=1):
return 'My Api version: {}'.format (api_version)

def execute(self):
self.info('hello world")

If you want to call a shared function from an other module, just use the shared method and provide the name of the
function as a string, for example in the above example, you would call:

self.shared('myapi')

Note: shared () actually calls the shared function myapi from the MyApiModule in this case.

If you would like to pass additional arguments to the called shared function, just pass it as an argument to the shared
function, e.g.:

self.shared('myapi', api_version=2)

By design, more recently registered shared function replaces older ones of the same name, making them inaccessible.
When calling shared function foo, the one added by the module further in the pipeline gets called. Should you need
to call the older version of foo, the one replaced by the current instance, you can use the overloaded shared
method. It can be used to simulate a chain of super () calls in Python classes, giving “parent”-ish modules, listed
sooner in the pipeline, a say.

For example, imagine two “publishing” modules - one sends messages to “alpha”, the other one to “omega”. Both
“implement the interface” by providing a shared function with the same name, publish, and both call older version
of publish shared function when they’re done with their own work, to give modules listed sooner in the pipeline
a chance to “publish” as well. With this cooperation, it does not matter how many publishing modules you have in
the pipeline or what’s their order as long as each of them calls older version of publish. User of such modules,
publish-message, then calls publish shared function, leaving the rest to them.

2.2. gluetool modules 9

gluetool Documentation, Release 1.1.dev18+gf01b014

import gluetool

class PublishAlpha (gluetool.Module) :
name = 'publish-alpha'
shared_functions = ['publish']

def publish(self, message):
self.info("publishing to alpha '{}'".format (message))
self.overloaded_shared('publish', message)

import gluetool

class PublishOmega (gluetool.Module) :
name = 'publish-omega'
shared_functions = ['publish']

def publish(self, message):
self.info("publishing to omega '{}'".format (message))
self.overloaded_shared('publish', message)

import gluetool

class Publish (gluetool.Module) :
name = 'publish-message'
options = {
'message’': {
'help': 'Message to publish'

}

required_options = ['message']

def execute(self):
self.shared('publish', self.option('message'))

Here is an example of the execution of the above modules:

$ gluetool publish-alpha publish-omega publish-message —-message test
[14:05:11] [+] [publish-omega] publishing to omega 'test'
[14:05:11] [+] [publish-alpha] publishing to alpha 'test'

Examples

A minimal module

Adding a new gluetool module is very simple. This is a minimal module that just prints ‘hello world’:

from gluetool import Module

class MinimalModule (Module) :
name = 'example-minimal'
description = 'A minimal module'’

def execute(self):
self.info('hello world")

10 Chapter 2. Table of contents

gluetool Documentation, Release 1.1.dev18+gf01b014

Drop this module into the module path and try to run the module via:

$ gluetool minimal

Advanced development techniques

Modules with multiple names

Modules can actually define multiple names under which they can be called on the command line. This is very useful,
if you have the same plugin providing access to various instances of the same system, or a system that can be used
using the same API. An example can be a postgresql module, that can be also used to connect to an Teiid instance.
The benefit from having the same module appearing with different name is that you can define specific configuration
for each module incarnation.

from gluetool import Module

class Posgresql (Module) :
name = ('postgresqgl', 'teiid'")

gluetool features

A comprehensive list of gluetool features, available helpers, tricks and tips. All the ways gluetool have to help
module developers.

Core

Module and gluetool configuration

Configuration of gluetool and every module is gathered from different sources of different priorities, and merged
into a single store, accessible by option () method. Configuration from later sources replaces values set by earlier
sources, with lower priority. That way it is possible to combine multiple configuration files for a module, e.g. a
generic site-wide configuration, with user-specific configuration overriding the global settings. Options specified on a
command-line have the highest priority, overriding all configuration files.

Consider following example module - it has just a single option, whom, whose value is logged in a form of greeting.
The option has a default value, unknown being:

from gluetool import Module

class M (Module) :

name = 'dummy-module'
options = {
'whom': {
'default': 'unknown being'

}

def execute(self):
self.info('Hi, {}!'.format (self.option('whom'")))

2.3. gluetool features 11

http://teiid.jboss.org/

gluetool Documentation, Release 1.1.dev18+gf01b014

With a configuration file, ~/ .gluetool.d/config/dummy-module, you can change the value of whom:

[default]
whom = happz

As you can see, configuration file for dummy-module is loaded and option () method returns the correct value,
happz.

Options specified on a command-line are merged into the store transparently, without any additional action necessary:

Todo
¢ re-record video because of name => whom
* seealso:

— options definitions

See also:

core-config-files to see what configuration files are examined.

Configuration files

For every module - including gluetool itself as well - gluet ool checks several possible sources of configuration,
merging all information found into a single configuration store, which can be queried during runtime using opt ion ()
method.

Configuration files follow simple INI format, with a single section called [default], containing all options:

[default]
option-foo = value bar

Warning: Options can have short and long names (e.g. —v vs. ——verbose). Configuration files are using only
the long option names to propagate their values to gluetool. If you use a short name (e.g. v = yes), such
setting won’t affect gluet ool behavior!

These files are checked for gluetool configuration:
e /etc/gluetool.d/gluetool
e ~/.gluetool.d/gluetool
e ./.gluetool.d/gluetool
* options specified on a command-line
These files are checked for module configuration:
* /etc/gluetool.d/config/<module name>
e ~/.gluetool.d/config/<module name>
e ./.gluetool.d/config/<module name>

* options specified on a command-line

12 Chapter 2. Table of contents

gluetool Documentation, Release 1.1.dev18+gf01b014

If you’re using a tool derived from gluetool, it may add its own set of directories, e.g. using its name insead
of gluetool, but lists mentioned above should be honored by such tool anyway, to stay compatible with the base
gluetool.

It is possible to change the list of directories, using ——module-config-path option, the default list mentioned
above is then replaced by directories provided by this option.

Todo
* seealso:

— option definitions

See also:
core-config-store for more information on configuration handling.

core-module-aliases for more information on module names and how to rename them

Module aliases

Each module has a name, as set by its name class attribute, but sometimes it might be good to use the module under
another name. Remember, the module configuration is loaded from files named just like the module, and if there’s a
way to “rename” module when used in different pipelines, user might use different configuration files for the same
module.

Consider following example module - it has just a single option, whom, whose value is logged in a form of greeting:

from gluetool import Module

class M (Module) :
name

'dummy-module'

options = {
'whom': {}

}

def execute(self):
self.info('Hi, {}!'.format (self.option('whom')))

With the following configuration, ~/ . gluetool .d/config/dummy-module, it will greet your users in a more
friendly fashion:

[default]
whom = handsome gluetool user

For some reason, you might wish to use the module in another pipeline, sharing the configuration between both
pipelines, but you want to change the greeted entity. One option is to use a command-line option, which overrides
configuration files but that would make one of your pipelines a bit exceptional, having some extra command-line stuff.
Other way is to tell gluetool to use the module but give it a different name. Add the extra configuration file for
your “renamed” module, ~/ .gluetool.d/config/customized-dummy-module:

[default]
whom = beautiful

2.3. gluetool features 13

gluetool Documentation, Release 1.1.dev18+gf01b014

Module named customized-dummy-module : dummy-module does not exist but this form tells gluetool it
should create an instance of dummy-module module, and name it customized—-dummy-module. This is the
name used to find and load module’s configuration.

You may combine aliases and original modules as much as you wish - gluetool will keep track of names and the
actual modules, and it will load the correct configuration:

Todo

¢ re-record video because of name => whom

Evaluation context

gluetool and its modules rely heavily on separating code from configuration, offloading things to easily editable
files instead of hard-coding them into module sources. Values in configuration files can often be seen as templates,
which need a bit of “polishing” to fill in missing bits that depend on the actual state of a pipeline and resources
it operates on. To let modules easily participate and use information encapsulated in other modules in the pipeline,
gluetool uses concept called evaluation context - a module can provide a set of variables it thinks might be interest-
ing to other modules. These variables are collected over all modules in the pipeline, and made available as a “context”,
mapping of variable names and their values, which is a form generaly understood by pretty much any functionality
that evaluates things, like templating engines.

To provide evaluation context, module has to define a property named eval context. This property should return
a mapping of variable names and their values.

For example:

from gluetool import Module
from gluetool.utils import render_template

class M(Module) :
name = 'dummy-module'

@property
def eval_context (self):
return ({
'FOO': id(self)

def execute(self):

context = self.shared('eval_ context')
self.info ('Known variables: {}'.format (', '.Jjoin(context.keys())))
message = render_template ('Absolutely useless ID of this module is {{ FOO }}',

— x*context)

self.info (message)

It provides an interesting information to other modules - named FOO - for use in templates and other forms of runtime
evaluation. To get access to the global context, collected from all modules, shared function eval_context is called.

Expected output:

[12:48:41] [+] [dummy-module] Known variables: FOO, ENV
[12:48:41] [+] [dummy-module] Absolutely useless ID of this module is 139695598692432

14 Chapter 2. Table of contents

gluetool Documentation, Release 1.1.dev18+gf01b014

Note: Modules are asked to provide their context in the same order they are listed in the pipeline, and their contexts
are merged, after each query, into a single mapping. It is therefore easy to overwrite variables provided by modules
that were queried earlier by simply providing the same variable with a different value.

Note: Itis a good practice to prefix names of provided variables, to make them module specific and avoid confusion
when it comes to names that might be considered too generic. E.g. variable ID is probably way too universal - is it a
user ID, or a task ID? Instead, USER_ID or ARTIFACT_OWNER_ID is much better.

Todo
* seealso:

— rendering templates

Long and short option names

When specifying options on a command-line, each option can be set using its name: ——foo for option named foo.
Historicaly, it is also common to use “short” variants of option names, using just a single character. For example,
——help and —h control the same thing. By default, each option defined by a module is a “long” one, suitable for use
in a ——foo form. If developer wishes to enable short form as well, he can simply express this wish by using both
variants when defining the option, grouping them in a tuple.

Consider following example module - it has just a single option, whom, whose value is logged in a form of greeting.
It is possible to use ——whom or —w to control the value.

from gluetool import Module

class M(Module) :
name = 'dummy-module'

options = {
('"w', 'whom'): {}

}

def execute(self):
self.info('Hi, {}!'.format (self.option('whom')))

Note: Configuration files deal with “long” option names only. I.e. whom = handsome will be correctly propagated
into module’s configuration store while w = handsome won’t.

Todo
Features yet to describe:
 system-level, user-level and local dir configs
* configurable list of module paths (with default based on sys.prefix)

e dry-run support

2.3. gluetool features 15

gluetool Documentation, Release 1.1.dev18+gf01b014

* controled by core

* module can check what level is set, and take corresponding action. core takes care of logging
* exception hierarchy

* hard vs soft errors

¢ chaining supported

* custom sentry fingerprint and tags

* Failure class to pass by internally

* processes config file, command line options
e argparser to configure option

* option groups

* required options

* note to print as a part of help

* shared functions

* overloaded shared

* require_shared

* module logging helpers

* sanity => execute => destroy - pipeline flow
* failure access

* module discovery mechanism

Help

gluetool tries hard to simplify writing of consistent and useful help for modules, their shared functions, options
and, of course, a source code. Its markup syntax of choice is reStructured (reST), which is being used in all docstrings.
Sphinx is then used to generate documentation from documents and source code.

Module help

Every module supports a command-line option —h or ——help that prints information on module’s usage on terminal.
To provide as much information on module’s “public API”, several sources are taken into account when generating the
overall help for the module. Use of reST syntaxt is supported by each of them, that should allow authors to highligh

important bits or syntax.

module’s docstring Developer should describe module’s purpose, use cases, configuration files and their syntax.
Bear in mind that this is the text an end user would read to find out how to use the module, how to configure it
and what they should expect from it. Feel free to use reST to include code blocks, emphasize importat bits and
SO on.

module’s options Every option module has should have its own help set, using he1p key. These texts are gathered.
module’s shared functions If the module provides shared functions, their signatures and help texts are gathered.

module’s evaluation context If the module provides an evaluation context, description for each of its variables is
extracted.

16 Chapter 2. Table of contents

http://www.sphinx-doc.org/

gluetool Documentation, Release 1.1.dev18+gf01b014

All parts are put together, formatted properly, and printed out to terminal in response to ——he1p option.

Example:

from gluetool import Module

class M(Module) :

mmn

This module greets its user.

See ' —--whom' ' option.
name = 'dummy-module'
options = {
'whom': {
'help': 'Greet our caller, whose NAME we are told by this option.',
'default': 'unknown being',
'metavar': 'NAME'
}
}
shared_functions = ('hello',)

def hello(self, name):

mnn

Say "Hi!" to someone.

:param str name: Name of entity we're supposed to greet.

mon

self.info('Hi, {}!'.format (name))
@property
def eval_context (self):
__content__ = {
'NAME': 'Name of entity this module should greet.'

return {
'NAME'": self.option('whom')

def execute(self):
self.hello(self.option('whom'))

Todo

* run example with a gluetool supporting eval context help

* seealso:

module options

shared functions

shared functions help

eval context

2.3. gluetool features 17

gluetool Documentation, Release 1.1.dev18+gf01b014

— help colors

Todo
Features yet to describe:
* modules, shared functions, etc. help strings generated from their docstrings
¢ options help from their definitions in self.options
* RST formatting supported and evaluated before printing
* colorized to highlight RST

* keeps track of terminal width, tries to fit in

Logging
Early debug messages

Default logging level is set to INFO. While debugging actions happening early in pipeline workflow, like module
discovery and loading, it may be useful to enable more verbose logging. Unfortunatelly, this feature is controlled by
a debug option, and this option will be taken into account too late to shed light on your problem. For that case, it
is possible to tell gluetool to enable debug logging right from its beginning, by setting an environment variable
GLUETOOL_DEBUG to any value:

export GLUETOOL_DEBUG=does—-not-matter
gluetool -1

As you can see, gluetool dumps much more verbose logging messages - about processing of options, config files
and other stuff - on terminal with the variable set.

Note: You can set the variable in any way supported by your shell, session or environment in general. The only
important thing is that such variable must exist when gluetool starts.

Logging of structured data

To format structured data, like lists, tuples and dictionaries, for output, use gluetool.log. format_dict ()

Example:

import gluetool

print gluetool.log.format_dict([1, 2, (3, 4)1)

Output:

18 Chapter 2. Table of contents

gluetool Documentation, Release 1.1.dev18+gf01b014

To actually log structured data, the gluetool. log. log_dict () helper is a nice shortcut.

Example:

import gluetool
logger = gluetool.log.Logging.create_logger ()

gluetool.log.log_dict (logger.info, 'logging structured data', [1, 2, (3, 4)1)

Output:

[14:43:03] [+] logging structured data:
[

The first parameter of 1og_dict expects a callback which is given the formatted data to actually log them. It is
therefore easy to use 1og_dict on every level of your code, e.g. in methods of your module, just give it proper
callback, like self.info.

Todo
* seealso:
— logging helpers

— connecting loggers

See also:
log-blob to find out how to log text blobs.

gluetool.log. format_dict (), gluetool.log.log dict () for developer documentation.

Logging of unstructured blobs of text
To format a “blob” of text, without any apparent structure other than new-lines and similar markings, use gluetool.
log.format_blob():

It will preserve text formatting over multiple lines, and it will add borders to allow easy separation of the blob from
neighbouring text.

To actually log a blob of text, gluetool.log.log_blob () is a shortcut:

The first parameter of 1og_blob expects a callback which is given the formatted data to actually log them. It is
therefore easy to use 1og_blob on every level of your code, e.g. in methods of your module, just give it proper
callback, like self.info.

2.3. gluetool features 19

gluetool Documentation, Release 1.1.dev18+gf01b014

Todo
* seealso:
— logging helpers

— connecting loggers

See also:
log-dict to find out how to log structured data.

gluetool.log. format_blob (), gluetool.log.log blob () for developer documentation.

Logging of XML elements

To format an XML element, use gluetool.log.format_xml ():
It will indent nested elements, presenting the tree in a more readable form.
To actually log an XML element, gluetool.log. log_xml () is a shortcut:

The first parameter of 1og_xml expects a callback which is given the formatted data to actually log them. It is
therefore easy to use log_xml on every level of your code, e.g. in methods of your module, just give it proper
callback, like self.info.

Todo
* seealso:
— logging helpers

— connecting loggers

See also:
log-dict to find out how to log structured data.

gluetool.log. format_blob (), gluetool.log.log blob () for developer documentation.

Object logging helpers

Note: When we talk about logger, we mean it as a description - an object that has logging methods we can use. It’s
not necessarilly the instance of 1ogging.Logger - in fact, given how logging part of gluetool works, it is most
likely it’s an instance of gluetool.logging.ContextAdapter. But that is not important, the API - logging
methods like info or error are available in such “logger” object, no matter what its class is.

Python’s logging system provides a log function for each major log level, usually named by its corresponding level in
lowercase, e.g. debug or info. These are reachable as methods of a logger (or logging context adapter) instance.
If you have a class which is given a logger, to ease access to these methods, it is possible to “connect” the logger and
your class, making logger’s debug & co. direct members of your objects, allowing you to call self.debug, for
example.

Example:

20 Chapter 2. Table of contents

https://docs.python.org/3/library/logging.html#logging.Logger

gluetool Documentation, Release 1.1.dev18+gf01b014

from gluetool.log import Logging, ContextAdapter
logger = ContextAdapter (Logging.create_logger())
class Foo (object) :

def _ _init__ (self, logger):

logger.connect (self)

Foo(logger) .info('a message')

Output:

[10:01:15] [+] a message

All standard logging method debug, info, warn, error and exception are made available after connecting a
logger.

Todo
* seealso:

— context adapter

See also:

logging.Logger.debug () for logging methods.

Todo
Features yet to describe:

* clear separation of logging records, making it visible where each of them starts and what is a log message and
what a logged blob of command output

¢ default log level controlled by env var

» warn(sentry=True)

* verbose, readable, formatted traceback logging

* using context adapters to add “structure” to loged messages
* colorized messages based on their level

* optional “log everything” dump in a file

* correct and readable logging of exception chains

Colorized output

gluetool uses awesome colorama library to enhance many of its outputs with colors. This is done in a transparent
way, when developer does not need to think about it, and user can control this feature with a single option.

2.3. gluetool features 21

https://docs.python.org/3/library/logging.html#logging.Logger.debug
https://pypi.python.org/pypi/colorama

gluetool Documentation, Release 1.1.dev18+gf01b014

Control

Color support is disabled by default, and can be turned on using ——color option:

If colorama package is not installed, color support cannot be turned on. If user tries to do that, gluetool will
emit a warning:

Note: As of now, colorama is gluetool‘s hard requirement, therefore it should not be possible - at least out of
the box - to run gluetool wihout having colorama installed. However, this may change in the future, leaving this
support up to user decision.

To control this feature programatically, see gluetool.color.switch ().

Todo
* seealso:

— how to specify options

Colorized logs

Messages, logged on the terminal, are colorized based on their level:

DEBUG log level inherits default text color of your terminal, while, for example, ERROR is highlighted by being red,
and INFO level is printed with nice, comforting green.

Todo

* seealso:

— logging

Colorized help

gluetool uses reStructuredText (reST) to document modules, shared functions, opitons and other things, and to
make the help texts even more readable, formatting, provided by reST, is enhanced with colors, to help users orient
and focus on important information.

Todo
* seealso:
— generic help
— module help

— option help

22 Chapter 2. Table of contents

gluetool Documentation, Release 1.1.dev18+gf01b014

Colors in templates

Color support is available for templates as well, via sty le filter.

Example:

import gluetool

gluetool.log.Logging.create_logger ()
gluetool.color.switch (True)

print gluetool.utils.render_template('{{ "foo" | style(fg="red", bg="green") }}")

See also:

rendering-templates for more information about rendering templates with gluetool.

Sentry integration

gluetool integrates easily with Sentry platform, simplifying the collection of trouble issues, code crashes, warnings
and other important events your deployed code produces. This integration is optional - it must be explicitly enabled -
and transparent - it is not necessary to report common events, like exceptions.

When enabled, every unhandled exception is automatically reported to Sentry. Helpers for explicit reporting of handled
exceptions and warnings are available, as well as the bare method for reporting arbitrary events.

Control

Sentry integration is controlled by environmental variables. It must be possible to configure itilable even before
gluetool has a chance to process given options. To enable Sentry integration, one has to set at least SENTRY_DSN
variable:

export SENTRY_DSN="https://<key>:<secret>@sentry.io/<project>"

This variable tells Sentry-related code where it should report the events. Without this variable set, Sentry integration is
disabled. All relevant functions still can be called but do not report any events to Sentry, since they don’t know where
to send their reports.

See also:
About the DSN for detaield information on Sentry DSN and their use.

gluetool.sentry module for developer documentation.

Sentry tags & environment variables

Sentry allows attaching “tags” to reported events. To use environment variables as such tags, set SENTRY_TAG_MAP
variable. It lists comma-separated pairs of names, tag and its source variable.

export SENTRY_TAG_MAP="username=USER, hostname=HOSTNAME"

Should there be an event to report, integration code will attach 2 labels to it, username and hostname, using
environmen variables USER and HOSTNAME respectively as source of values.

See also:

Tagging Events for detailed information on event tags.

2.3. gluetool features 23

https://sentry.io/
https://docs.sentry.io/quickstart/#configure-the-dsn
https://docs.sentry.io/learn/context/#tagging-events

gluetool Documentation, Release 1.1.dev18+gf01b014

Logging of submitted events

Integration code is able to log every reported event. To enable this feature, simply set SENTRY_BASE_URL envi-
ronment variable to URL of the project gluetool is reporting events to. While SENTRY_DSN controls the whole
integration and has its meaning within Sentry server your gluetool runs report to, SENTRY_BASE_URL is used
only in a cosmetic way and gluetool code adds ID of reported event to it. The resulting URL, if followed, should
lead to your project and the relevant event.

As you can see, the exception, raised by gluet ool when there were no command-line options telling it what to do,
has been submitted to Sentry, and immediately logged, with ERROR loglevel.

See also:

Sentry - Control for more information about Sentry integration.

Warnings

By default, only unhandled exceptions are submitted to Sentry. it is however possible, among others, to submit
warnings, e.g. in case when such warning is good to capture yet it is not necessary to raise an exception and kill the
whole gluetool pipeline. For that case, warn logging method accepts sent ry keword parameter, which, when
set to True, uses Sentry-related code to submit given message to the configured Sentry instance. It is also always
logged like any other warning.

Example:

from gluetool.log import Logging
logger = Logging.create_logger ()

logger.warn('foo', sentry=True)

Output:

[17:16:50] [W] foo

Todo

¢ video

See also:
Object logging helpers for more information on logging methods.

gluetool.log.warn_sentry () for developer documentation.

Todo
Features yet to describe:
e all env variables are attached to events (breadcrumbs)
* logging records are attached to events (breadcrumbs)
* URL of every reported event available for examination by code
* soft-error tag for failure.soft errors

* raised exceptions can provide custom fingerprints and tags

24 Chapter 2. Table of contents

gluetool Documentation, Release 1.1.dev18+gf01b014

* submit_exception and submit_warning for explicit submissions

* logger.warn(sentry=True)

Utils

Rendering templates

gluetool and its modules make heavy use of Jinja2 templates. To help with their processing, it provides
gluetool.utils.render._template () helper which accepts both raw string templates and instances of
jinja2.Template, and renders it with given context variables. Added value is uniform logging of template and
used variables.

Example:

import gluetool
gluetool.log.Logging.create_logger ()

print gluetool.utils.render_template('Say hi to {{ user }}', user='happz')

Output:

Say hi to happz

See also:
Jinja2 templates for information about this fast & modern templating engine.
gluetool.utils.render template () for developer documentation.

colors-in-templates for using colors in templates

Normalize URL

URLSs, comming from different systems, or created by joining their parts, might contain redundant bits, duplicities,
multiple . . entries, mix of uppercase and lowercase characters and similar stuff. Such URLSs are not verry pretty. To
“prettify” your URLs, use gluetool.utils.treat_url ():

For example:

from gluetool.log import Logging
from gluetool.utils import treat_url

print treat_url ('HTTP://FoO.bAr.coM././foo/././../foo/index.html")

Output:

http://foo.bar.com/foo/index.html

Todo
Features yet to describe:

* dict_update

2.3. gluetool features 25

http://jinja.pocoo.org/docs/
http://jinja.pocoo.org/docs/

gluetool Documentation, Release 1.1.dev18+gf01b014

* converting various command-line options to unified output
* boolean switches via normalize_bool_option

» multiple string values (—foo A,B —foo C => [A,B,C])

* path - expanduser & abspath applied

» multiple paths - like multiple string values, but normalized like above

» “worker thread” class - give it a callable, it will return its return value, taking care of catching exceptions

* running external apps via run_command

* Bunch object for grouping arbitrary data into a single object, or warping dictionary as an object (d[key] =>

dkey)

* cached_property decorator

* formatted logging of arbitrary command-line - if you have a command-line to format, we have a function for

that
» fetch data from a given URL
* load data from YAML or JSON file or string
 write data structures as a YAML of JSON
* pattern maps
* waiting for things to finish
* creating XML elements

* checking whether external apps are available and runnable

Tool

Todo
Features yet to describe:
* reusable heart of gluetool

* config file on system level, user level or in a local dir

Todo

Features yet to describe:
e custom pylint checkers
* option names

¢ shared function definitions

26

Chapter 2. Table of contents

gluetool Documentation, Release 1.1.dev18+gf01b014

How to: gluetool tests

This text is a (hopefully complete) list of best practices, dos and don’ts and tips when it comes to writing tests for
gluetool APIs, modules and other code. When writing - or reviewing - gluetool tests, please adhere to these
rules whenever possible.

Note: These rules are not cast in stone - when we find out some are standing in our way to the most readable and
usable documentation, let’s just discuss the change and change what must be changed.

py.test
gluetool uses py.test framework for its test and tox to automate the running of the tests. If you’re not familiar
with these tools, please see following links to get some idea:

* py.test

¢ tox

Also inspecting existing tests and tox.ini is a good way to find out how to do something, e.g. add new coverage
for your module.

How to run tests?

Static analysis is using coala in docker, so for full test, you need to have docker daemon running.

You can run all tests using tox:

’tox -e py27

If you want to skip coala analysis so you don’t need docker, you can run

’tox —-e 'py-{unit-tests,static-analysis,doctest}"’

Tox also accept additional options:

python setup.py test —-a "--optionl —-optionZ=value"

tox —-e py27 —-—- —--optionl —--option2=value

How to see code coverage?

By default, coverage measurement is disabled. To enable it, pass following options to the test runner of your choice:

—-—-cov=gluetool --cov-report=html:coverage-report

With these options, coverage will be enabled and when test run finishes, the coverage report (in HTML) will be created
in coverage—report directory. Simply open coverage-report/index.html in your browser then.

Note: Coverage data are stored in .coverage file - if you’d like to use coverage utility to create additional
reports or filter the output to better suit your needs, feel free to do so, nothing stands in your way :)

2.4. How to: gluetool tests 27

https://docs.pytest.org/en/latest/
https://tox.readthedocs.io/en/latest/

gluetool Documentation, Release 1.1.dev18+gf01b014

Module tests should be in the same file

Tests dealing with a single module should be packed in the same file.

Test function tests one thing/code path

Avoid the temptation to put more different tests into a single test function. Test function should test a single feature or
a code path. If you’re concerned about repeating setup/teardown code a lot, learn about fixtures bellow.

Use assert
py . test prefers to use assert keyword to actually test values, and it promotes its use by providing really nice and
helpful formatting of failures, with pointers to places where the actual values differ from expected ones.

Sometimes it’s very useful to create a helper function that checks complex response, data or object state, using multiple
lower-level assert instances.

Use fixtures

The purpose of test fixtures is to provide a fixed baseline upon which tests can reliably and repeatedly
execute. pytest fixtures offer dramatic improvements over the classic xUnit style of setup/teardown func-
tions.

—py.test documentation

They don’t lie, it’s definitely worth the effort. Pretty much every test of a module’s code begins with “get a fresh
instance of a module-under-test”. You can call some function to create this instance, or you can use a fixture and
simply accept this instance as a argument of your test function. And so on.

every test function gets its own instance of gluetool.glue and the module it's,
—testing
from . import create_module

@pytest. fixture (name="module"')
def fixture_module () :

return create_module (gluetool.modules.helpers.ansible.Ansible)

def test_sanity (module, tmpdir):
glue, _ = module

assert glue.has_shared('run_playbook') is True

Session fixtures belong to tests/conftest.py.

Check exception messages with match

Use pytest.raises () parameter match to assert exception messages whenever possible:

with pytest.raises (Exception, match=r'dummy exception'):
foo ()

Be aware that mat ch value is actually a regular expression used to match exception’s message, therefore use Python’s
raw strings, prefixed with r.

28 Chapter 2. Table of contents

https://docs.pytest.org/en/latest/fixture.html
https://docs.python.org/2/reference/lexical_analysis.html#string-literals

gluetool Documentation, Release 1.1.dev18+gf01b014

Don’t be afraid of monkeypatching

It helps a lot with failure injection, with observing whether your code calls other functions it’s expected to call, and
other useful tricks. And all patches are undone when your test function returns.

If OSEror pops up, run_command should raise GlueError and re-use message from the_,
—original exception
def faulty_popen_enoent (xargs, xxkwargs):

raise OSError (errno.ENOENT, '')

monkeypatch.setattr (subprocess, 'Popen', faulty_popen_enoent)

with pytest.raises(gluetool.GlueError, match=r""Command '/bin/ls' not found$"):
run_command (['/bin/1s"'])

When your attempts lead to messy tests, cosider refactoring of the tested code

This can happen very often - you’d like to test a method which is way too complex, and the result is huge pile of
setup/teardown code, unreadable asserts and even more complicated ways to convince the tested function to take
different path, e.g. when it comes to injecting errors into its flow. In such case, consider refactoring the tested code
- it’s possible it could be rewritten to more separate pieces of code (main function & several helpers) which could
greatly improve the list of options you have, and it may even lead to more readable code.

MagicMock is very handy tool

Don’t be afraid to use MagicMock - its return_value and side_effect parameters can help a lot when it
comes to mocking mocking functions returning prepared values or raising exceptions. E.g.

monkeypatch.setattr (library, 'library_function', MagicMock (side_effect=Exception))

when library.library_function gets called, it will raise an exception. If you need to raise an exception with
specific arguments, pass a helper function as a side effect:

def throw(xargs, =*xkwargs):
pylint: disable=unused-argument

raise Exception('simply bad request')

monkeypath.setattr (library, 'library_function', MagicMock (side_effect=throw))

Instead of mocking a whole function, use MagicMock‘s return_value:

monkeypatch.setattr (foo, 'bar', MagicMock (return_value=some_known_object))

is way more readable than:

def foo():
return some_known_obJject

monkeypach.setattr (foo, 'bar', foo)

Should you need more action when it comes to returned value (computing it on the fly), patching with custom function
is absolutely acceptable.

2.4. How to: gluetool tests 29

gluetool Documentation, Release 1.1.dev18+gf01b014

How to: gluetool documentation

This text is a (hopefully complete) list of best practices, dos and don’ts and tips when it comes to writing documentation
of gluetool APIs, options and other documents. When writing - or reviewing - gluetool docs, please adhere to
these rules whenever possible.

Note: These rules are not cast in stone - when we find out some are standing in our way to the most
readable and usable documentation, let’s just discuss the change and change what must be changed.

RST

gluetool uses reStructuredText for its docstrings and documentation. If you’re not familiar with this markup lan-
guage, please see following links to get some idea:

e RST primer
* Other helpful directives
» Referencing Python objects

Also inspecting sources - and the resulting documentation - is a good way to find out how to do something, e.g. how
to use links to external documents.

How to generate HTML documentation locally

* Just run ansible playbook generate-docs.yml which can be found in the root directory of the project

/usr/bin/ansible-playbook generate-docs.yml

You documentation awaits you at docs/build/html/index.html.

Write multi-line docstrings

mmn

Foo bar

mmnn

Most of the time, functions and classes take parameters, return values, etc. Unless there’s a really good reason against
that, e.g. in the case of very simple helpers, multi-line docstring should be the goal, allowing for detailed description
of the documented API.

Every module must have a description

Short, one or two sentences describing the purpose of the module.

Every shared function must be documented

Shared functions are the API of gluet ool modules. Their docstrings are used to generate HTML docs or command-
line help, therefore it’s crucial to document their usage.

30 Chapter 2. Table of contents

http://www.sphinx-doc.org/en/stable/rest.html
http://www.sphinx-doc.org/en/stable/markup/index.html
http://www.sphinx-doc.org/en/stable/domains.html#cross-referencing-python-objects

gluetool Documentation, Release 1.1.dev18+gf01b014

Every module must be documented

Longer, detailed description of module’s goal, provided services, required resources and possible pitfalls.

Check whether the documentation is up-to-date

Make sure the documentation describes the actual state of the affairs. E.g. developer could have changed semantics of
a command-line option, or added another one that changed a behavior slightly, and forgot to update its help string.

Note: Outdated documentation is probably even worse than no documentation at all. It leads reader to
false assumptions which lead to anger. Anger leads to hate. Hate leads to suffering. When revieweing
documentation, please take special care of making sure it’s up-to-date.

Default values of parameters

If the parameter is a keyword parameter, having its default value right in function signature, Sphinx will use this
information and add it to the output.

def foo (bar=None) :

mon

:param str bar: if set, it's printed to " stdout’ .

mnn

If the default value only means unspecified value and function replaces it internally with the actual default value that
cannot be declared in function signature (e.g. it’s mutable object, or it’s retreived from another API), then it should be
noted in parameter description:

def foo (bar=None) :

mon

:param dict bar: if set, it's passed to Baz. Empty " ‘dict’ ' 1is used by,
—default.

mon

bar = bar or {}

Reference what can be referenced
Hyperlinks are good. Hyperlinks are useful. Hyperlinks save lives. Sphinx makes it easy to reference Python stuff,
you can find more information here.

It is not necessary to reference types of parameters when documented by : param <type> name directive - Sphinx
will attempt to create correspondign link automagically.

Return values

Sphinx provides two directives for return value documentation:

e :returns: * describe the return value, you can include its type if it fits naturally into your text * if you
include type, you must reference it manually, Sphinx won’t do it

2.5. How to: gluetool documentation 31

http://www.sphinx-doc.org/en/stable/domains.html#cross-referencing-python-objects

gluetool Documentation, Release 1.1.dev18+gf01b014

e :rtype: *type - and only a type - of the return value * creates a link to the type - it’s not necessary to reference
it with :py:...

If you can fit return value type into your description of the return value, then use : returns:. Most of the time you
probably can, that makes : rtype: a bit redundant but sometimes it can be useful.

mmwn

:returns: :py:class: gluetool.utils.ProcessOutput ' instance whose attributes,
—contain data returned by the process.

mmn

Code and data examples

If it’d be helpful, use an example, e.g. to show possible config file structure or to provide better idea about complex
return type. For this, . . code-block:: <language> can be very useful:

This is what a config file may look like:

foo:
- bar
- baz

Note: Be careful of the alignment of text bellow the code-block directive - it starts at the same
column as the code—block string, with one empty line separating them.

Style

» Use backquotes to mark literals

module names: guest-setup, jenkins, ...

commands: jenkins-jobs, /bin/ls, ...

when mentioning it, gluetool itself

basic Python types: dict, 1ist, ...

command-line options: ——help, ——pattern-map, ...
» Sentences should start with capital letter and end with a full stop. This applies to parameter descriptions as well.

* Directives like : param can spread to multiple lines - in such case, indent the second and following lines by a
single <TAB>.

Development

Environment

Before moving on to the actual setup, there are few important notes:

32 Chapter 2. Table of contents

gluetool Documentation, Release 1.1.dev18+gf01b014

e The only supported and (sort of tested) way of installation and using ‘‘gluetool‘ is a separate virtual
environment! It may be possible to install gluetool directly somewhere into your system but we don’t
recommend that, we don’t use it that way, and we don’t know what kind of hell you might run into. Please, stick

with virtualenv.

* The tested distributions (as in “we’re using these”) are either recent Fedora, RHEL or CentOS. You could try to
install gluetool in a different environment - or even development trees of Fedora, for example - please, make

notes about differences, and it’d be awesome if your first merge request could update this file :)

Requirements

To begin digging into gluetool sources, there are few requirements:

* virtualenv utility

* ansible-playbook

Installation

1. Create a virtual environment

virtualenv -p /usr/bin/python2.7 <virtualenv-dir>
<virtualenv-dir>/bin/activate

2. Clone gluetool repository - your working copy

git clone github:<your username>/<your fork name>
cd gluetool

3. Install gluetool

python setup.py develop

4, (optional) Activate Bash completion

gluetool —--module-path gluetool_modules/ bash-completion > gluetool-bash-completition
mv gluetool-bash-completition SVIRTUAL_ENV/bin/gluetool-bash-completition

echo "source S$VIRTUAL_ENV/bin/gluetool-bash-completition" >> S$VIRTUAL_ENV/bin/activate

To activate bash completion immediately, source the generated file. Otherwise, it’d start working next time you’d

activate your virtualenv.

./gluetool-bash-completition

5. Add configuration

gluetool looks for its configuration in a local directory (among others), in . /.gluetool.d to be specific. Add

configuration for the modules according to your preference.

2.6. Development

33

gluetool Documentation, Release 1.1.dev18+gf01b014

Now every time you activate your new virtualenv, you should be able to run gluetool:

gluetool -h
usage: gluetool [opts] modulel [opts] [args] module2

optional arguments:

Test suites

The test suite is governed by tox and py . test. Before running the test suite, you have to install tox:

’pip install tox

Tox can be easily executed by:

’tox

Tox also accepts additional options which are then passed to py . test:

’tox —-— ——-cov=gluetool —--cov-report=html:coverage-report

Tox creates (and caches) virtualenv for its test runs, and uses them for running the tests. It integrates multiple different
types of test (you can see them by running tox -1).

Documentation

Auto-generated documentation is located in docs/ directory. To update your local copy, run these commands:

ansible-playbook ./generate-docs.yml

Then you can read generated docs by opening docs/build/html/index.html.

34 Chapter 2. Table of contents

CHAPTER 3

gluetool API

dluetool.glue module

class gluetool.glue.ArgumentParser (prog=None, usage=None, description=None, epilog=None,

version=None, parents=[], formatter_class=<class
‘argparse.HelpFormatter’>, prefix_chars="-", from-
file_prefix_chars=None, argument_default=None, con-

flict_handler="error’, add_help=True)
Bases: argparse.ArgumentParser

Pretty much the argparse.ArgumentParser, it overrides just the argparse.ArgumentParser.
error () method, to catch errors and to wrap them into nice and common GlueError instances.

The original prints (for us) useless message, including the program name, and raises SystemExit exception.
Such action does not provide necessary information when encountered in Sentry, for example.

error (message)
Must not return - raising an exception is a good way to “not return”.

Raises gluetool.glue.GlueError — When argument parser encounters an error.

class gluetool.glue.Configurable
Bases: object

Base class of two main gluetool classes - gluetool.glue.Glue and gluetool.glue.Module.
Gives them the ability to use options, settable from configuration files and/or command-line arguments.

Variables _config (dict) — internal configuration store. Values of all options are stored here,
regardless of them being set on command-line or by the configuration file.

classmethod _create_args_parser (**kwargs)
Create an argument parser. Used by Sphinx to document “command-line” options of the module - which
are, by the way, the module options as well.

Parameters kwargs (dict) - Additional arguments passed to argparse.
ArgumentParser.

35

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.error
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.error
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

gluetool Documentation, Release 1.1.dev18+gf01b014

_dryrun_allows (threshold, msg)
Check whether current dry-run level allows an action. If the current dry-run level is equal of higher than
threshold, then the action is not allowed.

E.g. when action’s threshold is DryRunLevels.ISOLATED, and the current level is
DryRunLevels.DRY, the action is allowed.

Parameters

* threshold (DryRunLevels) — Dry-run level the action is not allowed.

* msg (str)— Message logged (as a warning) when the action is deemed not allowed.
Returns True when action is allowed, False otherwise.

static _for_each_option (callback, options)
Given dictionary defining options, call a callback for each of them.

Parameters

* options (dict) — Dictionary of options, in a form option-name:
option-params.

* callback (callable)— Must accept at least 3 parameters: option name (str), all
option names (short and long ones) (tuple (str, str)), and option params (dict).

static _for_each_option_group (callback, options)
Given set of options, call a callback for each option group.

Parameters
* options — List of option groups, or a dict listing options directly.

* callback (callable)—Mustaccept at least 2 parameters: options (dict), listing
options in the group, and keyword parameter group_name (str), which is set to group
name when the opt ions defines an option group.

_parse_args (args, **kwargs)
Parse command-line arguments. Uses argparse for the actual parsing. Updates module’s configuration
store with values returned by parser.

Parameters args (1ist) — arguments passed to this module. Similar to what sys.argv
provides on program level.

_parse_config (paths)
Parse configuration files. Uses ConfigParser for the actual parsing. Updates module’s configuration
store with values found returned by the parser.

Parameters paths (1ist)— List of paths to possible configuration files.

check_dryrun ()
Checks whether this object supports current dry-run level.

check_required_options ()

dryrun_allows (msg)
Checks whether current dry-run level allows an action which is disallowed on DryRunLevels.DRY
level.

See Configurable._dryrun_allows () for detailed description.

dryrun_enabled
True if dry-run level is enabled, on any level.

36 Chapter 3. gluetool API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/argparse.html#module-argparse
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/library/stdtypes.html#list

gluetool Documentation, Release 1.1.dev18+gf01b014

dryrun_level

Return current dry-run level. This must be implemented by class descendants because each one finds the
necessary information in different places.

eval_context
Return “evaluation context” - a dictionary of variable names (usually in uppercase) and their values, which
is supposed to be used in various “evaluate this” operations like rendering of templates.

Return type dict

isolatedrun_allows (msg)

Checks whether current dry-run level allows an action which is disallowed on DryRunLevels.
ISOLATED level.

option (name)
Return a value of given option from module’s configuration store.

Parameters name (st r)—name of requested option.
Returns option value or None when no such option exists.

options ={}
The options variable defines options accepted by module, and their properties:

options = {
<option name>: {
<option properties>

}y

where

*<option name> is used to name the option in the parser, and two formats are accepted (don’t add
any leading dashes (- nor —-):

—<long name>
—tuple (<short name>, <long name>)

edictionary <option properties> is passed to argparse.ArgumentParser.
add_argument () as keyword arguments when the option is being added to the parser, therefore
any arguments recognized by argparse can be used.

It is also possible to use groups:

options = [
(<group name>, <group options>),

where
e<group name> is the name of the group, e.g. Debugging options
e<group options> isthe dict with all group options, as described above.

This way, you can split pile of options into conceptualy closer groups of options. A single dict you
would have is split into multiple smaller dictionaries, and each one is coupled with the group name in a
tuple.

options_note = None
If set, it will be printed after all options as a help’s epilog.

3.1.

gluetool.glue module 37

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument
https://docs.python.org/3/library/argparse.html#module-argparse

gluetool Documentation, Release 1.1.dev18+gf01b014

parse_args (args)
Public entry point to argument parsing. Child classes must implement this method, e.g. by calling
gluetool.glue.Configurable._ parse_args () which makes use of additional argparse.
ArgumentParser options.

parse_config()
Public entry point to configuration parsing. Child classes must implement this method, e.g. by calling
gluetool.glue.Configurable._parse_config () which requires list of paths.

required_options =[]
Iterable of names of required options.

supported_dryrun_level =0
Highest supported level of dry-run.

unique_name = None
Unque name of this instance. Used by modules, has no meaning elsewhere, but since dry-run checks are
done on this level, it must be declared here to make pylint happy :/

class gluetool.glue.DryRunLevels
Bases: enum. IntEnum

Dry-run levels.
Variables
* DEFAULT (int)— Default level - everything is allowed.
* DRY (int)— Well-known “dry-run” - no changes to the outside world are allowed.

e ISOLATED (int) — No interaction with the outside world is allowed (networks connec-
tions, reading files, etc.)

DEFAULT =0

DRY =1

ISOLATED =2

_member_map_ = OrderedDict([(DEFAULT’, <DryRunLevels.DEFAULT: 0>), (‘DRY’, <DryRunLevels.DRY: 1>), (‘ISC
_member_names_ = ['DEFAULT’, ‘DRY’, ‘ISOLATED’]

_member_type
alias of int

value2member map = {0: <DryRunLevels. DEFAULT: 0>, 1: <DryRunLevels.DRY: 1>, 2: <DryRunLevels.ISOLATF

class gluetool.glue.Failure (module, exc_info)
Bases: object

Bundles exception related info. Used to inform modules in their destroy () phase that gluetool session
was killed because of exception raised by one of modules.

Parameters
* module (gluetool.glue.Module)—module in which the error happened, or None.
* exc_info (tuple)— Exception information as returned by sys.exc_info ().
Variables
* module (gluetool.glue.Module)— module in which the error happened, or None.
* exception (Exception)— Shortcut to exc_info[1], if available, or None.

* exc_info (tuple)— Exception information as returned by sys.exc_info ().

38 Chapter 3. gluetool API

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/enum.html#enum.IntEnum
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/sys.html#sys.exc_info
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/sys.html#sys.exc_info

gluetool Documentation, Release 1.1.dev18+gf01b014

* sentry_event_id (str)—If set, the failure was reported to the Sentry under this ID.

class gluetool.glue.Glue (tool=None, sentry=None)
Bases: gluetool.glue.Configurable

Main workhorse of the gluetool. Manages modules, their instances and runs them as requested.
Parameters

* tool (gluetool.tool.Tool) — If set, it’s an gluetool-like tool that created this
instance. Some functionality may need it to gain access to bits like its command-name.

* sentry (gluetool.sentry.Sentry)—If set, it provides interface to Sentry.

_add_shared (funcname, module, func)
Register a shared function. Overwrite previously registered function with the same name, if there was any
such.

This is a helper method for easier testability. It is not a part of public API of this class.
Parameters
¢ funcname (st r)— Name of the shared function.

* module (gluetool.glue.Module) — Module instance providing the shared func-
tion.

e func (callable) - Shared function.

_check_module_file (mfile)
Make sure the file looks like a gluet ool module:

ecan be processed by Python parser,
simports gluetool.glue.Glue and gluetool.glue.Module,

econtains child class of gluetool.glue.Module.

Parameters mfile (st r)— path to a file.
Returns True if file contains gluetool module, False otherwise.
Raises gluetool.glue.GlueError — when it’s not possible to finish the check.
_eval_context ()
Gather contexts of all modules in a pipeline and merge them together.

Always returns a unique dictionary object, therefore it is safe for caller to update it. The return value is
not cached in any way, therefore the change if its content won’t affect future callers.

Provided as a shared function, registered by the Glue instance itself.
Return type dict
_for_each_module (modules, callback, *args, **kwargs)

_import_module (import_name, filename)
Attempt to import a Python module from a file.

Parameters
e import_name (st r)—name assigned to the imported module.
e filepath (str)— path to a file.

Returns imported Python module.

3.1. gluetool.glue module 39

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

gluetool Documentation, Release 1.1.dev18+gf01b014

Raises gluetool.glue.GlueError — when import failed.

_load_gluetool_modules (group, module_name, filepath)
Load gluetool modules from a file. Method attempts to import the file as a Python module, and then
checks its content and adds all gluetool modules to internal module registry.

Parameters
* group (str)—module group.
* module_name (st r)—name assigned to the imported Python module.
e filepath (str)— path to afile.

Return type [(module_group, module_class), ..]

Returns list of loaded gluetool modules

_load_module_path (ppath)
Search and load gluet ool modules from a directory.

In essence, it scans every file with . py suffix, and searches for classes derived from gluetool.glue.
Module.

Parameters ppath (st r) —directory to search for gluetool modules.

_load_python_module (group, module_name, filepath)
Load Python module from a file, if it contains gluet ool modules. If the file does not look like it contains
gluetool modules, or when it’s not possible to import the Python module successfully, method simply
warns user and ignores the file.

Parameters
e import_name (st r)— name assigned to the imported module.
* filepath (str)— path to afile.

Returns loaded Python module.

Raises gluetool.glue.GlueError — when import failed.

add_shared (funcname, module)
Register a shared function. Overwrite previously registered function with the same name, if there was any
such.

Parameters
¢ funcname (st r)— Name of the shared function.

* module (gluetool.glue.Module) — Module instance providing the shared func-
tion.

del_shared (funcname)
destroy_modules (failure=None)
dryrun_level

eval_context
Returns “global” evaluation context - some variables that are nice to have in all contexts.

Variables ENV (dict)—os.environ.
get_shared (funcname)

has_shared (funcname)

40 Chapter 3. gluetool API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/os.html#os.environ

gluetool Documentation, Release 1.1.dev18+gf01b014

init_module (module_name, actual_module_name=None)
Given a name of the module, create its instance and give it a name.

Parameters
¢ module_name (st r)— Name under which will be the module instance known.

¢ actual_module_name (str) — Name of the module to instantiate. It does not
have to match module_name - actual_module_name refers to the list of known
gluetool modules while module_name is basically an arbitrary name new in-
stance calls itself. If it’s not set, which is the most common situation, it defaults to
module_name.

Returns A Module instance.

load_modules ()
Load all available gluetool modules.

module_config_paths
List of paths in which module config files reside.

module_data_paths
List of paths in which module data files reside.

module_group_list ()
Returns a dictionary of groups of modules with description

module_list ()

module_list_usage (groups)
Returns a string with modules description

module_paths
List of paths in which modules reside.

options = [(‘Global options’, {(‘L’, ‘list-shared’): {‘action’: ‘store_true’, ‘default’: False, ‘help’: ‘List all available share
parse_args (args)

parse_config (paths)

require_shared (*names, **kwargs)

run_module (module_name, module_argv=None, actual_module_name=None, register=False)
Syntax sugar for run_modules (), in the case you want to run just a one-shot module.

Parameters
¢ module_name (st r)— Name under which will be the module instance known.
* module_argv (list (str))— Arguments of the module.

¢ actual_module_name (str) — Name of the module to instantiate. It does not
have to match module_name - actual_module_name refers to the list of known
gluetool modules while module_name is basically an arbitrary name new in-
stance calls itself. If it’s not set, which is the most common situation, it defaults to
module_name.

e register (bool)-If True, module instance is added to a list of modules in this Glue
instance, and it will be collected when destroy_modules () gets called.

run_modules (pipeline_desc, register=False)
Run a pipeline, consisting of multiple modules.

Parameters

3.1. gluetool.glue module 4

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

gluetool Documentation, Release 1.1.dev18+gf01b014

* pipeline_desc (list (PipelineStep))— List of pipeline steps.

* register (bool)-If True, module instance is added to a list of modules in this Glue
instance, and it will be collected when destroy _modules () gets called.

sentry_submit_exception (*args, **kwargs)
Submits exceptions to the Sentry server. Does nothing by default, unless this instance is initialized with a
gluetool.sentry.Sentry instance which actually does the job.

See gluetool.sentry.Sentry.submit_exception().

sentry_submit_warning (*args, **kwargs)
Submits warnings to the Sentry server. Does nothing by default, unless this instance is initialized with a
gluetool.sentry.Sentry instance which actually does the job.

See gluetool.sentry.Sentry.submit_warning().
shared (funcname, *args, **kwargs)

shared functions = None
Shared function registry. funcname: (module, fn)

exception gluetool.glue.GlueCommandError (cmd, output, **kwargs)
Bases: gluetool.glue.GlueError

Exception raised when external command failes.
Parameters
* cmd (11ist)— Command as passed to gluetool.utils.run_command helper.
* output (gluetool.utils.ProcessOutput)— Process output data.
Variables
* cmd (11st)— Command as passed to gluetool.utils.run_command helper.
* output (gluetool.utils.ProcessOutput)— Process output data.

exception gluetool.glue.GlueError (message, caused_by=None, **kwargs)
Bases: exceptions.Exception

Generic gluetool exception.
Parameters
* message (st r)— Exception message, describing what happened.

* caused_by (tuple)—If set, contains tuple as returned by sys.exc_info (), describ-
ing the exception that caused this one to be born. If not set, constructor will try to auto-detect
this information, and if there’s no such information, instance property caused_by will be
set to None.

Variables
* message (str)— Exception message, describing what happened.

* caused_by (tuple)—If set, contains tuple as returned by sys.exc_info (), describ-
ing the exception that caused this one to be born. None otherwise.

sentry_fingerprint (current)
Default grouping of events into issues might be too general for some cases. This method gives users a
chance to provide custom fingerprint Sentry could use to group events in a more suitable way.

E.g. user might be interested in some sort of connection issues but they would like to have them grouped
not by a traceback (which is the default method) but per remote host IP. For that, the Sentry integration

42 Chapter 3. gluetool API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/cmd.html#module-cmd
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/sys.html#sys.exc_info
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/sys.html#sys.exc_info

gluetool Documentation, Release 1.1.dev18+gf01b014

code will call sentry_fingerprint method of a raised exception, and the method should return new
fingerprint, let’s say [<exception class name>, <remote IP>],and Sentry will group events
using this fingerprint.

Parameters current (1ist (str))— current fingerprint. Usually ['{{ default }}"']
telling Sentry to use its default method, but it could already be more specific.

Return type list(str)
Returns new fingerprint, e.g. ['FailedToConnectToAPI', '10.20.30.40"]

sentry_tags (current)
Add, modify or remove tags attached to a Sentry event, reported when the exception was raised.

Most common usage would be an addition of tags, e.g. remote—host to allow search for events related
to the same remote address.

Parameters str) current (dict (str,)— current set of tags and their values.
Return type dict(str, str)
Returns new set of tags. It is possible to add tags directly into current and then return it.

exception gluetool.glue.GlueRetryError (message, caused_by=None, **kwargs)
Bases: gluetool.glue.GlueError

Retry gluetool exception

class gluetool.glue.Module (glue, name)
Bases: gluetool.glue.Configurable

Base class of all gluet ool modules.
Parameters glue (gluetool.glue.Glue)— Glue instance owning the module.
Variables
* glue(gluetool.glue.Glue)— Glue instance owning the module.

* _config (dict) — internal configuration store. Values of all module options are stored
here, regardless of them being set on command-line or in the configuration file.

* _overloaded_shared_functions (dict)—If a shared function added by this mod-
ule overloades an older function of the same name, registered by a previous module, the
overloaded one is added into this dictionary. The module can then call this saved function -
using overloaded_shared () - to implement a “chain” of shared functions, when one
calls another, implementing the same operation.

_generate_shared_ functions_help ()
Generate help for shared functions provided by the module.

Returns Formatted help, describing module’s shared functions.

_paths_with_module (ro0fs)
Return paths cretaed by joining roots with module’s unique name.

Parameters roots (1ist (str))— List of root directories.

add_shared()
Register module’s shared functions with Glue, to allow other modules to use them.

del_shared (funcname)

description = None
Short module description, displayed in gluetool ‘s module listing.

3.1. gluetool.glue module 43

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

gluetool Documentation, Release 1.1.dev18+gf01b014

destroy (failure=None)
Here should go any code that needs to be run on exit, like job cleanup etc.

Parameters failure (gluetool.glue.Failure)—if set, carries information about fail-
ure that made gluetool to destroy the whole session. Modules might want to take actions
based on provided information, e.g. send different notifications.

dryrun_level

execute ()
In this method, modules can perform any work they deemed necessary for completing their purpose. E.g.
if the module promises to run some tests, this is the place where the code belongs to.

By default, this method does nothing. Reimplement as needed.
get_shared (funcname)
has_shared (funcname)

name = None
Module name. Usually matches the name of the source file, no suffix.

overloaded_shared (funcname, *args, **kwargs)
Call a shared function overloaded by the one provided by this module. This way, a module can give chance
to other implementations of its action, e.g. to publish messages on a different message bus.

parse_args (args)

parse_config ()
require_shared (*names, **kwargs)
run_module (module, args=None)

sanity ()
In this method, modules can define additional checks before execution.

Some examples:
*Advanced checks on passed options
*Check for additional requirements (tools, data, etc.)
By default, this method does nothing. Reimplement as needed.
shared (*args, **kwargs)

shared_functions =[]
Iterable of names of shared functions exported by the module.

class gluetool.glue.PipelineStep (module, actual_module=None, argv=None)

Bases: object
Step of gluetool ‘s pipeline - which is basically just a list of steps.
Parameters

* module (str)—name to give to the module instance. This name is used e.g. in logging or
when searching for module’s config file.

* actual_module (str) — The actual module class the step uses. Usually it is same as
module but may differ, module is then a mere “alias”. actual_module is used to
locate a module class, whose instance is then given name module.

* argv (list (str))—list of options to be given to the module, in a form similar to sys .
argv.

44

Chapter 3. gluetool API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/library/sys.html#sys.argv

gluetool Documentation, Release 1.1.dev18+gf01b014

module_designation

exception gluetool.glue.SoftGlueError (message, caused_by=None, **kwargs)
Bases: gluetool.glue.GlueError

Soft errors are errors Glue Ops and/or developers shouldn’t be bothered with, things that are up to the user to
fix, e.g. empty set of tests. Hard errors are supposed to warn Ops/Devel teams about important infrastructure
issues, code deficiencies, bugs and other issues that are fixable only by actions of Glue staff.

However, we still must provide notification to user(s), and since we expect them to fix the issues that led to
raising the soft error, we must provide them with as much information as possible. Therefore modules dealing
with notifications are expected to give these exceptions a chance to influence the outgoing messages, e.g. by
letting them provide an e-mail body template.

gluetool.glue.retry (*args)
Retry decorator This decorator catches given exceptions and returns libRetryError exception instead.

usage: @retry(exceptionl, exception2, ..)

gluetool.help module

Command-line ——help helpers (muhaha!).

gluetool uses docstrings to generate help for command-line options, modules, shared functions and other stuff.
To generate good looking and useful help texts a bit of work is required. Add the Sphinx which we use to generate
nice documentation of gluetool‘s API and structures, with its directives, and it’s even more work to make readable
output. Therefore these helpers, separated in their own file to keep things clean.

gluetool.help.C_ARGNAME (fext)
gluetool.help.C_FUNCNAME (fext)
gluetool.help.C_LITERAL (fext)

class gluetool.help.DummyTextBuilder
Sphinx TextWriter (and other writers as well) requires an instance of Builder class that brings configu-
ration into the rendering process. The original TextBuilder requires Sphinx application which brings a lot
of other dependencies (e.g. source paths and similar stuff) which are impractical in our use case (‘“render short
string to plain text”). Therefore this dummy class which just provides minimal configuration - TextWriter
requires nothing else from Builder instance.

See sphinx/writers/text .py for the original implementation.

class DummyConfig

text_newlines =“‘\n’

text sectionchars = ‘#=-~"+¢

DummyTextBuilder.config
alias of DummyConfig

DummyTextBuilder.translator_class = None

class gluetool.help.LineWrapRawTextHelpFormatter (*args, **kwargs)
Bases: argparse.RawDescriptionHelpFormatter

_split_1lines (fext, width)

class gluetool.help.TextTranslator (document, builder)
Bases: sphinx.writers.text.TextTranslator

3.2. gluetool.help module 45

https://docs.python.org/3/library/argparse.html#argparse.RawDescriptionHelpFormatter

gluetool Documentation, Release 1.1.dev18+gf01b014

depart_field_name (node)
depart_literal (node)
visit_field name (node)
visit_literal (node)

gluetool.help.doecstring_to_help (docstring, width=None, line_prefix="")
Given docstring, process and render it as a plain text. This conversion function is used to generate nice and
readable help strings used when printing help on command line.

Parameters
* docstring (str)—raw docstring of Python object (function, method, module, etc.).
* width (int)— Maximal line width allowed.

* line prefix (str) - prefix each line with this string (e.g. to indent it with few spaces
or tabs).

Returns formatted docstring.

gluetool.help. function_help (func, name=None)
Uses function’s signature and docstring to generate a plain text help describing the function.

Parameters

* func (callable)—Function to generate help for.

* name (str)—Ifnotset, func.__name___is used by default.
Returns (signature, body) pair

gluetool.help. functions_help (functions)
Generate help for a set of functions.

Parameters callable) functions (list (str,)—Functions to generate help for, passed as
name and the corresponding callable pairs.

Return type str
Returns Formatted help.

gluetool.help.option_help (#xt)
Given option help text, format it to be more suitable for command-line help. Options can provide a single line
of text, or mutiple lines (using triple quotes and docstring-like indentation).

Parameters txt (st r)— Raw option help text.
Returns Formatted option help text.

gluetool.help.py_default_role (role, rawtext, text, lineno, inliner, options=None, content=None)
Default handler we use for py : . . . roles, translates text to literal node.

gluetool.help.rst_to_text (rext)
Render given text, written with RST, as plain text.

Parameters text (str) — string to render.
Return type str
Returns plain text representation of text.

gluetool.help.trim_docstring (docstring)
Quoting PEP 257 <https://www.python.org/dev/peps/pep-0257/#handling-docstring-indentation>:

46 Chapter 3. gluetool API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

gluetool Documentation, Release 1.1.dev18+gf01b014

Docstring processing tools will strip a uniform amount of indentation from the second and further lines of the
docstring, equal to the minimum indentation of all non-blank lines after the first line. Any indentation in the first
line of the docstring (i.e., up to the first newline) is insignificant and removed. Relative indentation of later lines
in the docstring is retained. Blank lines should be removed from the beginning and end of the docstring.

Code bellow follows the quote.

This method does exactly that, therefore we can keep properly aligned docstrings while still use them for rea-
sonably formatted help texts.

Parameters docstring (str)—raw docstring.
Return type str

Returns docstring with lines stripped of leading whitespace.

gluetool.log module

Logging support.

Sets up logging environment for use by gluetool and modules. Based on standard library’s 10gging module,
augmented a bit to support features loke colorized messages and stackable context information.

Example usage:

initialize logger as soon as possible
logger = Logging.create_logger ()

now it's possible to use it for logging:
logger.debug('foo!")

or connect it with current instance (if you're doing all this
inside some class' constructor):
logger.connect (self)

now you can access logger's methods directly:
self.debug('foo once again!')

find out what your logging should look like, e.g. by parsing command-line options

tell logger about the final setup
logger = Logging.create_logger (output_file='/tmp/foo.log', level=...)

and, finally, create a root context logger - when we create another loggers during
the code flow, this context logger will be in the root of this tree of loggers.
logger = ContextAdapter (logger)

don't forget to re-connect with the context logger 1if you connected your instance
with previous logger, to make sure helpers are set correctly
logger.connect (self)

class gluetool.log.BlobLogger (intro, outro=None, on_finally=None, writer=None)
Bases: object

Context manager to help with “real time” logging - some code may produce output continuously, e.g. when
running a command and streaming its output to our stdout, and yet we still want to wrap it with boundaries and
add a header.

3.3. gluetool.log module 47

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/functions.html#object

gluetool Documentation, Release 1.1.dev18+gf01b014

This code:

with BlobLogger('ls of root', outro='end of 1ls'):
subprocess.call(['ls', '/'])

will lead to the output similar to this:

[20:30:50] [+] -——v——=V——-V——-Vv——-vVv——— 1ls of root
bin boot data dev ...
[20:30:50] [+] —"——"—--"—--"——-"——— end of 1s

Note: When you already hold the data you wish to log, please use gluetool.log.log blob()
or gluetool.log.log dict (). The example above could be rewritten using log_blob by using
subprocess.check_output () and passing its return value to 1og_blob. BlobLogger is designed
to wrap output whose creation caller don’t want to (or cannot) control.

Parameters
* intro (str)— Label to show what is the meaning of the logged data.
* outro (str)— Label to show by the final boundary to mark the end of logging.

* on_finally (callable)— When set, it will be called in __exit__ method. User of
this context manager might need to flush used streams or close resources even in case the
exception was raised while inside the context manager. on_finally is called with all
arguments the __exit__ was called, and its return value is returned by __exit___itself,
therefore it can examine possible exceptions, and override them.

* writer (callable)— A function which is used to actually log the text. Usually a one of
some logger methods.

class gluetool.log.ContextAdapter (logger, extra=None)

Bases: 1ogging.LoggerAdapter
Generic logger adapter that collects “contexts”, and prepends them to the message.

“context” is any key in extra dictionary starting with ctx_, whose value is expected to be tuple of
(priority, wvalue). Contexts are then sorted by their priorities before inserting them into the message
(lower priority means context will be placed closer to the beggining of the line - highest priority comes last.

Parameters
* logger (logging. Logger) — parent logger this adapter modifies.

* extras (dict) — additional extra keys passed to the parent class. The dictionary is then
used to update messages’ ext ra key with the information about context.

connect (parent)
Create helper methods in parent, by assigning adapter’s methods to its attributes. One can then call
parent .debug and so on, instead of less readable parent . logger.debug.

Simply instantiate adapter and call its connect with an object as a parent argument, and the object
will be enhanced with all these logging helpers.

Parameters parent — object to enhance with logging helpers.

process (msg, kwargs)
Original process overwrites kwargs ['extra'] which doesn’t work for us - we want to chain
adapters, getting more and more contexts on the way. Therefore update instead of assignment.

48

Chapter 3. gluetool API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/logging.html#logging.LoggerAdapter
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#dict

gluetool Documentation, Release 1.1.dev18+gf01b014

class gluetool.log.Logging
Bases: object

Container wrapping configuration and access to 1ogging infrastructure gluetool uses for logging.

static _close_output_file ()
If opened, close output file used for logging.

This method is registered with atexit.

static create_logger (output_file=None, level=20, sentry=None, sentry_submit_warning=None)
Create and setup logger.

This method is called at least twice:

swhen gluetool.glue.Glueisinstantiated: only a stderr handler is set up, with loglevel being
INFO;

swhen all arguments and options are processed, and Glue instance can determine desired log level,
whether it’s expected to stream debugging messages into a file, etc. This time, method only modifies
propagates necessary updates to already existing logger.

Parameters

e output_file (str) — if set, new handler will be attached to the logger, streaming
messages of all log levels into this this file.

e level (int) — desired log level. One of constants defined in 1ogging module, e.g.
logging.DEBUG or logging.ERROR.

* sentry (bool)—if set, logger will be augmented to send every log message to the Sentry
server.

* sentry_submit_warning (callable)—if set, itis used by warning methods of
derived loggers to submit warning to the Sentry server, if asked by a caller to do so.

Return type logging.Logger
Returns a 1ogging.Logger instance, set up for logging.
static get_logger ()
Returns a logger instance.

Expects there was a call to create_logger () method before calling this method that would actually
create and set up the logger.

Return type logging.Logger

Returns a 1ogging.Logger instance, set up for logging, or None when there’s no logger
yet.

logger = None
Logger singleton - if anyone asks for a logger, they will get this one. Needs to be properly initialized by
calling create_logger ().

output_file = None
If enabled, handles output to catch-everything file.

output_file handler = None

stderr_handler = None
Stream handler printing out to stderr.

3.3. gluetool.log module 49

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/atexit.html#module-atexit
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/logging.html#logging.Logger

gluetool Documentation, Release 1.1.dev18+gf01b014

class gluetool.log.LoggingFormatter (colors=True, log_tracebacks=False)
Bases: logging.Formatter

Custom log record formatter. Produces output in form of:
[stamp] [level] [ctxl] [ctx2] ... message
Parameters

* colors (bool)—if set, colorize output. Enabled by default but when used with file-backed
destinations, colors are disabled by logging subsystem.

* log_tracebacks (bool) — if set, add tracebacks to the message. By default, we don’t
need tracebacks on the terminal, unless its loglevel is verbose enough, but we want them in
the debugging file.

static _format_exception_chain (exc_info)

_level_color = {40: <function <lambda>>, 50: <function <lambda>>, 20: <function <lambda>>, 30: <function <lamb
Colorizers assigned to loglevels

_level_tags ={5: ‘V’,40: ‘E’, 10: ‘D’, 50: ‘C’, 20: ‘+’,30: ‘W’}
Tags used to express loglevel.

format (record)
Format a logging record. It puts together pieces like time stamp, log level, possibly also different contexts
if there are any stored in the record, and finally applies colors if asked to do so.

Parameters record (logging. LogRecord) — record describing the event.
Return type str
Returns string representation of the event record.

class gluetool.log.ModuleAdapter (logger, module)
Bases: gluetool.log.ContextAdapter

Custom logger adapter, adding module name as a context.
Parameters
* logger (logging. Logger) — parent logger this adapter modifies.
* module (gluetool.glue.Module)— module whose name is added as a context.

gluetool.log. format_dict (dictionary)
Format a Python data structure for printing. Uses json.dumps () formatting capabilities to present readable
representation of a given structure.

gluetool.log.log_blob (writer, intro, blob)
Log “blob” of characters of unknown structure, e.g. output of a command or response of a HTTP request. The
blob is preceded by a header and followed by a footer to mark exactly the blob boundaries.

Note: For logging structured data, e.g. JSON or Python structures, use gluetool.log.log dict (). It
will make structure of the data more visible, resulting in better readability of the log.

Parameters

* writer (callable)— A function which is used to actually log the text. Usually a one of
some logger methods.

* intro (str) - Label to show what is the meaning of the logged blob.

50 Chapter 3. gluetool API

https://docs.python.org/3/library/logging.html#logging.Formatter
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/logging.html#logging.LogRecord
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/json.html#json.dumps
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/stdtypes.html#str

gluetool Documentation, Release 1.1.dev18+gf01b014

* blob (str)— The actual blob of text.

gluetool.log.log_dict (writer, intro, data)
Log structured data, e.g. JSON responses or a Python 1ist.

Note: For logging unstructured “blobs” of text, use gluetool. log. log _blob (). It does not attempt to
format the output, and wraps it by header and footer to mark its boundaries.

Note: Using gluetool.log.format_dict () directly might be shorter, depending on your your code.
For example, this code:

self.debug('Some data:\n{}'.format (format_dict (data)))

is equivalent to:

’log_dict(self.debug, 'Some data', data)

If you need more formatting, or you wish to fit more information into a single message, using logger methods
with format_dict is a way to go, while for logging a single structure 1og_dict is more suitable.

Parameters

* writer (callable)— A function which is used to actually log the text. Usually a one of
some logger methods.

* intro (str) - Label to show what is the meaning of the logged structure.
* blob (st r) - The actual data to log.
gluetool.log.log_xml (writer, intro, element)
Log an XML element, e.g. Beaker job description.
Parameters

* writer (callable)— A function which is used to actually log the text. Usually a one of
some logger methods.

* intro (str) - Label to show what is the meaning of the logged blob.

* element — XML element to log.
gluetool.log.verbose_adapter (self, message, *args, **kwargs)
gluetool.log.verbose_logger (self, message, *args, **kwargs)

gluetool.log.warn_sentry (self, message, *args, **kwargs)
Beside calling the original the warning method (stored as self.orig_warning), this one also submits
warning to the Sentry server when asked to do so by a keyword argument sentry set to True.

dluetool.proxy module

Proxying object wrapper.

3.4. gluetool.proxy module 51

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/stdtypes.html#str

gluetool Documentation, Release 1.1.dev18+gf01b014

class gluetool .proxy.Proxy (obj)
Bases: object

Taking advantage of duck typing - wrap instance of class Foo with a Proxy, and the result will behave pretty
much like Foo instance. Inherit from Proxy to create custom wrappers, extended with your own methods.

classmethod _create_class_proxy (theclass)
creates a proxy for the given class

_obj

_special _names=["__abs_ ’,¢ add_’,‘ and_ ’,¢_ call_’,‘ cmp__’,¢_ coerce_’,‘ contains_ ’,‘ delitem__

gluetool.tool module

Heart of the “gluetool” script. Referred to by setuptools’ entry point.

class gluetool.tool.Gluetool
Bases: object

_cleanup (failure=None)
Clear Glue pipeline by calling modules’ de st roy methods.

_command_name

_deduce_pipeline_desc (argv, modules)
Split command-line arguments, left by gluetool, into a pipeline description, splitting them by modules
and their options.

Parameters
e argv (11ist)— Remainder of sys.argv after removing gluetool ‘s own options.
* modules (1ist (str))— List of known module names.

Returns Pipeline description in a form of a list of gluetool.glue.PipelineStep in-
stances.

_exit_logger
Return logger for use when finishing the gluetool pipeline.

_handle_failure (failure)
_handle_failure_core (failure)

_quit (exit_status)
Log exit status and quit.

_version

check_options (*args, **kwargs)

log_cmdline (argv, pipeline_desc)

main ()

run_pipeline (*args, **kwargs)

setup (*args, **kwargs)
gluetool.tool.handle_exc (func)

gluetool.tool.main ()

52 Chapter 3. gluetool API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/sys.html#sys.argv
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

gluetool Documentation, Release 1.1.dev18+gf01b014

dluetool.utils module

Various helpers.

class gluetool.utils.Bunch (**kwargs)
Bases: object

exception gluetool.utils.IncompatibleOptionsError (message, caused_by=None, **kwargs)
Bases: gluetool.glue.SoftGlueError

class gluetool.utils.PatternMap (filepath, spices=None, logger=None)
Bases: object

Pattern map is a list of <pattern>: <converter> pairs. Pattern is a regular expression used to match a
string, converter is a function that transforms a string into another one, accepting the pattern and the string
as arguments.

It is defined in a YAML file:
- 'foo—-(\d+)': 'bar-\1'
- 'baz-(\d+)': 'baz, find_the_most_recent, append_dot'
- 'bar-(\d+) ':
- 'bar, find_the_most_recent, append_dot'
- 'bar, find_the_oldest, append_dot'

Patterns are the keys in each pair, while converter is a string (or list of strings), consisting of multiple items,
separated by comma. The first item is always a string, let’s call it R. R, given input string S1 and the pattern,
is used to transform S1 to a new string, S2, by calling pattern.sub (R, S1). R can make use of anything
re.sub () supports, including capturing groups.

If there are other items in the converter string, they are names of spices, additional functions that will be
called with pattern and the output of the previous spicing function, starting with S2 in the case of the first
spice.

To allow spicing, user of PatternMap class must provide spice makers - mapping between spice names and
functions that generate spicing functions. E.g.:

def create_spice_append_dot (previous_spice) :
def _spice(pattern, s):
s = previous_spice (pattern, s)
return s + '.'
return _spice

create_spice_append_dot is a spice maker, used during creation of a pattern map after its definition is
read, _spice is the actual spicing function used during the transformation process.

There can be multiple converters for a single pattern, resulting in multiple values returned when the input string
matches the corresponding pattern.

Parameters
» filepath (st r)— Path to a YAML file with map definition.
* spices (dict) — apping between spices and their makers.
* logger (gluetool.log.ContextLogger)— Logger used for logging.

match (s, multiple=False)
Try to match s by the map. If the match is found - the first one wins - then its conversions are applied to
the s.

3.6. gluetool.utils module 53

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

gluetool Documentation, Release 1.1.dev18+gf01b014

There can be multiple conversions for a pattern, by default only the product of the first one is returned. If
multiple is set to True, list of all products is returned instead.

Return type str

Returns if matched, output of the corresponding transformation.

class gluetool.utils.ProcessOutput (cmd, exit_code, stdout, stderr, kwargs)

Bases: object
Result of external process.
log (logger)

log_stream (stream, logger)

class gluetool.utils.SimplePatternMap (filepath, logger=None)

Bases: object

Pattern map is a list of <pattern>: <result> pairs. Pattern is a regular expression used to match a
string, result is what the matching string maps to.

Basically an ordered dictionary with regexp matching of keys, backed by an YAML file.
Parameters
» filepath (st r)— Path to a YAML file with map definition.
* logger (gluetool.log.ContextLogger)— Logger used for logging.

match (s)
Try to match s by the map. If the match is found - the first one wins - then its transformation is applied to
the s.

Return type str

Returns if matched, output of the corresponding transformation.

class gluetool.utils.StreamReader (stream, name=None, block=16)

Bases: object
content
name

read ()

wait ()

class gluetool.utils.ThreadAdapter (logger, thread)

Bases: gluetool.log.ContextAdapter
Custom logger adapter, adding thread name as a context.
Parameters

* logger (gluetool.log.ContextAdapter) — parent logger whose methods will be
used for logging.

e thread (threading. Thread) — thread whose name will be added.

class gluetool.utils.WorkerThread (logger, fn, fu_args=None, fun_kwargs=None, **kwargs)

Bases: threading.Thread

Worker threads gets a job to do, and returns a result. It gets a callable, £n, which will be called in thread’s
run () method, and thread’s result property will be the result - value returned by £n, or exception raised
during the runtime of £n.

54

Chapter 3. gluetool API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/threading.html#threading.Thread
https://docs.python.org/3/library/threading.html#threading.Thread

gluetool Documentation, Release 1.1.dev18+gf01b014

Parameters
* logger (gluetool.log.ContextAdapter) — logger to use for logging.
* fn — thread will start fn to do the job.
* fn_args - arguments for fn
* fn_kwargs — keyword arguments for fn
run ()
gluetool.utils._json_byteify (data, ignore_dicts=False)

class gluetool.utils.cached_property (method)
Bases: object

property-like decorator - at first access, it calls decorated method to acquire the real value, and then replaces
itself with this value, making it effectively “cached”. Useful for properties whose value does not change over
time, and where getting the real value could penalize execution with unnecessary (network, memory) overhead.

Delete attribute to clear the cached value - on next access, decorated method will be called again, to acquire the
real value.

Of possible options, only read-only instance attribute access is supported so far.

gluetool.utils.check_for_commands (cmds)
Checks if all commands in list cmds are valid

gluetool.utils.dict_update (dst, *args)
Python’s dict . update does not return the dictionary just updated but a None. This function is a helper that
does updates the dictionary and returns it. So, instead of:

d.update (other)
return d

you can use:

return dict_update(d, other)

Parameters
* dst (dict) - dictionary to be updated.
* args — dictionaries to update dst with.

gluetool.utils.dump_yaml (data, filepath, logger=None)
Save data stored in variable to YAML file.

Parameters
e data (ob ject) — Data to store in YAML file
» filepath (st r)— Path to an output file.

Raises gluetool.glue.GlueError —if it was not possible to successfully save data to file.

gluetool.utils.fetch_url (url, logger=None, success_codes=(200,))
“Get me content of this URL” helper.

Very thin wrapper around urllib. Added value is logging, and converting possible errors to gluetool.glue.
GlueError exception.

Parameters

3.6. gluetool.utils module 55

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

gluetool Documentation, Release 1.1.dev18+gf01b014

* url (str)—URL to get.
* logger (gluetool.log.ContextLogger)— Logger used for logging.

* success_codes (tuple) — tuple of HTTP response codes representing successfull re-
quest.

Returns tuple (response, content) where responseiswhaturllib2.urlopen () re-
turns, and content is the payload of the response.

gluetool.utils.format_command_line (cmdline)
Return formatted command-line.

All but the first line are indented by 4 spaces.
Parameters cmdline (1ist) - list of iterables, representing command-line split to multiple lines.

gluetool.utils.from_json (json_string)
Convert JSON in a string into Python data structures.

Similar to json.loads () but uses special object hook to avoid unicode strings in the output..

gluetool.utils.from_yaml (yaml_string)
Convert YAML in a string into Python data structures.

Uses internal YAML parser to produce result. Paired with 1oad_yaml () and their JSON siblings to provide
unified access to JSON and YAML.

gluetool.utils.load_json (filepath, logger=None)
Load data stored in JSON file, and return their Python representation.

Parameters
* filepath (str)—Pathtoafile. ~ or ~<username> are expanded before using.
* logger (gluetool.log.ContextLogger)— Logger used for logging.
Return type object
Returns structures representing data in the file.

Raises gluetool.glue.GlueError —if it was not possible to successfully load content of the
file.

gluetool.utils.load yaml (filepath, logger=None)
Load data stored in YAML file, and return their Python representation.

Parameters
e filepath (str)—Pathtoafile. ~ or ~<username> are expanded before using.
* logger (gluetool.log.ContextLogger)— Logger used for logging.
Return type object
Returns structures representing data in the file.

Raises gluetool.glue.GlueError —if it was not possible to successfully load content of the
file.

gluetool.utils.new_xml_element (tag_name, _parent=None, **attrs)
Create new XML element.

Parameters
* tag_name (st r)— Name of the element.

* _parent (element) - If set, the newly created element will be appended to this element.

56 Chapter 3. gluetool API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/json.html#json.loads
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

gluetool Documentation, Release 1.1.dev18+gf01b014

* attrs (dict)— Attributes to set on the newly created element.
Returns Newly created XML element.

gluetool.utils.normalize_bool_option (option_value)
Convert option value to Python’s boolean.

option_value is what all those internal option processing return, which may be a default value set for an
option, or what user passed in.

As switches, options with values can be used:

-—foo=yes|no
—-—foo=true| false
——foo=110
—-—foo=Y|N
——foo=on|off

With combination of store_true/store_false and a default value module developer sets for the option,
simple form without value is evaluated as easily. With store_true and False default, following option turn
the feature foo on:

’——enable—foo

With store_false and True default, following simple option turn the feature foo off:

’——disable—foo

gluetool.utils.normalize _multistring option (option_value, separator=", ‘)
Reduce string, representing comma-separated list of items, or possibly a list of such strings, to a simple list of
items. Strips away the whitespace wrapping such items.

foo —--option valuel --option value2, value3
foo —-option valuel,value2,value3

Or, when option is set by a config file:

option = valuel

option = valuel, value2, value3

After processing, different variants can be found when option ('option') is called, ['valuel"',
'value?2,value3'], ['valuel,value2,value3'], 'valuel' and valuel, value2,

value3.

To reduce the necessary work, use this helper function to treat such option’s value, and get simple ['valuel',
'value2', 'value3'] structure.

gluetool.utils.normalize_path (path)
Apply common treatments on a given path:

ereplace home directory reference (~ and similar), and
econvert path to a normalized absolutized version of the pathname.

gluetool.utils.normalize_path_option (option_value, separator=", ‘)
Reduce many ways how list of paths is specified by user, to a simple list of paths. See
normalize _multistring option () for more details.

gluetool.utils.render_template (template, logger=None, **kwargs)
Render Jinja2 template. Logs errors, and raises an exception when it’s not possible to correctly render the
template.

3.6. gluetool.utils module 57

https://docs.python.org/3/library/stdtypes.html#dict

gluetool Documentation, Release 1.1.dev18+gf01b014

Parameters

* template — Template to render. It can be either jinja2.environment.Template
instance, or a string.

* kwargs (dict)— Keyword arguments passed to render process.
Return type str
Returns Rendered template.
Raises gluetool.glue.GlueError — when the rednering failed.

gluetool.utils.run_command (cmd, logger=None, inspect=False, inspect_callback=None,
*rkwargs)
Run external command, and return it’s exit code and output.

This is a very thin and simple wrapper above subprocess.Popen, and its main purpose is to log everything
that happens before and after execution. All additional arguments are passed directly to Popen constructor.

If stdout or stderr keyword arguments are not specified, function will set them to subprocess.PIPE,
to capture both output streams in separate strings.

By default, output of the process is captured for both stdout and stderr, and returned back to the caller.
Under some conditions, caller might want to see the output in “real-time”. For that purpose, it can pass callable
via inspect_callback parameter - such callable will be called for every received bit of input on both
stdout and stderr. E.g.

def foo(stream, s, flush=False):
if s is not None and 'a' in s:
print s

run_command (['/bin/foo'], inspect=foo0)

This example will print all substrings containing letter a. Strings passed to £ oo may be of arbitrary lengths, and
may change between subsequent calls of run_command.

Parameters
e emd (I1st)-command to execute.

* logger (gluetool.log.ContextAdapter) — parent logger whose methods will be
used for logging.

* inspect (bool) —if set, inspect_callback will receive the output of command in
“real-time”.

* inspect_callback (callable) — callable that will receive command output. If not
set, default “write to sys.stdout” is used.

Return type gluetool.utils.ProcessOutput instance

Returns gluetool.utils.ProcessOutput instance whose attributes contain data returned
by the process.

Raises
* gluetool.glue.GlueError — when command was not found.

* gluetool.glue.GlueCommandError — when command exited with non-zero exit
code.

* Exception — when anything else breaks.

58 Chapter 3. gluetool API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/subprocess.html#subprocess.Popen
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/exceptions.html#Exception

gluetool Documentation, Release 1.1.dev18+gf01b014

gluetool.utils.treat_url (url, logger=None)

Remove “weird” artifacts from the given URL.
Parameters

e url (str) - URL to clear.

Collapse adjacent “.’s, apply °.., etc.

* logger (gluetool.log.ContextAdapter)—logger to use for logging.

Return type str
Returns Treated URL.

gluetool.utils.wait (label, check, timeout=None, tick=30, logger=None)

Wait for a condition to be true.
Parameters

* label (str)— printable label u

sed for logging.

e check (callable) — called to test the condition. If its return value evaluates as True,
the condition is assumed to pass the test and waiting ends.

e timeout (int) — fail after this

many seconds. None means test forever.

* tick (int) — test condition every t ick seconds.

* logger (gluetool.log.Co
used for logging.

ntextAdapter) — parent logger whose methods will be

Raises gluetool.glue.GlueError — when timeout elapses while condition did not pass

the check.

gluetool.version module

gluetool.tests package

Submodules

gluetool.tests.conftest module
gluetool.tests.test_core module
gluetool.tests.test_error module
gluetool.tests.test_json module
gluetool.tests.test_load_yaml module
gluetool.tests.test_new_xml_element module
gluetool.tests.test_normalize_option module
gluetool.tests.test_pipeline_step module

gluetool.tests.test_render_template module

3.7. gluetool.version module

59

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

gluetool Documentation, Release 1.1.dev18+gf01b014

gluetool.tests.test run_command module
gluetool.tests.test_shared module
gluetool.tests.test_treat_url module
gluetool.tests.test_utils module

gluetool.tests.test_wait module

Module contents
class gluetool.tests.Bunch (**kwargs)
Bases: object
Object-like access to a dictionary - useful for many mock objects.

class gluetool.tests.NonLoadingGlue (tool=None, sentry=None)
Bases: gluetool.glue.Glue

Current Glue implementation loads modules and configs when instantiated, which makes it really hard to make
assumptions of the state of its internals - they will always be spoiled by other modules, other external resources
the tests cannot control. So, to overcome this I use this custom Glue class that disables loading of modules and
configs on its instantiation.

_load _modules ()
parse_args (*args, **kwargs)
parse_config (*args, **kwargs)

gluetool.tests.create_module (module_class, glue=None, glue_class=<class ‘glue-
tool.tests.NonLoadingGlue’>, name="dummy-module’,
add_shared=True)

gluetool.tests.create_yaml (tmpdir, name, data)

60 Chapter 3. gluetool API

https://docs.python.org/3/library/functions.html#object

CHAPTER 4

Indices and tables

* genindex
* modindex

e search

61

gluetool Documentation, Release 1.1.dev18+gf01b014

62 Chapter 4. Indices and tables

Python Module Index

g

gluetool
gluetool
gluetool
gluetool
gluetool
gluetool
gluetool
gluetool

.glue, 35
.help, 45
.log, 47
.proxy, 51
.tests, 60
.tool, 52
.utils, 53
.version, 59

63

Index

Symbols

_add_shared() (gluetool.glue.Glue method), 39
_check_module_file() (gluetool.glue.Glue method), 39
_cleanup() (gluetool.tool.Gluetool method), 52
_close_output_file() (gluetool.log.Logging
method), 49
_command_name (gluetool.tool.Gluetool attribute), 52
_create_args_parser() (gluetool.glue.Configurable class
method), 35
_create_class_proxy()
method), 52
_deduce_pipeline_desc()
method), 52
_dryrun_allows() (gluetool.glue.Configurable method),
35
_eval_context() (gluetool.glue.Glue method), 39
_exit_logger (gluetool.tool.Gluetool attribute), 52
_for_each_module() (gluetool.glue.Glue method), 39
_for_each_option() (gluetool.glue.Configurable static
method), 36
_for_each_option_group()
static method), 36

static

(gluetool.proxy.Proxy class

(gluetool.tool.Gluetool

(gluetool.glue.Configurable

_format_exception_chain() (glue-
tool.log.LoggingFormatter ~ static method),
50

_generate_shared_functions_help() (glue-

tool.glue.Module method), 43
_handle_failure() (gluetool.tool.Gluetool method), 52
_handle_failure_core() (gluetool.tool.Gluetool method),

52
_import_module() (gluetool.glue.Glue method), 39
_json_byteify() (in module gluetool.utils), 55
_level_color (gluetool.log.LoggingFormatter attribute),

50
_level_tags (gluetool.log.LoggingFormatter attribute), 50
_load_gluetool_modules() (gluetool.glue.Glue method),

40
_load_module_path() (gluetool.glue.Glue method), 40
_load_modules() (gluetool.tests.NonLoadingGlue

method), 60
_load_python_module() (gluetool.glue.Glue method), 40
_member_map_ (gluetool.glue.DryRunLevels attribute),
38
_member_names_
tribute), 38
_member_type_ (gluetool.glue.DryRunLevels attribute),
38
_obj (gluetool.proxy.Proxy attribute), 52
_parse_args() (gluetool.glue.Configurable method), 36
_parse_config() (gluetool.glue.Configurable method), 36
_paths_with_module() (gluetool.glue.Module method),
43
_quit() (gluetool.tool.Gluetool method), 52
_special_names (gluetool.proxy.Proxy attribute), 52

(gluetool.glue.DryRunLevels at-

_split_lines() (gluetool.help.LineWrapRawTextHelpFormatter

method), 45

_value2member_map_ (gluetool.glue.DryRunLevels at-
tribute), 38

_version (gluetool.tool.Gluetool attribute), 52

A

add_shared() (gluetool.glue.Glue method), 40
add_shared() (gluetool.glue.Module method), 43
ArgumentParser (class in gluetool.glue), 35

B

BlobLogger (class in gluetool.log), 47
Bunch (class in gluetool.tests), 60
Bunch (class in gluetool.utils), 53

C

C_ARGNAME() (in module gluetool.help), 45
C_FUNCNAMEJ() (in module gluetool.help), 45
C_LITERAL() (in module gluetool.help), 45
cached_property (class in gluetool.utils), 55
check_dryrun() (gluetool.glue.Configurable method), 36
check_for_commands() (in module gluetool.utils), 55
check_options() (gluetool.tool.Gluetool method), 52

64

gluetool Documentation, Release 1.1.dev18+gf01b014

check_required_options()
method), 36
config (gluetool.help.DummyTextBuilder attribute), 45
Configurable (class in gluetool.glue), 35
connect() (gluetool.log.ContextAdapter method), 48
content (gluetool.utils.StreamReader attribute), 54
ContextAdapter (class in gluetool.log), 48
create_logger() (gluetool.log.Logging static method), 49
create_module() (in module gluetool.tests), 60
create_yaml() (in module gluetool.tests), 60

D

DEFAULT (gluetool.glue.DryRunLevels attribute), 38
del_shared() (gluetool.glue.Glue method), 40
del_shared() (gluetool.glue.Module method), 43
depart_field_name() (gluetool.help.TextTranslator
method), 45
depart_literal() (gluetool.help.TextTranslator method), 46
description (gluetool.glue.Module attribute), 43
destroy() (gluetool.glue.Module method), 43
destroy_modules() (gluetool.glue.Glue method), 40
dict_update() (in module gluetool.utils), 55
docstring_to_help() (in module gluetool.help), 46
DRY (gluetool.glue.DryRunLevels attribute), 38
dryrun_allows() (gluetool.glue.Configurable method), 36
dryrun_enabled (gluetool.glue.Configurable attribute), 36
dryrun_level (gluetool.glue.Configurable attribute), 36
dryrun_level (gluetool.glue.Glue attribute), 40
dryrun_level (gluetool.glue.Module attribute), 44
DryRunLevels (class in gluetool.glue), 38
DummyTextBuilder (class in gluetool.help), 45
DummyTextBuilder. DummyConfig (class in
tool.help), 45
dump_yaml() (in module gluetool.utils), 55

E

error() (gluetool.glue. ArgumentParser method), 35
eval_context (gluetool.glue.Configurable attribute), 37
eval_context (gluetool.glue.Glue attribute), 40
execute() (gluetool.glue.Module method), 44

F

Failure (class in gluetool.glue), 38

fetch_url() (in module gluetool.utils), 55

format() (gluetool.log.LoggingFormatter method), 50
format_command_line() (in module gluetool.utils), 56
format_dict() (in module gluetool.log), 50
from_json() (in module gluetool.utils), 56
from_yaml() (in module gluetool.utils), 56
function_help() (in module gluetool.help), 46
functions_help() (in module gluetool.help), 46

G

get_logger() (gluetool.log.Logging static method), 49

(gluetool.glue.Configurable

glue-

get_shared() (gluetool.glue.Glue method), 40
get_shared() (gluetool.glue.Module method), 44
Glue (class in gluetool.glue), 39
GlueCommandError, 42

GlueError, 42

GlueRetryError, 43

Gluetool (class in gluetool.tool), 52
gluetool.glue (module), 35

gluetool.help (module), 45

gluetool.log (module), 47

gluetool.proxy (module), 51

gluetool.tests (module), 60

gluetool.tool (module), 52

gluetool.utils (module), 53

gluetool.version (module), 59

H

handle_exc() (in module gluetool.tool), 52
has_shared() (gluetool.glue.Glue method), 40
has_shared() (gluetool.glue.Module method), 44

IncompatibleOptionsError, 53

init_module() (gluetool.glue.Glue method), 40
ISOLATED (gluetool.glue.DryRunLevels attribute), 38
isolatedrun_allows() (gluetool.glue.Configurable

method), 37

L

LineWrapRawTextHelpFormatter (class in gluetool.help),
45

load_json() (in module gluetool.utils), 56
load_modules() (gluetool.glue.Glue method), 41
load_yaml() (in module gluetool.utils), 56

log() (gluetool.utils.ProcessOutput method), 54
log_blob() (in module gluetool.log), 50
log_cmdline() (gluetool.tool.Gluetool method), 52
log_dict() (in module gluetool.log), 51
log_stream() (gluetool.utils.ProcessOutput method), 54
log_xml() (in module gluetool.log), 51

logger (gluetool.log.Logging attribute), 49
Logging (class in gluetool.log), 48
LoggingFormatter (class in gluetool.log), 49

M

main() (gluetool.tool.Gluetool method), 52

main() (in module gluetool.tool), 52

match() (gluetool.utils.PatternMap method), 53

match() (gluetool.utils.SimplePatternMap method), 54

Module (class in gluetool.glue), 43

module_config_paths (gluetool.glue.Glue attribute), 41

module_data_paths (gluetool.glue.Glue attribute), 41

module_designation (gluetool.glue.PipelineStep at-
tribute), 44

Index

65

gluetool Documentation, Release 1.1.dev18+gf01b014

module_group_list() (gluetool.glue.Glue method), 41 run() (gluetool.utils. WorkerThread method), 55
module_list() (gluetool.glue.Glue method), 41 run_command() (in module gluetool.utils), 58
module_list_usage() (gluetool.glue.Glue method), 41 run_module() (gluetool.glue.Glue method), 41
module_paths (gluetool.glue.Glue attribute), 41 run_module() (gluetool.glue.Module method), 44
ModuleAdapter (class in gluetool.log), 50 run_modules() (gluetool.glue.Glue method), 41

run_pipeline() (gluetool.tool.Gluetool method), 52

N

name (gluetool.glue.Module attribute), 44 S

name (gluetool.utils.StreamReader attribute), 54 sanity() (gluetool.glue.Module method), 44

new_xml_element() (in module gluetool.utils), 56 sentry_fingerprint() (gluetool.glue.GlueError method), 42

NonLoadingGlue (class in gluetool.tests), 60 sentry_submit_exception() (gluetool.glue.Glue method),

normalize_bool_option() (in module gluetool.utils), 57 42

normalize_multistring_option() (in module glue- sentry_submit_warning() (gluetool.glue.Glue method),
tool.utils), 57 42

normalize_path() (in module gluetool.utils), 57 sentry_tags() (gluetool.glue.GlueError method), 43

normalize_path_option() (in module gluetool.utils), 57 setup() (gluetool.tool.Gluetool method), 52
shared() (gluetool.glue.Glue method), 42

O shared() (gluetool.glue.Module method), 44

option() (gluetool.glue.Configurable method), 37 shared_functions (gluetool.glue.Glue attribute), 42

option_help() (in module gluetool.help), 46 shared_functions (gluetool.glue.Module attribute), 44

options (gluetool.glue.Configurable attribute), 37 SimplePatternMap (class in gluetool.utils), 54

options (gluetool.glue.Glue attribute), 41 SoftGlueError, 45

options_note (gluetool.glue.Configurable attribute), 37 stderr_handler (gluetool.log.Logging attribute), 49

output_file (gluetool.log.Logging attribute), 49 StreamReader (class in gluetool.utils), 54

output_file_handler (gluetool.log.Logging attribute), 40 ~ supported_dryrun_level (gluetool.glue.Configurable at-

overloaded_shared() (gluetool.glue.Module method), 44 tribute), 38

P T

parse_args() (gluetool.glue.Configurable method), 37 text_newlines (gluetool.help.DummyTextBuilder. DummyConfig

parse_args() (gluetool.glue.Glue method), 41 attribute), 45

parse_args() (gluetool.glue.Module method), 44 text_sectionchars (glue-

parse_args() (gluetool.tests.NonLoadingGlue method), 60 tool.help.DummyTextBuilder. DummyConfig

parse_config() (gluetool.glue.Configurable method), 38 attribute), 45

parse_config() (gluetool.glue.Glue method), 41 TextTranslator (class in gluetool.help), 45

parse_config() (gluetool.glue.Module method), 44 ThreadAdapter (class in gluetool.utils), 54

parse_config() (gluetool.tests.NonLoadingGlue method), ~translator_class (gluetool.help.Dummy TextBuilder
60 attribute), 45

PatternMap (class in gluetool.utils), 53 treat_url() (in module gluetool.utils), 58

PipelineStep (class in gluetool.glue), 44 trim_docstring() (in module gluetool.help), 46

process() (gluetool.log.ContextAdapter method), 48

ProcessOutput (class in gluetool.utils), 54 U

Proxy (class in gluetool.proxy), 51 unique_name (gluetool.glue.Configurable attribute), 38

py_default_role() (in module gluetool.help), 46

Vv

R verbose_adapter() (in module gluetool.log), 51

read() (gluetool.utils.StreamReader method), 54 verbose_logger() (in module gluetool.log), 51
render_template() (in module gluetool.utils), 57 visit_field_name() (gluetool.help.TextTranslator method),
require_shared() (gluetool.glue.Glue method), 41 46

require_shared() (gluetool.glue.Module method), 44 visit_literal() (gluetool.help.TextTranslator method), 46

required_options (gluetool.glue.Configurable attribute),

38 W

retry() (in module gluetool.glue), 45 wait() (gluetool.utils.StreamReader method), 54
rst_to_text() (in module gluetool.help), 46 wait() (in module gluetool.utils), 59

66 Index

gluetool Documentation, Release 1.1.dev18+gf01b014

warn_sentry() (in module gluetool.log), 51
WorkerThread (class in gluetool.utils), 54

Index 67

	Installation
	Table of contents
	gluetool API
	Indices and tables
	Python Module Index

