
GLPI Developer Documentation
Documentation

Teclib’

Mar 27, 2024

CONTENTS

1 Source Code management 3
1.1 Versioning . 3
1.2 Backward compatibility . 3
1.3 Branches . 3
1.4 Testing . 4
1.5 File Hierarchy System . 4
1.6 Workflow . 6
1.7 Unit testing (and functional testing) . 8

2 Coding standards 11
2.1 Call static methods . 11
2.2 Static or Non static? . 11
2.3 Comments . 12
2.4 Variables types . 14
2.5 Quotes / double quotes . 15
2.6 Checking standards . 16

3 Developer API 17
3.1 Main framework objects . 17
3.2 Database . 21
3.3 Search Engine . 36
3.4 Massive Actions . 47
3.5 Rules Engine . 50
3.6 Translations . 56
3.7 Right Management . 58
3.8 Automatic actions . 61
3.9 Tools . 64
3.10 Extra . 66

4 Checklists 69
4.1 Review process . 69
4.2 Prepare next major release . 69

5 Plugins 71
5.1 Guidelines . 71
5.2 Requirements . 73
5.3 Database . 78
5.4 Adding and managing objects . 81
5.5 Hooks . 85
5.6 Automatic actions . 96

i

5.7 Massive Actions . 96
5.8 Tips & tricks . 98
5.9 Notification modes . 101
5.10 Unit Testing . 108

6 Packaging 111
6.1 Sources . 111
6.2 Filesystem Hierarchy Standard . 111
6.3 Apache Configuration File . 112
6.4 Logs files rotation . 113
6.5 SELinux stuff . 114
6.6 Use system cron . 114
6.7 Using system libraries . 114
6.8 Using system fonts rather than bundled ones . 115

ii

GLPI Developer Documentation Documentation

CONTENTS 1

GLPI Developer Documentation Documentation

2 CONTENTS

CHAPTER

ONE

SOURCE CODE MANAGEMENT

GLPI source code management is handled by GIT and hosted on GitHub.

In order to contribute to the source code, you will have to know a few things about Git and the development model we
follow.

1.1 Versioning

Version numbers follow the x.y.z nomenclature, where x is a major release, y is an intermediate release, and z is a bugfix
release.

1.2 Backward compatibility

Wherever possible, bugfix releases should not make any non-backwards compatible changes to our source code, so a
plugin that has been made compatible with a 10.0.0 release should therefore be compatible, barring exceptions, with
all 10.0.x versions. In the event that an incompatibility is introduced in a bugfix version, please let us know so that we
can correct the problem.

In the context of intermediate or major versions, we do not prevent ourselves from breaking the backward compatibility
of our source code. Indeed, although we try to make the maintenance of the plugins as easy as possible, some parts
of our source code are not intended to be used or extended in them, and maintaining backward compatibility would be
too costly in terms of time. However, the elements destined to disappear, as soon as they are intended to be used by
plugins, are maintained for at least one intermediate version, and noted as being deprecated.

1.3 Branches

On the Git repository, you will find several existing branches:

• main (Previously named master) contains the next major release source code,

• xx/bugfixes contains the next minor release source code,

• you should not care about all other branches that may exists, they should have been deleted right now.

The main branch is where new features are added. This code is reputed as non stable.

The x.y/bugfixes branches is where bugs are fixed. This code is reputed as stable.

Those branches are created when a new major or intermediate version is released. At the time I wrote these lines, the
latest stable version is 10.0 so the current bugfix branch is 10.0/bugfixes. We do not maintain previous stable versions,

3

https://en.wikipedia.org/wiki/Git
https://github.com/glpi-project/glpi

GLPI Developer Documentation Documentation

so old bugfixes branches are likely to not change; while they are still existing. In case we found a critical bug or a
security issue, we may exceptionally apply patches to the latest previous stable branch.

1.4 Testing

There are more and more unit tests in GLPI; we use the atoum unit tests framework.

Every proposal must contains unit tests; for new features as well as bugfixes. For the bugfixes; this is not a strict
requirement if this is part of code that is not tested at all yet. See the unit testing section at the bottom of the page.

Anyways, existing unit tests may never be broken, if you made a change that breaks something, check your code, or
change the unit tests, but fix that! ;)

1.5 File Hierarchy System

Note: This lists current files and directories listed in the source code of GLPI. Some files are not part of distributed
archives.

This is a brief description of GLPI main folders and files:

• .tx: Transifex configuration

• ajax

– *.php: Ajax components

• files Files written by GLPI or plugins (documents, session files, log files, . . .)

• front

– *.php: Front components (all displayed pages)

• config (only populated once installed)

– config_db.php: Database configuration file

– local_define.php: Optional file to override some constants definitions (see inc/define.php)

• css

– . . . : CSS stylesheets

– *.css: CSS stylesheets

• inc

– *.php: Classes, functions and definitions

• install

– mysql: MariaDB/MySQL schemas

– *.php: upgrades scripts and installer

• js

4 Chapter 1. Source Code management

http://atoum.org

GLPI Developer Documentation Documentation

– *.js: Javascript files

• lib

– . . . : external Javascript libraries

• locales

– glpi.pot: Gettext’s POT file

– *.po: Gettext’s translations

– *.mo: Gettext’s compiled translations

• pics

– *.*: pictures and icons

• plugins:

– . . . : where all plugins lends

• scripts: various scripts which can be used in crontabs for example

• tests: unit and integration tests

• tools: a bunch of tools

• vendor: third party libs installed from composer (see composer.json below)

• .gitignore: Git ignore list

• .htaccess: Some convenient apache rules (all are commented)

• .travis.yml: Travis-CI configuration file

• apirest.php: REST API main entry point

• apirest.md: REST API documentation

• apixmlrpc.php: XMLRPC API main entry point

• AUTHORS.txt: list of GLPI authors

• CHANGELOG.md: Changes

• composer.json: Definition of third party libraries (see composer website)

• COPYING.txt: Licence

• index.php: main application entry point

• phpunit.xml.dist: unit testing configuration file

• README.md: well. . . a README ;)

• status.php: get GLPI status for monitoring purposes

1.5. File Hierarchy System 5

https://getcomposer.org

GLPI Developer Documentation Documentation

1.6 Workflow

1.6.1 In short. . .

In a short form, here is the workflow we’ll follow:

• create a ticket

• fork, create a specific branch, and hack

• open a PR (Pull Request)

Each bug will be fixed in a branch that came from the correct bugfixes branch. Once merged into the requested branch,
developer must report the fixes in the main; with a simple cherry-pick for simple cases, or opening another pull request
if changes are huge.

Each feature will be hacked in a branch that came from main, and will be merged back to main.

1.6.2 General

Most of the times, when you’ll want to contribute to the project, you’ll have to retrieve the code and change it before
you can report upstream. Note that I will detail here the basic command line instructions to get things working; but of
course, you’ll find equivalents in your favorite Git GUI/tool/whatever ;)

Just work with a:

$ git clone https://github.com/glpi-project/glpi.git

A directory named glpi will bre created where you’ve issued the clone.

Then - if you did not already - you will have to create a fork of the repository on your github account; using the Fork
button from the GLPI’s Github page. This will take a few moments, and you will have a repository created, {you user
name}/glpi - forked from glpi-project/glpi.

Add your fork as a remote from the cloned directory:

$ git remote add my_fork https://github.com/{your user name}/glpi.git

You can replace my_fork with what you want but origin (just remember it); and you will find your fork URL from the
Github UI.

A basic good practice using Git is to create a branch for everything you want to do; we’ll talk about that in the sections
below. Just keep in mind that you will publish your branches on you fork, so you can propose your changes.

When you open a new pull request, it will be reviewed by one or more member of the community. If you’re asked
to make some changes, just commit again on your local branch, push it, and you’re done; the pull request will be
automatically updated.

Note: It’s up to you to manage your fork; and keep it up to date. I’ll advice you to keep original branches (such as
main or x.y/bugfixes) pointing on the upstream repository.

Tha way, you’ll just have to update the branch from the main repository before doing anything.

6 Chapter 1. Source Code management

https://github.com/glpi-project/glpi/issues/new
https://github.com/glpi-project/glpi/

GLPI Developer Documentation Documentation

1.6.3 Bugs

If you find a bug in the current stable release, you’ll have to work on the bugfixes branch; and, as we’ve said already,
create a specific branch to work on. You may name your branch explicitly like 9.1/fix-sthing or to reference an existing
issue 9.1/fix-1234; just prefix it with {version}/fix-.

Generally, the very first step for a bug is to be filled in a ticket.

From the clone directory:

$ git checkout -b 9.1/bugfixes origin/9.1/bugfixes
$ git branch 9.1/fix-bad-api-callback
$ git co 9.1/fix-bad-api-callback

At this point, you’re working on an only local branch named 9.1/fix-api-callback. You can now work to solve the issue,
and commit (as frequently as you want).

At the end, you will want to get your changes back to the project. So, just push the branch to your fork remote:

$ git push -u my_fork 9.1/fix-api-callback

Last step is to create a PR to get your changes back to the project. You’ll find the button to do this visiting your fork or
even main project github page.

Just remember here we’re working on some bugfix, that should reach the bugfixes branch; the PR creation will probably
propose you to merge against the main branch; and maybe will tell you they are conflicts, or many commits you do not
know about. . . Just set the base branch to the correct bugfixes and that should be good.

1.6.4 Features

Before doing any work on any feature, mays sure it has been discussed by the community. Open - if it does not exists yet
- a ticket with your detailed proposition. Fo technical features, you can work directly on github; but for work proposals,
you should take a look at our feature proposal platform.

If you want to add a new feature, you will have to work on the main branch, and create a local branch with the name
you want, prefixed with feature/.

From the clone directory:

$ git branch feature/my-killer-feature
$ git co feature/my-killer feature

You’ll notice we do no change branch on the first step; that is just because main is the default branch, and therefore the
one you’ll be set on just after cloning. At this point, you’re working on an only local branch named feature/my-killer-
feature. You can now work and commit (as frequently as you want).

At the end, you will want to get your changes back to the project. So, just push the branch on your fork remote:

$ git push -u my_fork feature/my-killer-feature

1.6. Workflow 7

https://github.com/glpi-project/glpi/issues
http://glpi.userecho.com/

GLPI Developer Documentation Documentation

1.6.5 Commit messages

There are several good practices regarding commit messages, but this is quite simple:

• the commit message may refer an existing ticket if any,

– just make a simple reference to a ticket with keywords like refs #1234 or see #1234",

– automatically close a ticket when commit will be merged back with keywords like closes #1234 or fixes
#1234,

• the first line of the commit should be as short and as concise as possible

• if you want or have to provide details, let a blank line after the first commit line, and go on. Please avoid very
long lines (some conventions talks about 80 characters maximum per line, to keep it visible).

1.6.6 Third party libraries

Third party PHP libraries are handled using the composer tool and Javascript ones using npmjs.

To install existing dependencies, just install from their website or from your distribution repositories and then run:

$ bin/console dependencies install

1.7 Unit testing (and functional testing)

Note: A note for the purists. . . In GLPI, there are both unit and functional tests; without real distinction ;-)

We use the atoum unit tests framework for PHP tests; see GLPI website if you wonder why. atoum’s documentation in
available at: http://docs.atoum.org

For JavaScript tests, GLPI uses the Jest testing framework. It’s documentation can be found at: https://devdocs.io/jest/.

Warning: With atoum, test class must refer to an existing class of the project! This means that your test class
must have the same name and relative namespace as an existing class.]

1.7.1 Tests isolation

PHP tests must be run in an isolated environment. By default, atoum use a concurrent mode; that launches tests in a
multi-threaded environment. While it is possible to bypass this; this should not be done See http://docs.atoum.org/en/
latest/engine.html.

For technical reasons (mainly because of the huge session usage), GLPI PHP unit tests are actually limited to one only
thread while running the whole suite; but while developing, the behavior should only be changed if this is really needed.

For JavaScript tests, Jest is able to run multiple tests in parallel as long as they are in different spec files since they don’t
interact with database data or a server. This behavior is the default.

8 Chapter 1. Source Code management

http://getcomposer.org
https://www.npmjs.com/
http://atoum.org
http://glpi-project.org/spip.php?breve375
http://docs.atoum.org
https://devdocs.io/jest/
http://docs.atoum.org/en/latest/engine.html
http://docs.atoum.org/en/latest/engine.html

GLPI Developer Documentation Documentation

1.7.2 Type hitting

Unlike PHPUnit, atoum is very strict on type hitting. This really makes sense; but often in GLPI types are not what we
should expect (for example, we often get a string and not an integer from counting methods).

1.7.3 Database

This section is in reference to PHP tests only. JavaScript tests do not interact with a database or a GLPI server.

Each class that tests something in database must inherit from \DbTestCase. This class provides some helpers (like
login() or setEntity() method); and it also does some preparation and cleanup.

Each CommonDBTM object added in the database with its add() method will be automatically deleted after the test
method. If you always want to get a new object type created, you can use beforeTestMethod() or setUp() methods.

Warning: If you use setUp() method, do not forget to call parent::setUp()!

Some bootstrapped data are provided (will be inserted on the first test run); they can be used to check defaults behaviors
or make queries, but you should never change those data! This lend to unpredictable further tests results.

1.7.4 Variables declaration

When you use a property that has not been declared, you will have errors that may be quite difficult to understand. Just
remember to always declare property you use!

<?php

class MyClass extends atoum {
private $myprop;

public function testMethod() {
$this->myprop = 'foo'; //<-- error here if missing "private $myprop"

}
}

1.7.5 Launch tests

You can install atoum from composer (just run composer install from GLPI directory) or even system wide.

There are two directories for tests:

• tests/units for main core tests;

• tests/api for API tests.

You can choose to run tests on a whole directory, or on any file (+ on a specific method). You have to specify a bootstrap
file each time:

$ atoum -bf tests/bootstrap.php -mcn 1 -d tests/units/
[...]
$ atoum -bf tests/bootstrap.php -f tests/units/Html.php
[...]

(continues on next page)

1.7. Unit testing (and functional testing) 9

GLPI Developer Documentation Documentation

(continued from previous page)

$ atoum -bf tests/bootstrap.php -f tests/functional/Ticket.php -m tests\units\
→˓Ticket::testTechAcls

If you want to run the API tests suite, you need to run a development server:

php -S localhost:8088 tests/router.php &>/dev/null &

Running atoum without any arguments will show you the possible options. Most important are:

• -bf to set bootstrap file,

• -d to run tests located in a whole directory,

• -f to run tests on a standalone file,

• -m to run tests on a specific method (-f must also be defined),

• --debug to get extra information when something goes wrong,

• -mcn limit number of concurrent runs. This is unfortunately mandatory running the whole test suite right now
:/,

• -ncc do not generate code coverage,

• --php to change PHP executable to use,

• -l loop mode.

Note that if you do not use the -ncc switch; coverage will be generated in the tests/code-coverage/ directory.

To run the JavaScript unit tests, simply run npm test in a terminal from the root of the GLPI folder. Currently, there is
only a single “project” set up for Jest so this command will run all tests.

10 Chapter 1. Source Code management

http://creativecommons.org/licenses/by-nc-nd/4.0/

CHAPTER

TWO

CODING STANDARDS

As of GLPI 10, we rely on PSR-12 for coding standards.

2.1 Call static methods

Function location How to call
class itself self::theMethod()
parent class parent::theMethod()
another class ClassName::theMethod()

2.2 Static or Non static?

Some methods in the source code as declared as static; some are not.

For sure, you cannot make static calls on a non static method. In order to call such a method, you will have to get an
object instance, and then call the method on it:

<?php

$object = new MyObject();
$object->nonStaticMethod();

It may be different calling static classes. In that case; you can either:

• call statically the method from the object; like MyObject::staticMethod(),

• call statically the method from an object instance; like $object::staticMethod(),

• call non statically the method from an object instance; like $object->staticMethod().

• use late static building; like static::staticMethod().

When you do not have any object instance yet; the first solution is probably the best one. No need to instantiate an
object to just call a static method from it.

On the other hand; if you already have an object instance; you should better use any of the solution but the late static
binding. That way; you will save performances since this way to go do have a cost.

11

https://www.php-fig.org/psr/psr-12/
http://php.net/manual/fr/language.oop5.static.php
http://php.net/manual/en/language.oop5.late-static-bindings.php

GLPI Developer Documentation Documentation

2.3 Comments

To be more visible, don’t put inline block comments into /* */ but comment each line with //. Put docblocks com-
ments into /** */.

Each function or method must be documented, as well as all its parameters (see Variables types below), and its return.

For each method or function documentation, you’ll need at least to have a description, the version it was introduced,
the parameters list, the return type; each blocks separated with a blank line. As an example, for a void function:

<?php
/**
* Describe what the method does. Be concise :)
*
* You may want to add some more words about what the function
* does, if needed. This is optional, but you can be more
* descriptive here:
* - it does something
* - and also something else
* - but it doesn't make coffee, unfortunately.
*
* @since 9.2
*
* @param string $param A parameter, for something
* @param boolean $other_param Another parameter
*
* @return void
*/
function myMethod($param, $other_param) {
//[...]

}

Some other information way be added; if the function requires it.

Refer to the PHPDocumentor website to get more information on documentation.

Please follow the order defined below:

1. Description,

2. Long description, if any,

3. @deprecated.

4. @since,

5. @var,

6. @param,

7. @return,

8. @see,

9. @throw,

10. @todo,

12 Chapter 2. Coding standards

https://phpdoc.org/docs/latest

GLPI Developer Documentation Documentation

2.3.1 Parameters documentation

Each parameter must be documented in its own line, beginning with the @param tag, followed by the Variables types,
followed by the param name ($param), and finally with the description itself. If your parameter can be of different
types, you can list them separated with a | or you can use the mixed type; it’s up to you!

All parameters names and description must be aligned vertically on the longest (plu one character); see the above
example.

2.3.2 Override method: @inheritDoc? @see? docblock? no docblock?

There are many question regarding the way to document a child method in a child class.

Many editors use the {@inheritDoc} tag without anything else. This is wrong. This inline tag is confusing for many
users; for more details, see the PHPDocumentor documentation about it. This tag usage is not forbidden, but make sure
to use it properly, or just avoid it. An usage example:

<?php

abstract class MyClass {
/**
* This is the documentation block for the current method.
* It does something.
*
* @param string $sthing Something to send to the method
*
* @return string
*/
abstract public function myMethod($sthing);

}

class MyChildClass extends MyClass {
/**
* {@inheritDoc} Something is done differently for a reason.
*
* @param string $sthing Something to send to the method
*
* @return string
*/
public function myMethod($sthing) {

[...]
}

Something we can see quite often is just the usage of the @see tag to make reference to the parent method. This is
wrong. The @see tag is designed to reference another method that would help to understand this one; not to make a
reference to its parent (you can also take a look at PHPDocumentor documentation about it). While generating, parent
class and methods are automatically discovered; a link to the parent will be automatically added. An usage example:

<?php
/**
* Adds something
*
* @param string $type Type of thing
* @param string $value The value

(continues on next page)

2.3. Comments 13

https://www.phpdoc.org/docs/latest/guides/inheritance.html#the-inheritdoc-tag
https://www.phpdoc.org/docs/latest/references/phpdoc/tags/see.html

GLPI Developer Documentation Documentation

(continued from previous page)

*
* @return boolean
*/
public function add($type, $value) {
// [...]

}

/**
* Adds myType entry
*
* @param string $value The value
*
* @return boolean
* @see add()
*/
public function addMyType($value) {
return $this->addType('myType', $value);

}

Finally, should I add a docblock, or nothing?

PHPDocumentor and various tools will just use parent docblock verbatim if nothing is specified on child methods.
So, if the child method acts just as its parent (extending an abstract class, or some super class like CommonGLPI or
CommonDBTM); you may just omit the docblock entirely. The alternative is to copy paste parent docblock entirely; but
that way, it would be required to change all children docblocks when parent if changed.

2.4 Variables types

Variables types for use in DocBlocks for Doxygen:

Type Description
mixed A variable with undefined (or multiple) type
integer Integer type variable (whole number)
float Float type (point number)
boolean Logical type (true or false)
string String type (any value in "" or ' ')
array Array type
object Object type
resource Resource type (as returned from mysql_connect function)

In addition to the above, you may use any valid types from PHPStan.

You may also use a specific class for the type as a replacement for object when you know the exact type of data being
used. This is recommended if you use typehints. Since PHP 7.1, you can have nullable typehints for method parameters
and return types. You should prepend a ? to the above types if they are nullable.

Inserting comment in source code for doxygen. Result : full doc for variables, functions, classes. . .

14 Chapter 2. Coding standards

https://phpstan.org/writing-php-code/phpdoc-types

GLPI Developer Documentation Documentation

2.5 Quotes / double quotes

• You must use single quotes for indexes, constants declaration, translations, . . .

• Use double quote in translated strings

• When you have to use tabulation character (\t), carriage return (\n) and so on, you should use double quotes.

• For performances reasons since PHP7, you may avoid strings concatenation.

Examples:

<?php
//for that one, you should use double, but this is at your option...
$a = "foo";

//use double quotes here, for $foo to be interpreted
// => with double quotes, $a will be "Hello bar" if $foo = 'bar'
// => with single quotes, $a will be "Hello $foo"
$a = "Hello $foo";

//use single quotes for array keys
$tab = [
'lastname' => 'john',
'firstname' => 'doe'

];

//Do not use concatenation to optimize PHP7
//note that you cannot use functions call in {}
$a = "Hello {$tab['firstname']}";

//single quote translations
$str = __('My string to translate');

//Double quote for special characters
$html = "<p>One paragraph</p>\n<p>Another one</p>";

//single quote cases
switch ($a) {
case 'foo' : //use single quote here

...
case 'bar' :

...
}

2.5. Quotes / double quotes 15

GLPI Developer Documentation Documentation

2.6 Checking standards

In order to check standards are respected, we provide a default configuration for PHP CodeSniffer rules. From the
GLPI directory, just run:

phpcs .

If the above command does not provide any output, then, all is OK :)

An example error output would looks like:

phpcs .

FILE: /var/www/webapps/glpi/tests/HtmlTest.php
--
FOUND 3 ERRORS AFFECTING 3 LINES
--
40 | ERROR | [x] Line indented incorrectly; expected 4 spaces, found

| | 3
59 | ERROR | [x] Line indented incorrectly; expected 4 spaces, found

| | 3
64 | ERROR | [x] Line indented incorrectly; expected 4 spaces, found

| | 3

To automatically fix most of the issues, use phpcbf, it will per default rely on default configuration:

phpcbf .

16 Chapter 2. Coding standards

http://pear.php.net/package/PHP_CodeSniffer
http://creativecommons.org/licenses/by-nc-nd/4.0/

CHAPTER

THREE

DEVELOPER API

Apart from the current documentation, you can also generate the full PHP documentation of GLPI (built with apigen)
using the tools/genapidoc.sh script.

3.1 Main framework objects

GLPI contains numerous classes; but there are a few common objects you’d have to know about. All GLPI classes are
in the src directory. Prior to GLPI 10.0, the classes were in the inc directory. Now, only non-class PHP files remain
there.

Note: See the full API documentation for related object for a complete list of methods provided.

3.1.1 CommonGLPI

This is the main GLPI object, most of GLPI or Plugins class inherit from this one, directly or not.

This object will help you to:

• manage item type name,

• manage item tabs,

• manage item menu,

• do some display,

• get URLs (form, search, . . .),

• . . .

3.1.2 CommonDBTM

This is an object to manage any database stuff; it of course inherits from CommonGLPI .

It aims to manage database persistence and tables for all objects; and will help you to:

• add, update or delete database rows,

• load a row from the database,

• get table informations (name, indexes, relations, . . .)

• . . .

17

https://github.com/ApiGen/ApiGen

GLPI Developer Documentation Documentation

The CommonDBTM object provides several of the available hooks.

3.1.3 CommonDropdown

This class aims to manage dropdown (lists) database stuff. It inherits from CommonDBTM.

It will help you to:

• manage the list,

• import data,

• . . .

3.1.4 CommonTreeDropdown

This class aims to manage tree lists database stuff. It inherits from CommonDropdown.

It will mainly help you to manage the tree apsect of a dropdown (parents, children, and so on).

3.1.5 CommonImplicitTreeDropdown

This class manages tree lists that cannot be managed by the user. It inherits from CommonTreeDropdown.

3.1.6 CommonDBVisible

This class helps with visibility management. It inherits from CommonDBTM.

It provides methods to:

• know if the user can view item,

• get dropdown parameters,

• . . .

3.1.7 CommonDBConnexity

This class factorizes database relation and inheritance stuff. It inherits from CommonDBTM.

It is not designed to be used directly, see CommonDBChild and CommonDBRelation.

3.1.8 CommonDBChild

This class manages simple relations. It inherits from CommonDBConnexity.

This object will help you to define and manage parent/child relations.

18 Chapter 3. Developer API

GLPI Developer Documentation Documentation

3.1.9 CommonDBRelation

This class manages relations. It inherits from CommonDBConnexity.

Unlike CommonDBChild; it is designed to declare more complex relations; as defined in the database model. This is
therefore more complex thant just using a simple relation; but it also offers many more possibilities.

In order to setup a complex relation, you’ll have to define several properties, such as:

• $itemtype_1 and $itemtype_2; to set both itm types used;

• $items_id_1 and $items_id_2; to set field id name.

Other properties let you configure how to deal with entities inheritance, ACLs; what to log on each part on several
actions, and so on.

The object will also help you to:

• get search options and query,

• find rights in ACLs list,

• handle massive actions,

• . . .

3.1.10 CommonDevice

This class factorizes common requirements on devices. It inherits from CommonDropdown.

It will help you to:

• import devices,

• handle menus,

• do some display,

• . . .

3.1.11 Common ITIL objects

All common ITIL objects will help you with ITIL objects management (Tickets, Changes, Problems).

CommonITILObject

Handle ITIL objects. It inherits from CommonDBTM.

It will help you to:

• get users, suppliers, groups, . . .

• count them,

• get objects for users, technicians, suppliers, . . .

• get status,

• . . .

3.1. Main framework objects 19

https://en.wikipedia.org/wiki/ITIL

GLPI Developer Documentation Documentation

CommonITILActor

Handle ITIL actors. It inherits from CommonDBRelation.

It will help you to:

• get actors,

• show notifications,

• get ACLs,

• . . .

CommonITILCost

Handle ITIL costs. It inherits from CommonDBChild.

It will help you to:

• get item cost,

• do some display,

• . . .

CommonITILTask

Handle ITIL tasks. It inherits from CommonDBTM.

It will help you to:

• manage tasks ACLs,

• do some display,

• get search options,

• . . .

CommonITILValidation

Handle ITIL validation process. It inherits from CommonDBChild.

It will help you to:

• mange ACLs,

• get and set status,

• get counts,

• do some display,

• . . .

20 Chapter 3. Developer API

http://creativecommons.org/licenses/by-nc-nd/4.0/

GLPI Developer Documentation Documentation

3.2 Database

3.2.1 Database model

Current GLPI database contains more than 250 tables; the goal of the current documentation is to help you to understand
the logic of the project, not to detail each table and possibility.

As on every database, there are tables, relations between them (more or less complex), some relations have descriptions
stored in a another table, some tables way be linked with themselves. . . Well, it’s quite common :) Let’s start with a
simple example:

Note: The above schema is an example, it is far from complete!

What we can see here:

• computers are directly linked to operating systems, operating systems versions, operating systems architectures,
. . . ,

• computers are linked to memories, processors and monitors using a relation table (which in that case permit to
link those components to other items than a computer),

• memories have a type.

As stated in the above note, this is far from complete; but this is quite representative of the whole database schema.

Resultsets

All resultsets sent back from GLPI database should always be associative arrays.

3.2. Database 21

GLPI Developer Documentation Documentation

Naming conventions

All tables and fields names are lower case and follows the same logic. If you do not respect that; GLPI will fail to find
relevant information.

Tables

Tables names are linked with PHP classes names; they are all prefixed with glpi_, and class name is set to plural.
Plugins tables must be prefixed by glpi_plugin_; followed by the plugin name, another dash, and then pluralized
class name.

A few examples:

PHP class name Table name
Computer glpi_computers
Ticket glpi_tickets
ITILCategory glpi_itilcategories
PluginExampleProfile glpi_plugin_example_profiles

Fields

Warning: Each table must have an auto-incremented primary key named id.

Field naming is mostly up to you; except for identifiers and foreign keys. Just keep clear and concise!

To add a foreign key field; just use the foreign table name without glpi_ prefix, and add _id suffix.

Warning: Even if adding a foreign key in a table should be perfectly correct; this is not the usual way things are
done in GLPI, see Make relations to know more.

A few examples:

Table name Foreign key field name
glpi_computers computers_id
glpi_tickets tickets_id
glpi_itilcategories itilcategories_id
glpi_plugin_example_profiles plugin_example_profiles_id

22 Chapter 3. Developer API

GLPI Developer Documentation Documentation

Make relations

On most cases, you may want to made possible to link many different items to something else. Let’s say you want to
make possible to link a Computer, a Printer or a Phone to a Memory component. You should add foreign keys in items
tables; but on something as huge as GLPI, it maybe not a good idea.

Instead, create a relation table, that will reference the memory component along with a item id and a type, as for
example:

CREATE TABLE `glpi_items_devicememories` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`items_id` int(11) NOT NULL DEFAULT '0',
`itemtype` varchar(255) COLLATE utf8mb4_unicode_ci DEFAULT NULL,
`devicememories_id` int(11) NOT NULL DEFAULT '0',
PRIMARY KEY (`id`),
KEY `items_id` (`items_id`),
KEY `devicememories_id` (`devicememories_id`),
KEY `itemtype` (`itemtype`,`items_id`),

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci ROW_FORMAT=DYNAMIC;

Again, this is a very simplified example of what already exists in the database, but you got the point ;)

In this example, itemtype would be Computer, Printer or Phone; items_id the id of the related item.

Indexes

In order to get correct performances querying database, you’ll have to take care of setting some indexes. It’s a nonsense
to add indexes on every fields in the database; but some of them must be defined:

• foreign key fields;

• fields that are very often used (for example fields like is_visible, itemtype, . . .),

• primary keys ;)

You should just use the field name as key name.

3.2.2 Querying

GLPI framework provides a simple request generator:

• without having to write SQL

• without having to quote table and field name

• without having to take care of freeing resources

• iterable

• countable

3.2. Database 23

http://creativecommons.org/licenses/by-nc-nd/4.0/

GLPI Developer Documentation Documentation

Basic usage

<?php
foreach ($DB->request(...) as $id => $row) {
//... work on each row ...

}

$req = $DB->request(...);
if ($row = $req->next()) {
// ... work on a single row

}

$req = $DB->request(...);
if (count($req)) {
// ... work on result

}

Arguments

The request method takes two arguments:

• table name(s): a string or an array of string (optional when given as FROM option)

• option(s): array of options

Giving full SQL statement

If the only option is a full SQL statement, it will be used. This usage is deprecated, and should be avoid when possible.

Note: To make a database query that could not be done using recommended way (calling SQL functions such as
NOW(), ADD_DATE(), . . . for example), you can do:

<?php
$DB->request('SHOW COLUMNS FROM `glpi_computers`');

Without option

In this case, all the data from the selected table is iterated:

<?php
$DB->request(['FROM' => 'glpi_computers']);
// => SELECT * FROM `glpi_computers`

$DB->request('glpi_computers');
// => SELECT * FROM `glpi_computers`

24 Chapter 3. Developer API

GLPI Developer Documentation Documentation

Fields selection

You can use either the SELECT or FIELDS options, an additional DISTINCT option might be specified.

Note: Changed in version 9.5.0.

Using DISTINCT FIELDS or SELECT DISTINCT options is deprecated.

<?php
$DB->request(['SELECT' => 'id', 'FROM' => 'glpi_computers']);
// => SELECT `id` FROM `glpi_computers`

$DB->request(['FIELDS' => 'id', 'FROM' => 'glpi_computers']);
// => SELECT `id` FROM `glpi_computers`

$DB->request(['SELECT' => 'name', 'DISTINCT' => true, 'FROM' => 'glpi_computers']);
// => SELECT DISTINCT `name` FROM `glpi_computers`

$DB->request(['FIELDS' => 'name', 'DISTINCT' => true, 'FROM' => 'glpi_computers']);
// => SELECT DISTINCT `name` FROM `glpi_computers`

The fields array can also contain per table sub-array:

<?php
$DB->request(['FIELDS' => ['glpi_computers' => ['id', 'name']], 'FROM' => 'glpi_computers
→˓']);
// => SELECT `glpi_computers`.`id`, `glpi_computers`.`name` FROM `glpi_computers`"

Using JOINs

You need to use criteria, usually a FKEY to describe how to join the tables.

Note: New in version 9.3.1.

The ON keyword can also be used as an alias of FKEY.

Multiple tables, native join

You need to use criteria, usually a FKEY (or the ON equivalent), to describe how to join the tables:

<?php
$DB->request(['FROM' => ['glpi_computers', 'glpi_computerdisks'],

'FKEY' => ['glpi_computers'=>'id',
'glpi_computerdisks'=>'computer_id']]);

$DB->request(['glpi_computers', 'glpi_computerdisks'],
['FKEY' => ['glpi_computers'=>'id',

'glpi_computerdisks'=>'computer_id']]);
// => SELECT * FROM `glpi_computers`, `glpi_computerdisks`
// WHERE `glpi_computers`.`id` = `glpi_computerdisks`.`computer_id`

3.2. Database 25

GLPI Developer Documentation Documentation

Left join

Using the LEFT JOIN option, with some criteria, usually a FKEY (or the ON equivalent):

<?php
$DB->request(['FROM' => 'glpi_computers',

'LEFT JOIN' => ['glpi_computerdisks' => ['FKEY' => ['glpi_computers' =>
→˓ 'id',

'glpi_computerdisks' =>
→˓ 'computer_id']]]]);
// => SELECT * FROM `glpi_computers`
// LEFT JOIN `glpi_computerdisks`
// ON (`glpi_computers`.`id` = `glpi_computerdisks`.`computer_id`)

Inner join

Using the INNER JOIN option, with some criteria, usually a FKEY (or the ON equivalent):

<?php
$DB->request(['FROM' => 'glpi_computers',

'INNER JOIN' => ['glpi_computerdisks' => ['FKEY' => ['glpi_computers' ␣
→˓=> 'id',

'glpi_computerdisks'␣
→˓=> 'computer_id']]]]);
// => SELECT * FROM `glpi_computers`
// INNER JOIN `glpi_computerdisks`
// ON (`glpi_computers`.`id` = `glpi_computerdisks`.`computer_id`)

Right join

Using the RIGHT JOIN option, with some criteria, usually a FKEY (or the ON equivalent):

<?php
$DB->request(['FROM' => 'glpi_computers',

'RIGHT JOIN' => ['glpi_computerdisks' => ['FKEY' => ['glpi_computers' ␣
→˓=> 'id',

'glpi_computerdisks'␣
→˓=> 'computer_id']]]]);
// => SELECT * FROM `glpi_computers`
// RIGHT JOIN `glpi_computerdisks`
// ON (`glpi_computers`.`id` = `glpi_computerdisks`.`computer_id`)

26 Chapter 3. Developer API

GLPI Developer Documentation Documentation

Join criterion

New in version 9.3.1.

It is also possible to add an extra criterion for any JOIN clause. You have to pass an array with first key equal to AND
or OR and any iterator valid criterion:

<?php
$DB->request([
'FROM' => 'glpi_computers',
'INNER JOIN' => [
'glpi_computerdisks' => [
'FKEY' => [
'glpi_computers' => 'id',
'glpi_computerdisks' => 'computer_id',
['OR' => ['glpi_computers.field' => ['>', 42]]]

]
]

]
]);

// => SELECT * FROM `glpi_computers`
// INNER JOIN `glpi_computerdisks`
// ON (`glpi_computers`.`id` = `glpi_computerdisks`.`computer_id` OR
// `glpi_computers`.`field` > '42'
//)

UNION queries

New in version 9.4.0.

An union query is an object, which contains an array of Sub queries. You just have to give a list of Subqueries you have
already prepared, or arrays of parameters that will be used to build them.

<?php
$sub1 = new \QuerySubQuery([
'SELECT' => 'field1 AS myfield',
'FROM' => 'table1'

]);
$sub2 = new \QuerySubQuery([
'SELECT' => 'field2 AS myfield',
'FROM' => 'table2'

]);
$union = new \QueryUnion([$sub1, $sub2]);
$DB->request([
'FROM' => $union

]);

// => SELECT * FROM (
// SELECT `field1` AS `myfield` FROM `table1`
// UNION ALL
// SELECT `field2` AS `myfield` FROM `table2`
//)

3.2. Database 27

GLPI Developer Documentation Documentation

As you can see on the above example, a UNION ALL query is built. If you want your results to be deduplicated, (standard
UNION):

<?php
//...
//passing true as second argument will activate deduplication.
$union = new \QueryUnion([$sub1, $sub2], true);
//...

Warning: Keep in mind that deduplicating a UNION query may have a huge cost on database server.

Most of the time, you can issue a UNION ALL and deduplicate the results in the code.

Counting

Using the COUNT option:

<?php
$DB->request(['FROM' => 'glpi_computers', 'COUNT' => 'cpt']);
// => SELECT COUNT(*) AS cpt FROM `glpi_computers`

Grouping

Using the GROUPBY option, which contains a field name or an array of field names.

<?php
$DB->request(['FROM' => 'glpi_computers', 'GROUPBY' => 'name']);
// => SELECT * FROM `glpi_computers` GROUP BY `name`

$DB->request('glpi_computers', ['GROUPBY' => ['name', 'states_id']]);
// => SELECT * FROM `glpi_computers` GROUP BY `name`, `states_id`

Order

Using the ORDER option, with value a field or an array of fields. Field name can also contains ASC or DESC suffix.

<?php
$DB->request(['FROM' => 'glpi_computers', 'ORDER' => 'name']);
// => SELECT * FROM `glpi_computers` ORDER BY `name`

$DB->request('glpi_computers', ['ORDER' => ['date_mod DESC', 'name ASC']]);
// => SELECT * FROM `glpi_computers` ORDER BY `date_mod` DESC, `name` ASC

28 Chapter 3. Developer API

GLPI Developer Documentation Documentation

Request pager

Using the START and LIMIT options:

<?php
$DB->request('glpi_computers', ['START' => 5, 'LIMIT' => 10]);
// => SELECT * FROM `glpi_computers` LIMIT 10 OFFSET 5"

Criteria

Using the WHERE option with an array of criteria. The first level of the array is considered as an implicit logical AND.
By default, the array keys are considered as field names, and the values as values. If this differs from what you want,
there are a few workarounds that are covered later.

Simple criteria

A field name and its wanted value:

<?php
$DB->request(['FROM' => 'glpi_computers', 'WHERE' => ['is_deleted' => 0]]);
// => SELECT * FROM `glpi_computers` WHERE `is_deleted` = 0

$DB->request(['FROM' => 'glpi_computers', 'WHERE' => ['is_deleted' => 0,
'name' => 'foo']);

// => SELECT * FROM `glpi_computers` WHERE `is_deleted` = 0 AND `name` = 'foo'

$DB->request(['FROM' => 'glpi_computers', 'WHERE' => ['users_id' => [1,5,7]]]);
// => SELECT * FROM `glpi_computers` WHERE `users_id` IN (1, 5, 7)

When using an array as a value, the operator is automatically set to IN. Make sure that you verify that the array cannot
be empty, otherwise an error will be thrown.

When using null as a value, the operator is automatically set to IS and the value is set to the NULL keyword.

Logical OR, AND, NOT

Using the OR, AND, or NOT option with an array of criteria:

<?php
$DB->request(['FROM' => 'glpi_computers', 'WHERE' => ['OR' => ['is_deleted' => 0,

'name' => 'foo']]]);
// => SELECT * FROM `glpi_computers` WHERE (`is_deleted` = 0 OR `name` = 'foo')"

$DB->request(['FROM' => 'glpi_computers', 'WHERE' => ['NOT' => ['id' => [1,2,7]]]]);
// => SELECT * FROM `glpi_computers` WHERE NOT (`id` IN (1, 2, 7))

Using a more complex expression with AND and OR:

<?php
$DB->request(['FROM' => 'glpi_computers', 'WHERE' => ['is_deleted' => 0,

['OR' => ['name' => 'foo', 'otherserial' => 'otherunique']],
(continues on next page)

3.2. Database 29

GLPI Developer Documentation Documentation

(continued from previous page)

['OR' => ['locations_id' => 1, 'serial' => 'unique']]]
]);
// => SELECT * FROM `glpi_computers` WHERE `is_deleted` = '0' AND ((`name` = 'foo' OR␣
→˓`otherserial` = 'otherunique')) AND ((`locations_id` = '1' OR `serial` = 'unique'))

Operators

Default operator is =, but other operators can be used, by giving an array containing operator and value.

<?php
$DB->request(['FROM' => 'glpi_computers', 'WHERE' => ['date_mod' => ['>' , '2016-10-01
→˓']]]);
// => SELECT * FROM `glpi_computers` WHERE `date_mod` > '2016-10-01'

$DB->request(['FROM' => 'glpi_computers', 'WHERE' => ['name' => ['LIKE' , 'pc00%']]]);
// => SELECT * FROM `glpi_computers` WHERE `name` LIKE 'pc00%'

Known operators are =, !=, <, <=, >, >=, LIKE, REGEXP, NOT LIKE, NOT REGEX, & (BITWISE AND), and | (BITWISE
OR).

Aliases

You can use SQL aliases (SQL AS keyword). To achieve that, just write the alias you want on the table name or the
field name; then use it in your parameters:

<?php
$DB->request(['FROM' => 'glpi_computers AS c']);
// => SELECT * FROM `glpi_computers` AS `c`

$DB->request(['SELECT' => 'field AS f', 'FROM' => 'glpi_computers AS c']);
// => SELECT `field` AS `f` FROM `glpi_computers` AS `c`

Aggregate functions

New in version 9.3.1.

You can use some aggregation SQL functions on fields: COUNT, SUM, AVG, MIN and MAX are supported. Just set the
function as the key in your fields array:

<?php
$DB->request(['SELECT' => ['COUNT' => 'field', 'bar'], 'FROM' => 'glpi_computers',
→˓'GROUPBY' => 'field']);
// => SELECT COUNT(`field`), `bar` FROM `glpi_computers` GROUP BY `field`

$DB->request(['SELECT' => ['bar', 'SUM' => 'amount AS total'], 'FROM' => 'glpi_computers
→˓', 'GROUPBY' => 'amount']);
// => SELECT `bar`, SUM(`amount`) AS `total` FROM `glpi_computers` GROUP BY `amount`

30 Chapter 3. Developer API

GLPI Developer Documentation Documentation

Sub queries

New in version 9.3.1.

You can use subqueries, using the specific QuerySubQuery class. It takes two arguments: the first is an array of criteria
to get the query built, and the second is an optional operator to use. Allowed operators are the same than documented
below plus IN and NOT IN. Default operator is IN.

<?php
$sub_query = new \QuerySubQuery([
'SELECT' => 'id',
'FROM' => 'subtable',
'WHERE' => [
'subfield' => 'subvalue'

]
]);
$DB->request(['FROM' => 'glpi_computers', 'WHERE' => ['field' => $sub_query]]);
// => SELECT * FROM `glpi_computers` WHERE `field` IN (SELECT `id` FROM `subtable` WHERE␣
→˓`subfield` = 'subvalue')

$sub_query = new \QuerySubQuery([
'SELECT' => 'id',
'FROM' => 'subtable',
'WHERE' => [
'subfield' => 'subvalue'

]
]);
$DB->request(['FROM' => 'glpi_computers', 'WHERE' => ['NOT' => ['field' => $sub_
→˓query]]]);
// => SELECT * FROM `glpi_computers` WHERE NOT `field` IN (SELECT `id` FROM `subtable`␣
→˓WHERE `subfield` = 'subvalue')

$sub_query = new \QuerySubQuery([
'SELECT' => 'id',
'FROM' => 'subtable',
'WHERE' => [
'subfield' => 'subvalue'

]
], 'myalias');
$DB->request(['FROM' => 'glpi_computers', 'SELECT' => [$sub_query, 'id']]);
// => SELECT (SELECT `id` FROM `subtable` WHERE `subfield` = 'subvalue') AS `myalias`, id␣
→˓FROM `glpi_computers`

What if iterator does not provide what I’m looking for?

Even if we do our best to get as many things as possible implemented in the iterator, there are several things that are
missing. . . Consider for example you want to use the SQL NOW() function, or want to use a value based on another
field: there is no native way to achieve that.

Right now, there is a QueryExpression class that would permit to do such things on values (an not on fields since it is
not possible to use a class instance as an array key).

3.2. Database 31

GLPI Developer Documentation Documentation

Warning: The QueryExpression class will pass raw SQL. You are in charge to escape name and values you use
into it!

For example, to use the SQL NOW() function:

<?php
$DB->request([
'FROM' => 'my_table',
'WHERE' => [
'date_end' => ['>', new \QueryExpression('NOW()')]

]
]);
// SELECT * FROM `my_table` WHERE `date_end` > NOW()

An example with a field value:

<?php
$DB->request([
'FROM' => 'my_table',
'WHERE' => [
'field' => new \QueryExpression(DBmysql::quoteName('other_field'))

]
]);
// SELECT * FROM `my_table` WHERE `field` = `other_field`

New in version 9.3.1.

You can also use some function or non supported stuff on field part by using a RAW entry in the query:

<?php
$DB->request([
'FROM' => 'my_table',
'WHERE' => [
'RAW' => [

DBmysql::quoteName('field') => DBmysql::quoteName('field2')
]

]
]);
// SELECT * FROM `my_table` WHERE LOWER(`field`) = 'value'

New in version 9.5.0.

You can use a QueryExpression object in the FIELDS statement:

<?php
$DB->request([
'FIELDS' => [
'glpi_computers' => ['id'],
new QueryExpression("CONCAT(`glpi_computers`.`name`, '.', `glpi_domains`.`name`)␣

→˓AS `fullname`")
],
'FROM' => 'glpi_computers',
'LEFT JOIN' => [
'glpi_domains' => [

(continues on next page)

32 Chapter 3. Developer API

GLPI Developer Documentation Documentation

(continued from previous page)

'FKEY' => [
'glpi_computers' => 'domains_id',
'glpi_domains' => 'id',

]
]

]
]);
// => SELECT `glpi_computers`.`id`, CONCAT(`glpi_computers`.`name`, '.', `glpi_domains`.
→˓`name`) AS `fullname` FROM `glpi_computers` LEFT JOIN `glpi_domains` ON (`glpi_computers`.
→˓`domains_id` = `glpi_domains`.`id`)

You can use a QueryExpression object in the FROM statement:

<?php
$DB->request([
'FROM' => new QueryExpression('(SELECT * FROM glpi_computers) as computers'),

]);
// => SELECT * FROM (SELECT * FROM glpi_computers) as computers

When you need to manually quote identifies or values, it is recommended that you use $DB::quoteName and
$DB::quoteValue respectively rather than directly adding the quotes to ensure future compatibility.

3.2.3 Updating

New in version 9.3.

Just as SQL SELECT queries, you should avoid plain SQL and use methods provided by the framework from the DB
object.

General

Escaping of data is currently provided automatically by the framework for all data passed from GET or POST ; you do
not have to take care of them (this will change in a future version). You have to take care of escaping data when you
use values that came from elsewhere.

The WHERE part of UPDATE and DELETE methods uses the same criteria capabilities than SELECT queries.

Inserting a row

You can insert a row in the database using the insert():

<?php

$DB->insert(
'glpi_my_table', [
'a_field' => 'My value',
'other_field' => 'Other value'

]
);

(continues on next page)

3.2. Database 33

http://creativecommons.org/licenses/by-nc-nd/4.0/

GLPI Developer Documentation Documentation

(continued from previous page)

// => INSERT INTO `glpi_my_table` (`a_field`, `other_field`) VALUES ('My value', Other␣
→˓value)

An insertOrDie() method is also provided.

Updating a row

You can update rows in the database using the update() method:

<?php

$DB->update(
'glpi_my_table', [
'a_field' => 'My value',
'other_field' => 'Other value'

], [
'id' => 42

]
);
// => UPDATE `glpi_my_table` SET `a_field` = 'My value', `other_field` = 'Other value' WHERE␣
→˓`id` = 42

An updateOrDie() method is also provided.

New in version 9.3.1.

When issuing an UPDATE query, you can use an ORDER and/or a LIMIT clause along with the where (which remains
mandatory). In order to achieve that, use an indexed array with appropriate keys:

<?php
$DB->update(
'my_table', [
'my_field' => 'my value'

], [
'WHERE' => ['field' => 'value'],
'ORDER' => ['date DESC', 'id ASC'],
'LIMIT' => 1

]
);

Removing a row

You can remove rows from the database using the delete() method:

<?php

$DB->delete(
'glpi_my_table', [
'id' => 42

]
);
// => DELETE FROM `glpi_my_table` WHERE `id` = 42

34 Chapter 3. Developer API

GLPI Developer Documentation Documentation

Use prepared statements

On some cases, you may want to use prepared statements to improve performances. In order to achieve that, you will
have to create a query with some parameters (not named, since mysqli does not supports named parameters), then to
prepare it, and finally to bind parameters and execute the statement.

Let’s see an example with an insert statement:

<?php
$insert_query = $DB->buildInsert(
'my_table', [
'field' => new QueryParam(),
'other' => new QueryParam()

]
);
// => INSERT INTO `glpi_my_table` (`field`, `other`) VALUES (?, ?)
$stmt = $DB->prepare($insert_query);

foreach ($data as $row) {
$stmt->bind_params(
'ss',
$row['field'],
$row['other']

);
$stmt->execute();

}

Just like the buildInsert() method used here, buildUpdate and buildDelete methods are available. They take exactly the
same arguments as “non build” methods.

Note: Note the use of the QueryParam object. This is used for the builder to be aware you are not passing a value,
but a parameter (that must not be escaped nor quoted).

Preparing a SELECT query is a bit different:

<?php
$it = new DBmysqlIterator();
$it->buildQuery([
'FROM' => 'my_table',
'WHERE' => [
'something' => new QueryParam(),
'foo' => 'bar'

]);
$query = $it->getSql();
// => SELECT FROM `my_table` WHERE `something` = ? AND `foo` = 'bar'
$stmt = $DB->prepare($query);
// [...]

3.2. Database 35

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

GLPI Developer Documentation Documentation

3.3 Search Engine

3.3.1 Goal

The Search class aims to provide a multi-criteria Search engine for GLPI Itemtypes.

It includes some short-cuts functions:

• show(): displays the complete search page.

• showGenericSearch(): displays only the multi-criteria form.

• showList(): displays only the resulting list.

• getDatas(): return an array of raw data.

• manageParams(): complete the $_GET values with the $_SESSION values.

The show function parse the $_GET values (calling manageParams()) passed by the page to retrieve the criteria and
construct the SQL query. For showList function, parameters can be passed in the second argument.

The itemtype classes can define a set of search options to configure which columns could be queried, how they can be
accessed and displayed, etc..

Todo:

• datafields option

• difference between searchunit and delay_unit

• dropdown translations

• giveItem

• export

• fulltext search

Examples

To display the search engine with its default options (criteria form, pager, list):

<?php
$itemtype = 'Computer';
Search::show($itemtype);

If you want to display only the multi-criteria form (with some additional options):

<?php
$itemtype = 'Computer';
$p = [
'addhidden' => [// some hidden inputs added to the criteria form
'hidden_input' => 'OK'

],
'actionname' => 'preview', //change the submit button name
'actionvalue' => __('Preview'), //change the submit button label

];
Search::showGenericSearch($itemtype, $p);

36 Chapter 3. Developer API

GLPI Developer Documentation Documentation

If you want to display only a list without the criteria form:

<?php
// display a list of users with entity = 'Root entity'
$itemtype = 'User';
$p = [
'start' => 0, // start with first item (index 0)
'is_deleted' => 0, // item is not deleted
'sort' => 1, // sort by name
'order' => 'DESC' // sort direction
'reset' => 'reset',// reset search flag
'criteria' => [

[
'field' => 80, // field index in search options
'searchtype' => 'equals', // type of search
'value' => 0, // value to search

],
],

];
Search::showList($itemtype, $p);

3.3.2 GET Parameters

Note: GLPI saves in $_SESSION['glpisearch'][$itemtype] the last set of parameters for the current itemtype
for each search query. It is automatically restored on a new search if no reset, criteria or metacriteria is defined.

Here is the list of possible keys which could be passed to control the search engine. All are optionals.

criteria
An multi-dimensional array of criterion to filter the search. Each criterion array must provide:

• link: one of AND, OR, AND NOT or OR NOT logical operators, optional for first element,

• field: id of the searchoption,

• searchtype: type of search, one of:

– contains

– equals

– notequals

– lessthan

3.3. Search Engine 37

GLPI Developer Documentation Documentation

– morethan

– under

– notunder

• value: the value to search

Note: In order to find the field id you want, you may take a look at the getsearchoptions.php tool script.

metacriteria
Very similar to criteria parameter but permits to search in the search options of an itemtype linked to the current
(the software of a computer, for example).

Not all itemtype can be linked, see the getMetaItemtypeAvailable() method of the Search class to know
which ones could be.

The parameter need the same keys as criteria plus one additional:

• itemtype: second itemtype to link.

sort
id of the searchoption to sort by.

order
Either ASC for ending sorting or DESC for ending sorting.

start
An integer to indicate the start point of pagination (SQL OFFSET).

is_deleted
A boolean for display trash-bin.

reset
A boolean to reset saved search parameters, see note below.

3.3.3 Search options

Each itemtype can define a set of options to represent the columns which can be queried/displayed by the search engine.
Each option is identified by an unique integer (we must avoid conflict).

Changed in version 9.2: Searchoptions array has been completely rewritten; mainly to catch duplicates and add a unit
test to prevent future issues.

To permit the use of both old and new syntax; a new method has been created, getSearchOptionsNew(). Old syntax
is still valid (but do not permit to catch duplicates).

The format has changed, but not the possible options and their values!

<?php
function getSearchOptionsNew() {

$tab = [];

$tab[] = [
'id' => 'common',
'name' => __('Characteristics')

];

(continues on next page)

38 Chapter 3. Developer API

GLPI Developer Documentation Documentation

(continued from previous page)

$tab[] = [
'id' => '1',
'table' => self::getTable(),
'field' => 'name',
'name' => __('Name'),
'datatype' => 'itemlink',
'massiveaction' => false

];

...

return $tab;
}

Note: For reference, the old way to write the same search options was:

<?php
function getSearchOptions() {

$tab = array();
$tab['common'] = __('Characteristics');

$tab[1]['table'] = self::getTable();
$tab[1]['field'] = 'name';
$tab[1]['name'] = __('Name');
$tab[1]['datatype'] = 'itemlink';
$tab[1]['massiveaction'] = false;

...

return $tab;
}

Each option must define the following keys:

table
The SQL table where the field key can be found.

field
The SQL column to query.

name
A label used to display the search option in the search pages (like header for example).

Optionally, it can defined the following keys:

linkfield
Foreign key used to join to the current itemtype table. If not empty, standard massive action (update feature) for
this search option will be impossible

searchtype

A string or an array containing forced search type:

• equals (may force use of field instead of id when adding searchequalsonfield option)

3.3. Search Engine 39

GLPI Developer Documentation Documentation

• contains

forcegroupby
A boolean to force group by on this search option

splititems
Use <hr> instead of
 to split grouped items

usehaving
Use HAVING SQL clause instead of WHERE in SQL query

massiveaction
Set to false to disable the massive actions for this search option.

nosort
Set to true to disable sorting with this search option.

nosearch
Set to true to disable searching in this search option.

nodisplay
Set to true to disable displaying this search option.

joinparams
Defines how the SQL join must be done. See paragraph on joinparams below.

additionalfields
An array for additional fields to add in the SELECT clause. For example: 'additionalfields' => ['id',
'content', 'status']

datatype
Define how the search option will be displayed and if a control need to be used for modification (ex: datepicker
for date) and affect the searchtype dropdown. optional parameters are added to the base array of the search
option to control more exactly the datatype.

See the datatype paragraph below.

Join parameters

To define join parameters, you can use one or more of the following:

beforejoin

Define which tables must be joined to access the field.

The array contains table key and may contain an additional joinparams. In case of nested beforejoin,
we start the SQL join from the last dimension.

Example:

<?php
[
'beforejoin' => [
'table' => 'mytable',
'joinparams' => [
'beforejoin' => [...]

]
]

]

jointype

40 Chapter 3. Developer API

GLPI Developer Documentation Documentation

Define the join type:

• empty for a standard jointype::

REFTABLE.`#linkfield#` = NEWTABLE.`id`

• child for a child table::

REFTABLE.`id` = NEWTABLE.`#linkfield#`

• itemtype_item for links using itemtype and items_id fields in new table::

REFTABLE.`id` = NEWTABLE.`items_id`
AND NEWTABLE.`itemtype` = '#ref_table_itemtype#'

• itemtype_item_revert (since 9.2.1) for links using itemtype and items_id fields in ref table::

NEWTABLE.`id` = REFTABLE.`items_id`
AND REFTABLE.`itemtype` = '#new_table_itemtype#'

• mainitemtype_mainitem same as itemtype_item but using mainitemtype and mainitems_id
fields::

REFTABLE.`id` = NEWTABLE.`mainitems_id`
AND NEWTABLE.`mainitemtype` = 'new table itemtype'

• itemtypeonly same as itemtype_item jointype but without linking id::

NEWTABLE.`itemtype` = '#new_table_itemtype#'

• item_item for table used to link two similar items: glpi_tickets_tickets for example: link
fields are standardfk_1 and standardfk_2::

REFTABLE.`id` = NEWTABLE.`#fk_for_new_table#_1`
OR REFTABLE.`id` = NEWTABLE.`#fk_for_new_table#_2`

• item_item_revert same as item_item and child jointypes::

NEWTABLE.`id` = REFTABLE.`#fk_for_new_table#_1`
OR NEWTABLE.`id` = REFTABLE.`#fk_for_new_table#_2`

condition

Additional condition to add to the standard link.

Use NEWTABLE or REFTABLE tag to use the table names.

Changed in version 9.4.

An array of parameters used to build a WHERE clause from GLPI querying facilities. Was previously only
a string.

nolink

Set to true to indicate the current join does not link to the previous join/from (nested joinparams)

3.3. Search Engine 41

GLPI Developer Documentation Documentation

Data types

Available datatypes for search are:

date

Available parameters (all optional):

• searchunit: one of MySQL DATE_ADD unit, default to MONTH

• maybefuture: display datepicker with future date selection, defaults to false

• emptylabel: string to display in case of null value

datetime

Available parameters (all optional) are the same as date.

date_delay

Date with a delay in month (end_warranty, end_date).

Available parameters (all optional) are the same as date and:

• datafields: array of data fields that would be used.

– datafields[1]: the date field,

– datafields[2]: the delay field,

– datafields[2]: ?

• delay_unit: one of MySQL DATE_ADD unit, default to MONTH

timestamp

Use Dropdown::showTimeStamp() for modification

Available parameters (all optional):

• withseconds: boolean (false by default)

weblink

Any URL

email

Any email address

color

Use Html::showColorField() for modification

text

Use text area input for modification (optionally rich-text)

string

Simple, single-line text

ip

Any IP address

mac

Available parameters (all optional):

• htmltext: boolean, escape the value (false by default)

42 Chapter 3. Developer API

https://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_date-add
https://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_date-add

GLPI Developer Documentation Documentation

number

Use a Dropdown::showNumber() for modification (in case of equals searchtype). For contains
searchtype, you can use < and > prefix in value.

Available parameters (all optional):

• width: html attribute passed to Dropdown::showNumber()

• min: minimum value (default 0)

• max: maximum value (default 100)

• step: step for select (default 1)

• toadd: array of values to add a the beginning of the dropdown

integer

Alias for number

count

Same as number but count the number of item in the table

decimal

Same as number but formatted with decimal

bool

Use Dropdown::showYesNo() for modification

itemlink

Create a link to the item

itemtypename

Use Dropdown::showItemTypes() for modification

Available parameters (all optional) to define available itemtypes:

• itemtype_list: one of $CFG_GLPI[“unicity_types”]

• types: array containing available types

language

Use Dropdown::showLanguages() for modification

Available parameters (all optional):

• display_emptychoice: display an empty choice (-------)

right

Use Profile::dropdownRights() for modification

Available parameters (all optional):

• nonone: hide none choice ? (defaults to false)

• noread: hide read choice ? (defaults to false)

• nowrite: hide write choice ? (defaults to false)

dropdown

Use Itemtype::dropdown() for modification. Dropdown may have several additional parameters de-
pending of dropdown type : right for user one for example

3.3. Search Engine 43

https://github.com/glpi-project/glpi/blob/9.1.2/config/define.php#L166

GLPI Developer Documentation Documentation

specific

If not any of the previous options matches the way you want to display your field, you can use this datatype.
See specific search options paragraph for implementation.

Specific search options

You may want to control how to select and display your field in a searchoption. You need to set ‘datatype’ => ‘specific’
in your search option and declare these methods in your class:

getSpecificValueToDisplay
Define how to display the field in the list.

Parameters:

• $field: column name, it matches the ‘field’ key of your searchoptions

• $values: all the values of the current row (for select)

• $options: will contains these keys:

– html,

– searchopt: the current full searchoption

getSpecificValueToSelect

Define how to display the field input in the criteria form and massive action.

Parameters:

• $field: column name, it matches the ‘field’ key of your searchoptions

• $values: the current criteria value passed in $_GET parameters

• $name: the html attribute name for the input to display

• $options: this array may vary strongly in function of the searchoption or from the massiveaction
or criteria display. Check the corresponding files:

– searchoptionvalue.php

– massiveaction.class.php

Simplified example extracted from CommonItilObject Class for glpi_tickets.status field:

<?php

function getSearchOptionsMain() {
$tab = [];

...

$tab[] = [
'id' => '12',
'table' => $this->getTable(),
'field' => 'status',
'name' => __('Status'),
'searchtype' => 'equals',
'datatype' => 'specific'

];

(continues on next page)

44 Chapter 3. Developer API

https://github.com/glpi-project/glpi/blob/ee667a059eb9c9a57c6b3ae8309e51ca99a5eeaf/ajax/searchoptionvalue.php#L128
https://github.com/glpi-project/glpi/blob/ee667a059eb9c9a57c6b3ae8309e51ca99a5eeaf/inc/massiveaction.class.php#L881

GLPI Developer Documentation Documentation

(continued from previous page)

...

return $tab;
}

static function getSpecificValueToDisplay($field, $values, array $options=array()) {

if (!is_array($values)) {
$values = array($field => $values);

}
switch ($field) {
case 'status':
return self::getStatus($values[$field]);

...

}
return parent::getSpecificValueToDisplay($field, $values, $options);

}

static function getSpecificValueToSelect($field, $name='', $values='', array
→˓$options=array()) {

if (!is_array($values)) {
$values = array($field => $values);

}
$options['display'] = false;

switch ($field) {
case 'status' :

$options['name'] = $name;
$options['value'] = $values[$field];
return self::dropdownStatus($options);

...
}
return parent::getSpecificValueToSelect($field, $name, $values, $options);

}

3.3.4 Default Select/Where/Join

The search class implements three methods which add some stuff to SQL queries before the searchoptions computation.
For some itemtype, we need to filter the query or additional fields to it. For example, filtering the tickets you cannot
view if you do not have the proper rights.

GLPI will automatically call predefined methods you can rely on from your plugin hook.php file.

3.3. Search Engine 45

GLPI Developer Documentation Documentation

addDefaultSelect

See addDefaultSelect() method documentation

And in the plugin hook.php file:

<?php
function plugin_mypluginname_addDefaultSelect($itemtype) {
switch ($type) {
case 'MyItemtype':
return "`mytable`.`myfield` = 'myvalue' AS MYNAME, ";

}
return '';

}

addDefaultWhere

See addDefaultWhere() method documentation

And in the plugin hook.php file:

<?php
function plugin_mypluginname_addDefaultJoin($itemtype, $ref_table, &$already_link_
→˓tables) {
switch ($itemtype) {
case 'MyItemtype':
return Search::addLeftJoin(

$itemtype,
$ref_table,
$already_link_tables,
'newtable',
'linkfield'

);
}
return '';

}

addDefaultJoin

See addDefaultJoin()

And in the plugin hook.php file:

<?php
function plugin_mypluginname_addDefaultWhere($itemtype) {
switch ($itemtype) {
case 'MyItemtype':
return " `mytable`.`myfield` = 'myvalue' ";

}
return '';

}

46 Chapter 3. Developer API

GLPI Developer Documentation Documentation

3.3.5 Bookmarks

The glpi_bookmarks table stores a list of search queries for the users and permit to retrieve them.

The query field contains an url query construct from parameters with http_build_query PHP function.

3.3.6 Display Preferences

The glpi_displaypreferences table stores the list of default columns which need to be displayed to a user for an
itemtype.

A set of preferences can be personal or global (users_id = 0). If a user does not have any personal preferences for
an itemtype, the search engine will use the global preferences.

3.4 Massive Actions

3.4.1 Goals

Add to itemtypes search lists:

• a checkbox before each item,

• a checkbox to select all items checkboxes,

• an Actions button to apply modifications to each selected items.

3.4. Massive Actions 47

http://php.net/manual/en/function.http-build-query.php
http://creativecommons.org/licenses/by-nc-nd/4.0/

GLPI Developer Documentation Documentation

3.4.2 Update item’s fields

The first option of the Actions button is Update. It permits to modify the fields content of the selected items.

The list of fields displayed in the sub list depends on the Search options of the current itemtype. By default, all
Search options are automatically displayed in this list. To forbid this display for one field, you must define the key
massiveaction to false in the Search options declaration, example:

<?php

$tab[] = [
'id' => '1',
'table' => self::getTable(),
'field' => 'name',
'name' => __('Name'),
'datatype' => 'itemlink',
'massiveaction' => false // <- NO MASSIVE ACTION

];

3.4.3 Specific massive actions

After the Update entry, we can declare additional specific massive actions for our current itemtype.

First, we need declare in our class a getSpecificMassiveActionsmethod containing our massive action definitions:

<?php

...

function getSpecificMassiveActions($checkitem=NULL) {
$actions = parent::getSpecificMassiveActions($checkitem);

// add a single massive action
$class = __CLASS__;
$action_key = "myaction_key";
$action_label = "My new massive action";
$actions[$class.MassiveAction::CLASS_ACTION_SEPARATOR.$action_key] = $action_label;

return $actions;
}

A single declaration is defined by these parts:

• a classname

• a separator: always MassiveAction::CLASS_ACTION_SEPARATOR

• a key

• and a label

We can have multiple actions for the same class, and we may target different class from our current object.

Next, to display the form of our definitions, we need to declare a showMassiveActionsSubForm method:

48 Chapter 3. Developer API

GLPI Developer Documentation Documentation

<?php

...

static function showMassiveActionsSubForm(MassiveAction $ma) {
switch ($ma->getAction()) {
case 'myaction_key':
echo __("fill the input");
echo Html::input('myinput');
echo Html::submit(__('Do it'), array('name' => 'massiveaction'))."";

break;
}

return parent::showMassiveActionsSubForm($ma);
}

Finally, to process our definition, we need a processMassiveActionsForOneItemtype method:

<?php

...

static function processMassiveActionsForOneItemtype(MassiveAction $ma, CommonDBTM $item,
array $ids) {

switch ($ma->getAction()) {
case 'myaction_key':

$input = $ma->getInput();

foreach ($ids as $id) {

if ($item->getFromDB($id)
&& $item->doIt($input)) {
$ma->itemDone($item->getType(), $id, MassiveAction::ACTION_OK);

} else {
$ma->itemDone($item->getType(), $id, MassiveAction::ACTION_KO);
$ma->addMessage(__("Something went wrong"));

}
}
return;

}

parent::processMassiveActionsForOneItemtype($ma, $item, $ids);
}

Besides an instance of MassiveAction class $ma, we have also an instance of the current itemtype $item and the
list of selected id ``$ids.

In this method, we could use some optional utility functions from the MassiveAction $ma object supplied in param-
eter :

• itemDone, indicates the result of the current $id, see constants of MassiveAction class. If we miss this call,
the current $id will still be considered as OK.

• addMessage, a string to send to the user for explaining the result when processing the current $id

3.4. Massive Actions 49

GLPI Developer Documentation Documentation

3.5 Rules Engine

GLPI provide a set of tools to implements a rule engine which take criteria in input and output actions. criteria
and actions are defined by the user (and/or predefined at the GLPI installation).

Here is the list of base rules set provided in a staple GLPI:

• ruleimportentity: rules for assigning an item to an entity,

• ruleimportcomputer: rules for import and link computers,

• rulemailcollector: rules for assigning a ticket created through a mails receiver,

• ruleright: authorizations assignment rules,

• rulesoftwarecategory: rules for assigning a category to software,

• ruleticket: business rules for ticket.

Plugin could add their own set of rules.

3.5.1 Classes

A rules system is represented by these base classes:

• Rule class

Parent class for all Rule* classes. This class represents a single rule (matching a line in glpi_rules
table) and include test, process, display for an instance.

• RuleCollection class

Parent class for all Rule*Collection classes.

This class represents the whole collection of rules for a sub_type (matching all line in glpi_rules
table for this sub_type) and includes some method to process, duplicate, test and display the full
collection.

• RuleCriteria class

This class permits to manipulate a single criteria (matching a line in glpi_rulecriterias table)
and include methods to display and match input values.

• RuleAction class

This class permits to manipulate a single action (matching a line in glpi_ruleactions table) and
include methods to display and process output values.

And for each sub_type of rule:

• RuleSubtype class

Define the specificity of the sub_type rule like list of criteria and actions or how to display specific
parts.

• RuleSubtypeCollection class

Define the specificity of the sub_type rule collection like the preparation of input and the tests results.

50 Chapter 3. Developer API

http://creativecommons.org/licenses/by-nc-nd/4.0/

GLPI Developer Documentation Documentation

3.5.2 Database Model

Here is the list of important tables / fields for rules:

• glpi_rules:

All rules for all sub_types are inserted here.

– sub_type: the type of the rule (ruleticket, ruleright, etc),

– ranking: the order of execution in the collection,

– match: define the link between the rule’s criteria. Can be AND or OR,

– uuid: unique id for the rule, useful for import/export in xml,

– condition: addition condition for the sub_type (only used by ruleticket for defining the trigger
of the collection on add and/or update of a ticket).

• glpi_rulecriterias:

Store all criteria for all rules.

– rules_id: the foreign key for glpi_rules,

– criteria: one of the key defined in the RuleSubtype::getCriterias() method,

– condition: an integer matching the constant set in Rule class constants,

– pattern: the direct value or regex to compare to the criteria.

• glpi_ruleactions:

Store all actions for all rules.

– rules_id: the foreign key for glpi_rules,

– action_type: the type of action to apply on the input. See RuleAction::getActions(),

– field: the field to alter by the current action. See keys definition in
RuleSubtype::getActions(),

– value: the value to apply in the field.

3.5.3 Add a new Rule class

Here is the minimal setup to have a working set. You need to add the following classes for describing you new
sub_type.

• src/RuleMytype.php

<?php

class RuleMytype extends Rule {

// optional right to apply to this rule type (default: 'config'), see Rights␣
→˓management.
static $rightname = 'rule_mytype';

// define a label to display in interface titles
function getTitle() {

return __('My rule type name');
(continues on next page)

3.5. Rules Engine 51

GLPI Developer Documentation Documentation

(continued from previous page)

}

// return an array of criteria
function getCriterias() {

$criterias = [
'_users_id_requester' => [

'field' => 'name',
'name' => __('Requester'),
'table' => 'glpi_users',
'type' => 'dropdown',

],

'GROUPS' => [
'table' => 'glpi_groups',
'field' => 'completename',
'name' => sprintf(__('%1$s: %2$s'), __('User'),

__('Group'));
'linkfield' => '',
'type' => 'dropdown',
'virtual' => true,
'id' => 'groups',

],

...

];

$criterias['GROUPS']['table'] = 'glpi_groups';
$criterias['GROUPS']['field'] = 'completename';
$criterias['GROUPS']['name'] = sprintf(__('%1$s: %2$s'), __(

→˓'User'),
__('Group'));

$criterias['GROUPS']['linkfield'] = '';
$criterias['GROUPS']['type'] = 'dropdown';
$criterias['GROUPS']['virtual'] = true;
$criterias['GROUPS']['id'] = 'groups';

return $criterias;
}

// return an array of actions
function getActions() {

$actions = [
'entities_id' => [

'name' => __('Entity'),
'type' => 'dropdown',
'table' => 'glpi_entities',

],

...

];

(continues on next page)

52 Chapter 3. Developer API

GLPI Developer Documentation Documentation

(continued from previous page)

return $actions;
}

}

• src/RuleMytypeCollection.php

<?php

class RuleMytypeCollection extends RuleCollection {
// a rule collection can process all rules for the input or stop
//after a single match with its criteria (default false)
public $stop_on_first_match = true;

// optional right to apply to this rule type (default: 'config'),
//see Rights management.
static $rightname = 'rule_mytype';

// menu key to use with Html::header in front page.
public $menu_option = 'myruletype';

// define a label to display in interface titles
function getTitle() {

return return __('My rule type name');
}

// if we need to change the input of the object before passing
//it to the criteria.
// Example if the input couldn't directly contains a criteria
//and we need to compute it before (GROUP)
function prepareInputDataForProcess($input, $params) {

$input['_users_id_requester'] = $params['_users_id_requester'];
$fields = $this->getFieldsToLookFor();

//Add all user's groups
if (in_array('groups', $fields)) {

foreach (Group_User::getUserGroups($input['_users_id_requester']) as $group)
→˓{

$input['GROUPS'][] = $group['id'];
}

}
}

...

return $input;
}

}

You need to also add the following php files for list and form:

• front/rulemytype.php

3.5. Rules Engine 53

GLPI Developer Documentation Documentation

<?php
include ('../inc/includes.php');
$rulecollection = new RuleMytypeCollection($_SESSION['glpiactive_entity']);
include (GLPI_ROOT . "/front/rule.common.php");

• front/rulemytype.form.php

<?php
include ('../inc/includes.php');
$rulecollection = new RuleMytypeCollection($_SESSION['glpiactive_entity']);
include (GLPI_ROOT . "/front/rule.common.form.php");

And add the rulecollection in $CFG_GLPI (Only for Core rules):

• inc/define.php

<?php

...

$CFG_GLPI["rulecollections_types"] = [
'RuleImportEntityCollection',
'RuleImportComputerCollection',
'RuleMailCollectorCollection',
'RuleRightCollection',
'RuleSoftwareCategoryCollection',
'RuleTicketCollection',
'RuleMytypeCollection' // <-- My type is added here

];

Plugin instead must declare it in their init function:

• plugin/myplugin/setup.php

<?php
function plugin_init_myplugin() {

...

$Plugin->registerClass(
'PluginMypluginRuleMytypeCollection',
['rulecollections_types' => true]

);

...

}

54 Chapter 3. Developer API

GLPI Developer Documentation Documentation

3.5.4 Apply a rule collection

To call your rules collection and alter the data:

<?php

...

$rules = new PluginMypluginRuleMytypeCollection();

// data send by a form (which will be compared to criteria)
$input = [...];
// usually = $input, but it could differ if you want to avoid comparison of
//some fields with the criteria.
$output = [...];
// array passed to the prepareInputDataForProcess function of the collection
//class (if you need to add conditions)
$params = [];

$output = $rules->processAllRules(
$input,
$output,
$params

);

3.5.5 Dictionaries

They inherits Rule* classes but have some specificities.

A dictionary aims to modify on the fly data coming from an external source (CSV file, inventory tools, etc.). It applies
on an itemtype, as defined in the sub_type field of the glpi_rules table.

As the classic rules aim to apply additional and multiple data to input, dictionaries generally used to alter a single field
(relative to the their sub_type). Ex, RuleDictionnaryComputerModel alters model field of glpi_computers.

Some exceptions exists and provide multiple actions (Ex: RuleDictionnarySoftware).

As they are shown in a separate menu, you should define they in a separate $CFG_GLPI entry in inc/define.php:

<?php

...

$CFG_GLPI["dictionnary_types"] = array('ComputerModel', 'ComputerType', 'Manufacturer',
'MonitorModel', 'MonitorType',
'NetworkEquipmentModel', 'NetworkEquipmentType',
'OperatingSystem', 'OperatingSystemServicePack',
'OperatingSystemVersion', 'PeripheralModel',
'PeripheralType', 'PhoneModel', 'PhoneType',
'Printer', 'PrinterModel', 'PrinterType',
'Software', 'OperatingSystemArchitecture',
'RuleMytypeCollection' // <-- My type is added␣

→˓here
);

3.5. Rules Engine 55

GLPI Developer Documentation Documentation

3.6 Translations

Main GLPI language is british english (en_GB). All string in the source code must be in english, and marked as
translatable, using some convenient functions.

Since 0.84; GLPI uses gettext for localization; and Transifex is used for translations. If you want to help translating
GLPI, please register on transifex and join our translation mailing list

What the system is capable to do:

• replace variables (on LTR and RTL languages),

• manage plural forms,

• add context information,

• . . .

Here is the workflow used for translations:

1. Developers add string in the source code,

2. String are extracted to POT file,

3. POT file is sent to Transifex,

4. Translators translate,

5. Developers pull new translations from Transifex,

6. MO files used by GLPI are generated.

3.6.1 PHP Functions

There are several standard functions you will have to use in order to get translations. Remember the translation domain
will be glpi if not defined; so, for plugins specific translations, do not forget to set it!

Note: All translations functions take a $domain as argument; it defaults to glpi and must be changed when you are
working on a plugin.

Simple translation

When you have a “simple” string to translate, you may use several functions, depending on the particular use case:

• __($str, $domain='glpi') (what you will probably use the most frequently): just translate a string,

• _x($ctx, $str, $domain='glpi'): same as __() but provide an extra context,

• __s($str, $domain='glpi'): same as __() but escape HTML entities,

• _sx($ctx, $str, $domain='glpi'): same as __() but provide an extra context and escape HTML entities,

56 Chapter 3. Developer API

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.gnu.org/software/gettext/
https://www.transifex.com/glpi/GLPI/dashboard/
https://mail.gna.org/listinfo/glpi-translation

GLPI Developer Documentation Documentation

Handle plural forms

When you have a string to translate, but which rely on a count or something. You may as well use several functions,
depending on the particular use case:

• _n($sing, $plural, $nb, $domain='glpi') (what you will probably use the most frequently): give a
string for singular form, another for plural form, and set current “count”,

• _sn($str, $domain='glpi'): same as _n() but escape HTML entities,

• _nx($ctx, $str, $domain='glpi'): same as _n() but provide an extra context,

Handle variables

You may want to replace some parts of translations; for some reason. Let’s say you would like to display current page
on a total number of pages; you will use the sprintf method. This will allow you to make replacements; but without
relying on arguments positions. For example:

<?php
$pages = 20; //total number of pages
$current = 2; //current page
$string = sprintf(

__('Page %1$s on %2$s'),
$pages,
$total

);
echo $string; //will display: "Page 2 on 20"

In the above example, %1$s will always be replaced by 2; even if places has been changed in some translations.

Warning: You may sometimes see the use of printf() which is an equivalent that directly output (echo) the
result. This should be avoided!

3.6.2 Javascript Functions

New in version 9.5.0.

Translation functions __(), _x(), _n(), _nx() are also available in javascript in browser context. They have same
signatures as PHP functions.

alert(__('Test successful'));

3.6. Translations 57

http://php.net/manual/fr/function.sprintf.php
http://creativecommons.org/licenses/by-nc-nd/4.0/

GLPI Developer Documentation Documentation

3.7 Right Management

3.7.1 Goals

Provide a way for administrator to segment usages into profiles of users.

3.7.2 Profiles

The Profile (corresponding to glpi_profiles table) stores each set of rights.

A profile has a set of base fields independent of sub rights and, so, could:

• be defined as default for new users (is_default field).

• force the ticket creation form at the login (create_ticket_on_login field).

• define the interface used (interface field):

– helpdesk (self-service users)

– central (technician view)

3.7.3 Rights definition

They are defined by the ProfileRight class (corresponding to glpi_profilerights table)

Each consists of:

• a profile foreign key (profiles_id field)

• a key (name field)

• a value (right field)

The keys match the static property $rightname in the GLPI itemtypes. Ex: In Computer class, we have a static
$rightname = 'computer';

Value is a numeric sum of integer constants.

Values of standard rights can be found in inc/define.php:

<?php

...

define("READ", 1);
define("UPDATE", 2);
define("CREATE", 4);
define("DELETE", 8);
define("PURGE", 16);
define("ALLSTANDARDRIGHT", 31);
define("READNOTE", 32);
define("UPDATENOTE", 64);
define("UNLOCK", 128);

So, for example, to have the right to READ and UPDATE an itemtype, we’ll have a right value of 3.

As defined in this above block, we have a computation of all standards right = 31:

58 Chapter 3. Developer API

GLPI Developer Documentation Documentation

READ (1)
\+ UPDATE (2)
\+ CREATE (4)
\+ DELETE (8)
\+ PURGE (16)
= 31

If you need to extends the possible values of rights, you need to declare these part into your itemtype, simplified example
from Ticket class:

<?php

class Ticket extends CommonITILObject {

...

const READALL = 1024;
const READGROUP = 2048;

...

function getRights($interface = 'central') {
$values = parent::getRights();

$values[self::READGROUP] = array('short' => __('See group ticket'),
'long' => __('See tickets created by my groups

→˓'));

$values[self::READASSIGN] = array('short' => __('See assigned'),
'long' => __('See assigned tickets'));

return $values;
}

...

The new rights need to be checked by your own functions, see check rights

3.7.4 Check rights

Each itemtype class which inherits from CommonDBTM will benefit from standard right checks. See the following
methods:

• canView

• canUpdate

• canCreate

• canDelete

• canPurge

If you need to test a specific rightname against a possible right, here is how to do:

3.7. Right Management 59

GLPI Developer Documentation Documentation

<?php

if (Session::haveRight(self::$rightname, CREATE)) {
// OK

}

// we can also test a set multiple rights with AND operator
if (Session::haveRightsAnd(self::$rightname, [CREATE, READ])) {
// OK

}

// also with OR operator
if (Session::haveRightsOr(self::$rightname, [CREATE, READ])) {
// OK

}

// check a specific right (not your class one)
if (Session::haveRight('ticket', CREATE)) {
// OK

}

See methods definition:

• haveRight

• haveRightsAnd

• haveRightsOr

All above functions return a boolean. If we want a graceful die of your pages, we have equivalent function but with a
check prefix instead have:

• checkRight

• checkRightsAnd

• checkRightsOr

If you need to check a right directly in a SQL query, use bitwise & and | operators, ex for users:

<?php

$query = "SELECT `glpi_profiles_users`.`users_id`
FROM `glpi_profiles_users`
INNER JOIN `glpi_profiles`

ON (`glpi_profiles_users`.`profiles_id` = `glpi_profiles`.`id`)
INNER JOIN `glpi_profilerights`

ON (`glpi_profilerights`.`profiles_id` = `glpi_profiles`.`id`)
WHERE `glpi_profilerights`.`name` = 'ticket'

AND `glpi_profilerights`.`rights` & ". (READ | CREATE);
$result = $DB->query($query);

In this snippet, the READ | CREATE do a bitwise operation to get the sum of these rights and the & SQL operator do a
logical comparison with the current value in the DB.

60 Chapter 3. Developer API

https://dev.mysql.com/doc/refman/5.7/en/bit-functions.html
http://php.net/manual/fr/language.operators.bitwise.php
http://php.net/manual/fr/language.operators.bitwise.php
https://dev.mysql.com/doc/refman/5.7/en/bit-functions.html

GLPI Developer Documentation Documentation

3.7.5 CommonDBRelation and CommonDBChild specificities

These classes permits to manage the relation between items and so have properties to propagate rights from their
parents.

<?php

abstract class CommonDBChild extends CommonDBConnexity {
static public $checkParentRights = self::HAVE_SAME_RIGHT_ON_ITEM;

...
}

abstract class CommonDBRelation extends CommonDBConnexity {
static public $checkItem_1_Rights = self::HAVE_SAME_RIGHT_ON_ITEM;
static public $checkItem_2_Rights = self::HAVE_SAME_RIGHT_ON_ITEM;

...
}

possible values for these properties are:

• DONT_CHECK_ITEM_RIGHTS: don’t check the parent, we always have all rights regardless of parent’s rights.

• HAVE_VIEW_RIGHT_ON_ITEM: we have all rights (CREATE, UPDATE), if we can view the parent.

• HAVE_SAME_RIGHT_ON_ITEM: we have the same rights as the parent class.

3.8 Automatic actions

3.8.1 Goals

Provide a scheduler for background tasks used by GLPI and its plugins.

3.8.2 Implementation overview

The entry point of automatic actions is the file front/cron.php. On each execution, it executes a limited number of
automatic actions.

There are two ways to wake up the scheduler :

• when a user browses in GLPI (the internal mode)

• when the operating system’s scheduler calls front/cron.php (the external mode)

When GLPI generates an HTML page for a browser, it adds an invisible image generated by front/cron.php. This
way, the automatic action runs in a separate process and does not impact the user.

The automatic actions are defined by the CronTask class. GLPI defines a lot of them for its own needs. They are
created in the installation or upgrade process.

3.8. Automatic actions 61

http://creativecommons.org/licenses/by-nc-nd/4.0/

GLPI Developer Documentation Documentation

3.8.3 Implementation

Automatic actions could be related to an itemtype and the implementation is defined in its class or haven’t any itemtype
relation and are implemented directly into CronTask class.

When GLPI shows a list of automatic actions, it shows a short description for each item. The description is gathered
in the static method cronInfo() of the itemtype.

Note: An itemtype may contain several automatic actions.

Example of implementation from the QueuedNotification:

<?php
class QueuedNotification extends CommonDBTM {

// ...

/**
* Give cron information
*
* @param $name : automatic action's name
*
* @return array of information
**/
static function cronInfo($name) {

switch ($name) {
case 'queuednotification' :
return array('description' => __('Send mails in queue'),

'parameter' => __('Maximum emails to send at once'));
}
return [];

}

/**
* Cron action on notification queue: send notifications in queue
*
* @param CommonDBTM $task for log (default NULL)
*
* @return integer either 0 or 1
**/
static function cronQueuedNotification($task=NULL) {
global $DB, $CFG_GLPI;

if (!$CFG_GLPI["notifications_mailing"]) {
return 0;

}
$cron_status = 0;

// Send mail at least 1 minute after adding in queue to be sure that process on it␣
→˓is finished

$send_time = date("Y-m-d H:i:s", strtotime("+1 minutes"));

(continues on next page)

62 Chapter 3. Developer API

GLPI Developer Documentation Documentation

(continued from previous page)

$mail = new self();
$pendings = self::getPendings(

$send_time,
$task->fields['param']

);

foreach ($pendings as $mode => $data) {
$eventclass = 'NotificationEvent' . ucfirst($mode);
$conf = Notification_NotificationTemplate::getMode($mode);
if ($conf['from'] != 'core') {

$eventclass = 'Plugin' . ucfirst($conf['from']) . $eventclass;
}

$result = $eventclass::send($data);
if ($result !== false && count($result)) {

$cron_status = 1;
if (!is_null($task)) {

$task->addVolume($result);
}

}
}

return $cron_status;
}

// ...

}

If the argument $task is a CronTask object, the method must increment the quantity of actions done. In this example,
each notification type reports the quantity of notification processed and is added to the task’s volume.

3.8.4 Register an automatic actions

Automatic actions are defined in the empty schema located in install/mysql/. Use the existing sql queries creating
rows in the table glpi_crontasks as template for a new automatic action.

To handle upgrade from a previous version, the new automatic actions must be added in the appropriate update file
install/update_xx_to_yy.php.

<?php
// Register an automatic action
CronTask::register('QueuedNotification', 'QueuedNotification', MINUTE_TIMESTAMP,

array(
'comment' => '',
'mode' => CronTask::MODE_EXTERNAL

));

The register method takes four arguments:

• itemtype: a string containing an itemtype name containing the automatic action implementation

• name: a string containing the name of the automatic action

3.8. Automatic actions 63

GLPI Developer Documentation Documentation

• frequency the period of time between two executions in seconds (see inc/define.php for convenient con-
stants)

• options an array of options

Note: The name of an automatic action is actually the method’s name without the prefix cron. In the example, the
method cronQueuedNotification implements the automatic action named QueuedNotification.

3.9 Tools

Differents tools are available on the tools folder; here is an non exhaustive list of provided features.

3.9.1 locale/

The locale directory contains several scripts used to maintain translations along with Transifex services:

• extract_template.sh is used to extract translated string to the POT file (before sending it to Transifex),

• locale\update_mo.pl compiles MO files from PO file (after they’ve been updated from transifex).

3.9.2 genapidoc.sh

Generate GLPI phpdoc using apigen. apigen command must be available in your path.

Generated documentation will be available in the api directory.

3.9.3 convert_search_options.php

Search options have changed in GLPI 9.2 (see PR #1396). This script is a helper to convert existing search options to
new way.

Note: The script output can probably not be used as is; but it would probably help you a lot!

3.9.4 make_release.sh

Builds GLPI release tarball:

• install and cleanup third party libraries,

• remove files and directories that should not be part of tarball,

• minify CSS an Javascript files,

• . . .

64 Chapter 3. Developer API

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ApiGen/ApiGen
https://github.com/glpi-project/glpi/issues/1396

GLPI Developer Documentation Documentation

3.9.5 modify_headers.pl

Update copyright header based on the contents of the HEADER file.

3.9.6 getsearchoptions.php

This script is designed to be called from a browser, or from the command line. It will display existing search options
for an item specified with the type argument.

For example, open http://localhost/glpi/tools/getsearchoptions.php?type=Computer, and you will see
search options for Computer type.

On command line, you can get the exact same result entering:

$ php tools/getsearchoptions.php --type=Computer

3.9.7 generate_bigdump.php

This script is designed to generate many data in your GLPI instance. It relies on the generate_bigdump.function.
php file.

3.9.8 Not yet documented. . .

Note: Following scripts are not yet documented. . . Feel free to open a pull request to add them!

• autoupdatelocales.sh: Probably obsolete

• check_dict.pl

• check_functions.pl

• checkforms.php: Check forms opened / closed

• checkfunction.php: Check for obsolete function usage

• cleanhistory.php: Purge history with some criteria

• diff_plugin_locale.php: Probably obsolete

• find_twin_in_dict.sh: Check duplicates key in language template

• findtableswithoutclass.php

• fix_utf8_bomfiles.sh

• fk_generate.php

• genphpcov.sh

• glpiuser.php

• ldap-glpi.ldif: An LDAP export

• ldap-schema.txt: An LDAP export

• ldapsync.php

• notincludedlanguages.php: Get all po files not used in GLPI

3.9. Tools 65

GLPI Developer Documentation Documentation

• test_langfiles.php

• testmail.php

• testunit.php

• update_registered_ids.php: Purge history with some criteria

3.9.9 Out of date

Warning: Those tools are outdated, and kept for reference, or need some work to be working again. Use them at
your own risks, or do not use them at all :)

phpunit/

This directory contains a set of unit tests that have not really been integrated in the project. Since, some unit tests have
been rewritten, but not everything has been ported :/

php.vim

A vimfile for autocompletion and highlighting in VIM. This one is very outdated; it should be replaced with a most
recent version, or being removed.

3.10 Extra

The extra config/local_define.php file will be loaded if present. It permit you to change some GLPI framework
configurations.

3.10.1 Change logging level

Logging level is declared with the GLPI_LOG_LVL constant; and rely on available Monolog levels. The default log
level will change if debug mode is enabled on GUI or not. To change logging level to ERROR, add the following to your
local_define.php file:

<?php
define('GLPI_LOG_LVL', \Monolog\Logger::ERROR);

Note: Once you’ve declared a logging level, it will always be used. It will no longer take care of the debug mode.

66 Chapter 3. Developer API

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/Seldaek/monolog/blob/master/doc/01-usage.md#log-levels

GLPI Developer Documentation Documentation

3.10.2 Override mailing recipient

In some cases, during development, you may want to test notifications that can be sent. Problem is you will have to
make sure you are not going to sent fake email to your real users if you rely on a production database copy for example.

You can define a unique email recipient for all emails that will be sent from GLPI. Original recipient address will be
added as part of the message (for you to know who was originally targeted). To get all sent emails delivered on the
you@host.org email address, use the GLPI_FORCE_MAIL in the local_define.php file:

<?php
define('GLPI_FORCE_MAIL', 'you@host.org');

3.10.3 Disabling CSRF checks

Warning: Use it with cautions!

While disabling CSRF checks may be really interesting during debugging, keep in mind that enabling it again
(which is the default) may cause issues you cannot see before.

CSRF checks will prevent for example a same form to be sent twice. While this is the expected behavior for the
application, this may be a pain during development or debugging. You can therefore use the GLPI_USE_CSRF_CHECK
constant in the local_define.php file:

<?php
define('GLPI_USE_CSRF_CHECK', 0);

3.10. Extra 67

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

GLPI Developer Documentation Documentation

68 Chapter 3. Developer API

CHAPTER

FOUR

CHECKLISTS

Some really useful checklists, for development, releases, and so on!

4.1 Review process

Here is the process you must follow when you are reviewing a PR.

1. Make sure the destination branch is the correct one:

• master for new features,

• xx/bugfixes for bug fixes

2. Check if unit tests are not failing,

3. Check if coding standards checks are not failing,

4. Review the code itself. It must follow GLPI’s coding standards,

5. Using the Github review process, approve, request changes or just comment the PR,

• If some new methods are added, or if the request made important changes in the code, you should ask the devel-
oper to write some more unit tests

6. A PR can be merged if two developers approved it, or if one developer approved it more than one day ago,

7. A bugfix PR that has been merged into the xx/bugfixes branch must be reported on the master branch. If the
master already contains many changes, you may have to change some code before doing this. If changes are
consequent, maybe should you open a new PR against the master branch for it,

8. Say thanks to the contributor :-)

4.2 Prepare next major release

Once a major release has been finished, it’s time to think about the next one!

You’ll have to remember a few steps in order to get that working well:

• bump version in config/define.php

• create SQL empty script (copying last one) in install/mysql/glpi-{version}-empty.sql

• change empty SQL file calls in inc/toolbox.class.php (look for the $DB->runFile call)

• create a PHP migration script copying provided template install/update_xx_xy.tpl.php

69

http://creativecommons.org/licenses/by-nc-nd/4.0/

GLPI Developer Documentation Documentation

– change its main comment to reflect reality

– change method name

– change version in displayTitle and setVersion calls

• add the new case in install/update.php and tools/cliupdate.php; that will include your new PHP
migration script and then call the function defined in it

• change the include and the function called in the --force option part of the tools/cliupdate.php script

That’s all, folks!

70 Chapter 4. Checklists

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

CHAPTER

FIVE

PLUGINS

GLPI provides facilities to develop plugins, and there are many plugins that have been already published.

Note: Plugins are designed to add features to GLPI core.

This is a sub-directory in the plugins of GLPI; that would contains all related files.

Generally speaking, there is really a few things you have to do in order to get a plugin working; many considerations are
up to you. Anyways, this guide will provide you some guidelines to get a plugins repository as consistent as possible :)

If you want to see more advanced examples of what it is possible to do with plugins, you can take a look at the example
plugin source code.

5.1 Guidelines

5.1.1 Directories structure

Real structure will depend of what your plugin propose. See requirements to find out what is needed. You may also
want to take a look at GLPI File Hierarchy Standard.

Warning: The main directory name of your plugin may contain only alphanumeric characters (no - or _ or
accented characters or else).

The plugin directory structure should look like the following:

• MyPlugin

– front

∗ . . .

– inc

∗ . . .

– locale

∗ . . .

– tools

∗ . . .

71

http://plugins.glpi-project.org
http://github.com/pluginsGLPI/example/
http://github.com/pluginsGLPI/example/

GLPI Developer Documentation Documentation

– README.md

– LICENSE

– setup.php

– hook.php

– MyPlugin.xml

– MyPlugin.png

– . . .

– . . .

• front will host all PHP files directly used to display something to the user,

• inc will host all classes,

• if you internationalize your plugin, localization files will be found under the locale directory,

• if you need any scripting tool (like something to extract or update your translatable strings), you can put them in
the tools directory

• a README.md file describing the plugin features, how to install it, and so on,

• a LICENSE file containing the license,

• MyPlugin.xml and MyPlugin.png can be used to reference your plugin on the plugins directory website,

• the required setup.php and hook.php files.

Where to write files?

Warning: Plugins my never ask user to give them write access on their own directory!

The GLPI installation already ask for administrator to get write access on its files directory; just use
GLPI_PLUGIN_DOC_DIR/{plugin_name} (that would resolve to glpi_dir/files/_plugins/{plugin_name} in
default basic installations).

Make sure to create the plugin directory at install time, and to remove it on uninstall.

5.1.2 Versionning

We recommend you to use semantic versionning for you plugins. You may find existing plugins that have adopted
another logic; some have reasons, others don’t. . . Well, it is up to you finally :-)

Whatever the versioning logic you adopt, you’ll have to be consistent, it is not easy to change it without breaking things,
once you’ve released something.

72 Chapter 5. Plugins

http://plugins.glpi-project.org
http://semver.org/

GLPI Developer Documentation Documentation

5.1.3 ChangeLog

Many projects make releases without providing any changelog file. It is not simple for any end user (whether a developer
or not) to read a repository log or a list of tickets to know what have changed between two releases.

Keep in mind it could help users to know what have been changed. To achieve this, take a look at Keep an ChangeLog,
it will explain you some basics and give you guidelines to maintain sug a thing.

5.1.4 Third party libraries

Just like GLPI, you should use the composer tool to manage third party libraries for your plugin.

5.2 Requirements

• plugin will be installed by creating a directory in the plugins directory of the GLPI instance,

• plugin directory name should never change,

• each plugin must at least provides setup.php and hook.php files,

• if your plugin requires a newer PHP version than GLPI one, or extensions that are not mandatory in core; it is up
to you to check that in the install process.

5.2.1 setup.php

The plugin’s setup.php file will be automatically loaded from GLPI’s core in order to get its version, to check pre-
requisites, etc.

This is a good practice, thus not mandatory, to define a constant name {PLUGINNAME}_VERSION in this file.

This is a minimalist example, for a plugin named myexample (functions names will contain plugin name):

<?php

define('MYEXAMPLE_VERSION', '1.2.10');

/**
* Init the hooks of the plugins - Needed
*
* @return void
*/
function plugin_init_myexample() {
global $PLUGIN_HOOKS;

//required!
$PLUGIN_HOOKS['csrf_compliant']['myexample'] = true;

//some code here, like call to Plugin::registerClass(), populating PLUGIN_HOOKS, ...
}

/**
(continues on next page)

5.2. Requirements 73

http://keepachangelog.com/
http://creativecommons.org/licenses/by-nc-nd/4.0/

GLPI Developer Documentation Documentation

(continued from previous page)

* Get the name and the version of the plugin - Needed
*
* @return array
*/
function plugin_version_myexample() {
return [
'name' => 'Plugin name that will be displayed',
'version' => MYEXAMPLE_VERSION,
'author' => 'John Doe and Foo Bar',
'license' => 'GLPv3',
'homepage' => 'http://perdu.com',
'requirements' => [
'glpi' => [
'min' => '9.1'

]
]

];
}

/**
* Optional : check prerequisites before install : may print errors or add to message␣
→˓after redirect
*
* @return boolean
*/
function plugin_myexample_check_prerequisites() {
//do what the checks you want
return true;

}

/**
* Check configuration process for plugin : need to return true if succeeded
* Can display a message only if failure and $verbose is true
*
* @param boolean $verbose Enable verbosity. Default to false
*
* @return boolean
*/
function plugin_myexample_check_config($verbose = false) {
if (true) { // Your configuration check
return true;

}

if ($verbose) {
echo "Installed, but not configured";

}
return false;

}

/**
* Optional: defines plugin options.
*

(continues on next page)

74 Chapter 5. Plugins

GLPI Developer Documentation Documentation

(continued from previous page)

* @return array
*/
function plugin_myexample_options() {
return [

Plugin::OPTION_AUTOINSTALL_DISABLED => true,
];

}

Plugin information provided in plugin_version_myexample method will be displayed in the GLPI plugins user
interface.

Requirements checking

Since GLPI 9.2; it is possible to provide some requirement information along with the information array. Those infor-
mation are not mandatory, but we encourage you to migrate :)

Warning: Even if this has been deprecated for a wile, many plugins continue to provide a minGlpiVersion entry
in the information array. If this value is set; it will be automatically used as minimal GLPI version.

In order to set your requirements, add a requirements entry in the plugin_version_myexample information array.
Let’s say your plugin is compatible with a version of GLPI comprised between 0.90 and 9.2; with a minimal version of
PHP set to 7.0. The method would look like:

<?php

function plugin_version_myexample() {
return [
'name' => 'Plugin name that will be displayed',
'version' => MYEXAMPLE_VERSION,
'author' => 'John Doe and Foo Bar',
'license' => 'GLPv3',
'homepage' => 'http://perdu.com',
'requirements' => [
'glpi' => [
'min' => '0.90',
'max' => '9.2'

],
'php' => [
'min' => '7.0'

]
]

];
}

requirements array may take the following values:

• glpi

– min: minimal GLPI version required,

– max: maximal supported GLPI version,

– dev: whether the plugin is supported on development versions (9.2-dev for example),

5.2. Requirements 75

GLPI Developer Documentation Documentation

– params: an array of GLPI parameters names that must be set (not empty, not null, not false),

– plugins: an array of plugins name your plugin depends on (must be installed and active).

• php

– min: minimal PHP version required,

– max: maximal PHP version supported (discouraged),

– params: an array of parameters name that must be set (retrieved from ini_get()),

– exts: array of used extensions (see below).

PHP extensions checks rely on core capabilities. You have to provide a multidimensional array with extension name
as key. For each of those entries; you can define if the extension is required or not, and optionally a class or a function
to check.

The following example is from the core:

<?php
$extensions = [
'mysqli' => [
'required' => true

],
'fileinfo' => [
'required' => true,
'class' => 'finfo'

],
'json' => [
'required' => true,
'function' => 'json_encode'

],
'imap' => [
'required' => false

]
];

• the mysqli extension is mandatory; extension_loaded() function will be used for check;

• the fileinfo extension is mandatory; class_exists() function will be used for check;

• the json extension is mandatory; function_exists() function will be used for check;

• the imap extension is not mandatory.

Note: Optional extensions are not yet handled in the checks function; but will probably be in the future. You can add
them to the configuration right now :)

Without using automatic requirements; it’s up to you to check with something like the following in the
plugin_myexample_check_prerequisites:

Warning: Automatic requirements and manual checks are not exclusive. Both will be played! If you want to
use automatic requirements with GLPI >= 9.2 and still provide manual checks for older versions; be careful not to
indicate different versions.

76 Chapter 5. Plugins

GLPI Developer Documentation Documentation

<?php
// Version check
if (version_compare(GLPI_VERSION, '9.1', 'lt') || version_compare(GLPI_VERSION, '9.2',

→˓ 'ge')) {
if (method_exists('Plugin', 'messageIncompatible')) {
//since GLPI 9.2
Plugin::messageIncompatible('core', 9.1, 9.2);

} else {
echo "This plugin requires GLPI >= 9.1 and < 9.2";

}
return false;

}

Note: Since GLPI 9.2, you can rely on Plugin::messageIncompatible() to display internationalized messages
when GLPI or PHP versions are not met.

On the same model, you can use Plugin::messageMissingRequirement() to display internationalized message if
any extension, plugin or GLPI parameter is missing.

Plugin options

Since GLPI 10.0, it is possible to define some plugin options.

autoinstall_disabled
New in version 10.0.0.

Disable automatic call of plugin install hook function. For instance, when the plugin will be downloaded from
GLPI marketplace, plugin_myexample_install will not be executed automatically. Administrator will have to use
the “Install” or “Update” button to trigger this hook.

5.2.2 hook.php

This file will contains hooks that GLPI may call under some user actions. Refer to core documentation to know more
about available hooks.

For instance, a plugin need both an install and an uninstall hook calls. Here is the minimal file:

<?php
/**
* Install hook
*
* @return boolean
*/
function plugin_myexample_install() {
//do some stuff like instantiating databases, default values, ...
return true;

}

/**
* Uninstall hook
*

(continues on next page)

5.2. Requirements 77

GLPI Developer Documentation Documentation

(continued from previous page)

* @return boolean
*/
function plugin_myexample_uninstall() {
//to some stuff, like removing tables, generated files, ...
return true;

}

5.2.3 Coding standards

You must respect GLPI’s global coding standards.

In order to check for coding standards compliance, you can add the glpi-project/coding-standard to your composer file,
using:

$ composer require --dev glpi-project/coding-standard

This will install the latest version of the coding-standard used in GLPI core. If you want to use an older version of the
checks (for example if you have a huge amount of work to fix!), you can specify a version in the above command like
glpi-project/coding-standard:0.5. Refer to the coding-standard project changelog to know more ;)

You can then for example add a line in your .travis.yml file to automate checking:

script:
- vendor/bin/phpcs -p --ignore=vendor --standard=vendor/glpi-project/coding-standard/

→˓GlpiStandard/ .

Note: Coding standards and theirs checks are enabled per default using the empty plugin facilities

5.3 Database

Warning: A plugin should never change core’s database! It just add its own tables to manage its own data.

Of course, plugins rely on GLPI database model and must therefore respect database naming conventions.

Creating, updating or removing tables is done by the plugin, at installation, update or uninstallation; functions added
in the hook.php file will be used for that; and you will rely on the Migration class provided from GLPI core. Please
refer to this documentation do know more about various Migration possibilities.

78 Chapter 5. Plugins

https://github.com/glpi-project/coding-standard/blob/master/CHANGELOG.md
http://glpi-plugins.readthedocs.io/en/latest/empty/
http://creativecommons.org/licenses/by-nc-nd/4.0/

GLPI Developer Documentation Documentation

5.3.1 Creating and updating tables

Creating and updating tables must be done in the plugin installation process. You will add the required code to the
plugin_{myplugin}_install. As the same function is used for both installation and update, you’ll have to make
tests to know what to do.

For example, we will create a basic table to store some configuration for our plugin:

<?php

/**
* Install hook
*
* @return boolean
*/
function plugin_myexample_install() {
global $DB;

//instanciate migration with version
$migration = new Migration(100);

//Create table only if it does not exists yet!
if (!$DB->tableExists('glpi_plugin_myexample_configs')) {
//table creation query
$query = "CREATE TABLE `glpi_plugin_myexample_config` (

`id` INT(11) NOT NULL autoincrement,
`name` VARCHAR(255) NOT NULL,
PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci ROW_
→˓FORMAT=DYNAMIC";

$DB->queryOrDie($query, $DB->error());
}

//execute the whole migration
$migration->executeMigration();

return true;
}

The update part is quite the same. Considering our previous example, we missed to add a field in the configuration
table to store the config value; and we should add an index on the name column. The code will become:

<?php
/**
* Install hook
*
* @return boolean
*/
function plugin_myexample_install() {
global $DB;

//instanciate migration with version
$migration = new Migration(100);

(continues on next page)

5.3. Database 79

GLPI Developer Documentation Documentation

(continued from previous page)

//Create table only if it does not exists yet!
if (!$DB->tableExists('glpi_plugin_myexample_configs')) {
//table creation query
$query = "CREATE TABLE `glpi_plugin_myexample_configs` (

`id` INT(11) NOT NULL autoincrement,
`name` VARCHAR(255) NOT NULL,
PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci ROW_
→˓FORMAT=DYNAMIC";

$DB->queryOrDie($query, $DB->error());
}

if ($DB->tableExists('glpi_plugin_myexample_configs')) {
//missed value for configuration
$migration->addField(
'glpi_plugin_myexample_configs',
'value',
'string'

);

$migration->addKey(
'glpi_plugin_myexample_configs',
'name'

);
}

//execute the whole migration
$migration->executeMigration();

return true;
}

Of course, we can also add or remove tables in our upgrade process, drop fields, keys, . . . Well, do just what you need
to do :-)

5.3.2 Deleting tables

You will have to drop all plugins tables when it will be uninstalled. Just put your code into the
plugin_{myplugin}_uninstall function:

<?php
/**
* Uninstall hook
*
* @return boolean
*/
function plugin_myexample_uninstall() {
global $DB;

$tables = [
'configs'

(continues on next page)

80 Chapter 5. Plugins

GLPI Developer Documentation Documentation

(continued from previous page)

];

foreach ($tables as $table) {
$tablename = 'glpi_plugin_myexample_' . $table;
//Create table only if it does not exists yet!
if ($DB->tableExists($tablename)) {

$DB->queryOrDie(
"DROP TABLE `$tablename`",
$DB->error()

);
}

}

return true;
}

5.4 Adding and managing objects

In most of the cases; your plugin will have to manage several objects

5.4.1 Define an object

Objects definitions will be stored into the inc/ or src/ directory of your plugin. It is recommended to place all
class files in the src if possible. As of GLPI 10.0, namespaces should be supported in almost all cases. Therefore, it
is recommended to use namespaces for your plugin classes. For example, if your plugin is MyExamplePlugin, you
should use the GlpiPlugin\Myexampleplugin namespace. Note that the plugin name part of the namespace must
be lowercase with the exception of the first letter. Child namespaces of GlpiPlugin\Myexampleplugin do not need
to follow this rule.

Depending on where your class files are stored, the naming convention will be different: - inc: File name will be the
name of your class, lowercase; the class name will be the concatenation of your plugin name and your class name.

For example, if you want to create the MyObject in MyExamplePlugin; you will create the inc/
myobject.class.php file; and the class name will be MyExamplePluginMyObject.

• src: File name will match the name of your class exactly. The class name should not be prefixed by your plugin
name when using namespaces. Namespaces are supported and can be reflected as subfolders. For example, if
your class is GlpiPlugin\Myexampleplugin\NS\MyObject, the file will be src/NS/MyObject.php.

Your object will extends one of the common core types (CommonDBTM in our example).

Extra operations are aslo described in the tips and tricks page, you may want to take a look at it.

5.4. Adding and managing objects 81

http://creativecommons.org/licenses/by-nc-nd/4.0/

GLPI Developer Documentation Documentation

5.4.2 Add a front for my object (CRUD)

The goal is to build CRUD (Create, Read, Update, Delete) and list views for your object.

You will need:

• a class for your object (src/MyObject.php),

• a front file to handle display (front/myobject.php),

• a front file to handle form display (front/myobject.form.php).

First, create the src/MyObject.php file that looks like:

<?php
namespace GlpiPlugin\Myexampleplugin;

class MyObject extends CommonDBTM {
public function showForm($ID, array $options = []) {
global $CFG_GLPI;

$this->initForm($ID, $options);
$this->showFormHeader($options);

if (!isset($options['display'])) {
//display per default
$options['display'] = true;

}

$params = $options;
//do not display called elements per default; they'll be displayed or returned here
$params['display'] = false;

$out = '<tr>';
$out .= '<th>' . __('My label', 'myexampleplugin') . '</th>'

$objectName = autoName(
$this->fields["name"],
"name",
(isset($options['withtemplate']) && $options['withtemplate']==2),
$this->getType(),
$this->fields["entities_id"]

);

$out .= '<td>';
$out .= Html::autocompletionTextField(

$this,
'name',
[
'value' => $objectName,
'display' => false

]
);
$out .= '</td>';

$out .= $this->showFormButtons($params);
(continues on next page)

82 Chapter 5. Plugins

GLPI Developer Documentation Documentation

(continued from previous page)

if ($options['display'] == true) {
echo $out;

} else {
return $out;

}
}

}

The front/myobject.php file will be in charge to list objects. It should look like:

<?php
use GlpiPlugin\Myexampleplugin\MyObject;
include ("../../../inc/includes.php");

// Check if plugin is activated...
$plugin = new Plugin();
if (!$plugin->isInstalled('myexampleplugin') || !$plugin->isActivated('myexampleplugin
→˓')) {

Html::displayNotFoundError();
}

//check for ACLs
if (MyObject::canView()) {
//View is granted: display the list.

//Add page header
Html::header(

__('My example plugin', 'myexampleplugin'),
$_SERVER['PHP_SELF'],
'assets',
MyObject::class,
'myobject'

);

Search::show(MyObject::class);

Html::footer();
} else {
//View is not granted.
Html::displayRightError();

}

And finally, the front/myobject.form.php will be in charge of CRUD operations:

<?php
use GlpiPlugin\MyExamplePlugin\MyObject;
include ("../../../inc/includes.php");

// Check if plugin is activated...
$plugin = new Plugin();
if (!$plugin->isInstalled('myexampleplugin') || !$plugin->isActivated('myexampleplugin

(continues on next page)

5.4. Adding and managing objects 83

GLPI Developer Documentation Documentation

(continued from previous page)

→˓')) {
Html::displayNotFoundError();

}

$object = new MyObject();

if (isset($_POST['add'])) {
//Check CREATE ACL
$object->check(-1, CREATE, $_POST);
//Do object creation
$newid = $object->add($_POST);
//Redirect to newly created object form
Html::redirect("{$CFG_GLPI['root_doc']}/plugins/front/myobject.form.php?id=$newid");

} else if (isset($_POST['update'])) {
//Check UPDATE ACL
$object->check($_POST['id'], UPDATE);
//Do object update
$object->update($_POST);
//Redirect to object form
Html::back();

} else if (isset($_POST['delete'])) {
//Check DELETE ACL
$object->check($_POST['id'], DELETE);
//Put object in dustbin
$object->delete($_POST);
//Redirect to objects list
$object->redirectToList();

} else if (isset($_POST['purge'])) {
//Check PURGE ACL
$object->check($_POST['id'], PURGE);
//Do object purge
$object->delete($_POST, 1);
//Redirect to objects list
Html::redirect("{$CFG_GLPI['root_doc']}/plugins/front/myobject.php");

} else {
//per default, display object
$withtemplate = (isset($_GET['withtemplate']) ? $_GET['withtemplate'] : 0);
$object->display(

[
'id' => $_GET['id'],
'withtemplate' => $withtemplate

]
);

}

84 Chapter 5. Plugins

http://creativecommons.org/licenses/by-nc-nd/4.0/

GLPI Developer Documentation Documentation

5.5 Hooks

GLPI provides a certain amount of “hooks”. Their goal is for plugins (mainly) to work on certain places of the frame-
work; like when an item has been added, updated, deleted, . . .

This page describes current existing hooks; but not the way they must be implemented from plugins. Please refer to
the plugins development documentation.

5.5.1 Standards Hooks

Usage

Aside from their goals or when/where they’re called; you will see three types of different hooks. Some will receive an
item as parameter, others an array of parameters, and some won’t receive anything. Basically, the way they’re declared
into your plugin, and the way you’ll handle that will differ.

All hooks called are defined in the setup.php file of your plugin; into the $PLUGIN_HOOKS array. The first key is the
hook name, the second your plugin name; values can be just text (to call a function declared in the hook.php file), or
an array (to call a static method from an object):

<?php
//call a function
$PLUGIN_HOOKS['hook_name']['plugin_name'] = 'function_name';
//call a static method from an object
$PLUGIN_HOOKS['other_hook']['plugin_name'] = ['ObjectName', 'methodName'];

Without parameters

Those hooks are called without any parameters; you cannot attach them to any itemtype; basically they’ll permit you
to display extra information. Let’s say you want to call the display_login hook, in you setup.php you’ll add
something like:

<?php
$PLUGIN_HOOKS['display_login']['myPlugin'] = 'myplugin_display_login';

You will also have to declare the function you want to call in you hook.php file:

<?php
/**
* Display information on login page
*
* @return void
*/

public function myplugin_display_login () {
echo "That line will appear on the login page!";

}

The hooks that are called without parameters are: display_central, post_init init_session, change_entity,
change_profile`, display_login and add_plugin_where.

5.5. Hooks 85

GLPI Developer Documentation Documentation

With item as parameter

Those hooks will send you an item instance as parameter; you’ll have to attach them to the itemtypes you want to apply
on. Let’s say you want to call the pre_item_update hook for Computer and Phone item types, in your setup.php
you’ll add something like:

<?php
$PLUGIN_HOOKS['pre_item_update']['myPlugin'] = [
'Computer' => 'myplugin_updateitem_called',
'Phone' => 'myplugin_updateitem_called'

];

You will also have to declare the function you want to call in you hook.php file:

<?php
/**
* Handle update item hook
*
* @param CommonDBTM $item Item instance
*
* @return void
*/
public function myplugin_updateitem_called (CommonDBTM $item) {
//do everything you want!
//remember that $item is passed by reference (it is an abject)
//so changes you will do here will be used by the core.
if ($item::getType() === Computer::getType()) {
//we're working with a computer

} elseif ($item::getType() === Phone::getType()) {
//we're working with a phone

}
}

The hooks that are called with item as parameter are: item_empty, pre_item_add, post_prepareadd,
item_add, pre_item_update, item_update, pre_item_purge, pre_item_delete, item_purge, item_delete,
pre_item_restore, item_restore, autoinventory_information, item_add_targets, item_get_events,
item_action_targets, item_get_datas.

With array of parameters

These hooks will work just as the hooks with item as parameter expect they will send you an array of parameters instead
of only an item instance. The array will contain two entries: item and options, the first one is the item instance, the
second options that have been passed:

<?php
/**
* Function that handle a hook with array of parameters
*
* @param array $params Array of parameters
*
* @return void
*/

(continues on next page)

86 Chapter 5. Plugins

GLPI Developer Documentation Documentation

(continued from previous page)

public function myplugin_params_hook(array $params) {
print_r($params);
//Will display:
//Array
//(
// [item] => Computer Object
// (...)
//
// [options] => Array
// (
// [_target] => /front/computer.form.php
// [id] => 1
// [withtemplate] =>
// [tabnum] => 1
// [itemtype] => Computer
//)
//)

}

The hooks that are called with an array of parameters are: post_item_form, pre_item_form, pre_show_item,
post_show_item, pre_show_tab, post_show_tab, item_transfer.

Some hooks will receive a specific array as parameter, they will be detailed below.

Unclassified

Hooks that cannot be classified in above categories :)

secured_fields
New in version 9.4.6.

An array of fields names (with table like glpi_mytable.myfield) that are stored using GLPI encrypting meth-
ods. This allows plugins to add some fields to the glpi:security:changekey command.

Warning: Plugins have to ensure crypt migration on their side is OK; and once using it, they must properly
declare fields.

All fields that would use the key file without being listed would be unreadable after key has been changed
(and stored data would stay potentially unsecure).

secured_configs
New in version 9.4.6.

An array of configuration entries that are stored using GLPI encrypting methods. This allows plugins to add
some entries to the glpi:security:changekey command.

Warning: Plugins have to ensure crypt migration on their side is OK; and once using it, they must properly
declare fields.

All configuration entries that would use the key file without being listed would be unreadable after key has
been changed (and stored data would stay potentially unsecure).

5.5. Hooks 87

GLPI Developer Documentation Documentation

add_javascript
Add javascript in all pages headers

New in version 9.2: Minified javascript files are checked automatically. You will just have to provide a minified
file along with the original to get it used!

The name of the minified plugin.js file must be plugin.min.js

add_css
Add CSS stylesheet on all pages headers

New in version 9.2: Minified CSS files are checked automatically. You will just have to provide a minified file
along with the original to get it used!

The name of the minified plugin.css file must be plugin.min.css

display_central
Displays something on central page

display_login
Displays something on the login page

status
Displays status

post_init
After the framework initialization

rule_matched
After a rule has matched.

This hook will receive a specific array that looks like:

<?php
$hook_params = [
'sub_type' => 'an item type',
'rule_id' => 'rule id',
'input' => array(), //original input
'output' => array() //output modified by rule

];

redefine_menus
Add, edit or remove items from the GLPI menus.

This hook will receive the current GLPI menus definition as an argument and must return the new definition.

init_session
At session initialization

change_entity
When entity is changed

change_profile
When profile is changed

pre_kanban_content
New in version 9.5.

Set or modify the content that shows before the main content in a Kanban card.

This hook will receive a specific array that looks like:

88 Chapter 5. Plugins

GLPI Developer Documentation Documentation

<?php
$hook_params = [
'itemtype' => string, //item type that is showing the Kanban
'items_id' => int, //ID of itemtype showing the Kanban
'content' => string //current content shown before main content

];

post_kanban_content
New in version 9.5.

Set or modify the content that shows after the main content in a Kanban card.

This hook will receive a specific array that looks like:

<?php
$hook_params = [
'itemtype' => string, //item type that is showing the Kanban
'items_id' => int, //ID of itemtype showing the Kanban
'content' => string //current content shown after main content

];

kanban_filters
Add new filter definitions for Kanban by itemtype.

This data is set directly in $PLUGIN_HOOKS like:

<?php
$PLUGIN_HOOKS['kanban_filters']['tag'] = [
'Ticket' => [
'tag' => [
'description' => _x('filters', 'If the item has a tag'),
'supported_prefixes' => ['!']

],
'tagged' => [
'description' => _x('filters', 'If the item is tagged'),
'supported_prefixes' => ['!']

]
],
'Project' => [
'tag' => [
'description' => _x('filters', 'If the item has a tag'),
'supported_prefixes' => ['!']

],
'tagged' => [
'description' => _x('filters', 'If the item is tagged'),
'supported_prefixes' => ['!']

]
];

]

kanban_item_metadata
Set or modify the metadata for a Kanban card. This metadata isn’t displayed directly but will be used by the
filtering system.

This hook will receive a specific array that looks like:

5.5. Hooks 89

GLPI Developer Documentation Documentation

<?php
$hook_params = [
'itemtype' => string, //item type that is showing the Kanban
'items_id' => int, //ID of itemtype showing the Kanban
'metadata' => array //current metadata array

];

vcard_data
Add or modify data in vCards such as IM contact information

<?php
$hook_params = [
'item' => CommonDBTM, //The item the vCard is for such as a User or Contact
'data' => array, //The current vCard data for the item

];

filter_actors
Add or modify data actor fields provided in the right panel of ITIL objects

<?php
$hook_params = [
'actors' => array, // actors array send to select2 field
'params' => array, // actor field param

];

helpdesk_menu_entry
Add a link to the menu for users with the simplified interface

<?php
$PLUGIN_HOOKS['helpdesk_menu_entry']['example'] = 'MY_CUSTOM_LINK';

helpdesk_menu_entry_icon
Add an icon for the link specified by the helpdesk_menu_entry hook

<?php
$PLUGIN_HOOKS['helpdesk_menu_entry_icon']['example'] = 'fas fa-tools';

debug_tabs
Add one or more new tabs to the GLPI debug panel. Each tab must define a title and display_callable which is
what will be called to print the tab contents.

<?php
$PLUGIN_HOOKS['debug_tabs']['example'] = [
[
'title' => 'ExampleTab',
'display_callable' => 'ExampleClass::displayDebugTab'

]
];

post_plugin_install
Called after a plugin is installed

post_plugin_enable
Called after a plugin is enabled

90 Chapter 5. Plugins

GLPI Developer Documentation Documentation

post_plugin_disable
Called after a plugin is disabled

post_plugin_uninstall
Called after a plugin is uninstalled

post_plugin_clean
Called after a plugin is cleaned (removed from the database after the folder is deleted)

Items business related

Hooks that can do some business stuff on items.

item_empty
When a new (empty) item has been created. Allow to change / add fields.

post_prepareadd
Before an item has been added, after prepareInputForAdd() has been run, so after rule engine has ben run,
allow to edit input property, setting it to false will stop the process.

pre_item_add
Before an item has been added, allow to edit input property, setting it to false will stop the process.

item_add
After adding an item, fields property can be used.

pre_item_update
Before an item is updated, allow to edit input property, setting it to false will stop the process.

item_update
While updating an item, fields and updates properties can be used.

pre_item_purge
Before an item is purged, allow to edit input property, setting it to false will stop the process.

item_purge
After an item is purged (not pushed to trash, see item_delete). The fields property still available.

pre_item_restore
Before an item is restored from trash.

item_restore
After an item is restored from trash.

pre_item_delete
Before an item is deleted (moved to trash), allow to edit input property, setting it to false will stop the process.

item_delete
After an item is moved to trash.

autoinventory_information
After an automated inventory has occurred

item_transfer
When an item is transferred from an entity to another

item_can
New in version 9.2.

Allow to restrict user rights (can’t grant more right). If right property is set (called during CommonDBTM::can)
changing it allow to deny evaluated access. Else (called from Search::addDefaultWhere) add_where property
can be set to filter search results.

5.5. Hooks 91

GLPI Developer Documentation Documentation

add_plugin_where
New in version 9.2.

Permit to filter search results.

Items display related

Hooks that permits to add display on items.

pre_item_form
New in version 9.1.2.

Before an item is displayed; just after the form header if any; or at the beginning of the form. Waits for a <tr>.

post_item_form
New in version 9.1.2.

After an item form has been displayed; just before the dates or the save buttons. Waits for a <tr>.

pre_show_item
Before an item is displayed

post_show_item
After an item has been displayed

pre_show_tab
Before a tab is displayed

post_show_tab
After a tab has been displayed

show_item_stats
New in version 9.2.1.

Add display from statistics tab of a item like ticket

timeline_actions
New in version 9.4.1.

Changed in version 10.0.0: The timeline action buttons were moved to the timeline footer. Some previous actions
may no longer be compatible with the new timeline and will need to be adjusted.

Display new actions in the ITIL object’s timeline

timeline_answer_actions
New in version 10.0.0.

Display new actions in the ITIL object’s answer dropdown

show_in_timeline
New in version 10.0.0.

Display forms in the ITIL object’s timeline

92 Chapter 5. Plugins

GLPI Developer Documentation Documentation

Notifications

Hooks that are called from notifications

item_add_targets
When a target has been added to an item

item_get_events
After notifications events have been retrieved

item_action_targets
After target addresses have been retrieved

item_get_datas
After data for template have been retrieved

add_recipient_to_target
New in version 9.4.0.

When a recipient is added to targets.

The object passed as hook method parameter will contain a property recipient_data which will be an array
containing itemtype and items_id fields corresponding to the added target.

5.5.2 Functions hooks

Usage

Functions hooks declarations are the same than standards hooks one. The main difference is that the hook will wait as
output what have been passed as argument.

<?php
/**
* Handle hook function
*
* @param array $data Array of something (assuming that's what we're receiving!)
*
* @return array
*/
public function myplugin_updateitem_called ($data) {
//do everything you want
//return passed argument
return $data;

}

Existing hooks

unlock_fields
After a fields has been unlocked. Will receive the $_POST array used for the call.

restrict_ldap_auth
Additional LDAP restrictions at connection. Must return a boolean. The dn string is passed as parameter.

undiscloseConfigValue
Permit plugin to hide fields that should not appear from the API (like configuration fields, etc). Will receive the
requested fields list.

5.5. Hooks 93

GLPI Developer Documentation Documentation

infocom
Additional infocom information oin an item. Will receive an item instance as parameter, is expected to return a
table line (<tr>).

retrieve_more_field_from_ldap
Retrieve additional fields from LDAP for a user. Will receive the current fields lists, is expected to return a fields
list.

retrieve_more_data_from_ldap
Retrieve additional data from LDAP for a user. Will receive current fields list, is expected to return a fields list.

display_locked_fields
To manage fields locks. Will receive an array with item and header entries. Is expected to output a table line
(<tr>).

migratetypes
Item types to migrate, will receive an array of types to be updated; must return an array of item types to migrate.

5.5.3 Automatic hooks

Some hooks are automated; they’ll be called if the relevant function exists in you plugin’s hook.php file. Required
function must be of the form plugin_{plugin_name}_{hook_name}.

MassiveActionsFieldsDisplay
Add massive actions. Will receive an array with item (the item type) and options (the search options) as input.
These hook have to output its content, and to return true if there is some specific output, false otherwise.

dynamicReport
Add parameters for print. Will receive the $_GET array used for query. Is expected to return an array of parameters
to add.

AssignToTicket
Declare types an ITIL object can be assigned to. Will receive an empty array adn is expected to return a list an
array of type of the form:

<?php
return [
'TypeClass' => 'label'

];

MassiveActions
If plugin provides massive actions (via $PLUGIN_HOOKS['use_massive_actions']), will pass the item type
as parameter, and expect an array of additional massive actions of the form:

<?php
return [
'Class::method' => 'label'

];

getDropDown
To declare extra dropdowns. Will not receive any parameter, and is expected to return an array of the form:

<?php
return [
'Class::method' => 'label'

];

94 Chapter 5. Plugins

GLPI Developer Documentation Documentation

rulePrepareInputDataForProcess
Provide data to process rules. Will receive an array with item (data used to check criteria) and params (the
parameters) keys. Is expected to retrun an array of rules.

executeActions
Actions to execute for rule. Will receive an array with output, params ans action keys. Is expected to return
an array of actions to execute.

preProcessRulePreviewResults

Todo: Write documentation for this hook.

use_rules

Todo: Write documentation for this hook. It looks a bit particular.

ruleCollectionPrepareInputDataForProcess
Prepare input data for rules collections. Will receive an array of the form:

<?php
array(
'rule_itemtype' => 'name fo the rule itemtype',
'values' => array(
'input' => 'input array',
'params' => 'array of parameters'

)
);

Is expected to return an array.

preProcessRuleCollectionPreviewResults

Todo: Write documentation for this hook.

ruleImportComputer_addGlobalCriteria
Add global criteria for computer import. Will receive an array of global criteria, is expected to return global
criteria array.

ruleImportComputer_getSqlRestriction
Adds SQL restriction to links. Will receive an array of the form:

<?php
array(
'where_entity' => 'where entity clause',
'input' => 'input array',
'criteria' => 'complex criteria array',
'sql_where' => 'sql where clause as string',
'sql_from' => 'sql from clause as string'

)

Is expected to return the input array modified.

getAddSearchOptions
Adds search options, using “old” method. Will receive item type as string, is expected to return an array of

5.5. Hooks 95

GLPI Developer Documentation Documentation

search options.

getAddSearchOptionsNew
Adds search options, using “new” method. Will receive item type as string, is expected to return an indexed
array of search options.

5.6 Automatic actions

5.6.1 Goals

Plugins may need to run automatic actions in background, or at regular interval. GLPI provides a task scheduler for
itself and its plugins.

5.6.2 Implement an automatic action

A plugin must implement its automatic action the same way as GLPI does, except the method is located in a plugin’s
itemtype. See crontasks.

5.6.3 Register an automatic action

A plugin must register its automatic action the same way as GLPI does in its upgrade process. See crontasks.

5.6.4 Unregister a task

GLPI unregisters tasks of a plugin when it cleans or uninstalls it.

5.7 Massive Actions

Plugins can use the core’s massive actions for its own itemtypes.

They just need to additionally define a hook in their init function (setup.php):

<?php

function plugin_init_example() {
$PLUGIN_HOOKS['use_massive_action']['example'] = 1;

}

But they can also add specific massive actions to core’s itemtypes. First, in their hook.php file, they must declare a
new definition into a plugin_pluginname_MassiveActions function, ex addition of new action for Computer:

<?php

function plugin_example_MassiveActions($type) {
$actions = [];

(continues on next page)

96 Chapter 5. Plugins

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

GLPI Developer Documentation Documentation

(continued from previous page)

switch ($type) {
case 'Computer' :

$myclass = PluginExampleExample;
$action_key = 'DoIt';
$action_label = __("plugin_example_DoIt", 'example');
$actions[$myclass.MassiveAction::CLASS_ACTION_SEPARATOR.$action_key]

= $action_label;

break;
}
return $actions;

}

Next, in the class defined int the definition, we can use the showMassiveActionsSubForm and
processMassiveActionsForOneItemtype in the same way as core documentation for massive actions:

<?php

class PluginExampleExample extends CommonDBTM {

static function showMassiveActionsSubForm(MassiveAction $ma) {

switch ($ma->getAction()) {
case 'DoIt':
echo __("fill the input");
echo Html::input('myinput');
echo Html::submit(__('Do it'), array('name' => 'massiveaction'))."";

return true;
}
return parent::showMassiveActionsSubForm($ma);

}

static function processMassiveActionsForOneItemtype(MassiveAction $ma, CommonDBTM
→˓$item,

array $ids) {
global $DB;

switch ($ma->getAction()) {
case 'DoIt' :

$input = $ma->getInput();

foreach ($ids as $id) {

if ($item->getFromDB($id)
&& $item->doIt($input)) {
$ma->itemDone($item->getType(), $id, MassiveAction::ACTION_OK);

} else {
$ma->itemDone($item->getType(), $id, MassiveAction::ACTION_KO);
$ma->addMessage(__("Something went wrong"));

}
}

(continues on next page)

5.7. Massive Actions 97

GLPI Developer Documentation Documentation

(continued from previous page)

return;

}
parent::processMassiveActionsForOneItemtype($ma, $item, $ids);

}
}

5.8 Tips & tricks

5.8.1 Add a tab on a core object

In order to add a new tab on a core object, you will have to:

• register your class against core object(s) telling it you will add a tab,

• use getTabNameForItem() to give tab a name,

• use displayTabContentForItem() to display tab contents.

First, in the plugin_init_{plugin_name} function, add the following:

<?php
//[...]
Plugin::registerClass(

GlpiPlugin\Myexample\MyClass::class, [
'addtabon' => [
'Computer',
'Phone'

]
]

);
//[...]

Here, we request to add a tab on Computer and Phone objects.

Then, in your src/MyClass.php (in which MyClass is defined):

<?php
function getTabNameForItem(CommonGLPI $item, $withtemplate=0) {
switch ($item::getType()) {
case Computer::getType():
case Phone::getType():
return __('Tab from my plugin', 'myexampleplugin');
break;

}
return '';

}

static function displayTabContentForItem(CommonGLPI $item, $tabnum=1, $withtemplate=0) {
switch ($item::getType()) {
case Computer::getType():

(continues on next page)

98 Chapter 5. Plugins

http://creativecommons.org/licenses/by-nc-nd/4.0/

GLPI Developer Documentation Documentation

(continued from previous page)

//display form for computers
self::displayTabContentForComputer($item);
break;

case Phone::getType():
self::displayTabContentForPhone($item);
break;

}
if ($item->getType() == 'ObjetDuCoeur') {

$monplugin = new self();
$ID = $item->getField('id');
// j'affiche le formulaire
$monplugin->nomDeLaFonctionQuiAfficheraLeContenuDeMonOnglet();

}
return true;

}

private static function displayTabContentForComputer(Computer $item) {
//...

}

private static function displayTabContentForPhone(Phone $item) {
//...

}

On the above example, we have used two different methods to display tab, depending on item type. You could of course
use only one if there is no (or minor) differences at display.

5.8.2 Add a tab on one of my plugin objects

In order to add a new tab on your plugin object, you will have to:

• use defineTabs() to register the new tab,

• use getTabNameForItem() to give tab a name,

• use displayTabContentForItem() to display tab contents.

Then, in your src/MyClass.php:

<?php
function defineTabs($options=array()) {

$ong = array();
//add main tab for current object
$this->addDefaultFormTab($ong);
//add core Document tab
$this->addStandardTab(__('Document'), $ong, $options);
return $ong;

}

/**
* Définition du nom de l'onglet
**/

(continues on next page)

5.8. Tips & tricks 99

GLPI Developer Documentation Documentation

(continued from previous page)

function getTabNameForItem(CommonGLPI $item, $withtemplate=0) {
switch ($item::getType()) {
case __CLASS__:
return __('My plugin', 'myexampleplugin');
break;

}
return '';

}

/**
* Définition du contenu de l'onglet
**/
static function displayTabContentForItem(CommonGLPI $item, $tabnum=1, $withtemplate=0) {
switch ($item::getType()) {
case __CLASS__:

self::myStaticMethod();
break;

}
return true;

}

5.8.3 Add several tabs

On the same model you create one tab, you may add several tabs.

<?php
function getTabNameForItem(CommonGLPI $item, $withtemplate=0) {

$ong = [
__('My first tab', 'myexampleplugin'),
__('My second tab', 'myexampleplugin')
];

return $ong;
}

static function displayTabContentForItem(CommonGLPI $item, $tabnum=0, $withtemplate=0) {
switch ($tabnum) {
case 0 : //"My first tab"
//do something
break;

case 1 : //"My second tab""
//do something else
break;

}
return true;

}

100 Chapter 5. Plugins

GLPI Developer Documentation Documentation

5.8.4 Add an object in dropdowns

Just add the following to your object class (src/MyObject.php):

<?php
function plugin_myexampleplugin_getDropdown() {
return [MyObject::class => MyObject::getTypeName(2)];

}

5.9 Notification modes

Core GLPI provides two notifications modes as of today:

• email (sends email),

• ajax (send browser notifications if/when user is logged)

It is possible to extends this mechanism in order to create another mode to use. Let’s take a tour. . . We’ll take example
of a plugin designed to send SMS to the users.

5.9.1 Required configuration

A few steps are required to setup the mode. In the init method (setup.php file); register the mode:

<?php
public function plugin_init_sms {
//[...]

if ($plugin->isActivated('sms')) {
Notification_NotificationTemplate::registerMode(

Notification_NotificationTemplate::MODE_SMS, //mode itself
__('SMS', 'plugin_sms'), //label
'sms' //plugin name

);
}

//[...]
}

Note: GLPI will look for classes named like Plugin{NAME}Notification{MODE}.

In the above example; we have used one the the provided (but not yet used) modes from the core. If you need a mode
that does not exists, you can of course create yours!

In order to make you new notification active, you will have to declare a notifications_{MODE} variable in the main
configuration: You will add it at install time, and remove it on uninstall. . . In the hook.php file:

<?php

function plugin_sms_install() {
(continues on next page)

5.9. Notification modes 101

http://creativecommons.org/licenses/by-nc-nd/4.0/

GLPI Developer Documentation Documentation

(continued from previous page)

Config::setConfigurationValues('core', ['notifications_sms' => 0]);
return true;

}

function plugin_sms_uninstall() {
$config = new Config();
$config->deleteConfigurationValues('core', ['notifications_sms']);
return true;

}

5.9.2 Settings

You will probably need some configuration settings to get your notifications mode to work. You can register and retrieve
additional configuration values using core Config object:

<?php
//set configuration
Config::setConfigurationValues(
'plugin:sms', //context
[//values
'server' => '',
'port' => ''

]
);

//get configuration
$conf = Config::getConfigurationValues('plugin:sms');
//$conf will be ['server' => '', 'port' => '']

That said, we need to create a class to handle the settings, and a front file to display them. The class must be named
GlpiPlugin\Sms\NotificationSmsSetting and must be in the src/NotificationSmsSetting.php file. It
have to extends the NotificationSetting core class :

<?php
namespace GlpiPlugin\Sms;
if (!defined('GLPI_ROOT')) {
die("Sorry. You can't access this file directly");

}

/**
* This class manages the sms notifications settings
*/
class NotificationSmsSetting extends NotificationSetting {

static function getTypeName($nb=0) {
return __('SMS followups configuration', 'sms');

}

public function getEnableLabel() {
(continues on next page)

102 Chapter 5. Plugins

GLPI Developer Documentation Documentation

(continued from previous page)

return __('Enable followups via SMS', 'sms');
}

static public function getMode() {
return Notification_NotificationTemplate::MODE_SMS;

}

function showFormConfig($options = []) {
global $CFG_GLPI;

$conf = Config::getConfigurationValues('plugin:sms');
$params = [
'display' => true

];
$params = array_merge($params, $options);

$out = "<form action='".Toolbox::getItemTypeFormURL(__CLASS__)."' method='post'>";
$out .= Html::hidden('config_context', ['value' => 'plugin:sms']);
$out .= "<div>";
$out .= "<input type='hidden' name='id' value='1'>";
$out .= "<table class='tab_cadre_fixe'>";
$out .= "<tr class='tab_bg_1'><th colspan='4'>"._n('SMS notification', 'SMS␣

→˓notifications', Session::getPluralNumber(), 'sms')."</th></tr>";

if ($CFG_GLPI['notifications_sms']) {
//TODO
$out .= "<tr><td colspan='4'>" . __('SMS notifications are not implemented yet.

→˓', 'sms') . "</td></tr>";
} else {

$out .= "<tr><td colspan='4'>" . __('Notifications are disabled.') . " <a href=
→˓'{$CFG_GLPI['root_doc']}/front/setup.notification.php'>" . _('See configuration') . "
→˓</td></tr>";

}
$options['candel'] = false;
if ($CFG_GLPI['notifications_sms']) {

$options['addbuttons'] = array('test_sms_send' => __('Send a test SMS to you',
→˓'sms'));

}

//Ignore display parameter since showFormButtons is now ready :/ (from all but␣
→˓tests)

echo $out;

$this->showFormButtons($options);
}

}

The front form file, located at front/notificationsmssetting.form.php will be quite simple. It handles the
display of the configuration form, update of the values, and test send (if any):

5.9. Notification modes 103

GLPI Developer Documentation Documentation

<?php
use Glpi\Plugin\Sms\NotificationSmsSetting;
include ('../../../inc/includes.php');

Session::checkRight("config", UPDATE);
$notificationsms = new NotificationSmsSetting();

if (!empty($_POST["test_sms_send"])) {
NotificationSmsSetting::testNotification();
Html::back();

} else if (!empty($_POST["update"])) {
$config = new Config();
$config->update($_POST);
Html::back();

}

Html::header(Notification::getTypeName(Session::getPluralNumber()), $_SERVER['PHP_SELF'],
→˓ "config", "notification", "config");

$notificationsms->display(array('id' => 1));

Html::footer();

5.9.3 Event

Once the new mode has been enabled; it will try to raise core events. You will need to create an event class
named GlpiPlugin\Sms\NotificationEventSms that implements NotificationEventInterface and extends
NotificationEventAbstract in the src/NotificationEventSms.php file.

Methods to implement are:

• getTargetFieldName: defines the name of the target field;

• getTargetField: populates if needed the target field to use. For a SMS plugin, it would retrieve the phone
number from users table for example;

• canCron: whether notification can be called from a crontask. For the SMS plugins, it would be true. It is set to
false for ajax based events; because notifications are requested from user browser;

• getAdminData: as global admin is not a real user; you can define here the data used to send the notification;

• getEntityAdminData: same as the above, but for entities admins rather than global admin;

• send: method that will really send data.

The raise method declared in the interface is implemented in the abstract class; since it should be used as it for every
mode. If you want to do extra process in the raise method, you should override the extraRaise method. This is
done in the core to add signatures in the mailing for example.

Note: Notifications uses the QueueNotification to store its data. Each notification about to be sent will be stored
in the relevant table. Rows are updated once the notification has really be send (set is_deleted to 1 and update
sent_time.

En example class for SMS Events would look like the following:

104 Chapter 5. Plugins

GLPI Developer Documentation Documentation

<?php
namespace GlpiPlugin\Sms;
class NotificationEventSms implements NotificationEventInterface {

static public function getTargetFieldName() {
return 'phone';

}

static public function getTargetField(&$data) {
$field = self::getTargetFieldName();

if (!isset($data[$field])
&& isset($data['users_id'])) {
// No phone set: get one for user
$user = new user();
$user->getFromDB($data['users_id']);

$phone_fields = ['mobile', 'phone', 'phone2'];
foreach ($phone_fields as $phone_field) {
if (isset($user->fields[$phone_field]) && !empty($user->fields[$phone_

→˓field])) {
$data[$field] = $user->fields[$phone_field];
break;

}
}

}

if (!isset($data[$field])) {
//Missing field; set to null
$data[$field] = null;

}

return $field;
}

static public function canCron() {
return true;

}

static public function getAdminData() {
//no phone available for global admin right now
return false;

}

static public function getEntityAdminsData($entity) {
global $DB, $CFG_GLPI;

$iterator = $DB->request([
'FROM' => 'glpi_entities',

(continues on next page)

5.9. Notification modes 105

GLPI Developer Documentation Documentation

(continued from previous page)

'WHERE' => ['id' => $entity]
]);

$admins = [];

while ($row = $iterator->next()) {
$admins[] = [
'language' => $CFG_GLPI['language'],
'phone' => $row['phone_number']

];
}

return $admins;
}

static public function send(array $data) {
//data is an array of notifications to send. Process the array and send real SMS␣

→˓here!
throw new \RuntimeException('Not yet implemented!');

}
}

5.9.4 Notification

Finally, create a GlpiPlugin\Sms\NotificationSms class that implements the NotificationInterface in the
src/NotificationSms.php file.

Methods to implement are:

• check: to validate data (checking if a mail address is well formed, . . .);

• sendNotification: to store raised event notification in the QueueNotification;

• testNotification: used from settings to send a test notification.

Again, the SMS example:

<?php
namespace GlpiPlugin\Sms;
class NotificationSms implements NotificationInterface {

static function check($value, $options = []) {
//Does nothing, but we could check if $value is actually what we expect as a phone␣

→˓number to send SMS.
return true;

}

static function testNotification() {
$instance = new self();
//send a notification to current logged in user
$instance->sendNotification([
'_itemtype' => 'NotificationSms',

(continues on next page)

106 Chapter 5. Plugins

GLPI Developer Documentation Documentation

(continued from previous page)

'_items_id' => 1,
'_notificationtemplates_id' => 0,
'_entities_id' => 0,
'fromname' => 'TEST',
'subject' => 'Test notification',
'content_text' => "Hello, this is a test notification.",
'to' => Session::getLoginUserID()

]);
}

function sendNotification($options=array()) {

$data = array();
$data['itemtype'] = $options['_itemtype'];
$data['items_id'] = $options['_items_id'];
$data['notificationtemplates_id'] = $options['_notificationtemplates_id

→˓'];
$data['entities_id'] = $options['_entities_id'];

$data['sendername'] = $options['fromname'];

$data['name'] = $options['subject'];
$data['body_text'] = $options['content_text'];
$data['recipient'] = $options['to'];

$data['mode'] = Notification_NotificationTemplate::MODE_SMS;

$mailqueue = new QueuedMail();

if (!$mailqueue->add(Toolbox::addslashes_deep($data))) {
Session::addMessageAfterRedirect(__('Error inserting sms notification to queue',

→˓ 'sms'), true, ERROR);
return false;

} else {
//TRANS to be written in logs %1$s is the to email / %2$s is the subject of the␣

→˓mail
Toolbox::logInFile("notification",

sprintf(__('%1$s: %2$s'),
sprintf(__('An SMS notification to %s was added to␣

→˓queue', 'sms'),
$options['to']),

$options['subject']."\n"));
}

return true;
}

}

5.9. Notification modes 107

http://creativecommons.org/licenses/by-nc-nd/4.0/

GLPI Developer Documentation Documentation

5.10 Unit Testing

5.10.1 Goals

As a plugin’s complexity increases so does the possibility of a feature or bug fix breaking some other part of the plugin.
For this, it is recommended that plugins have some unit tests in place to detect when expected functionality breaks.

5.10.2 Bootstrap

Next, you need to create a bootstrap file to prepare the testing environment. This file should be located at tests/
bootstrap.php. In the bootstrap file, you need to import a few required files and set a few constants, as well as
loading your plugin. Note that you must manually check prerequisites since this check is not called automatically. For
example:

<?php
global $CFG_GLPI;

define('GLPI_ROOT', dirname(dirname(dirname(__DIR__))));
define("GLPI_CONFIG_DIR", GLPI_ROOT . "/tests");

include GLPI_ROOT . "/inc/includes.php";
include_once GLPI_ROOT . '/tests/GLPITestCase.php';
include_once GLPI_ROOT . '/tests/DbTestCase.php';

$plugin = new \Plugin();
$plugin->checkStates(true);
$plugin->getFromDBbyDir('myplugin');

if (!plugin_myplugin_check_prerequisites()) {
echo "\nPrerequisites are not met!";
die(1);

}

if (!$plugin->isInstalled('myplugin')) {
$plugin->install($plugin->getID());

}
if (!$plugin->isActivated('myplugin')) {

$plugin->activate($plugin->getID());
}

You must replace “myplugin” with the directory name of your plugin.

108 Chapter 5. Plugins

GLPI Developer Documentation Documentation

5.10.3 Unit test files

All unit tests must be placed inside the tests/units directory in your plugin. Each test file has to correspond to an
existing class name. If your plugin has a file inc/test.class.php with the class name PluginMypluginTest, the
test file must be named PluginMypluginTest.php.

5.10.4 Running your tests

To run your tests, go to the root of your GLPI installation and run:

vendor/bin/atoum -bf plugins/myplugin/tests/bootstrap.php -d plugins/myplugin/tests/

You must replace “myplugin” with the directory name of your plugin.

5.10.5 Real examples

The following plugins are a good example of how to implement Atoum tests:

• JAMF Plugin for GLPI

• Fields Plugin for GLPI

5.10.6 Further reading

The Atoum documentation is a good place to start if you are not familiar with unit testing or Atoum.

5.10. Unit Testing 109

https://github.com/cconard96/jamf
https://github.com/pluginsGLPI/fields
https://atoum.readthedocs.io/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

GLPI Developer Documentation Documentation

110 Chapter 5. Plugins

CHAPTER

SIX

PACKAGING

Various Linux distributions provides packages (deb, rpm, . . .) for GLPI (Debian, Mandriva, Fedora, Redhat/CentOS,
. . .) and for some plugins. You may want to take a look at Remi’s package for Fedora/RHEL to rely on a concrete
example.

Here is some information about using and creating package:

• for users to understand how GLPI is installed

• for support to understand how GLPI work on this installation

• for packagers

6.1 Sources

GLPI public tarball is designed for ends-user; it will not fit packaging requirements. For example, this tarball bundle a
lot of third party libraries, it does not ships unit tests, etc.

A better candidate would be to retrieve directly a tarball from github as package source.

6.2 Filesystem Hierarchy Standard

Most distributions requires that packages follows the FHS (Filesystem Hierarchy Standard):

• /etc/glpi for configuration files: config_db.php and config_db_slave.php. Prior to 9.2 release, other
files stay in glpi/config; beginning with 9.2, those files have been moved;

• /usr/share/glpi for the web pages (read only dir);

• /var/lib/glpi/files for GLPI data and state information (session, uploaded documents, cache, cron, plug-
ins, . . .);

• /var/log/glpi for various GLPI log files.

Please refer to GLPI installation documentation in order to get GLPI paths configured.

111

https://git.remirepo.net/cgit/rpms/glpi/glpi.git/
http://www.pathname.com/fhs/
https://glpi-install.readthedocs.io/en/latest/install/index.html#files-and-directories-locations

GLPI Developer Documentation Documentation

6.3 Apache Configuration File

Here is a configuration file sample for the Apache web server:

#To access via http://servername/glpi/
Alias /glpi /usr/share/glpi

some people prefer a simple URL like http://glpi.example.com
#<VirtualHost *:80>
DocumentRoot /usr/share/glpi
ServerName glpi.example.com
#</VirtualHost>

<Directory /usr/share/glpi>
Options None
AllowOverride None

to overwrite default configuration which could be less than recommended value
php_value memory_limit 64M

<IfModule mod_authz_core.c>
Apache 2.4
Require all granted

</IfModule>
<IfModule !mod_authz_core.c>
Apache 2.2
Order Deny,Allow
Allow from All

</IfModule>
</Directory>

<Directory /usr/share/glpi/install>
15" should be enough for migration in most case
php_value max_execution_time 900
php_value memory_limit 128M

</Directory>

This sections replace the .htaccess files provided in the tarball
<Directory /usr/share/glpi/config>
<IfModule mod_authz_core.c>
Apache 2.4
Require all denied

</IfModule>
<IfModule !mod_authz_core.c>
Apache 2.2
Order Deny,Allow
Deny from All

</IfModule>
</Directory>

<Directory /usr/share/glpi/locales>
<IfModule mod_authz_core.c>
Apache 2.4

(continues on next page)

112 Chapter 6. Packaging

GLPI Developer Documentation Documentation

(continued from previous page)

Require all denied
</IfModule>
<IfModule !mod_authz_core.c>
Apache 2.2
Order Deny,Allow
Deny from All

</IfModule>
</Directory>

<Directory /usr/share/glpi/install/mysql>
<IfModule mod_authz_core.c>
Apache 2.4
Require all denied

</IfModule>
<IfModule !mod_authz_core.c>
Apache 2.2
Order Deny,Allow
Deny from All

</IfModule>
</Directory>

<Directory /usr/share/glpi/scripts>
<IfModule mod_authz_core.c>
Apache 2.4
Require all denied

</IfModule>
<IfModule !mod_authz_core.c>
Apache 2.2
Order Deny,Allow
Deny from All

</IfModule>
</Directory>

6.4 Logs files rotation

Here is a logrotate sample configuration file (/etc/logrotate.d/glpi):

Rotate GLPI logs daily, only if not empty
Save 14 days old logs under compressed mode
/var/log/glpi/*.log {

daily
rotate 14
compress
notifempty
missingok
create 644 apache apache

}

6.4. Logs files rotation 113

GLPI Developer Documentation Documentation

6.5 SELinux stuff

For SELinux enabled distributions, you need to declare the correct context for the folders.

As an example, on Redhat based distributions:

• /etc/glpi and /var/lib/glpi: httpd_sys_script_rw_t, the web server need to write the config file in
the former and various data in the latter;

• /var/log/glpi: httpd_log_t (apache log type: write only, no delete).

6.6 Use system cron

GLPI provides an internal cron for automated tasks. Using a system cron allow a more consistent and regular execution,
for example when no user connected on GLPI.

Note: cron.php should be run as the web server user (apache or www-data)

You will need a crontab file, and to configure GLPI to use system cron. Sample cron configuration file (/etc/cron.
d/glpi):

GLPI core
Run cron from to execute task even when no user connected
*/4 * * * * apache /usr/bin/php /usr/share/glpi/front/cron.php

To tell GLPI it must use the system crontab, simply define the GLPI_SYSTEM_CRON constant to true in the
config_path.php file:

<?php
//[...]

//Use system cron
define('GLPI_SYSTEM_CRON', true);

6.7 Using system libraries

Since most distributions prefers the use of system libraries (maintained separately); you can’t rely on the vendor direc-
tory shipped in the public tarball; nor use composer.

The way to handle third party libraries is to provide an autoload file with paths to you system libraries. You’ll find all
requirements from the composer.json file provided along with GLPI:

<?php
$vendor = '##DATADIR##/php';
// Dependencies from composer.json
// "ircmaxell/password-compat"
// => useless for php >= 5.5
//require_once $vendor . '/password_compat/password.php';
// "jasig/phpcas"
require_once '##DATADIR##/pear/CAS/Autoload.php';

(continues on next page)

114 Chapter 6. Packaging

http://en.wikipedia.org/wiki/Selinux

GLPI Developer Documentation Documentation

(continued from previous page)

// "iamcal/lib_autolink"
require_once $vendor . '/php-iamcal-lib-autolink/autoload.php';
// "phpmailer/phpmailer"
require_once $vendor . '/PHPMailer/PHPMailerAutoload.php';
// "sabre/vobject"
require_once $vendor . '/Sabre/VObject/autoload.php';
// "simplepie/simplepie"
require_once $vendor . '/php-simplepie/autoloader.php';
// "tecnickcom/tcpdf"
require_once $vendor . '/tcpdf/tcpdf.php';
// "zendframework/zend-cache"
// "zendframework/zend-i18n"
// "zendframework/zend-loader"
require_once $vendor . '/Zend/autoload.php';
// "zetacomponents/graph"
require_once $vendor . '/ezc/Graph/autoloader.php';
// "ramsey/array_column"
// => useless for php >= 5.5
// "michelf/php-markdown"
require_once $vendor . '/Michelf/markdown-autoload.php';
// "true/punycode"
if (file_exists($vendor . '/TrueBV/autoload.php')) {
require_once $vendor . '/TrueBV/autoload.php';

} else {
require_once $vendor . '/TrueBV/Punycode.php';

}

Note: In the above example, the ##DATADIR## value will be replaced by the correct value (/usr/share/php for
instance) from the specfile using macros. Adapt with your build system possibilities.

6.8 Using system fonts rather than bundled ones

Some distribution prefers the use of system fonts (maintained separately).

GLPI use the FreeSans.ttf font you can configure adding in the config_path.php:

<?php
//[...]

define('GLPI_FONT_FREESANS', '/path/to/FreeSans.ttf');

If you want to help us improve the current documentation, feel free to open pull requests! You can see open issues and
join the documentation mailing list.

Here is a list of things to be done:

Todo:

• datafields option

6.8. Using system fonts rather than bundled ones 115

http://www.nongnu.org/freefont/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/glpi-project/docdev/issues
https://mail.gna.org/listinfo/glpi-doc

GLPI Developer Documentation Documentation

• difference between searchunit and delay_unit

• dropdown translations

• giveItem

• export

• fulltext search

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/glpi-developer-
documentation/checkouts/latest/source/devapi/search.rst, line 27.)

Todo: Write documentation for this hook.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/glpi-developer-
documentation/checkouts/latest/source/plugins/hooks.rst, line 608.)

Todo: Write documentation for this hook. It looks a bit particular.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/glpi-developer-
documentation/checkouts/latest/source/plugins/hooks.rst, line 614.)

Todo: Write documentation for this hook.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/glpi-developer-
documentation/checkouts/latest/source/plugins/hooks.rst, line 636.)

116 Chapter 6. Packaging

http://creativecommons.org/licenses/by-nc-nd/4.0/

	Source Code management
	Versioning
	Backward compatibility
	Branches
	Testing
	File Hierarchy System
	Workflow
	In short…
	General
	Bugs
	Features
	Commit messages
	Third party libraries

	Unit testing (and functional testing)
	Tests isolation
	Type hitting
	Database
	Variables declaration
	Launch tests

	Coding standards
	Call static methods
	Static or Non static?
	Comments
	Parameters documentation
	Override method: @inheritDoc? @see? docblock? no docblock?

	Variables types
	Quotes / double quotes
	Checking standards

	Developer API
	Main framework objects
	CommonGLPI
	CommonDBTM
	CommonDropdown
	CommonTreeDropdown
	CommonImplicitTreeDropdown
	CommonDBVisible
	CommonDBConnexity
	CommonDBChild
	CommonDBRelation
	CommonDevice
	Common ITIL objects
	CommonITILObject
	CommonITILActor
	CommonITILCost
	CommonITILTask
	CommonITILValidation

	Database
	Database model
	Resultsets
	Naming conventions
	Tables
	Fields
	Make relations

	Indexes

	Querying
	Basic usage
	Arguments
	Giving full SQL statement
	Without option
	Fields selection
	Using JOINs
	Multiple tables, native join
	Left join
	Inner join
	Right join
	Join criterion

	UNION queries
	Counting
	Grouping
	Order
	Request pager
	Criteria
	Simple criteria
	Logical OR, AND, NOT
	Operators
	Aliases
	Aggregate functions
	Sub queries
	What if iterator does not provide what I’m looking for?

	Updating
	General
	Inserting a row
	Updating a row
	Removing a row
	Use prepared statements

	Search Engine
	Goal
	Examples

	GET Parameters
	Search options
	Join parameters
	Data types
	Specific search options

	Default Select/Where/Join
	addDefaultSelect
	addDefaultWhere
	addDefaultJoin

	Bookmarks
	Display Preferences

	Massive Actions
	Goals
	Update item’s fields
	Specific massive actions

	Rules Engine
	Classes
	Database Model
	Add a new Rule class
	Apply a rule collection
	Dictionaries

	Translations
	PHP Functions
	Simple translation
	Handle plural forms
	Handle variables

	Javascript Functions

	Right Management
	Goals
	Profiles
	Rights definition
	Check rights
	CommonDBRelation and CommonDBChild specificities

	Automatic actions
	Goals
	Implementation overview
	Implementation
	Register an automatic actions

	Tools
	locale/
	genapidoc.sh
	convert_search_options.php
	make_release.sh
	modify_headers.pl
	getsearchoptions.php
	generate_bigdump.php
	Not yet documented…
	Out of date
	phpunit/
	php.vim

	Extra
	Change logging level
	Override mailing recipient
	Disabling CSRF checks

	Checklists
	Review process
	Prepare next major release

	Plugins
	Guidelines
	Directories structure
	Where to write files?

	Versionning
	ChangeLog
	Third party libraries

	Requirements
	setup.php
	Requirements checking
	Plugin options

	hook.php
	Coding standards

	Database
	Creating and updating tables
	Deleting tables

	Adding and managing objects
	Define an object
	Add a front for my object (CRUD)

	Hooks
	Standards Hooks
	Usage
	Without parameters
	With item as parameter
	With array of parameters

	Unclassified
	Items business related
	Items display related
	Notifications

	Functions hooks
	Usage
	Existing hooks

	Automatic hooks

	Automatic actions
	Goals
	Implement an automatic action
	Register an automatic action
	Unregister a task

	Massive Actions
	Tips & tricks
	Add a tab on a core object
	Add a tab on one of my plugin objects
	Add several tabs
	Add an object in dropdowns

	Notification modes
	Required configuration
	Settings
	Event
	Notification

	Unit Testing
	Goals
	Bootstrap
	Unit test files
	Running your tests
	Real examples
	Further reading

	Packaging
	Sources
	Filesystem Hierarchy Standard
	Apache Configuration File
	Logs files rotation
	SELinux stuff
	Use system cron
	Using system libraries
	Using system fonts rather than bundled ones

