

Welcome to gitexplorer’s documentation!

[image: gitexplorer logo]

This project is intended to be a tool to extract basic information from any accessible git repository, make appealing
visualizations like the GitHub graphs and therefore make exploration of repositories as easy as possible.

Being a fairly new project neither all requirements are written nor are implementation details already clear. I will
take the chance and document the process of architecture and design decisions. As an inspiration for the project I base
on the great repositories hoxu/gitstats [https://github.com/hoxu/gitstats] and adamtornhill/code-maat [https://github.com/adamtornhill/code-maat].

In the future the starting point for all interaction with the package gitexplorer will start with:

import gitexplorer as ge

So stay tuned ...

Contents:

	The Story
	Requirements

	Achivements & Goals

	Architecture

	License
	Project License

	Logo License

	Authors

	Changelog

Indices and tables

	Index

	Module Index

	Search Page

The story behind gitexplorer or the What, Why and for Whom!

As a computer scientist working with many different kinds of software and in various teams, I was always curious on how
to improve my work and the software I am working with. Almost naturally, as it comes to bigger applications and bigger
teams, me and my team always used a version control system. Therefore I was always interested in how to use those
systems to get information about the past; sometimes by reverting bugs some of us introduced, to retrace ideas or to
get an overview on what is going on with our source code, not to say who is doing what and where are those changes
located.

Reading a lot about refactoring (especially [Torn15]), I have an emerging interest in analyzing my repositories
in a more structured way. Hopefully this will enable me to refactor the code which needs it most to simplify my daily
work.

Being a Python programmer I searched the internet for a Python application fullfilling my wish for a way to analyze
git repositories to get the information I was looking for. As I formerly worked with SVN and remembered the tool
StatSVN [http://statsvn.org/] which generated a lot of statistics about a repository, I immediately found GitStats [http://gitstats.sourceforge.net/]. To my displeasure it
had a strong coupling to gnuplot and after contacting the maintainer it was clear that the project was no longer under
active development despite lots of pull requests to improve it. A look at the source code and a few modifications later
I decided to start a project on my own. An application capable to generate all the statistics I wish for, combined with
an appealing output.

Requirements

I formulated the following few non specific requirements for myself:

	An application which can be used to analyze and visualize arbitrary git repositories. The data and visualization artifacts can then be used to get a deeper insight into usage and content of the analyzed repository.

	The result of the analysis shall be persisted to be efficiently accessible for visualization and reevaluation as well as future extension.

	Extending the application shall be possible by writing additional visualizations and/or additional data analysis which can result in extra information to be stored in conformity to #2.

	The style of visualizations shall be easily changeable by programmers and non programmers to support separation of concerns.

	The analysis of the repository shall be as effective as possible whereas the resulting information storage shall be partially updatable and upgradable.

Achivements & Goals

This documentation should be an up to date source of information which statistics are already available in the basic
package and which are soon likely to be available.

Done

	Total number of additions, deletions, lines and modifications per commit

	Total number of additions, deletions, lines and modifications per commit, grouped by date

	Number of commits grouped by iso day of the week

	Number of commits grouped by hour of day

	Authors and corresponding date of commits, additions, deletions and lines grouped by file path

	Additions, deletions, lines and commits grouped by file path

	Average number of additions, deletions, lines and modifications per commit

	Average number of additions, deletions, lines and modifications grouped by date

To Be Done

	List of file extensions

	Total number of additions, deletions, lines and modifications per author

	Average number of additions, deletions, lines and modifications per commit, grouped by author

	Every other statistic limited to the last 30 days

	Every other statistic limited to the last half year

	Every other statistic limited to the last year

	Total number of commits per file path

	Author of the month rated by ‘TBD’

	Author of the year rated by ‘TBD’

	Every statistic respecting renames

	Total number of additions, deletions, lines and modifications per extension

	Size per file

	Update frequency per file

	Coupling of files

	Python specific file statistics like cyclomatic complexity

	Visualization of all statistics

	[Torn15]	Tornhill, A. (2015). Your code as a Crime Scene - Use Forensic Techniques to Arrest Defects, Bottlenecks and Bad Design in Your Programs. Dallas, TX: The Pragmatic Bookshelf [https://books.google.de/books?id=vFjRrQEACAAJ]

Building the architecture which meets the requirements

Where do we start? The first try of a design fulfilling some of the architectural requirements
could look like visualized in Figure 1. A script will read out the git information and
put it into a persistent storage. This storage will be read out from a script generating the
visualization with respect to some configuration options.

[image: gitexplorer possible basic architecture.]
Figure 1: Basic architecture for gitexplorer.

However if we think about supporting the extensibility requirement, it is clear
that this architecture can be improved.

[image: gitexplorer possible architecture designed for extensibility.]
Figure 2: Architecture for gitexplorer having extensibility as a basic design element.

{"commit_hash": <commit_hash>,
 "author": <name>,
 "mail": <mail>,
 "date": <date>,
 "details": {
 "create": [{
 "file_path": <file_path>,
 "permission": <unix_file_permission>,
 "extension": <.extension>}],
 "delete": [{
 "file_path": <file_path>,
 "permission": <unix_file_permission>}],
 "rename": [{
 "new_path": <file_path>,
 "extension": <.extension>,
 "old_path": <file_path>,
 "match": <match_percentage>}],
 "change": {
 <file_path>: {
 "old_permission": <unix_file_permission>,
 "new_permission": <unix_file_permission>}},
 "modifications": [{
 "file_path": <file_path>,
 "additions": <#additions>,
 "deletions": <#deletions>}]}}

License

Project License

MIT License

Copyright (c) 2017 Peer Wagner

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Logo License

The “gitexplorer logo” is a derivative of the original “Git Logo [https://git-scm.com/downloads/logos]” by Jason Long [https://twitter.com/jasonlong], used under
Creative Commons Attribution 3.0 Unported License [https://creativecommons.org/licenses/by/3.0/]. “gitexplorer logo” itself is licensed under
Creative Commons Attribution 3.0 Unported License [https://creativecommons.org/licenses/by/3.0/] by Peer Wagner.

Developers

	Peer Wagner <wagnerpeer@gmail.com>

Changes

Index

 _static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		Welcome to gitexplorer's documentation!

 		The Story

 		Requirements

 		Achivements & Goals

 		Done

 		To Be Done

 		Architecture

 		License

 		Project License

 		Logo License

 		Authors

 		Changelog

_images/gitexplorer_extension.png
Basic
Storage
Functions

Basic
Visualization
Functions

Storage

Visualization

Seript

Output

_images/gitexplorer.png
L AN

Storage Visualization
Eii Seript

Seript

