
Girder Worker Documentation
Release 0.1.0

Kitware, Inc.

Jun 05, 2018

Contents

1 What is Girder Worker? 1
1.1 Installation . 1
1.2 Types and formats . 3
1.3 API documentation . 6
1.4 Examples . 10
1.5 Developer documentation . 21
1.6 Task Plugins . 23
1.7 Writing cancelable tasks . 25
1.8 Application Plugins . 26
1.9 docker_run . 32

2 Indices and tables 37

Python Module Index 39

i

ii

CHAPTER 1

What is Girder Worker?

Girder Worker is a Python application for generic task execution. It can be run within a Celery worker to provide a
distributed batch job execution platform.

The application can run tasks in a variety of languages and environments, including Python, R, and Docker, all via
a single Python or Celery broker interface. Tasks can be chained together into workflows, and these workflows can
actually span multiple languages and environments seamlessly. Data flowing between tasks can be automatically
converted into a format understandable in the target environment. For example, a Python object from a Python task
can be automatically converted into an R object for an R task at the next stage of a pipeline.

Girder Worker defines a specification that prescribes a loose coupling between a task and its runtime inputs and
outputs. That specification is described in the API documentation section. This specification is language-independent
and instances of the spec are best represented by a hierarchical data format such as JSON or YAML, or an equivalent
serializable type such as a dict in Python. Several Examples of using these specifications to generate tasks and
workflows are provided.

Girder Worker is designed to be easily extended to new languages and environments, or to support new data types
and formats, or modes of data transfer. This is accomplished via its plugin system, which is described in Application
Plugins.

1.1 Installation

To install the Girder Worker on your system, we recommend using pip to install the package. (If you wish to install
from source, see the Installing from source section of the developer documentation.)

First, install required system packages:

Command for Ubuntu
sudo apt-get install libjpeg-dev zlib1g-dev libssl-dev

Next, the following command will install the core dependencies:

pip install girder-worker

1

http://docs.celeryproject.org/en/latest/index.html

Girder Worker Documentation, Release 0.1.0

That will install the core girder-worker library, but not the third-party dependencies for any of its plugins. If you want
to enable a set of plugins, their IDs should be included as extras to the pip install command. For instance, if you are
planning to use the R plugin and the girder_io plugin, you would run:

pip install girder-worker[r,girder_io]

You can run this command at any time to install dependencies of other plugins, even if the girder worker is already
installed.

1.1.1 Remote Execution

Want to run things remotely? Girder worker relies on celery as its distributed task queue. Celery requires a message
broker, which can be Mongo, though Celery recommends using RabbitMQ as your message broker.

If you have followed the standard or development installation process, celery will have already been installed.

Run the girder_worker, which will run a celery worker process:

girder-worker

On the client, run a script akin to the following example:

python examples/example_client.py

1.1.2 Configuration

Several aspects of the worker’s behavior are controlled via its configuration file. The easiest way to manage con-
figuration is using the girder-worker-config command that is installed with the package. After installation,
run

$ girder-worker-config --help

You should see the list of available sub-commands for reading and writing config values. To show all configuration
options, run

$ girder-worker-config list

To set a specific option, use

$ girder-worker-config set <section_name> <option_name> <value>

For example:

$ girder-worker-config set celery broker amqp://me@localhost/

To change a setting back to its default value, use the rm subcommand

$ girder-worker-config rm celery broker

The core configuration parameters are outlined below.

• celery.app_main: The name of the celery application. Clients will need to use this same name to identify
what app to send tasks to. It is recommended to call this “girder_worker” unless you have a reason not to.

• celery.broker: This is the broker that celery will connect to in order to listen for new tasks. Celery
recommends using RabbitMQ as your message broker.

2 Chapter 1. What is Girder Worker?

https://www.rabbitmq.com/
https://www.rabbitmq.com/

Girder Worker Documentation, Release 0.1.0

• girder_worker.tmp_root: Each task is given a temporary directory that it can use if it needs filesystem
storage. This config setting points to the root directory under which these temporary directories will be created.

• girder_worker.plugins_enabled: This is a comma-separated list of plugin IDs that will be enabled
at runtime, e.g. r,docker.

• girder_worker.plugin_load_path: If you have any external plugins that are not inside the
girder_worker/plugins package directory, set this value to a colon-separated list of directories to search for
external plugins that need to be loaded.

Note: After making changes to values in the config file, you will need to restart the worker before the changes will
be reflected.

1.2 Types and formats

In Girder Worker, analysis inputs and outputs may contain type and format annotations. These annotations only have
an effect if the types plugin is enabled on the worker, and the specific behaviors of validation and conversion of data
formats are controlled by flags to the run task called validate and auto_convert respectively, which default
to being enabled if they are not explicitly passed.

A type in Girder Worker is a high-level description of a data structure useful for intuitive workflows. It is not tied to
a particular representation. For example, the table type may be defined as a list of rows with ordered, named column
fields. This description does not specify any central representation since the information may be stored in a variety of
ways. A type is specified by a string unique to your Girder Worker environment, such as "table" for the table type.

An explicit representation of data is called a format in Girder Worker. A format is a low-level description of data
layout. For example, the table type may have formats for CSV, database table, R data frame, or JSON. The format
may be text, serialized binary, or even in-memory data layouts. Just like types, a format is specified by a string unique
to your Girder Worker environment, such as "csv" for the CSV format. Formats under the same type should be
convertible between each other.

Notice that the above uses the phrases such as “may be defined” and “may have formats”. This is because at its core
Girder Worker does not contain types or formats. The girder_worker.run() function will attempt to match
given input bindings to analysis inputs, validating data and performing conversions as needed. To make Girder Worker
aware of certain types and formats, you must define validation and conversion routines. These routines are them-
selves Girder Worker algorithms of a particular form, loaded with girder_worker.plugins.types.format.
import_converters(). See that function’s documentation for how to define validators and converters.

The following are the types available in Girder Worker core. Application plugins may add their own types and formats
using the girder_worker.plugins.types.format.import_converters function. See the Application
Plugins section for details on plugin-specific types and formats.

1.2.1 "boolean" type

A true or false value. Formats:

"boolean" An in-memory Python bool.

"json" A JSON string representing a single boolean ("true" or "false").

1.2.2 "integer" type

An integer. Formats:

1.2. Types and formats 3

Girder Worker Documentation, Release 0.1.0

"integer" An in-memory Python int.

"json" A JSON string representing a single integer.

1.2.3 "number" type

A numeric value (integer or real). Formats:

"number" An in-memory Python int or float.

"json" A JSON string representing a single number.

1.2.4 "string" type

A sequence of characters.

"text" A raw string of characters (str in Python).

"json" A JSON string representing a single string. This is a quoted string with certain characters
escaped.

1.2.5 "integer_list" type

A list of integers. Formats:

"integer_list" An in-memory list of Python int.

"json" A JSON string representing a list of integers.

1.2.6 "number_list" type

A list of numbers (integer or real). Formats:

"number_list" An in-memory list of Python int or float.

"json" A JSON string representing a list of numbers.

1.2.7 "string_list" type

A list of strings. Formats:

"string_list" An in-memory list of Python str.

"json" A JSON string representing a list of strings.

1.2.8 "table" type

A list of rows with ordered, named column attributes. Formats:

"rows" A Python dictionary containing keys "fields" and "rows". "fields" is a list of column
names that specifies column order. "rows" is a list of dictionaries of the form field: value
where field is the field name and value is the value of the field for that row. For example:

4 Chapter 1. What is Girder Worker?

Girder Worker Documentation, Release 0.1.0

{
"fields": ["one", "two"],
"rows": [{"one": 1, "two": 2}, {"one": 3, "two": 4}]

}

"rows.json" The equivalent JSON representation of the "rows" format.

"objectlist" A Python list of dictionaries of the form field: value where field is the field
name and value is the value of the field for that row. For example:

[{"one": 1, "two": 2}, {"one": 3, "two": 4}]

This is identical to the "rows" field of the "rows" format. Note that this format does not preserve
column ordering.

"objectlist.json" The equivalent JSON representation of the "objectlist" format.

"objectlist.bson" The equivalent BSON representation of the "objectlist" format. This is
the format of MongoDB collections.

"csv" A string containing the contents of a comma-separated CSV file. The first line of the file is
assumed to contain column headers.

"tsv" A string containing the contents of a tab-separated TSV file. Column headers are detected the
same as for the "csv" format.

1.2.9 "tree" type

A hierarchy of nodes with node and/or link attributes. Formats:

"nested" A nested Python dictionary representing the tree. All nodes may contain a "children"
key containing a list of child nodes. Nodes may also contain "node_data" and "edge_data"
which are name: value dictionaries of node and edge attributes. The top-level (root node)
dictionary contains "node_fields" and "edge_fields" which are lists of node and edge
attribute names to preserve ordering. The root should not contain "edge_data" since it does not
have a parent edge. For example:

{
"edge_fields": ["weight"],
"node_fields": ["node name", "node weight"],
"node_data": {"node name": "", "node weight": 0.0},
"children": [

{
"node_data": {"node name": "", "node weight": 2.0},
"edge_data": {"weight": 2.0},
"children": [

{
"node_data": {"node name": "ahli", "node weight": 2.

→˓0},
"edge_data": {"weight": 0.0}

},
{

"node_data": {"node name": "allogus", "node weight":
→˓3.0},

"edge_data": {"weight": 1.0}
}

]

(continues on next page)

1.2. Types and formats 5

Girder Worker Documentation, Release 0.1.0

(continued from previous page)

},
{

"node_data": {"node name": "rubribarbus", "node weight": 3.0}
→˓,

"edge_data": {"weight": 3.0}
}

]
}

"nested.json" The equivalent JSON representation of the "nested" format.

"newick" A tree in Newick format.

"nexus" A tree in Nexus format.

"phyloxml" A phylogenetic tree in PhyloXML format.

1.2.10 "graph" type

A collection of nodes and edges with optional attributes. Formats:

"networkx" An in-memory representation of a graph using an object of type nx.Graph (or any of its
subclasses).

"networkx.json" A JSON representation of a NetworkX graph.

"clique.json" A JSON representation of a Clique graph.

"graphml" An XML String representing a valid GraphML representation.

"adjacencylist" A string representing a very simple adjacency list which does not preserve node
or edge attributes.

1.2.11 "image" type

A 2D matrix of uniformly-typed numbers. Formats:

"png" An image in PNG format.

"png.base64" A Base-64 encoded PNG image.

"pil" An image as a PIL.Image from the Python Imaging Library.

1.3 API documentation

1.3.1 Overview

The main purpose of Girder Worker is to execute a broad range of tasks. These tasks, along with a set of input bindings
and output bindings are passed to the girder_worker.tasks.run() function, which is responsible for fetching
the inputs as necessary and executing the task, and finally populating any output variables and sending them to their
destination.

The task, its inputs, and its outputs are each passed into the function as Python dictionaries. In this section, we describe
the structure of each of those dictionaries.

6 Chapter 1. What is Girder Worker?

https://networkx.github.io/documentation/latest/reference/classes.graph.html
https://github.com/Kitware/clique
https://networkx.github.io/documentation/latest/reference/readwrite.graphml.html
https://networkx.github.io/documentation/latest/reference/readwrite.adjlist.html#format

Girder Worker Documentation, Release 0.1.0

The task specification

The first argument to girder_worker.tasks.run() describes the task to execute, independently of the actual
data that it will be executed upon. The most important field of the task is the mode, which describes what type of task
it is. The structure for the task dictionary is described below. Uppercase names within angle braces represent symbols
defined in the specification. Optional parts of the specification are surrounded by parentheses to avoid ambiguity with
the square braces, which represent lists in Python or Arrays in JSON. The Python task also accepts a write_script
parameter that when set to 1 will write task scripts to disk before executing them. This aids in readability for interactive
debuggers such as pdb.

<TASK> ::= <PYTHON_TASK> | <R_TASK> | <DOCKER_TASK> | <WORKFLOW_TASK>

<PYTHON_TASK> ::= {
"mode": "python",
"script": <Python code to run as a string>
(, "inputs": [<TASK_INPUT> (, <TASK_INPUT>, ...)])
(, "outputs": [<TASK_OUTPUT> (, <TASK_OUTPUT>, ...)])
(, "write_script": 1)

}

<R_TASK> ::= {
"mode": "r",
"script": <R code to run (as a string)>
(, "inputs": [<TASK_INPUT> (, <TASK_INPUT>, ...)])
(, "outputs": [<TASK_OUTPUT> (, <TASK_OUTPUT>, ...)])

}

<DOCKER_TASK> ::= {
"mode": "docker",
"docker_image": <Docker image name to run>
(, "container_args": [<container arguments>])
(, "entrypoint": <custom override for container entry point>)
(, "inputs": [<TASK_INPUT> (, <TASK_INPUT>, ...)])
(, "outputs": [<TASK_OUTPUT> (, <TASK_OUTPUT>, ...)])
(, "progress_pipe": <set to true to create a channel for progress notifications>)

}

<WORKFLOW_TASK> ::= {
"mode": "workflow",
"steps": [<WORKFLOW_STEP> (, <WORKFLOW_STEP>, ...)],
"connections": [<WORKFLOW_CONNECTION> (, <WORKFLOW_CONNECTION>, ...)]
(, "inputs": [<TASK_INPUT> (, <TASK_INPUT>, ...)])
(, "outputs": [<TASK_OUTPUT> (, <TASK_OUTPUT>, ...)])

}

<WORKFLOW_STEP> ::= {
"name": <step name>,
"task": <TASK>

}

<WORKFLOW_CONNECTION> ::= {
("name": <name of top-level input to bind to>)
(, "input": <input id to bind to for a step>)
(, "input_step": <input step name to connect>)
(, "output_step": <output step name to connect>)

}

The workflow mode simply allows for a directed acyclic graph of tasks to be specified to girder_worker.run().

1.3. API documentation 7

Girder Worker Documentation, Release 0.1.0

See also:

Visualize Facebook data with Girder Worker in Examples A full example of how to create workflows in Girder
Worker.

<TASK_INPUT> ::= {
"id": <string, the variable name>
(, "default": <default value if none is bound at runtime>)
(, "target": <INPUT_TARGET_TYPE>) ; default is "memory"
(, "filename": <name of file if target="filepath">)
(, "stream": <set to true to indicate a streaming input>)

}

<INPUT_TARGET_TYPE> ::= "memory" | "filepath"

<TASK_OUTPUT> ::= {
"id": <string, the variable name>,
(, "target": <INPUT_TARGET_TYPE>) ; default is "memory"
(, "stream": <set to true to indicate a streaming output>)

}

The input specification

The inputs argument to girder_worker.run() specifies the inputs to the task described by the task argu-
ment. Specifically, it tells what data should be placed into the task input ports.

<INPUTS> ::= {
<id> : <INPUT_BINDING>
(, <id> : <INPUT_BINDING>)
(, ...)

}

The input spec is a dictionary mapping each id (corresponding to the id key of each task input) to its data binding
for this execution.

<INPUT_BINDING> ::= <INPUT_BINDING_HTTP> | <INPUT_BINDING_LOCAL> |
<INPUT_BINDING_MONGODB> | <INPUT_BINDING_INLINE>

<INPUT_BINDING_HTTP> ::= {
"mode": "http",
"url": <url of data to download>
(, "params": <dict of URL parameters to encode>)
(, "headers": <dict of HTTP headers to send when fetching>)
(, "method": <http method to use, default is "GET">)
(, "maxSize": <integer, max size of download in bytes>)

}

The http input mode specifies that the data should be fetched over HTTP. Depending on the target field of the
corresponding task input specifier, the data will either be passed in memory, or streamed to a file on the local filesystem,
and the variable will be set to the path of that file.

<INPUT_BINDING_LOCAL> ::= {
"mode": "local",
"path": <path on local filesystem to the file>

}

8 Chapter 1. What is Girder Worker?

Girder Worker Documentation, Release 0.1.0

The local input mode denotes that the data exists on the local filesystem. Its contents will be read into memory and the
variable will point to those contents.

<INPUT_BINDING_MONGODB> ::= {
"mode": "mongodb",
"db": <the database to use>,
"collection": <the collection to fetch from>
(, "host": <mongodb host, default is "localhost">)

}

The mongodb input mode specifies that the data should be fetched from a mongo collection. This simply binds the
entire BSON-encoded collection to the input variable.

<INPUT_BINDING_INLINE> ::= {
"mode": "inline",
"data": <data to bind to the variable>

}

The inline input mode simply passes the data directly in the input binding dictionary as the value of the “data” key.
Do not use this for any data that could be large.

Note: The mode field is inferred in a few special cases. If there is a url field, the mode is assumed to be "http",
and if there is a data field, the mode is assumed to be "inline". For example, the following input specifications
are equivalent:

{
'url': 'https://upload.wikimedia.org/wikipedia/en/2/24/Lenna.png'

}

{
'mode': 'http',
'url': 'https://upload.wikimedia.org/wikipedia/en/2/24/Lenna.png'

}

The following two specifications are also equivalent:

{
'data': 'hello'

}

{
'mode': 'inline',
'data': 'hello'

}

The output specification

The optional outputs argument to girder_worker.run() specifies output variables of the task that should be
handled in some way.

<OUTPUTS> ::= {
<id> : <OUTPUT_BINDING>
(, <id> : <OUTPUT_BINDING>)
(, ...)

}

1.3. API documentation 9

Girder Worker Documentation, Release 0.1.0

The output spec is a dictionary mapping each id (corresponding to the id key of each task output) to some behavior
that should be performed with it. Task outputs that do not have bindings in the ouput spec simply get their results set
in the return value of girder_worker.run().

<OUTPUT_BINDING> ::= <OUTPUT_BINDING_HTTP> | <OUTPUT_BINDING_LOCAL> |
<OUTPUT_BINDING_MONGODB>

<OUTPUT_BINDING_HTTP> ::= {
"mode": "http",
"url": <url to upload data to>,
(, "headers": <dict of HTTP headers to send with the request>)
(, "method": <http method to use, default is "POST">)
(, "params": <dict of HTTP query parameters to send with the request>)

}

<OUTPUT_BINDING_LOCAL> ::= {
"mode": "local",
"path": <path to write data on the local filesystem>

}

The local output mode writes the data to the specified path on the local filesystem.

<OUTPUT_BINDING_MONGODB> ::= {
"mode": "mongodb",
"db": <mongo database to write to>,
"collection": <mongo collection to write to>
(, "host": <mongo host to connect to>)

}

The mongodb output mode attempts to BSON-decode the bound data, and then overwrites any data in the specified
collection with the output data.

1.3.2 Script execution

class girder_worker.GirderWorkerPluginABC(app, *args, **kwargs)

task_imports()

1.3.3 Formats

1.3.4 Pythonic task API

1.4 Examples

Before getting started, make sure you’ve followed the necessary steps when it comes to Installation of Girder Worker.

1.4.1 Image processing

This example will introduce how to use the Girder Worker to build some simple image processing tasks using Pillow.
We will learn how to chain several tasks together in a workflow and finally how to run these workflows both locally
and through a remote worker.

10 Chapter 1. What is Girder Worker?

https://python-pillow.github.io/

Girder Worker Documentation, Release 0.1.0

Download and view an image

For our first task, we will download a png image from a public website and display it on the screen. We begin by
defining a new task that will take a single image object and call its show method.

A task is a special kind of dictionary with keys inputs and outputs as well as other metadata describing how
these objects will be used. In the case of simple Python scripts, they can be provided inline as we have done in this
example. Each input and output spec in a task is a dict with the following keys:

name The name designated to the datum. This is used both for connecting tasks together in a workflow and, in the
case of Python tasks, the name of the variable injected into/extracted from the tasks scope.

type The general data type expected by the task. See Types and formats for a list of types provided by the worker’s
core library as well as Application Plugins for additional data types provided by optional plugins.

format The specific representation or encoding of the data type. The worker will automatically convert between
different data formats provided that they are of the same base type.

show_image = {
'inputs': [{'name': 'the_image', 'type': 'image', 'format': 'pil'}],
'outputs': [],
'script': 'the_image.show()'

}

In order to run the task, we will need to provide an input binding that tells the worker where it can get the data to
be injected into the port. Several I/O modes are supported; in this case, we provide a public URL to an image that
the worker will download and open using Pillow. Notice that the worker downloads and reads the file as part of the
automatic data format conversion.

lenna = {
'type': 'image',
'format': 'png',
'url': 'https://upload.wikimedia.org/wikipedia/en/2/24/Lenna.png'

}

Finally to run this task, we only need to provide the task object and the input binding to girder_worker.tasks.
run(). The object returned by this function contains data extracted and converted through the task’s output ports.

output = girder_worker.tasks.run(show_image, {'the_image': lenna})

Perform an image blur inside a workflow

Now that we know how to generate a simple task using the worker, we want to learn how to connect multiple tasks
together in a workflow. The worker’s pythonic API allows us to do this easily. Let’s create a new task that performs a
blur operation on an image. This might look like the following:

blur_image = {
'inputs': [

{'name': 'blur_input', 'type': 'image', 'format': 'pil'},
{'name': 'blur_radius', 'type': 'number', 'format': 'number'}

],
'outputs': [{'name': 'blur_output', 'type': 'image', 'format': 'pil'}],
'script': """

from PIL import ImageFilter
blur_output = blur_input.filter(ImageFilter.GaussianBlur(blur_radius))
"""
}

1.4. Examples 11

Girder Worker Documentation, Release 0.1.0

Notice that this task takes an additional numeric input that acts as a parameter for the blurring filter. Connecting
our show_image task, we can view the result of our image filter. First, we create a new workflow object from the
girder_worker.core.specs module.

from girder_worker.core.specs import Workflow
wf = Workflow()

Next, we add all the tasks to the workflow. The order in which the tasks are added is insignificant because the worker
will automatically sort them according to their position in the workflow.

wf.add_task(blur_image, 'blur')
wf.add_task(show_image, 'show')

Finally, we connect the two tasks together.

wf.connect_tasks('blur', 'show', {'blur_output': 'the_image'})

Running a workflow has the same syntax as running a single task.

output = girder_worker.tasks.run(
wf,
inputs={

'blur_input': lenna,
'blur_radius': {'format': 'number', 'data': 5}

}
)

Table 1: Blur image workflow

Using a workflow to compute image metrics

Finally, we will create a few more tasks to generate a more complicated workflow that returns some number of interest
about an image. First, let’s create a task to subtract two images from each other.

12 Chapter 1. What is Girder Worker?

Girder Worker Documentation, Release 0.1.0

subtract_image = {
'inputs': [

{'name': 'sub_input1', 'type': 'image', 'format': 'pil'},
{'name': 'sub_input2', 'type': 'image', 'format': 'pil'}

],
'outputs': [

{'name': 'diff', 'type': 'image', 'format': 'pil'},
],
'script': """

from PIL import ImageMath
diff = ImageMath.eval('abs(int(a) - int(b))', a=sub_input1, b=sub_input2)
"""
}

Now another task will compute the average pixel value of the input image.

mean_image = {
'inputs': [

{'name': 'mean_input', 'type': 'image', 'format': 'pil'},
],
'outputs': [

{'name': 'mean_value', 'type': 'number', 'format': 'number'},
],
'script': """

from PIL import ImageStat
mean_value = ImageStat.Stat(mean_input).mean[0]
"""
}

Finally, let’s add all of the tasks to a new workflow and make the appropriate connections.

wf = Workflow()
wf.add_task(blur_image, 'blur1')
wf.add_task(blur_image, 'blur2')
wf.add_task(subtract_image, 'subtract')
wf.add_task(mean_image, 'mean')

wf.connect_tasks('blur1', 'subtract', {'blur_output': 'sub_input1'})
wf.connect_tasks('blur2', 'subtract', {'blur_output': 'sub_input2'})
wf.connect_tasks('subtract', 'mean', {'diff': 'mean_input'})

This workflow performs blurring operations on a pair of input images, computes the difference between them, and
returns the average value of the difference. Let’s see how this works with our sample image. Notice that in this case,
there is a conflict between the input port names of the two blur tasks. We must specify which port we are referring
to by prefixing the port name with the task name.

output = girder_worker.tasks.run(
wf,
inputs={

'blur1.blur_input': lenna,
'blur1.blur_radius': {'format': 'number', 'data': 1},
'blur2.blur_input': lenna,
'blur2.blur_radius': {'format': 'number', 'data': 8},

}
)
print output['mean_value']['data']

1.4. Examples 13

Girder Worker Documentation, Release 0.1.0

1.4.2 Facebook network analysis

This example demonstrates how to use the worker as a workflow system to load graph data, perform analyses and
transformations of the data using NetworkX, and then visualize the result using d3.js.

In this example we will:

1. Obtain a set of Facebook data

2. Find the most “popular” person in our data

3. Find the subgraph of the most popular person’s neighborhood

4. Visualize this neighborhood using d3

Obtain the dataset

The dataset is a small sample of Facebook links representing friendships, which can be obtained here1.

The data we’ll be using is in a format commonly used when dealing with graphs, referred to as an adjacency list. The
worker supports using adjacency lists with graphs out of the box.

Note: A full list of the supported types and formats is documented in Types and formats.

Here is a sample of what the data looks like:

86 127
303 325
356 367
373 404
475 484

Each integer represents an anonymized Facebook user. Users belonging to the same line in the adjacency list indicates
a symmetric relationship in our undirected graph.

Build a workflow

Create a file named workflow.py, this is the file we’ll be using to create our workflow.

Find the most popular person

One way of measuring who the most “popular” person in our graph is, is by taking the node with the largest degree.

The script below finds the most popular person in the graph.

Note: This script assumes a variable G exists, that’s because we define it as an input in the Task we define in the
next step.

from networkx import degree

degrees = degree(G)
most_popular_person = max(degrees, key=degrees.get)

1 For attribution refer here.

14 Chapter 1. What is Girder Worker?

https://networkx.github.io/
http://d3js.org/
_static/facebook-sample-data.txt
https://en.wikipedia.org/wiki/Adjacency_list
https://en.wikipedia.org/wiki/Degree_%28graph_theory%29
http://socialnetworks.mpi-sws.org/data-wosn2009.html

Girder Worker Documentation, Release 0.1.0

Defining our task, we can embed this script:

most_popular_task = {
'inputs': [

{'name': 'G',
'type': 'graph',
'format': 'networkx'}

],
'outputs': [

{'name': 'most_popular_person',
'type': 'string',
'format': 'text'},
{'name': 'G',
'type': 'graph',
'format': 'networkx'}

],
'script':
"""

from networkx import degree

degrees = degree(G)
most_popular_person = max(degrees, key=degrees.get)

"""
}

Note: As we saw with our last script assuming G would in be scope, this task explicitly states that both
most_popular_person and G will be in scope (as its outputs) when it’s done.

Find the neighborhood

Now that we have the most popular node in the graph, we can take the subgraph including only this person and all of
their neighbors. These are sometimes referred to as Ego Networks.

from networkx import ego_graph

subgraph = ego_graph(G, most_popular_person)

Again, we can create a task using our new script, like so:

Note: Since these steps are going to be connected, our inputs are going to be the same as the last steps outputs.

find_neighborhood_task = {
'inputs': [

{'name': 'G',
'type': 'graph',
'format': 'networkx'},
{'name': 'most_popular_person',
'type': 'string',
'format': 'text'}

],
'outputs': [

{'name': 'subgraph',

(continues on next page)

1.4. Examples 15

https://en.wikipedia.org/wiki/Glossary_of_graph_theory#Subgraphs
http://www.analytictech.com/networks/egonet.htm

Girder Worker Documentation, Release 0.1.0

(continued from previous page)

'type': 'graph',
'format': 'networkx'}

],
'script':
"""

from networkx import ego_graph

subgraph = ego_graph(G, most_popular_person)
"""

}

Put it together

Conceptually, this is what our workflow will look like:

* The format changes because of Girder Worker’s auto-conversion functionality.

The entire rectangle is our workflow, and the blue rectangles are our tasks. Black arrows represent inputs and outputs

16 Chapter 1. What is Girder Worker?

Girder Worker Documentation, Release 0.1.0

and the red arrows represent connections which we’ll see shortly.

To make this happen, since we’ve written the tasks already, we just need to format this in a way the worker understands.

To start, let’s create our workflow from a high level, starting with just its inputs and outputs (the black arrows):

workflow = {
'mode': 'workflow',
'inputs': [

{'name': 'G',
'type': 'graph',
'format': 'adjacencylist'}

],
'outputs': [

{'name': 'result_graph',
'type': 'graph',
'format': 'networkx'}

]
}

Now we need to add our tasks to the workflow, which is pretty straightforward since we’ve defined them in the previous
steps.

workflow['steps'] = [{'name': 'most_popular',
'task': most_popular_task},

{'name': 'find_neighborhood',
'task': find_neighborhood_task}]

Finally, we need to add the red arrows within the workflow, telling the worker how the inputs and outputs are going to
flow from each task. These are called connections in Girder Worker parlance.

workflow['connections'] = [
{'name': 'G',
'input_step': 'most_popular',
'input': 'G'},

{'output_step': 'most_popular',
'output': 'G',
'input_step': 'find_neighborhood',
'input': 'G'},

{'output_step': 'most_popular',
'output': 'most_popular_person',
'input_step': 'find_neighborhood',
'input': 'most_popular_person'},

{'name': 'result_graph',
'output': 'subgraph',
'output_step': 'find_neighborhood'}

]

We now have a complete workflow! Let’s run this, and write the final data to a file.

with open('docs/static/facebook-sample-data.txt') as infile:
output = girder_worker.tasks.run(workflow,

inputs={'G': {'format': 'adjacencylist',
'data': infile.read()}},

outputs={'result_graph': {'format': 'networkx.json'}})

with open('data.json', 'wb') as outfile:
outfile.write(output['result_graph']['data'])

1.4. Examples 17

Girder Worker Documentation, Release 0.1.0

Running workflow.py will produce the JSON in a file called data.json, which we’ll pass to d3.js in the next
step.

For completeness, here is the complete workflow specification as pure JSON:

{
"mode": "workflow",
"inputs": [
{

"type": "graph",
"name": "G",
"format": "adjacencylist"

}
],
"outputs": [
{

"type": "graph",
"name": "result_graph",
"format": "networkx"

}
],
"connections": [
{

"input": "G",
"input_step": "most_popular",
"name": "G"

},
{

"output": "G",
"input_step": "find_neighborhood",
"input": "G",
"output_step": "most_popular"

},
{

"output": "most_popular_person",
"input_step": "find_neighborhood",
"input": "most_popular_person",
"output_step": "most_popular"

},
{

"output": "subgraph",
"name": "result_graph",
"output_step": "find_neighborhood"

}
],
"steps": [
{

"name": "most_popular",
"task": {

"inputs": [
{

"type": "graph",
"name": "G",
"format": "networkx"

}
],
"script": "\nfrom networkx import degree\n\ndegrees = degree(G)\nmost_popular_

→˓person = max(degrees, key=degrees.get)\n",
(continues on next page)

18 Chapter 1. What is Girder Worker?

Girder Worker Documentation, Release 0.1.0

(continued from previous page)

"outputs": [
{
"type": "string",
"name": "most_popular_person",
"format": "text"

},
{

"type": "graph",
"name": "G",
"format": "networkx"

}
]

}
},
{

"name": "find_neighborhood",
"task": {

"inputs": [
{

"type": "graph",
"name": "G",
"format": "networkx"

},
{

"type": "string",
"name": "most_popular_person",
"format": "text"

}
],
"script": "\nfrom networkx import ego_graph\n\nsubgraph = ego_graph(G, most_

→˓popular_person)\n",
"outputs": [
{

"type": "graph",
"name": "subgraph",
"format": "networkx"

}
]

}
}

]
}

This file can be loaded with Python’s json package and directly sent to girder_worker.tasks.run():

import json

with open('docs/static/facebook-example-spec.json') as spec:
workflow = json.load(spec)

with open('docs/static/facebook-sample-data.txt') as infile:
output = girder_worker.tasks.run(workflow,

inputs={'G': {'format': 'adjacencylist',
'data': infile.read()}},

outputs={'result_graph': {'format': 'networkx.json'}})

with open('data.json', 'wb') as outfile:
(continues on next page)

1.4. Examples 19

Girder Worker Documentation, Release 0.1.0

(continued from previous page)

outfile.write(output['result_graph']['data'])

Note: More information on Girder Worker tasks and workflows can be found in API documentation.

Visualize the results

Using JavaScript similar to this d3.js example we’re going to add the following to our index.html file:

<!DOCTYPE html>
<meta charset="utf-8">
<style>
.node {

stroke: #fff;
stroke-width: 1.5px;

}

.link {
stroke: #999;
stroke-opacity: .6;

}
</style>
<body>

<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.5/d3.min.js"></script>
<script>
var width = 700,
height = 400;

var force = d3.layout.force()
.charge(-120)
.linkDistance(30)
.size([width, height]);

var svg = d3.select("#popularity-graph").append("svg")
.attr("width", width)
.attr("height", height);

d3.json("/data.json", function(error, graph) {
if (error) throw error;

force
.nodes(graph.nodes)
.links(graph.links)
.start();

var link = svg.selectAll(".link")
.data(graph.links)
.enter().append("line")
.attr("class", "link")
.style("stroke-width", function(d) { return 1; });

var node = svg.selectAll(".node")
.data(graph.nodes)
.enter().append("circle")

(continues on next page)

20 Chapter 1. What is Girder Worker?

http://bl.ocks.org/mbostock/4062045

Girder Worker Documentation, Release 0.1.0

(continued from previous page)

.attr("class", "node")

.attr("r", 5)

.style("fill", "#1f77b4")

.call(force.drag);

node.append("title")
.text(function(d) { return d.id; });

force.on("tick", function() {
link.attr("x1", function(d) { return d.source.x; })

.attr("y1", function(d) { return d.source.y; })

.attr("x2", function(d) { return d.target.x; })

.attr("y2", function(d) { return d.target.y; });

node.attr("cx", function(d) { return d.x; })
.attr("cy", function(d) { return d.y; });

});
});

Which should leave us with a visualization similar to the following:

This is of course a more verbose than necessary workflow for the purposes of demonstration. This could have easily
been done with one task, however by following this you should have learned how to do the following with the Girder
Worker:

• Create tasks which consume and produce multiple inputs and outputs

• Run tasks as part of a multi-step workflow

• Use the worker’s converter system to serialize it in a format JavaScript can read

• Visualize the data using d3.js

1.5 Developer documentation

This section of the documentation is meant for those who wish to contribute to the Girder Worker platform.

1.5.1 Installing from source

Clone from git:

git clone https://github.com/girder/girder_worker.git
cd girder_worker

Install requirements:

pip install -r requirements.txt

If you plan on developing the worker, you will also want to install system packages
→˓and Python requirements:

Command for Ubuntu
sudo apt-get install libxml2-dev libxslt1-dev

pip install -r requirements-dev.txt

1.5. Developer documentation 21

Girder Worker Documentation, Release 0.1.0

If you want to run the girder_worker as a remote worker from the source install directory, you’ll need to install it with
pip in editable mode. If you don’t want to include any girder worker plugins:

pip install -U -e .

Test it:

To test whether the setup without complex dependencies is working

python -m unittest tests.format_test

To test the setup is working with complex dependencies including R and Mongo

python -m unittest -v tests.table_test python -m unittest -v tests.tree_test

Some things not working? You can install a few things so they do. For example, install MongoDB and R, in addition
to their Python bindings:

pip install pymongo rpy2 # may need sudo

You’ll need to get a MongoDB server listening on localhost by running mongod.

In R, you’ll need to install some stuff too, currently just the ape package:

install.packages("ape")

Installing worker plugins from pip

An individual plugin can be installed through pip, in editable mode, like so:

pip install -U -e .[r]

You can run this command at any time to install dependencies of other plugins, even if the worker is already installed.

See also:

For more information on the worker plugin system, see Application Plugins.

1.5.2 Creating a new release

Girder Worker releases are uploaded to PyPI for easy installation via pip. The recommended process for generating
a new release is described here.

1. From the target commit, set the desired version number in the top level __init__.py. Create a new commit
and note the SHA; this will become the release tag.

2. Ensure that all tests pass.

3. Clone the repository in a new directory and checkout the release SHA. (Packaging in an old directory could
cause extraneous files to be mistakenly included in the source distribution.)

4. Run python setup.py sdist --dist-dir . to generate the distribution tarball in the project direc-
tory, which looks like girder-worker-x.y.z.tar.gz.

5. Create a new virtual environment and install the Python package into it. This should not be done in the repository
directory because the wrong package will be imported.

22 Chapter 1. What is Girder Worker?

http://www.mongodb.org/
http://www.r-project.org/
https://pypi.python.org/pypi/girder-worker

Girder Worker Documentation, Release 0.1.0

mkdir test && cd test
virtualenv release
source release/bin/activate
pip install ../girder-worker-<version>.tar.gz

6. Once that finishes, you should be able to start the worker by simply running girder-worker.

7. When you are confident everything is working correctly, generate a new release on GitHub. You must be sure to
use a tag version of v<version>, where <version> is the version number as it exists in setup.py. For
example, v0.2.4. Attach the tarball you generated to the release.

8. Add the tagged version to readthedocs and make sure it builds correctly.

9. Finally, upload the release to PyPI with the following command:

python setup.py sdist upload

Note: The first time you create a release, you will need to register to PyPI before you can run the upload step. To do
so, simply run python setup.py sdist register.

1.6 Task Plugins

This is an example plugin that demonstrates how to extend girder_worker by allowing it to run additional tasks.
Plugin’s are implemented as separate pip installable packages. To install this example plugin you can checkout this
code base, change directories to examples/plugin_example/ and run pip install . This will add the
gwexample plugin to girder_worker. If you then run girder_worker with a log level of ‘info’ (e.g. girder-worker
-l info) you should see the following output:

(girder)$ girder-worker -l info

-------------- celery@minastirith v3.1.23 (Cipater)
---- **** -----
--- * *** * -- Linux-4.8.6-1-ARCH-x86_64-with-glibc2.2.5
-- * - **** ---
- ** ---------- [config]
- ** ---------- .> app: girder_worker:0x7f69bfff1050
- ** ---------- .> transport: amqp://guest:**@localhost:5672//
- ** ---------- .> results: amqp://
- *** --- * --- .> concurrency: 32 (prefork)
-- ******* ----
--- ***** ----- [queues]
-------------- .> celery exchange=celery(direct) key=celery

[tasks]
. girder_worker.convert
. girder_worker.run
. girder_worker.validators
. gwexample.analyses.tasks.fibonacci

[2016-11-08 12:22:56,163: INFO/MainProcess] Connected to amqp://guest:**@127.0.0.
→˓1:5672//
[2016-11-08 12:22:56,184: INFO/MainProcess] mingle: searching for neighbors

(continues on next page)

1.6. Task Plugins 23

https://github.com/girder/girder-worker/releases/new
https://readthedocs.org/projects/girder_worker/

Girder Worker Documentation, Release 0.1.0

(continued from previous page)

[2016-11-08 12:22:57,198: INFO/MainProcess] mingle: all alone
[2016-11-08 12:22:57,218: WARNING/MainProcess] celery@minastirith ready.

Notice that the task gwexample.analyses.tasks.fibonacci is now available. With the girder-worker pro-
cesses running, you should be able to execute python example_client.py in the current working directory.
After a brief delay, this should print out 121393 - the Fibonacci number for 26.

1.6.1 Writing your own plugin

Adding additional tasks to the girder_worker infrastructure is easy and takes three steps. (1) Creating tasks, (2) creating
a plugin class and (3) adding a girder_worker_plugins entry point to your setup.py.

Creating tasks follows the standard celery conventions. The only difference is the celery application that decorates the
function should be imported from girder_worker.app. E.g.:

from girder_worker.app import app

@app.task
def fibonacci(n):

if n == 1 or n == 2:
return 1

return fibonacci(n-1) + fibonacci(n-2)

Each plugin must define a plugin class the inherits from girder_worker.GirderWorkerPluginABC. Gird-
erWorkerPluginABC’s interface is simple. The class must define an __init__ function and a task_imports
function. __init__ takes the girder_worker’s celery application as its first argument. This allows the plugin to store
a reference to the application, or change configurations of the application as necessary. The task_imports function
takes no arguments and must return a list of the package paths (e.g. importable strings) that contain the plugin’s tasks.
As an example:

from girder_worker import GirderWorkerPluginABC

class GWExamplePlugin(GirderWorkerPluginABC):
def __init__(self, app, *args, **kwargs):

self.app = app

Update the celery application's configuration
it is not necessary to change the application configuration
this is simply included to illustrate that it is possible.
self.app.config.update({

'TASK_TIME_LIMIT': 300
})

def task_imports(self):
return ['gwexample.analyses.tasks']

Finally, in order to make the plugin class discoverable, each plugin must define a custom entry point in its setup.py.
For our example, this entry point looks like this:

from setuptools import setup

setup(name='gwexample',
....
entry_points={

'girder_worker_plugins': [
(continues on next page)

24 Chapter 1. What is Girder Worker?

http://docs.celeryproject.org/en/latest/userguide/tasks.html

Girder Worker Documentation, Release 0.1.0

(continued from previous page)

'gwexample = gwexample:GWExamplePlugin',
]

},
....
)

Python Entry Points are a way for python packages to advertise classes and objects to other installed packages. Entry
points are defined in the following way:

entry_points={
'entry_point_group_id': [

'entry_point_name = importable.package.name:class_or_object',
]

}

The girder_worker package introduces a new entry point group girder_worker_plugins. This is followed by a
list of strings which are parsed by setuptools. The strings must be in the form name = module:plugin_class
Where name is an arbitrary string (by convention the name of the plugin), module is the importable path to the
module containing the plugin class, and plugin_class is a class that inherits from GirderWorkerPluginABC.

1.6.2 Final notes

With these three components (Tasks, Plugin Class, Entry Point) you should be able to add arbitrary tasks to the
girder_worker client. By default, jobs created in girder using the ‘worker’ plugin run the girder_worker.run
task. This can be overridden to call custom plugin tasks by generating jobs with a celeryTaskName defined in the
job’s otherFields key word argument. E.g.:

Create a job to be handled by the worker plugin
job = jobModel.createJob(

title='Some Job', type='some_type', handler='worker_handler',
user=self.admin, public=False, args=(25), kwargs={},
otherFields={

'celeryTaskName': 'gwexample.analyses.tasks.fibonacci'
})

jobModel.scheduleJob(job)

This will schedule a job that runs gwexample.analyses.tasks.fibonacci(25) on the girder worker.

Finally, by default the core girder_worker tasks (run, convert, validate) are included along with their plu-
gins etc. If you wish to prevent these tasks from being loaded inside the celery instance, you can configure
core_tasks=false in worker.local.cfg under the [girder_worker] section of the configuration.

1.7 Writing cancelable tasks

girder_worker provides support for signaling that a task should be canceled using Celery’s revoke mechanism. In
order for a task to be able to be canceled cleanly it must periodically check if it has been canceled, if it has then is can
do any necessary cleanup and return. girder_worker provides a task base class (girder_worker.utils.Task)
that provides a property that can be used to check if the task has been canceled. An example of its use is shown below:

from girder_worker.app import app
from girder_work.utils import Task

(continues on next page)

1.7. Writing cancelable tasks 25

https://setuptools.readthedocs.io/en/latest/pkg_resources.html#entry-points
http://docs.celeryproject.org/en/latest/userguide/workers.html#revoke-revoking-tasks

Girder Worker Documentation, Release 0.1.0

(continued from previous page)

@app.task(bind=True)
def my_cancellable_task(task):
while not self.cancelled:

Do work

The Girder job model associated with the canceled task will be moved into the JobStatus.CANCELED state.

1.8 Application Plugins

The Girder Worker application plugin system is used to extend the core functionality of Girder Worker in a number
of ways. Application plugins can execute any Python code when they are loaded at runtime, but the most common
augmentations they perform are:

• Adding new execution modes. Without any application plugins enabled, the core Girder Worker application
can only perform two types of tasks: python and workflow modes. It’s common for application plugins to
implement other task execution modes.

• Adding new data types or formats. Application plugins can make Girder Worker aware of new data types and
formats, and provide implementations for how to validate and convert to and from those formats.

• Adding new IO modes. One of the primary functions of Girder Worker is to fetch input data from heterogenous
sources and expose it to tasks in a uniform way. Application plugins can implement novel modes of fetching
and pushing input and output data for a task.

Below is a list of the application plugins that are shipped with the girder_worker package. They can be enabled via
the configuration file (see Configuration).

1.8.1 Docker

• Plugin ID: docker

• Description: This plugin exposes a new task execution mode, docker. These tasks pull a Docker image and
run a container using that image, with optional command line arguments. Docker tasks look like:

<DOCKER_TASK> ::= {
"mode": "docker",
"docker_image": <Docker image name to run>
(, "pull_image": <true (the default) or false>)
(, "container_args": [<container arguments>])
(, "docker_run_args": [<additional arguments to `docker run`>])
(, "entrypoint": <custom override for container entry point>)
(, "inputs": [<TASK_INPUT> (, <TASK_INPUT>, ...)])
(, "outputs": [<TASK_OUTPUT> (, <TASK_OUTPUT>, ...)])

}

The optional container_args parameter is a list of arguments to pass to the container. If an entrypoint
argument is passed, it will override the built-in ENTRYPOINT directive of the image. Since it’s often the case that
task inputs will need to passed to the container as arguments, a special syntax can be used to declare that a command
line argument should be expanded at runtime to the value of an input:

"container_args": ["$input{my_input_id}"]

It is not necessary for the entire argument to be a variable expansion; any part of an argument can also be expanded,
e.g.:

26 Chapter 1. What is Girder Worker?

Girder Worker Documentation, Release 0.1.0

"container_args": ["--some-parameter=$input{some_parameter_value}"]

Some command line arguments represent boolean flag values, and they should either be present or absent depending
on a boolean input value. For example, perhaps your container accepts a command line argument --verbose to
switch to verbose output. To support this as an input, you could use the following task input:

{
"id": "verbose",
"name": "Verbose output",
"description": "Prints more information during processing.",
"type": "boolean",
"format": "boolean",
"arg": "--verbose"
}

Then, in your container_args list, you can use a special $flag{id} token to control whether this argument
(specified via the arg parameter) is included or omitted:

"container_args": [..., "$flag{verbose}", ...]

The temporary directory for the Girder Worker task is mapped into the running container under the directory /mnt/
girder_worker/data, so any files that were fetched into that temp directory will be available inside the running
container at that path.

By default, the image you specify will be pulled using the docker pull command. In some cases, you may not
want to perform a pull, and instead want to rely on the image already being present on the worker system. If so, set
pull_image to false.

To ensure the execution context is the expected one, it is recommended
to specify the docker_image using the Image[@digest] format (e.g.
debian@sha256:cbbf2f9a99b47fc460d422812b6a5adff7dfee951d8fa2e4a98caa0382cfbdbf).
This will prevent docker pull from systematically downloading the latest available image. In that case, setting
pull_image to false is less relevant since the image will be pulled only if it is not already available.

If you want to pass additional command line options to docker run that should come before the container name,
pass them as a list via the "docker_run_args" key.

Note: The Docker plugin currently does not support running dockerd with the option --selinux-enabled.
Running with this option may result in an error like:

Exception: Docker tempdir chmod returned code 1.

Outputs from Docker tasks

Docker tasks can have two types of outputs: streams (i.e. standard output and standard error) and files written by the
container. If you want the contents of standard output or standard error to become a task output, use the special output
IDs _stdout or _stderr, as in the following example:

"task": {
"mode": "docker",
"outputs": [{

"id": "_stdout",
"type": "string",
"format": "text"

(continues on next page)

1.8. Application Plugins 27

Girder Worker Documentation, Release 0.1.0

(continued from previous page)

}],
...

If you want to have your container write files that will be treated as outputs, write them into the /mnt/
girder_worker/data directory inside the container, then declare them in the task output specification
with "target": "filepath". The following example shows how to specify a file written to /mnt/
girder_worker/data/my_image.png as a task output:

"task": {
"mode": "docker",
"outputs": [{

"id": "my_image.png",
"target": "filepath",
"type": "string",
"format": "text"

}],
...

You don’t have to use the output ID to specify the path; you can instead pass a path field in the output spec:

"task": {
"mode": "docker",
"outputs": [{

"id": "some_output",
"target": "filepath",
"type": "string",
"format": "text",
"path": "/mnt/girder_worker/data/some_subdirectory/my_image.png"

}],
...

Paths that are specified as relative paths are assumed to be relative to /mnt/girder_worker/data. If you specify
an absolute path, it must start with /mnt/girder_worker/data/, otherwise an exception will be thrown before
the task is run. These conventions apply whether the path is specified in the id or path field.

Progress reporting from docker tasks

Docker tasks have the option of reporting progress back to Girder via a special named pipe. If you want to do
this, specify "progress_pipe": true" in your docker task specification. This will create a special named
pipe at /mnt/girder_worker/data/.girder_progress. In your container logic, you may write progress
notification messages to this named pipe, one per line. Progress messages should be JSON objects with the following
fields, all of which are optional:

• message (string): A human-readable message about the current task progress.

• current (number): A numeric value representing current progress, which should always be less than or equal
to the total value.

• total (number): A numeric value representing the maximum progress value, i.e. the value of current when
the task is complete. Only pass this field if the total is changing or being initially set.

An example progress notification string:

{"message": "Halfway there!", "total": 100, "current": 50}

28 Chapter 1. What is Girder Worker?

Girder Worker Documentation, Release 0.1.0

Note: When writing to the named pipe, you should explicitly call flush on the file descriptor afterward, otherwise
the messages may sit in a buffer and may not reach the Girder server as you write them.

Note: This feature may not work on Docker on non-Linux platforms, and the call to open the pipe for writing from
within the container may block indefinitely.

Management of Docker Containers and Images

Docker images may be pulled when a task is run. By default, these images are never removed. Docker containers are
automatically removed when the task is complete.

As an alternative, a ‘garbage collection’ process can be used instead. It can be enabled by modifying settings in the
[docker] section of the config file, which can be done using the command:

girder-worker-config set docker gc True

When the gc config value is set to True, containers are not removed when the task ends. Instead, periodically, any
images not associated with a container will be removed, and then any stopped containers will be removed. This will
free disk space associated with the images, but may remove images that are not directly related to Girder Worker.

When garbage collection is turned on, images can be excluded from the process by setting exclude_images to a
comma-separated list of image names. For instance:

girder-worker-config set docker exclude_images dsarchive/histomicstk,rabbitmq

Only containers that have been stopped longer than a certain time are removed. This time defaults to an hour, and can
be specified as any number of seconds via the cache_timeout setting.

1.8.2 Girder IO

• Plugin ID: girder_io

• Description: This plugin adds new fetch and push modes called girder. The fetch mode for inputs supports
downloading folders, items, or files from a Girder server. Inputs can be downloaded anonymously (if they are
public) or using an authentication token. The downloaded data is either written to disk and passed as a file, or
read into memory, depending on whether the corresponding task input’s target field is set to "filepath"
or "memory". Likewise for uploads, the value of the output variable is interpreted as a path to a file to be
uploaded if the task output target is set to filepath. If it’s set to memory, the value of the output variable
becomes the contents of the uploaded file. The URL to access the Girder API must be specified either as a full
URL in the api_url field, or in parts via the host, port, api_root, and scheme fields.

<GIRDER_INPUT> ::= {
"mode": "girder",
"id": <the _id value of the resource to download>,
"name": <the name of the resource to download>,
"format": "text",
"type": "string"
(, "api_url": <full URL to the API, can be used instead of scheme/host/port/api_

→˓root>)
(, "host": <the hostname of the girder server. Required if no api_url is passed>)
(, "port": <the port of the girder server, default is 80 for http: and 443 for

→˓https:>)
(continues on next page)

1.8. Application Plugins 29

Girder Worker Documentation, Release 0.1.0

(continued from previous page)

(, "api_root": <path to the girder REST API, default is "/api/v1")
(, "scheme": <"http" or "https", default is "http">)
(, "token": <girder token used for authentication>)
(, "resource_type": <"file", "item", or "folder", default is "file">)
(, "fetch_parent": <whether to download the whole parent resource as well,

→˓default is false>)
(, "direct_path": <a path on the local file system where a file resource is

→˓located>)
}

Note: For historical reasons, task inputs that do not specify a target field and are bound to a Girder input will
default to having the data downloaded to a file (i.e. target="filepath" behavior). This is different from the
normal default behavior for other IO modes, which is to download the data to an object in memory. For this reason, it
is suggested that if your task input is going to support Girder IO mode, that you specify the target field explicitly
on it rather than using the default.

The output mode also assumes data of format string/text that is a path to a file in the filesystem. That file will
then be uploaded under an existing folder (under a new item with the same name as the file), or into an existing item.

<GIRDER_OUTPUT> ::= {
"mode": "girder",
"token": <girder token used for authentication>,
"parent_id": <the _id value of the folder or item to upload into>,
"format": "text",
"type": "string"
(, "name": <optionally override name of the file to upload>)
(, "api_url": <full URL to the API, can be used instead of scheme/host/port/api_

→˓root>)
(, "host": <the hostname of the girder server. Required if no api_url is passed>)
(, "port": <the port of the girder server, default is 80 for http: and 443 for

→˓https:>)
(, "api_root": <path to the girder REST API, default is "/api/v1")
(, "scheme": <"http" or "https", default is "http">)
(, "parent_type": <"folder" or "item", default is "folder">)
(, "reference": <arbitrary reference string to pass to the server>)

}

Metadata outputs

In addition to outputting blob data into Girder files, you may also output structured metadata that can be attached to
an item. You can upload an output as metadata onto a new or existing item, or attach a pre-defined set of metadata to
an output item that is uploaded as a file.

To push an output as the metadata on an existing item, use the as_metadata field with the item_id field set in
your output binding:

{
"mode": "girder",
"as_metadata": true,
"item_id": <ID of the target item>,
"api_url": "...",
"token": "..."

}

30 Chapter 1. What is Girder Worker?

Girder Worker Documentation, Release 0.1.0

To push an output as the metadata on a new item, use as_metadata with the parent_id field set, and a name
field. The name is not required if the corresponding task output has "target": "filepath", in which case
the filename will be used as the name for the new item.

{
"mode": "girder",
"as_metadata": true,
"parent_id": <ID of the parent folder>,
"name": "My new metadata item",
"api_url": "...",
"token": "..."

}

Note: The as_metadata behavior will only work if your output data is a JSON Object.

To add additional pre-defined metadata fields to a normal Girder IO output, you can use the metadata field on a
normal Girder IO output. The metadata field must contain a JSON object, and its value will be set as the metadata
on the output item.

{
"mode": "girder",
"metadata": {

"some": "other",
"metadata": "values"

},
"parent_id": <ID of the parent folder>,
"parent_type": "folder",
"name": "My output data",
"token": "...",
"api_url": "..."

}

Cache Configuration

The Girder Client (used by the Girder IO plugin) supports caching of files downloaded from Girder. These cache
settings are exposed in the Girder Worker configuration. The following options are available:

• diskcache_enabled (default=0): enable or disable diskcache for files downloaded with the girder client

• diskcache_directory (default=girder_file_cache): directory to use for the diskcache

• diskcache_eviction_policy (default=least-recently-used): eviction policy used when diskcache size
limit is reached

• diskcache_size_limit (default=1073741824): maximum size of the disk cache, 1GB default

• diskcache_cull_limit (default=10): maximum number of items to cull when evicting items

• diskcache_large_value_threshold (default=1024): cached values below this size are stored directly
in the cache’s sqlite db

Direct Paths

If a input file resource includes a direct_path value, and that path is a locally accessible file, then Girder Worker
can use the file without downloading it. Depending on deployment, this may not be desired, as it could expose internal

1.8. Application Plugins 31

Girder Worker Documentation, Release 0.1.0

file system details to a task, or the path might refer to different files in the context of Girder versus Girder Worker. To
enable using direct paths, there is a configuration option:

• allow_direct_path (default=False): if True, enable using direct paths when they are specified by a input
file resource.

Direct paths are not used if the input file resource uses fetch_parent.

1.8.3 R

• Plugin ID: r

• Description: The R plugin enables the execution of R scripts as tasks via the r execution mode. It also exposes
a new data type, r, and several new data formats and converters for existing data types. Just like python mode,
the R code to run is passed via the script field of the task specification. The r data type refers to objects
compatible with the R runtime environment.

• Converters added:

– r/object r/serialized

– table/csv table/r.dataframe

– tree/newick tree/r.apetree

– tree/nexus tree/r.apetree

– tree/r.apetree→ tree/treestore

• Validators added:

– r/object: An in-memory R object.

– r/serialized: A serialized version of an R object created using R’s serialize function.

– table/r.dataframe: An R data frame. If the first column contains unique values, these are set
as the row names of the data frame.

– tree/r.apetree: A tree in the R package ape format.

1.8.4 Types

• Plugin ID: types

• Description: This plugin allows type and format annotations of inputs and outputs to be added to task specs
and IO bindings. It can also perform automatic conversion between different formats for known types, as well
as validating the correctness of the data formats. These behaviors are enabled with optional boolean arguments
to the run task: validate and auto_convert. Other plugins such as VTK and R add additional types and
formats to the typesystem supported by this plugin. The full documentation including a list of supported types
and formats can be found in the Types and formats section.

1.9 docker_run

Girder Worker provides a built-in task that can be used to run docker containers. Girder Worker makes it easy to work
on data held in girder from within a docker containers.

32 Chapter 1. What is Girder Worker?

Girder Worker Documentation, Release 0.1.0

1.9.1 Container arguments

The docker_run task exposes a container_args parameter which can be used to pass arguments to the con-
tainer entrypoint.

1.9.2 BindMountVolumes

The volumes to be bind mounted into a container can be passed to the docker_run task in one of two ways.

Using docker-py syntax

In this case the value of the volumes parameter is a dict conforming to specification defined by docker-py, which
is passed directly to docker-py. For example

volumes = {
'/home/docker/data': {

'bind': '/mnt/docker/',
'mode': 'rw'

}

}
docker_run.delay('my/image', pull_image=True, volumes=volumes)

Using the BindMountVolume class

Girder Worker provides a utility class girder_worker.docker.transforms.BindMountVolume that can
be used to define volumes that should be mounted into a container. These classes can also be used in conjunction
with other parts of the girder_work docker infrastructure, for example providing a location where a file should be
downloaded to. See Downloading files from Girder. When using the girder_worker.docker.transforms.
BindMountVolume class a list of instances is provided as the value for the volumes parameter, Girder Worker will
take care of ensuring that these volumes are mounted. In the example below we are creating a girder_worker.
docker.transforms.BindMountVolume instance and passing it as a container argument to provide the
mounted location to the container. Girder Worker will take care of transforming the instance into the approriate
path inside the container.

vol = BindMountVolume('/home/docker/data', '/mnt/docker/')
docker_run.delay('my/image', pull_image=True, volumes=[vol], container_args=[vol])

Temporary Volume

A girder_worker.docker.transforms.TemporaryVolume class is provided rep-
resenting a temporary directory on the host machine that is mounted into the container.
:py:attribute:‘girder_worker.docker.transforms.TemporaryVolume.default‘ holds a default instance that is
used as the default location for many other parts of the Girder Worker docker infrastructure, for example when
downloading a file. See Downloading files from Girder. However, it can also be used explicitly, for example, here it is
being passed as a container argument for use within a container. Again, Girder Worker will take care of transforming
the girder_worker.docker.transforms.TemporaryVolume instance into the appropriate path inside
the container, so the container entrypoint will simply received a path.

vol = BindMountVolume('/home/docker/data', '/mnt/docker/')
docker_run.delay('my/image', pull_image=True, container_args=[TemporaryVolume.
→˓default]) (continues on next page)

1.9. docker_run 33

http://docker-py.readthedocs.io/en/stable/containers.html

Girder Worker Documentation, Release 0.1.0

(continued from previous page)

Note that because we are using the default path, we don’t have to add the instance to the volumes parameter as it is
automatically added to the list of volumes to mount.

1.9.3 Downloading files from Girder

Accessing files held in girder from within a container is straightforward using the girder_worker.docker.
transforms.girder.GirderFileIdToVolume utility class. One simply provides the file id as an argument
to the constructor and passes the instance as a container argument.

docker_run.delay('my/image', pull_image=True,
container_args=[GirderFileIdToVolume(file_id)])

The girder_worker.docker.transforms.girder.GirderFileIdToVolume instance will take care
of downloading the file from Girder and passing the path it was downloaded to into the docker container’s entrypoint
as an argument.

If no volume parameter is specified then the file will be downloading to the task temporary volume. The file can
also be downloaded to a specific girder_worker.docker.transforms.BindMountVolume by specifying
a volume parameter, as follows:

vol = BindMountVolume(host_path, container_path)
docker_run.delay('my/image', pull_image=True,

container_args=[GirderFileIdToVolume(file_id,volume=vol)])

If the file being downloaded is particularly large you may want to consider streaming it into the container using a
named pipe. See Streaming Girder files into a container for more details.

1.9.4 Uploading files to Girder items

Utility classes are also provided to simplify uploading files generated by a docker container. The girder_worker.
docker.transforms.girder.GirderUploadVolumePathToItem provides the functionality to up-
load a file to an item. In the example below, we use the girder_worker.docker.transforms.
VolumePath utility class to define a file path that we then pass to the docker container. The docker con-
tainer can write data to this file path. As well as passing the girder_worker.docker.transforms.
VolumePath instance as a container argument we also pass it to girder_worker.docker.transforms.
girder.GirderUploadVolumePathToItem , the girder_worker.docker.transforms.girder.
GirderUploadVolumePathToItem instance is added to girder_result_hooks. This tells Girder Worker
to upload the file path to the item id provided once the docker container has finished running.

volumepath = VolumePath('write_data_to_be_upoaded.txt')
docker_run.delay('my/image', pull_image=True, container_args=[volumepath],

girder_result_hooks=[GirderUploadVolumePathToItem(volumepath, item_id)])

1.9.5 Using named pipes to stream data in and out of containers

Girder Worker uses named pipes as a language agnostic way of streaming data in and out of docker containers.
Basically a named pipe is created at a path that is mounted into the container. This allows the container to open that
pipe for read or write and similarly the Girder Worker infrastructure can open the pipe on the host, thus allowing data
write and read from the container.

34 Chapter 1. What is Girder Worker?

Girder Worker Documentation, Release 0.1.0

The are two utility classes used to represent a named pipe, girder_worker.docker.transforms.
NamedOutputPipe and girder_worker.docker.transforms.NamedInputPipe.

NamedOuputPipe

This represents a named pipe that can be opened in a docker container for write, allowing data to be streamed out of a
container.

NamedInputPipe

This represents a named pipe that can be opened in a docker container for read, allowing data to be streamed into a
container.

These pipes can be connected together using the girder_worker.docker.transforms.Connect utility
class.

Streaming Girder files into a container

One common example of using a named pipe is to stream a potentially large file into a container. This approach
allows the task to start processing immediately rather than having to wait for the entire file to download, it also re-
moves the requirement that the file is held on the local filesystem. In the example below we are creating an instance
of girder_worker.docker.transforms.girder.GirderFileIdToStream that provides the ability to
download a file in chunks. We are also creating a named pipe called read_in_container, as no volume argu-
ment is provided this pipe will be created on the temporary volume automatically mounted by Girder Worker. Finally,
we are using the girder_worker.docker.transforms.Connect class to “connect” the stream to the pipe
and we pass the instance as a container argument. Girder Worker will take care of the select logic to stream the file
into the pipe.

stream = GirderFileIdToStream(file_id)
pipe = NamedInputPipe('read_in_container')
docker_run('my/image', pull_image=True, container_args=[Connect(stream, pipe)])

All the container has to do is open the path passed into the container entry point and start reading. Below is an example
python entry point:

Simply open the path passed into the container.
with open(sys.argv[1]) as fp:

fp.read() # This will be reading the files contents

1.9.6 MacOS Volume mounting issue workaround

Due to some odd symlinking behavior by Docker engine on MacOS, it may be necessary to add a workaround when
running the girder_worker. If your TMPDIR environment variable is underneath the /var directory and you see errors
from Docker about MountsDenied, try running girder worker with the TMPDIR set underneath /private/var
instead of /var. The location should be equivalent since /var is a symlink to /private/var.

1.9. docker_run 35

Girder Worker Documentation, Release 0.1.0

36 Chapter 1. What is Girder Worker?

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

37

Girder Worker Documentation, Release 0.1.0

38 Chapter 2. Indices and tables

Python Module Index

g
girder_worker, 10

39

Girder Worker Documentation, Release 0.1.0

40 Python Module Index

Index

G
girder_worker (module), 10
GirderWorkerPluginABC (class in girder_worker), 10

T
task_imports() (girder_worker.GirderWorkerPluginABC

method), 10

41

	What is Girder Worker?
	Installation
	Types and formats
	API documentation
	Examples
	Developer documentation
	Task Plugins
	Writing cancelable tasks
	Application Plugins
	docker_run

	Indices and tables
	Python Module Index

