

psutil documentation

Quick links

	Home page [https://github.com/giampaolo/psutil]

	Install [https://github.com/giampaolo/psutil/blob/master/INSTALL.rst]

	Blog [http://grodola.blogspot.com/search/label/psutil]

	Forum [http://groups.google.com/group/psutil/topics]

	Download [https://pypi.python.org/pypi?:action=display&name=psutil#downloads]

	Development guide [https://github.com/giampaolo/psutil/blob/master/DEVGUIDE.rst]

	What’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst]

About

psutil (python system and process utilities) is a cross-platform library for
retrieving information on running
processes and system utilization (CPU, memory, disks, network, sensors)
in Python.
It is useful mainly for system monitoring, profiling, limiting
process resources and the management of running processes.
It implements many functionalities offered by command line tools
such as: ps, top, lsof, netstat, ifconfig, who, df, kill, free, nice,
ionice, iostat, iotop, uptime, pidof, tty, taskset, pmap.
It currently supports Linux, Windows, OSX, Sun Solaris, FreeBSD, OpenBSD
and NetBSD, both 32-bit and 64-bit architectures, with Python
versions from 2.6 to 3.6 (users of Python 2.4 and 2.5 may use
2.1.3 [https://pypi.python.org/pypi?name=psutil&version=2.1.3&:action=files] version).
PyPy [http://pypy.org/] is also known to work.

The psutil documentation you’re reading is distributed as a single HTML page.

Install

The easiest way to install psutil is via pip:

pip install psutil

On UNIX this requires a C compiler (e.g. gcc) installed. On Windows pip will
automatically retrieve a pre-compiled wheel version from
PYPI repository [https://pypi.python.org/pypi/psutil].
Alternatively, see more detailed
install [https://github.com/giampaolo/psutil/blob/master/INSTALL.rst]
instructions.

System related functions

CPU

	
psutil.cpu_times(percpu=False)

	Return system CPU times as a named tuple.
Every attribute represents the seconds the CPU has spent in the given mode.
The attributes availability varies depending on the platform:

	user: time spent by normal processes executing in user mode; on Linux
this also includes guest time

	system: time spent by processes executing in kernel mode

	idle: time spent doing nothing

Platform-specific fields:

	nice (UNIX): time spent by niced (prioritized) processes executing in
user mode; on Linux this also includes guest_nice time

	iowait (Linux): time spent waiting for I/O to complete

	irq (Linux, BSD): time spent for servicing hardware interrupts

	softirq (Linux): time spent for servicing software interrupts

	steal (Linux 2.6.11+): time spent by other operating systems running
in a virtualized environment

	guest (Linux 2.6.24+): time spent running a virtual CPU for guest
operating systems under the control of the Linux kernel

	guest_nice (Linux 3.2.0+): time spent running a niced guest
(virtual CPU for guest operating systems under the control of the Linux
kernel)

	interrupt (Windows): time spent for servicing hardware interrupts (
similar to “irq” on UNIX)

	dpc (Windows): time spent servicing deferred procedure calls (DPCs);
DPCs are interrupts that run at a lower priority than standard interrupts.

When percpu is True return a list of named tuples for each logical CPU
on the system.
First element of the list refers to first CPU, second element to second CPU
and so on.
The order of the list is consistent across calls.
Example output on Linux:

>>> import psutil
>>> psutil.cpu_times()
scputimes(user=17411.7, nice=77.99, system=3797.02, idle=51266.57, iowait=732.58, irq=0.01, softirq=142.43, steal=0.0, guest=0.0, guest_nice=0.0)

Changed in version 4.1.0: added interrupt and dpc fields on Windows.

	
psutil.cpu_percent(interval=None, percpu=False)

	Return a float representing the current system-wide CPU utilization as a
percentage. When interval is > 0.0 compares system CPU times elapsed
before and after the interval (blocking).
When interval is 0.0 or None compares system CPU times elapsed
since last call or module import, returning immediately.
That means the first time this is called it will return a meaningless 0.0
value which you are supposed to ignore.
In this case it is recommended for accuracy that this function be called with
at least 0.1 seconds between calls.
When percpu is True returns a list of floats representing the
utilization as a percentage for each CPU.
First element of the list refers to first CPU, second element to second CPU
and so on. The order of the list is consistent across calls.

>>> import psutil
>>> # blocking
>>> psutil.cpu_percent(interval=1)
2.0
>>> # non-blocking (percentage since last call)
>>> psutil.cpu_percent(interval=None)
2.9
>>> # blocking, per-cpu
>>> psutil.cpu_percent(interval=1, percpu=True)
[2.0, 1.0]
>>>

Warning

the first time this function is called with interval = 0.0 or None
it will return a meaningless 0.0 value which you are supposed to
ignore.

	
psutil.cpu_times_percent(interval=None, percpu=False)

	Same as cpu_percent() but provides utilization percentages for each
specific CPU time as is returned by
psutil.cpu_times(percpu=True).
interval and
percpu arguments have the same meaning as in cpu_percent().
On Linux “guest” and “guest_nice” percentages are not accounted in “user”
and “user_nice” percentages.

Warning

the first time this function is called with interval = 0.0 or
None it will return a meaningless 0.0 value which you are supposed
to ignore.

Changed in version 4.1.0: two new interrupt and dpc fields are returned on Windows.

	
psutil.cpu_count(logical=True)

	Return the number of logical CPUs in the system (same as
os.cpu_count() [http://docs.python.org/3/library/os.html#os.cpu_count]
in Python 3.4) or None if undetermined.
This number may not be equivalent to the number of CPUs the current process
can actually use in case process CPU affinity has been changed or Linux
cgroups are being used.
The number of usable CPUs can be obtained with
len(psutil.Process().cpu_affinity()).
If logical is False return the number of physical cores only (hyper
thread CPUs are excluded).
On OpenBSD and NetBSD psutil.cpu_count(logical=False) always return
None. Example on a system having 2 physical hyper-thread CPU cores:

>>> import psutil
>>> psutil.cpu_count()
4
>>> psutil.cpu_count(logical=False)
2

Example returning the number of CPUs usable by the current process:

>>> len(psutil.Process().cpu_affinity())
1

	
psutil.cpu_stats()

	Return various CPU statistics as a named tuple:

	ctx_switches:
number of context switches (voluntary + involuntary) since boot.

	interrupts:
number of interrupts since boot.

	soft_interrupts:
number of software interrupts since boot. Always set to 0 on Windows
and SunOS.

	syscalls: number of system calls since boot. Always set to 0 on
Linux.

Example (Linux):

>>> import psutil
>>> psutil.cpu_stats()
scpustats(ctx_switches=20455687, interrupts=6598984, soft_interrupts=2134212, syscalls=0)

New in version 4.1.0.

	
psutil.cpu_freq(percpu=False)

	Return CPU frequency as a nameduple including current, min and max
frequencies expressed in Mhz.
On Linux current frequency reports the real-time value, on all other
platforms it represents the nominal “fixed” value.
If percpu is True and the system supports per-cpu frequency
retrieval (Linux only) a list of frequencies is returned for each CPU,
if not, a list with a single element is returned.
If min and max cannot be determined they are set to 0.

Example (Linux):

>>> import psutil
>>> psutil.cpu_freq()
scpufreq(current=931.42925, min=800.0, max=3500.0)
>>> psutil.cpu_freq(percpu=True)
[scpufreq(current=2394.945, min=800.0, max=3500.0),
 scpufreq(current=2236.812, min=800.0, max=3500.0),
 scpufreq(current=1703.609, min=800.0, max=3500.0),
 scpufreq(current=1754.289, min=800.0, max=3500.0)]

Availability: Linux, OSX, Windows

New in version 5.1.0.

Memory

	
psutil.virtual_memory()

	Return statistics about system memory usage as a named tuple including the
following fields, expressed in bytes. Main metrics:

	total: total physical memory.

	available: the memory that can be given instantly to processes without
the system going into swap.
This is calculated by summing different memory values depending on the
platform and it is supposed to be used to monitor actual memory usage in a
cross platform fashion.

Other metrics:

	used: memory used, calculated differently depending on the platform and
designed for informational purposes only. total - free does not
necessarily match used.

	free: memory not being used at all (zeroed) that is readily available;
note that this doesn’t reflect the actual memory available (use
available instead). total - used does not necessarily match
free.

	active (UNIX): memory currently in use or very recently used, and so
it is in RAM.

	inactive (UNIX): memory that is marked as not used.

	buffers (Linux, BSD): cache for things like file system metadata.

	cached (Linux, BSD): cache for various things.

	shared (Linux, BSD): memory that may be simultaneously accessed by
multiple processes.

	wired (BSD, OSX): memory that is marked to always stay in RAM. It is
never moved to disk.

The sum of used and available does not necessarily equal total.
On Windows available and free are the same.
See meminfo.py [https://github.com/giampaolo/psutil/blob/master/scripts/meminfo.py]
script providing an example on how to convert bytes in a human readable form.

Note

if you just want to know how much physical memory is left in a
cross platform fashion simply rely on the available field.

>>> import psutil
>>> mem = psutil.virtual_memory()
>>> mem
svmem(total=10367352832, available=6472179712, percent=37.6, used=8186245120, free=2181107712, active=4748992512, inactive=2758115328, buffers=790724608, cached=3500347392, shared=787554304)
>>>
>>> THRESHOLD = 100 * 1024 * 1024 # 100MB
>>> if mem.available <= THRESHOLD:
... print("warning")
...
>>>

Changed in version 4.2.0: added shared metrics on Linux.

Changed in version 4.4.0: available and used values on Linux are more
precise and match “free” cmdline utility.

	
psutil.swap_memory()

	Return system swap memory statistics as a named tuple including the following
fields:

	total: total swap memory in bytes

	used: used swap memory in bytes

	free: free swap memory in bytes

	percent: the percentage usage calculated as (total - available) / total * 100

	sin: the number of bytes the system has swapped in from disk
(cumulative)

	sout: the number of bytes the system has swapped out from disk
(cumulative)

sin and sout on Windows are always set to 0.
See meminfo.py [https://github.com/giampaolo/psutil/blob/master/scripts/meminfo.py]
script providing an example on how to convert bytes in a human readable form.

>>> import psutil
>>> psutil.swap_memory()
sswap(total=2097147904L, used=886620160L, free=1210527744L, percent=42.3, sin=1050411008, sout=1906720768)

Changed in version 5.2.3: on Linux this function relies on /proc fs instead
of sysinfo() syscall so that it can be used in conjunction with
psutil.PROCFS_PATH in order to retrieve memory info about
Linux containers such as Docker and Heroku.

Disks

	
psutil.disk_partitions(all=False)

	Return all mounted disk partitions as a list of named tuples including device,
mount point and filesystem type, similarly to “df” command on UNIX. If all
parameter is False it tries to distinguish and return physical devices
only (e.g. hard disks, cd-rom drives, USB keys) and ignore all others
(e.g. memory partitions such as
/dev/shm [http://www.cyberciti.biz/tips/what-is-devshm-and-its-practical-usage.html]).
Note that this may not be fully reliable on all systems (e.g. on BSD this
parameter is ignored).
Named tuple’s fstype field is a string which varies depending on the
platform.
On Linux it can be one of the values found in /proc/filesystems (e.g.
'ext3' for an ext3 hard drive o 'iso9660' for the CD-ROM drive).
On Windows it is determined via
GetDriveType [http://msdn.microsoft.com/en-us/library/aa364939(v=vs.85).aspx]
and can be either "removable", "fixed", "remote", "cdrom",
"unmounted" or "ramdisk". On OSX and BSD it is retrieved via
getfsstat(2) [http://www.manpagez.com/man/2/getfsstat/]. See
disk_usage.py [https://github.com/giampaolo/psutil/blob/master/scripts/disk_usage.py]
script providing an example usage.

>>> import psutil
>>> psutil.disk_partitions()
[sdiskpart(device='/dev/sda3', mountpoint='/', fstype='ext4', opts='rw,errors=remount-ro'),
 sdiskpart(device='/dev/sda7', mountpoint='/home', fstype='ext4', opts='rw')]

	
psutil.disk_usage(path)

	Return disk usage statistics about the partition which contains the given
path as a named tuple including total, used and free space
expressed in bytes, plus the percentage usage.
OSError [http://docs.python.org/3/library/exceptions.html#OSError] is
raised if path does not exist.
Starting from Python 3.3 [http://bugs.python.org/issue12442] this is
also available as
shutil.disk_usage() [http://docs.python.org/3/library/shutil.html#shutil.disk_usage].
See disk_usage.py [https://github.com/giampaolo/psutil/blob/master/scripts/disk_usage.py] script providing an example usage.

>>> import psutil
>>> psutil.disk_usage('/')
sdiskusage(total=21378641920, used=4809781248, free=15482871808, percent=22.5)

Note

UNIX usually reserves 5% of the total disk space for the root user.
total and used fields on UNIX refer to the overall total and used
space, whereas free represents the space available for the user and
percent represents the user utilization (see
source code [https://github.com/giampaolo/psutil/blob/3dea30d583b8c1275057edb1b3b720813b4d0f60/psutil/_psposix.py#L123]).
That is why percent value may look 5% bigger than what you would expect
it to be.
Also note that both 4 values match “df” cmdline utility.

Changed in version 4.3.0: percent value takes root reserved space into account.

	
psutil.disk_io_counters(perdisk=False, nowrap=True)

	Return system-wide disk I/O statistics as a named tuple including the
following fields:

	read_count: number of reads

	write_count: number of writes

	read_bytes: number of bytes read

	write_bytes: number of bytes written

Platform-specific fields:

	read_time: (all except NetBSD and OpenBSD) time spent reading from
disk (in milliseconds)

	write_time: (all except NetBSD and OpenBSD) time spent writing to disk
(in milliseconds)

	busy_time: (Linux, FreeBSD) time spent doing actual I/Os (in
milliseconds)

	read_merged_count (Linux): number of merged reads
(see iostat doc [https://www.kernel.org/doc/Documentation/iostats.txt])

	write_merged_count (Linux): number of merged writes
(see iostats doc [https://www.kernel.org/doc/Documentation/iostats.txt])

If perdisk is True return the same information for every physical disk
installed on the system as a dictionary with partition names as the keys and
the named tuple described above as the values.
See iotop.py [https://github.com/giampaolo/psutil/blob/master/scripts/iotop.py]
for an example application.
On some systems such as Linux, on a very busy or long-lived system, the
numbers returned by the kernel may overflow and wrap (restart from zero).
If nowrap is True psutil will detect and adjust those numbers across
function calls and add “old value” to “new value” so that the returned
numbers will always be increasing or remain the same, but never decrease.
disk_io_counters.cache_clear() can be used to invalidate the nowrap
cache.

>>> import psutil
>>> psutil.disk_io_counters()
sdiskio(read_count=8141, write_count=2431, read_bytes=290203, write_bytes=537676, read_time=5868, write_time=94922)
>>>
>>> psutil.disk_io_counters(perdisk=True)
{'sda1': sdiskio(read_count=920, write_count=1, read_bytes=2933248, write_bytes=512, read_time=6016, write_time=4),
 'sda2': sdiskio(read_count=18707, write_count=8830, read_bytes=6060, write_bytes=3443, read_time=24585, write_time=1572),
 'sdb1': sdiskio(read_count=161, write_count=0, read_bytes=786432, write_bytes=0, read_time=44, write_time=0)}

Note

on Windows "diskperf -y" command may need to be executed first
otherwise this function won’t find any disk.

Changed in version 5.3.0: numbers no longer wrap (restart from zero) across calls thanks to new
nowrap argument.

Changed in version 4.0.0: added busy_time (Linux, FreeBSD), read_merged_count and
write_merged_count (Linux) fields.

Changed in version 4.0.0: NetBSD no longer has read_time and write_time fields.

Network

	
psutil.net_io_counters(pernic=False)

	Return system-wide network I/O statistics as a named tuple including the
following attributes:

	bytes_sent: number of bytes sent

	bytes_recv: number of bytes received

	packets_sent: number of packets sent

	packets_recv: number of packets received

	errin: total number of errors while receiving

	errout: total number of errors while sending

	dropin: total number of incoming packets which were dropped

	dropout: total number of outgoing packets which were dropped (always 0
on OSX and BSD)

If pernic is True return the same information for every network
interface installed on the system as a dictionary with network interface
names as the keys and the named tuple described above as the values.
On some systems such as Linux, on a very busy or long-lived system, the
numbers returned by the kernel may overflow and wrap (restart from zero).
If nowrap is True psutil will detect and adjust those numbers across
function calls and add “old value” to “new value” so that the returned
numbers will always be increasing or remain the same, but never decrease.
net_io_counters.cache_clear() can be used to invalidate the nowrap
cache.

>>> import psutil
>>> psutil.net_io_counters()
snetio(bytes_sent=14508483, bytes_recv=62749361, packets_sent=84311, packets_recv=94888, errin=0, errout=0, dropin=0, dropout=0)
>>>
>>> psutil.net_io_counters(pernic=True)
{'lo': snetio(bytes_sent=547971, bytes_recv=547971, packets_sent=5075, packets_recv=5075, errin=0, errout=0, dropin=0, dropout=0),
'wlan0': snetio(bytes_sent=13921765, bytes_recv=62162574, packets_sent=79097, packets_recv=89648, errin=0, errout=0, dropin=0, dropout=0)}

Also see nettop.py [https://github.com/giampaolo/psutil/blob/master/scripts/nettop.py]
and ifconfig.py [https://github.com/giampaolo/psutil/blob/master/scripts/ifconfig.py]
for an example application.

Changed in version 5.3.0: numbers no longer wrap (restart from zero) across calls thanks to new
nowrap argument.

	
psutil.net_connections(kind='inet')

	Return system-wide socket connections as a list of named tuples.
Every named tuple provides 7 attributes:

	fd: the socket file descriptor. If the connection refers to the current
process this may be passed to
socket.fromfd() [http://docs.python.org/library/socket.html#socket.fromfd]
to obtain a usable socket object.
On Windows and SunOS this is always set to -1.

	family: the address family, either AF_INET [http://docs.python.org//library/socket.html#socket.AF_INET],
AF_INET6 [http://docs.python.org//library/socket.html#socket.AF_INET6]
or AF_UNIX [http://docs.python.org//library/socket.html#socket.AF_UNIX].

	type: the address type, either SOCK_STREAM [http://docs.python.org//library/socket.html#socket.SOCK_STREAM] or
SOCK_DGRAM [http://docs.python.org//library/socket.html#socket.SOCK_DGRAM].

	laddr: the local address as a (ip, port) named tuple or a path
in case of AF_UNIX sockets. For UNIX sockets see notes below.

	raddr: the remote address as a (ip, port) named tuple or an
absolute path in case of UNIX sockets.
When the remote endpoint is not connected you’ll get an empty tuple
(AF_INET*) or "" (AF_UNIX). For UNIX sockets see notes below.

	status: represents the status of a TCP connection. The return value
is one of the psutil.CONN_* constants
(a string).
For UDP and UNIX sockets this is always going to be
psutil.CONN_NONE.

	pid: the PID of the process which opened the socket, if retrievable,
else None. On some platforms (e.g. Linux) the availability of this
field changes depending on process privileges (root is needed).

The kind parameter is a string which filters for connections matching the
following criteria:

	Kind value
	Connections using

	"inet"
	IPv4 and IPv6

	"inet4"
	IPv4

	"inet6"
	IPv6

	"tcp"
	TCP

	"tcp4"
	TCP over IPv4

	"tcp6"
	TCP over IPv6

	"udp"
	UDP

	"udp4"
	UDP over IPv4

	"udp6"
	UDP over IPv6

	"unix"
	UNIX socket (both UDP and TCP protocols)

	"all"
	the sum of all the possible families and protocols

On OSX this function requires root privileges.
To get per-process connections use Process.connections().
Also, see
netstat.py sample script [https://github.com/giampaolo/psutil/blob/master/scripts/netstat.py].
Example:

>>> import psutil
>>> psutil.net_connections()
[pconn(fd=115, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK_STREAM: 1>, laddr=addr(ip='10.0.0.1', port=48776), raddr=addr(ip='93.186.135.91', port=80), status='ESTABLISHED', pid=1254),
 pconn(fd=117, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK_STREAM: 1>, laddr=addr(ip='10.0.0.1', port=43761), raddr=addr(ip='72.14.234.100', port=80), status='CLOSING', pid=2987),
 pconn(fd=-1, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK_STREAM: 1>, laddr=addr(ip='10.0.0.1', port=60759), raddr=addr(ip='72.14.234.104', port=80), status='ESTABLISHED', pid=None),
 pconn(fd=-1, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK_STREAM: 1>, laddr=addr(ip='10.0.0.1', port=51314), raddr=addr(ip='72.14.234.83', port=443), status='SYN_SENT', pid=None)
 ...]

Note

(OSX) psutil.AccessDenied is always raised unless running as root.
This is a limitation of the OS and lsof does the same.

Note

(Solaris) UNIX sockets are not supported.

Note

(Linux, FreeBSD) “raddr” field for UNIX sockets is always set to “”.
This is a limitation of the OS.

Note

(OpenBSD) “laddr” and “raddr” fields for UNIX sockets are always set to
“”. This is a limitation of the OS.

New in version 2.1.0.

Changed in version 5.3.0: : socket “fd” is now set for real instead of being
-1.

Changed in version 5.3.0: : “laddr” and “raddr” are named tuples.

	
psutil.net_if_addrs()

	Return the addresses associated to each NIC (network interface card)
installed on the system as a dictionary whose keys are the NIC names and
value is a list of named tuples for each address assigned to the NIC.
Each named tuple includes 5 fields:

	family: the address family, either
AF_INET [http://docs.python.org//library/socket.html#socket.AF_INET],
AF_INET6 [http://docs.python.org//library/socket.html#socket.AF_INET6]
or psutil.AF_LINK, which refers to a MAC address.

	address: the primary NIC address (always set).

	netmask: the netmask address (may be None).

	broadcast: the broadcast address (may be None).

	ptp: stands for “point to point”; it’s the destination address on a
point to point interface (typically a VPN). broadcast and ptp are
mutually exclusive. May be None.

Example:

>>> import psutil
>>> psutil.net_if_addrs()
{'lo': [snic(family=<AddressFamily.AF_INET: 2>, address='127.0.0.1', netmask='255.0.0.0', broadcast='127.0.0.1', ptp=None),
 snic(family=<AddressFamily.AF_INET6: 10>, address='::1', netmask='ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff', broadcast=None, ptp=None),
 snic(family=<AddressFamily.AF_LINK: 17>, address='00:00:00:00:00:00', netmask=None, broadcast='00:00:00:00:00:00', ptp=None)],
 'wlan0': [snic(family=<AddressFamily.AF_INET: 2>, address='192.168.1.3', netmask='255.255.255.0', broadcast='192.168.1.255', ptp=None),
 snic(family=<AddressFamily.AF_INET6: 10>, address='fe80::c685:8ff:fe45:641%wlan0', netmask='ffff:ffff:ffff:ffff::', broadcast=None, ptp=None),
 snic(family=<AddressFamily.AF_LINK: 17>, address='c4:85:08:45:06:41', netmask=None, broadcast='ff:ff:ff:ff:ff:ff', ptp=None)]}
>>>

See also nettop.py [https://github.com/giampaolo/psutil/blob/master/scripts/nettop.py]
and ifconfig.py [https://github.com/giampaolo/psutil/blob/master/scripts/ifconfig.py]
for an example application.

Note

if you’re interested in others families (e.g. AF_BLUETOOTH) you can use
the more powerful netifaces [https://pypi.python.org/pypi/netifaces/]
extension.

Note

you can have more than one address of the same family associated with each
interface (that’s why dict values are lists).

Note

broadcast and ptp are not supported on Windows and are always None.

New in version 3.0.0.

Changed in version 3.2.0: ptp field was added.

Changed in version 4.4.0: added support for netmask field on Windows which
is no longer None.

	
psutil.net_if_stats()

	Return information about each NIC (network interface card) installed on the
system as a dictionary whose keys are the NIC names and value is a named tuple
with the following fields:

	isup: a bool indicating whether the NIC is up and running.

	duplex: the duplex communication type;
it can be either NIC_DUPLEX_FULL, NIC_DUPLEX_HALF or
NIC_DUPLEX_UNKNOWN.

	speed: the NIC speed expressed in mega bits (MB), if it can’t be
determined (e.g. ‘localhost’) it will be set to 0.

	mtu: NIC’s maximum transmission unit expressed in bytes.

Example:

>>> import psutil
>>> psutil.net_if_stats()
{'eth0': snicstats(isup=True, duplex=<NicDuplex.NIC_DUPLEX_FULL: 2>, speed=100, mtu=1500),
 'lo': snicstats(isup=True, duplex=<NicDuplex.NIC_DUPLEX_UNKNOWN: 0>, speed=0, mtu=65536)}

Also see nettop.py [https://github.com/giampaolo/psutil/blob/master/scripts/nettop.py]
and ifconfig.py [https://github.com/giampaolo/psutil/blob/master/scripts/ifconfig.py]
for an example application.

New in version 3.0.0.

Sensors

	
psutil.sensors_temperatures(fahrenheit=False)

	Return hardware temperatures. Each entry is a named tuple representing a
certain hardware temperature sensor (it may be a CPU, an hard disk or
something else, depending on the OS and its configuration).
All temperatures are expressed in celsius unless fahrenheit is set to
True.
If sensors are not supported by the OS an empty dict is returned.
Example:

>>> import psutil
>>> psutil.sensors_temperatures()
{'acpitz': [shwtemp(label='', current=47.0, high=103.0, critical=103.0)],
 'asus': [shwtemp(label='', current=47.0, high=None, critical=None)],
 'coretemp': [shwtemp(label='Physical id 0', current=52.0, high=100.0, critical=100.0),
 shwtemp(label='Core 0', current=45.0, high=100.0, critical=100.0),
 shwtemp(label='Core 1', current=52.0, high=100.0, critical=100.0),
 shwtemp(label='Core 2', current=45.0, high=100.0, critical=100.0),
 shwtemp(label='Core 3', current=47.0, high=100.0, critical=100.0)]}

See also temperatures.py [https://github.com/giampaolo/psutil/blob/master/scripts/temperatures.py] and sensors.py [https://github.com/giampaolo/psutil/blob/master/scripts/sensors.py]
for an example application.

Availability: Linux

New in version 5.1.0.

Warning

This API is experimental. Backward incompatible changes may occur if
deemed necessary.

	
psutil.sensors_fans()

	Return hardware fans speed. Each entry is a named tuple representing a
certain hardware sensor fan.
Fan speed is expressed in RPM (rounds per minute).
If sensors are not supported by the OS an empty dict is returned.
Example:

>>> import psutil
>>> psutil.sensors_fans()
{'asus': [sfan(label='cpu_fan', current=3200)]}

See also fans.py [https://github.com/giampaolo/psutil/blob/master/scripts/fans.py] and sensors.py [https://github.com/giampaolo/psutil/blob/master/scripts/sensors.py]
for an example application.

Availability: Linux

New in version 5.2.0.

Warning

This API is experimental. Backward incompatible changes may occur if
deemed necessary.

	
psutil.sensors_battery()

	Return battery status information as a named tuple including the following
values. If no battery is installed or metrics can’t be determined None
is returned.

	percent: battery power left as a percentage.

	secsleft: a rough approximation of how many seconds are left before the
battery runs out of power.
If the AC power cable is connected this is set to
psutil.POWER_TIME_UNLIMITED.
If it can’t be determined it is set to
psutil.POWER_TIME_UNKNOWN.

	power_plugged: True if the AC power cable is connected, False
if not or None if it can’t be determined.

Example:

>>> import psutil
>>>
>>> def secs2hours(secs):
... mm, ss = divmod(secs, 60)
... hh, mm = divmod(mm, 60)
... return "%d:%02d:%02d" % (hh, mm, ss)
...
>>> battery = psutil.sensors_battery()
>>> battery
sbattery(percent=93, secsleft=16628, power_plugged=False)
>>> print("charge = %s%%, time left = %s" % (batt.percent, secs2hours(batt.secsleft)))
charge = 93%, time left = 4:37:08

See also battery.py [https://github.com/giampaolo/psutil/blob/master/scripts/battery.py] and sensors.py [https://github.com/giampaolo/psutil/blob/master/scripts/sensors.py] for an example application.

Availability: Linux, Windows, FreeBSD

New in version 5.1.0.

Warning

This API is experimental. Backward incompatible changes may occur if
deemed necessary.

Other system info

	
psutil.boot_time()

	Return the system boot time expressed in seconds since the epoch.
Example:

>>> import psutil, datetime
>>> psutil.boot_time()
1389563460.0
>>> datetime.datetime.fromtimestamp(psutil.boot_time()).strftime("%Y-%m-%d %H:%M:%S")
'2014-01-12 22:51:00'

Note

on Windows this function may return a time which is off by 1 second if it’s
used across different processes (see
issue #1007 [https://github.com/giampaolo/psutil/issues/1007]).

	
psutil.users()

	Return users currently connected on the system as a list of named tuples
including the following fields:

	user: the name of the user.

	terminal: the tty or pseudo-tty associated with the user, if any,
else None.

	host: the host name associated with the entry, if any.

	started: the creation time as a floating point number expressed in
seconds since the epoch.

	pid: the PID of the login process (like sshd, tmux, gdm-session-worker,
...). On Windows and OpenBSD this is always set to None.

Example:

>>> import psutil
>>> psutil.users()
[suser(name='giampaolo', terminal='pts/2', host='localhost', started=1340737536.0, pid=1352),
 suser(name='giampaolo', terminal='pts/3', host='localhost', started=1340737792.0, pid=1788)]

Changed in version 5.3.0: added “pid” field

Processes

Functions

	
psutil.pids()

	Return a list of current running PIDs. To iterate over all processes
and avoid race conditions process_iter() should be preferred.

>>> import psutil
>>> psutil.pids()
[1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, ..., 32498]

	
psutil.process_iter(attrs=None, ad_value=None)

	Return an iterator yielding a Process class instance for all running
processes on the local machine.
Every instance is only created once and then cached into an internal table
which is updated every time an element is yielded.
Cached Process instances are checked for identity so that you’re
safe in case a PID has been reused by another process, in which case the
cached instance is updated.
This is should be preferred over psutil.pids() for iterating over
processes.
Sorting order in which processes are returned is
based on their PID.
attrs and ad_value have the same meaning as in Process.as_dict().
If attrs is specified Process.as_dict() is called and the resulting
dict is stored as a info attribute which is attached to the returned
Process instance.
If attrs is an empty list it will retrieve all process info (slow).
Example usage:

>>> import psutil
>>> for proc in psutil.process_iter():
... try:
... pinfo = proc.as_dict(attrs=['pid', 'name', 'username'])
... except psutil.NoSuchProcess:
... pass
... else:
... print(pinfo)
...
{'name': 'systemd', 'pid': 1, 'username': 'root'}
{'name': 'kthreadd', 'pid': 2, 'username': 'root'}
{'name': 'ksoftirqd/0', 'pid': 3, 'username': 'root'}
...

More compact version using attrs parameter:

>>> import psutil
>>> for proc in psutil.process_iter(attrs=['pid', 'name', 'username']):
... print(proc.info)
...
{'name': 'systemd', 'pid': 1, 'username': 'root'}
{'name': 'kthreadd', 'pid': 2, 'username': 'root'}
{'name': 'ksoftirqd/0', 'pid': 3, 'username': 'root'}
...

Example of a dict comprehensions to create a {pid: info, ...} data
structure:

>>> import psutil
>>> procs = {p.pid: p.info for p in psutil.process_iter(attrs=['name', 'username'])}
>>> procs
{1: {'name': 'systemd', 'username': 'root'},
 2: {'name': 'kthreadd', 'username': 'root'},
 3: {'name': 'ksoftirqd/0', 'username': 'root'},
 ...}

Example showing how to filter processes by name:

>>> import psutil
>>> [p.info for p in psutil.process_iter(attrs=['pid', 'name']) if 'python' in p.info['name']]
[{'name': 'python3', 'pid': 21947},
 {'name': 'python', 'pid': 23835}]

See also process filtering section for
more examples.

Changed in version 5.3.0: added “attrs” and “ad_value” parameters.

	
psutil.pid_exists(pid)

	Check whether the given PID exists in the current process list. This is
faster than doing pid in psutil.pids() and should be preferred.

	
psutil.wait_procs(procs, timeout=None, callback=None)

	Convenience function which waits for a list of Process instances to
terminate. Return a (gone, alive) tuple indicating which processes are
gone and which ones are still alive. The gone ones will have a new
returncode attribute indicating process exit status (will be None for
processes which are not our children).
callback is a function which gets called when one of the processes being
waited on is terminated and a Process instance is passed as callback
argument).
This tunction will return as soon as all processes terminate or when
timeout occurs, if specified.
Differently from Process.wait() it will not raise
TimeoutExpired if timeout occurs.
A typical use case may be:

	send SIGTERM to a list of processes

	give them some time to terminate

	send SIGKILL to those ones which are still alive

Example which terminates and waits all the children of this process:

import psutil

def on_terminate(proc):
 print("process {} terminated with exit code {}".format(proc, proc.returncode))

procs = psutil.Process().children()
for p in procs:
 p.terminate()
gone, alive = psutil.wait_procs(procs, timeout=3, callback=on_terminate)
for p in alive:
 p.kill()

Exceptions

	
class psutil.Error

	Base exception class. All other exceptions inherit from this one.

	
class psutil.NoSuchProcess(pid, name=None, msg=None)

	Raised by Process class methods when no process with the given
pid is found in the current process list or when a process no longer
exists. name is the name the process had before disappearing
and gets set only if Process.name() was previously called.

	
class psutil.ZombieProcess(pid, name=None, ppid=None, msg=None)

	This may be raised by Process class methods when querying a zombie
process on UNIX (Windows doesn’t have zombie processes). Depending on the
method called the OS may be able to succeed in retrieving the process
information or not.
Note: this is a subclass of NoSuchProcess so if you’re not
interested in retrieving zombies (e.g. when using process_iter())
you can ignore this exception and just catch NoSuchProcess.

New in version 3.0.0.

	
class psutil.AccessDenied(pid=None, name=None, msg=None)

	Raised by Process class methods when permission to perform an
action is denied. “name” is the name of the process (may be None).

	
class psutil.TimeoutExpired(seconds, pid=None, name=None, msg=None)

	Raised by Process.wait() if timeout expires and process is still
alive.

Process class

	
class psutil.Process(pid=None)

	Represents an OS process with the given pid.
If pid is omitted current process pid
(os.getpid() [http://docs.python.org/library/os.html#os.getpid]) is used.
Raise NoSuchProcess if pid does not exist.
On Linux pid can also refer to a thread ID (the id field returned by
threads() method).
When accessing methods of this class always be prepared to catch
NoSuchProcess, ZombieProcess and AccessDenied
exceptions.
hash() [http://docs.python.org/2/library/functions.html#hash] builtin can
be used against instances of this class in order to identify a process
univocally over time (the hash is determined by mixing process PID
and creation time). As such it can also be used with
set()s [http://docs.python.org/2/library/stdtypes.html#types-set].

Note

In order to efficiently fetch more than one information about the process
at the same time, make sure to use either as_dict() or
oneshot() context manager.

Warning

the way this class is bound to a process is via its PID.
That means that if the Process instance is old enough and
the PID has been reused in the meantime you might end up interacting
with another process.
The only exceptions for which process identity is preemptively checked
(via PID + creation time) and guaranteed are for
nice() (set),
ionice() (set),
cpu_affinity() (set),
rlimit() (set),
children(),
parent(),
suspend()
resume(),
send_signal(),
terminate(), and
kill()
methods.
To prevent this problem for all other methods you can use
is_running() before querying the process or use
process_iter() in case you’re iterating over all processes.

	
oneshot()

	Utility context manager which considerably speeds up the retrieval of
multiple process information at the same time.
Internally different process info (e.g. name(), ppid(),
uids(), create_time(), ...) may be fetched by using the same
routine, but only one value is returned and the others are discarded.
When using this context manager the internal routine is executed once (in
the example below on name()) the value of interest is returned and
the others are cached.
The subsequent calls sharing the same internal routine will return the
cached value.
The cache is cleared when exiting the context manager block.
The advice is to use this every time you retrieve more than one information
about the process. If you’re lucky, you’ll get a hell of a speedup.
Example:

>>> import psutil
>>> p = psutil.Process()
>>> with p.oneshot():
... p.name() # execute internal routine once collecting multiple info
... p.cpu_times() # return cached value
... p.cpu_percent() # return cached value
... p.create_time() # return cached value
... p.ppid() # return cached value
... p.status() # return cached value
...
>>>

Here’s a list of methods which can take advantage of the speedup depending
on what platform you’re on.
In the table below horizontal emtpy rows indicate what process methods can
be efficiently grouped together internally.
The last column (speedup) shows an approximation of the speedup you can get
if you call all the methods together (best case scenario).

	Linux
	Windows
	OSX
	BSD
	SunOS

	cpu_num()
	cpu_percent()
	cpu_percent()
	cpu_num()
	name()

	cpu_percent()
	cpu_times()
	cpu_times()
	cpu_percent()
	cmdline()

	cpu_times()
	io_counters()
	memory_info()
	cpu_times()
	create_time()

	create_time()
	ionice()
	memory_percent()
	create_time()
	

	name()
	memory_info()
	num_ctx_switches()
	gids()
	memory_info()

	ppid()
	nice()
	num_threads()
	io_counters()
	memory_percent()

	status()
	memory_maps()
	
	name()
	nice()

	terminal()
	num_ctx_switches()
	create_time()
	memory_info()
	num_threads()

	
	num_handles()
	gids()
	memory_percent()
	ppid()

	gids()
	num_threads()
	name()
	num_ctx_switches()
	status()

	num_ctx_switches()
	username()
	ppid()
	ppid()
	terminal()

	num_threads()
	
	status()
	status()
	

	uids()
	
	terminal()
	terminal()
	gids()

	username()
	
	uids()
	uids()
	uids()

	
	
	username()
	username()
	username()

	memory_full_info()
	
	
	
	

	memory_maps()
	
	
	
	

	speedup: +2.6x
	speedup: +1.8x / +6.5x
	speedup: +1.9x
	speedup: +2.0x
	speedup: +1.3x

New in version 5.0.0.

	
pid

	The process PID. This is the only (read-only) attribute of the class.

	
ppid()

	The process parent PID. On Windows the return value is cached after first
call. Not on POSIX because
ppid may change [https://github.com/giampaolo/psutil/issues/321]
if process becomes a zombie.
See also parent() method.

	
name()

	The process name. On Windows the return value is cached after first
call. Not on POSIX because the process name
may change [https://github.com/giampaolo/psutil/issues/692].
See also how to find a process by name.

	
exe()

	The process executable as an absolute path.
On some systems this may also be an empty string.
The return value is cached after first call.

>>> import psutil
>>> psutil.Process().exe()
'/usr/bin/python2.7'

	
cmdline()

	The command line this process has been called with as a list of strings.
The return value is not cached because the cmdline of a process may change.

>>> import psutil
>>> psutil.Process().cmdline()
['python', 'manage.py', 'runserver']

	
environ()

	The environment variables of the process as a dict. Note: this might not
reflect changes made after the process started.

>>> import psutil
>>> psutil.Process().environ()
{'LC_NUMERIC': 'it_IT.UTF-8', 'QT_QPA_PLATFORMTHEME': 'appmenu-qt5', 'IM_CONFIG_PHASE': '1', 'XDG_GREETER_DATA_DIR': '/var/lib/lightdm-data/giampaolo', 'GNOME_DESKTOP_SESSION_ID': 'this-is-deprecated', 'XDG_CURRENT_DESKTOP': 'Unity', 'UPSTART_EVENTS': 'started starting', 'GNOME_KEYRING_PID': '', 'XDG_VTNR': '7', 'QT_IM_MODULE': 'ibus', 'LOGNAME': 'giampaolo', 'USER': 'giampaolo', 'PATH': '/home/giampaolo/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin:/home/giampaolo/svn/sysconf/bin', 'LC_PAPER': 'it_IT.UTF-8', 'GNOME_KEYRING_CONTROL': '', 'GTK_IM_MODULE': 'ibus', 'DISPLAY': ':0', 'LANG': 'en_US.UTF-8', 'LESS_TERMCAP_se': '\x1b[0m', 'TERM': 'xterm-256color', 'SHELL': '/bin/bash', 'XDG_SESSION_PATH': '/org/freedesktop/DisplayManager/Session0', 'XAUTHORITY': '/home/giampaolo/.Xauthority', 'LANGUAGE': 'en_US', 'COMPIZ_CONFIG_PROFILE': 'ubuntu', 'LC_MONETARY': 'it_IT.UTF-8', 'QT_LINUX_ACCESSIBILITY_ALWAYS_ON': '1', 'LESS_TERMCAP_me': '\x1b[0m', 'LESS_TERMCAP_md': '\x1b[01;38;5;74m', 'LESS_TERMCAP_mb': '\x1b[01;31m', 'HISTSIZE': '100000', 'UPSTART_INSTANCE': '', 'CLUTTER_IM_MODULE': 'xim', 'WINDOWID': '58786407', 'EDITOR': 'vim', 'SESSIONTYPE': 'gnome-session', 'XMODIFIERS': '@im=ibus', 'GPG_AGENT_INFO': '/home/giampaolo/.gnupg/S.gpg-agent:0:1', 'HOME': '/home/giampaolo', 'HISTFILESIZE': '100000', 'QT4_IM_MODULE': 'xim', 'GTK2_MODULES': 'overlay-scrollbar', 'XDG_SESSION_DESKTOP': 'ubuntu', 'SHLVL': '1', 'XDG_RUNTIME_DIR': '/run/user/1000', 'INSTANCE': 'Unity', 'LC_ADDRESS': 'it_IT.UTF-8', 'SSH_AUTH_SOCK': '/run/user/1000/keyring/ssh', 'VTE_VERSION': '4205', 'GDMSESSION': 'ubuntu', 'MANDATORY_PATH': '/usr/share/gconf/ubuntu.mandatory.path', 'VISUAL': 'vim', 'DESKTOP_SESSION': 'ubuntu', 'QT_ACCESSIBILITY': '1', 'XDG_SEAT_PATH': '/org/freedesktop/DisplayManager/Seat0', 'LESSCLOSE': '/usr/bin/lesspipe %s %s', 'LESSOPEN': '| /usr/bin/lesspipe %s', 'XDG_SESSION_ID': 'c2', 'DBUS_SESSION_BUS_ADDRESS': 'unix:abstract=/tmp/dbus-9GAJpvnt8r', '_': '/usr/bin/python', 'DEFAULTS_PATH': '/usr/share/gconf/ubuntu.default.path', 'LC_IDENTIFICATION': 'it_IT.UTF-8', 'LESS_TERMCAP_ue': '\x1b[0m', 'UPSTART_SESSION': 'unix:abstract=/com/ubuntu/upstart-session/1000/1294', 'XDG_CONFIG_DIRS': '/etc/xdg/xdg-ubuntu:/usr/share/upstart/xdg:/etc/xdg', 'GTK_MODULES': 'gail:atk-bridge:unity-gtk-module', 'XDG_SESSION_TYPE': 'x11', 'PYTHONSTARTUP': '/home/giampaolo/.pythonstart', 'LC_NAME': 'it_IT.UTF-8', 'OLDPWD': '/home/giampaolo/svn/curio_giampaolo/tests', 'GDM_LANG': 'en_US', 'LC_TELEPHONE': 'it_IT.UTF-8', 'HISTCONTROL': 'ignoredups:erasedups', 'LC_MEASUREMENT': 'it_IT.UTF-8', 'PWD': '/home/giampaolo/svn/curio_giampaolo', 'JOB': 'gnome-session', 'LESS_TERMCAP_us': '\x1b[04;38;5;146m', 'UPSTART_JOB': 'unity-settings-daemon', 'LC_TIME': 'it_IT.UTF-8', 'LESS_TERMCAP_so': '\x1b[38;5;246m', 'PAGER': 'less', 'XDG_DATA_DIRS': '/usr/share/ubuntu:/usr/share/gnome:/usr/local/share/:/usr/share/:/var/lib/snapd/desktop', 'XDG_SEAT': 'seat0'}

Availability: Linux, OSX, Windows, SunOS

New in version 4.0.0.

Changed in version 5.3.0:: added SunOS support

	
create_time()

	The process creation time as a floating point number expressed in seconds
since the epoch, in
UTC [http://en.wikipedia.org/wiki/Coordinated_universal_time].
The return value is cached after first call.

>>> import psutil, datetime
>>> p = psutil.Process()
>>> p.create_time()
1307289803.47
>>> datetime.datetime.fromtimestamp(p.create_time()).strftime("%Y-%m-%d %H:%M:%S")
'2011-03-05 18:03:52'

	
as_dict(attrs=None, ad_value=None)

	Utility method retrieving multiple process information as a dictionary.
If attrs is specified it must be a list of strings reflecting available
Process class’s attribute names (e.g. ['cpu_times', 'name']),
else all public (read only) attributes are assumed. ad_value is the
value which gets assigned to a dict key in case AccessDenied
or ZombieProcess exception is raised when retrieving that
particular process information.
Internally, as_dict() uses oneshot() context manager so
there’s no need you use it also.

>>> import psutil
>>> p = psutil.Process()
>>> p.as_dict(attrs=['pid', 'name', 'username'])
{'username': 'giampaolo', 'pid': 12366, 'name': 'python'}

Changed in version 3.0.0: ad_value is used also when incurring into
 ZombieProcess exception, not only AccessDenied

Changed in version 4.5.0: as_dict() is considerably faster thanks
to oneshot() context manager.

	
parent()

	Utility method which returns the parent process as a Process
object preemptively checking whether PID has been reused. If no parent
PID is known return None.
See also ppid() method.

	
status()

	The current process status as a string. The returned string is one of the
psutil.STATUS_* constants.

	
cwd()

	The process current working directory as an absolute path.

	
username()

	The name of the user that owns the process. On UNIX this is calculated by
using real process uid.

	
uids()

	The real, effective and saved user ids of this process as a
named tuple. This is the same as
os.getresuid() [http://docs.python.org//library/os.html#os.getresuid]
but can be used for any process PID.

Availability: UNIX

	
gids()

	The real, effective and saved group ids of this process as a
named tuple. This is the same as
os.getresgid() [http://docs.python.org//library/os.html#os.getresgid]
but can be used for any process PID.

Availability: UNIX

	
terminal()

	The terminal associated with this process, if any, else None. This is
similar to “tty” command but can be used for any process PID.

Availability: UNIX

	
nice(value=None)

	Get or set process
niceness (priority).
On UNIX this is a number which usually goes from -20 to 20.
The higher the nice value, the lower the priority of the process.

>>> import psutil
>>> p = psutil.Process()
>>> p.nice(10) # set
>>> p.nice() # get
10
>>>

Starting from Python 3.3 [http://bugs.python.org/issue10784] this
functionality is also available as
os.getpriority() [http://docs.python.org/3/library/os.html#os.getpriority]
and
os.setpriority() [http://docs.python.org/3/library/os.html#os.setpriority]
(UNIX only).
On Windows this is implemented via
GetPriorityClass [http://msdn.microsoft.com/en-us/library/ms683211(v=vs.85).aspx]
and SetPriorityClass [http://msdn.microsoft.com/en-us/library/ms686219(v=vs.85).aspx]
Windows APIs and value is one of the
psutil.*_PRIORITY_CLASS
constants reflecting the MSDN documentation.
Example which increases process priority on Windows:

>>> p.nice(psutil.HIGH_PRIORITY_CLASS)

	
ionice(ioclass=None, value=None)

	Get or set
process I/O niceness [http://friedcpu.wordpress.com/2007/07/17/why-arent-you-using-ionice-yet/] (priority).
On Linux ioclass is one of the
psutil.IOPRIO_CLASS_* constants.
value is a number which goes from 0 to 7. The higher the value,
the lower the I/O priority of the process. On Windows only ioclass is
used and it can be set to 2 (normal), 1 (low) or 0 (very low).
The example below sets IDLE priority class for the current process,
meaning it will only get I/O time when no other process needs the disk:

>>> import psutil
>>> p = psutil.Process()
>>> p.ionice(psutil.IOPRIO_CLASS_IDLE) # set
>>> p.ionice() # get
pionice(ioclass=<IOPriority.IOPRIO_CLASS_IDLE: 3>, value=0)
>>>

On Windows only ioclass is used and it can be set to 2 (normal),
1 (low) or 0 (very low). Also it returns an integer instead of a
named tuple.

Availability: Linux and Windows > Vista

Changed in version 3.0.0: on Python >= 3.4 the returned ioclass constant is an
enum [https://docs.python.org/3/library/enum.html#module-enum]
instead of a plain integer.

	
rlimit(resource, limits=None)

	Get or set process resource limits (see
man prlimit [http://linux.die.net/man/2/prlimit]). resource is one
of the psutil.RLIMIT_* constants.
limits is a (soft, hard) tuple.
This is the same as resource.getrlimit() [http://docs.python.org/library/resource.html#resource.getrlimit]
and resource.setrlimit() [http://docs.python.org/library/resource.html#resource.setrlimit]
but can be used for any process PID, not only
os.getpid() [http://docs.python.org/library/os.html#os.getpid].
For get, return value is a (soft, hard) tuple. Each value may be either
and integer or psutil.RLIMIT_*.
Example:

>>> import psutil
>>> p = psutil.Process()
>>> # process may open no more than 128 file descriptors
>>> p.rlimit(psutil.RLIMIT_NOFILE, (128, 128))
>>> # process may create files no bigger than 1024 bytes
>>> p.rlimit(psutil.RLIMIT_FSIZE, (1024, 1024))
>>> # get
>>> p.rlimit(psutil.RLIMIT_FSIZE)
(1024, 1024)
>>>

Availability: Linux

	
io_counters()

	Return process I/O statistics as a named tuple.
For Linux you can refer to
/proc filesysem documentation [http://stackoverflow.com/a/3634088].

	read_count: the number of read operations performed (cumulative).
This is supposed to count the number of read-related syscalls such as
read() and pread() on UNIX.

	write_count: the number of write operations performed (cumulative).
This is supposed to count the number of write-related syscalls such as
write() and pwrite() on UNIX.

	read_bytes: the number of bytes read (cumulative).
Always -1 on BSD.

	write_bytes: the number of bytes written (cumulative).
Always -1 on BSD.

Linux specific:

	read_chars (Linux): the amount of bytes which this process passed
to read() and pread() syscalls (cumulative).
Differently from read_bytes it doesn’t care whether or not actual
physical disk I/O occurred.

	write_chars (Linux): the amount of bytes which this process passed
to write() and pwrite() syscalls (cumulative).
Differently from write_bytes it doesn’t care whether or not actual
physical disk I/O occurred.

Windows specific:

	other_count (Windows): the number of I/O operations performed
other than read and write operations.

	other_bytes (Windows): the number of bytes transferred during
operations other than read and write operations.

>>> import psutil
>>> p = psutil.Process()
>>> p.io_counters()
pio(read_count=454556, write_count=3456, read_bytes=110592, write_bytes=0, read_chars=769931, write_chars=203)

Availability: all platforms except OSX and Solaris

Changed in version 5.2.0: added read_chars and write_chars on Linux;
added other_count and other_bytes on Windows.

	
num_ctx_switches()

	The number voluntary and involuntary context switches performed by
this process (cumulative).

	
num_fds()

	The number of file descriptors currently opened by this process
(non cumulative).

Availability: UNIX

	
num_handles()

	The number of handles currently used by this process (non cumulative).

Availability: Windows

	
num_threads()

	The number of threads currently used by this process (non cumulative).

	
threads()

	Return threads opened by process as a list of named tuples including thread
id and thread CPU times (user/system). On OpenBSD this method requires
root privileges.

	
cpu_times()

	Return a (user, system, children_user, children_system) named tuple
representing the accumulated process time, in seconds (see
explanation [http://stackoverflow.com/questions/556405/]).
On Windows and OSX only user and system are filled, the others are
set to 0.
This is similar to
os.times() [http://docs.python.org//library/os.html#os.times]
but can be used for any process PID.

Changed in version 4.1.0: return two extra fields: children_user and children_system.

	
cpu_percent(interval=None)

	Return a float representing the process CPU utilization as a percentage
which can also be > 100.0 in case of a process running multiple threads
on different CPUs.
When interval is > 0.0 compares process times to system CPU times
elapsed before and after the interval (blocking). When interval is 0.0
or None compares process times to system CPU times elapsed since last
call, returning immediately. That means the first time this is called it
will return a meaningless 0.0 value which you are supposed to ignore.
In this case is recommended for accuracy that this function be called a
second time with at least 0.1 seconds between calls.
Example:

>>> import psutil
>>> p = psutil.Process()
>>> # blocking
>>> p.cpu_percent(interval=1)
2.0
>>> # non-blocking (percentage since last call)
>>> p.cpu_percent(interval=None)
2.9

Note

the returned value can be > 100.0 in case of a process running multiple
threads on different CPU cores.

Note

the returned value is explicitly not split evenly between all available
CPUs (differently from psutil.cpu_percent()).
This means that a busy loop process running on a system with 2 logical
CPUs will be reported as having 100% CPU utilization instead of 50%.
This was done in order to be consistent with top UNIX utility
and also to make it easier to identify processes hogging CPU resources
independently from the number of CPUs.
It must be noted that taskmgr.exe on Windows does not behave like
this (it would report 50% usage instead).
To emulate Windows taskmgr.exe behavior you can do:
p.cpu_percent() / psutil.cpu_count().

Warning

the first time this method is called with interval = 0.0 or
None it will return a meaningless 0.0 value which you are
supposed to ignore.

	
cpu_affinity(cpus=None)

	Get or set process current
CPU affinity [http://www.linuxjournal.com/article/6799?page=0,0].
CPU affinity consists in telling the OS to run a process on a limited set
of CPUs only (on Linux cmdline, taskset command is typically used).
If no argument is passed it returns the current CPU affinity as a list
of integers.
If passed it must be a list of integers specifying the new CPUs affinity.
If an empty list is passed all eligible CPUs are assumed (and set).
On some systems such as Linux this may not necessarily mean all available
logical CPUs as in list(range(psutil.cpu_count()))).

>>> import psutil
>>> psutil.cpu_count()
4
>>> p = psutil.Process()
>>> # get
>>> p.cpu_affinity()
[0, 1, 2, 3]
>>> # set; from now on, process will run on CPU #0 and #1 only
>>> p.cpu_affinity([0, 1])
>>> p.cpu_affinity()
[0, 1]
>>> # reset affinity against all eligible CPUs
>>> p.cpu_affinity([])

Availability: Linux, Windows, FreeBSD

Changed in version 2.2.0: added support for FreeBSD

Changed in version 5.1.0: an empty list can be passed to set affinity
against all eligible CPUs.

	
cpu_num()

	Return what CPU this process is currently running on.
The returned number should be <= psutil.cpu_count().
On FreeBSD certain kernel process may return -1.
It may be used in conjunction with psutil.cpu_percent(percpu=True) to
observe the system workload distributed across multiple CPUs as shown by
cpu_distribution.py [https://github.com/giampaolo/psutil/blob/master/scripts/cpu_distribution.py] example script.

Availability: Linux, FreeBSD, SunOS

New in version 5.1.0.

	
memory_info()

	Return a named tuple with variable fields depending on the platform
representing memory information about the process.
The “portable” fields available on all plaforms are rss and vms.
All numbers are expressed in bytes.

	Linux
	OSX
	BSD
	Solaris
	Windows

	rss
	rss
	rss
	rss
	rss (alias for wset)

	vms
	vms
	vms
	vms
	vms (alias for pagefile)

	shared
	pfaults
	text
	
	num_page_faults

	text
	pageins
	data
	
	peak_wset

	lib
	
	stack
	
	wset

	data
	
	
	
	peak_paged_pool

	dirty
	
	
	
	paged_pool

	
	
	
	
	peak_nonpaged_pool

	
	
	
	
	nonpaged_pool

	
	
	
	
	pagefile

	
	
	
	
	peak_pagefile

	
	
	
	
	private

	rss: aka “Resident Set Size”, this is the non-swapped physical
memory a process has used.
On UNIX it matches “top“‘s RES column
(see doc [http://linux.die.net/man/1/top]).
On Windows this is an alias for wset field and it matches “Mem Usage”
column of taskmgr.exe.

	vms: aka “Virtual Memory Size”, this is the total amount of virtual
memory used by the process.
On UNIX it matches “top“‘s VIRT column
(see doc [http://linux.die.net/man/1/top]).
On Windows this is an alias for pagefile field and it matches
“Mem Usage” “VM Size” column of taskmgr.exe.

	shared: (Linux)
memory that could be potentially shared with other processes.
This matches “top“‘s SHR column
(see doc [http://linux.die.net/man/1/top]).

	text (Linux, BSD):
aka TRS (text resident set) the amount of memory devoted to
executable code. This matches “top“‘s CODE column
(see doc [http://linux.die.net/man/1/top]).

	data (Linux, BSD):
aka DRS (data resident set) the amount of physical memory devoted to
other than executable code. It matches “top“‘s DATA column
(see doc [http://linux.die.net/man/1/top]).

	lib (Linux): the memory used by shared libraries.

	dirty (Linux): the number of dirty pages.

	pfaults (OSX): number of page faults.

	pageins (OSX): number of actual pageins.

For on explanation of Windows fields rely on
PROCESS_MEMORY_COUNTERS_EX [http://msdn.microsoft.com/en-us/library/windows/desktop/ms684874(v=vs.85).aspx] structure doc.
Example on Linux:

>>> import psutil
>>> p = psutil.Process()
>>> p.memory_info()
pmem(rss=15491072, vms=84025344, shared=5206016, text=2555904, lib=0, data=9891840, dirty=0)

Changed in version 4.0.0: multiple fields are returned, not only rss and vms.

	
memory_info_ex()

	Same as memory_info() (deprecated).

Warning

deprecated in version 4.0.0; use memory_info() instead.

	
memory_full_info()

	This method returns the same information as memory_info(), plus, on
some platform (Linux, OSX, Windows), also provides additional metrics
(USS, PSS and swap).
The additional metrics provide a better representation of “effective”
process memory consumption (in case of USS) as explained in detail in this
blog post [http://grodola.blogspot.com/2016/02/psutil-4-real-process-memory-and-environ.html].
It does so by passing through the whole process address.
As such it usually requires higher user privileges than
memory_info() and is considerably slower.
On platforms where extra fields are not implemented this simply returns the
same metrics as memory_info().

	uss (Linux, OSX, Windows):
aka “Unique Set Size”, this is the memory which is unique to a process
and which would be freed if the process was terminated right now.

	pss (Linux): aka “Proportional Set Size”, is the amount of memory
shared with other processes, accounted in a way that the amount is
divided evenly between the processes that share it.
I.e. if a process has 10 MBs all to itself and 10 MBs shared with
another process its PSS will be 15 MBs.

	swap (Linux): amount of memory that has been swapped out to disk.

Note

uss is probably the most representative metric for determining how
much memory is actually being used by a process.
It represents the amount of memory that would be freed if the process
was terminated right now.

Example on Linux:

>>> import psutil
>>> p = psutil.Process()
>>> p.memory_full_info()
pfullmem(rss=10199040, vms=52133888, shared=3887104, text=2867200, lib=0, data=5967872, dirty=0, uss=6545408, pss=6872064, swap=0)
>>>

See also procsmem.py [https://github.com/giampaolo/psutil/blob/master/scripts/procsmem.py]
for an example application.

New in version 4.0.0.

	
memory_percent(memtype="rss")

	Compare process memory to total physical system memory and calculate
process memory utilization as a percentage.
memtype argument is a string that dictates what type of process memory
you want to compare against. You can choose between the named tuple field
names returned by memory_info() and memory_full_info()
(defaults to "rss").

Changed in version 4.0.0: added memtype parameter.

	
memory_maps(grouped=True)

	Return process’s mapped memory regions as a list of named tuples whose
fields are variable depending on the platform.
This method is useful to obtain a detailed representation of process
memory usage as explained
here [http://bmaurer.blogspot.it/2006/03/memory-usage-with-smaps.html]
(the most important value is “private” memory).
If grouped is True the mapped regions with the same path are
grouped together and the different memory fields are summed. If grouped
is False each mapped region is shown as a single entity and the
named tuple will also include the mapped region’s address space (addr)
and permission set (perms).
See pmap.py [https://github.com/giampaolo/psutil/blob/master/scripts/pmap.py]
for an example application.

	Linux
	OSX
	Windows
	Solaris
	FreeBSD

	rss
	rss
	rss
	rss
	rss

	size
	private
	
	anonymous
	private

	pss
	swapped
	
	locked
	ref_count

	shared_clean
	dirtied
	
	
	shadow_count

	shared_dirty
	ref_count
	
	
	

	private_clean
	shadow_depth
	
	
	

	private_dirty
	
	
	
	

	referenced
	
	
	
	

	anonymous
	
	
	
	

	swap
	
	
	
	

>>> import psutil
>>> p = psutil.Process()
>>> p.memory_maps()
[pmmap_grouped(path='/lib/x8664-linux-gnu/libutil-2.15.so', rss=32768, size=2125824, pss=32768, shared_clean=0, shared_dirty=0, private_clean=20480, private_dirty=12288, referenced=32768, anonymous=12288, swap=0),
 pmmap_grouped(path='/lib/x8664-linux-gnu/libc-2.15.so', rss=3821568, size=3842048, pss=3821568, shared_clean=0, shared_dirty=0, private_clean=0, private_dirty=3821568, referenced=3575808, anonymous=3821568, swap=0),
 pmmap_grouped(path='/lib/x8664-linux-gnu/libcrypto.so.0.1', rss=34124, rss=32768, size=2134016, pss=15360, shared_clean=24576, shared_dirty=0, private_clean=0, private_dirty=8192, referenced=24576, anonymous=8192, swap=0),
 pmmap_grouped(path='[heap]', rss=32768, size=139264, pss=32768, shared_clean=0, shared_dirty=0, private_clean=0, private_dirty=32768, referenced=32768, anonymous=32768, swap=0),
 pmmap_grouped(path='[stack]', rss=2465792, size=2494464, pss=2465792, shared_clean=0, shared_dirty=0, private_clean=0, private_dirty=2465792, referenced=2277376, anonymous=2465792, swap=0),
 ...]
>>> p.memory_maps(grouped=False)
[pmmap_ext(addr='00400000-006ea000', perms='r-xp', path='/usr/bin/python2.7', rss=2293760, size=3055616, pss=1157120, shared_clean=2273280, shared_dirty=0, private_clean=20480, private_dirty=0, referenced=2293760, anonymous=0, swap=0),
 pmmap_ext(addr='008e9000-008eb000', perms='r--p', path='/usr/bin/python2.7', rss=8192, size=8192, pss=6144, shared_clean=4096, shared_dirty=0, private_clean=0, private_dirty=4096, referenced=8192, anonymous=4096, swap=0),
 pmmap_ext(addr='008eb000-00962000', perms='rw-p', path='/usr/bin/python2.7', rss=417792, size=487424, pss=317440, shared_clean=200704, shared_dirty=0, private_clean=16384, private_dirty=200704, referenced=417792, anonymous=200704, swap=0),
 pmmap_ext(addr='00962000-00985000', perms='rw-p', path='[anon]', rss=139264, size=143360, pss=139264, shared_clean=0, shared_dirty=0, private_clean=0, private_dirty=139264, referenced=139264, anonymous=139264, swap=0),
 pmmap_ext(addr='02829000-02ccf000', perms='rw-p', path='[heap]', rss=4743168, size=4874240, pss=4743168, shared_clean=0, shared_dirty=0, private_clean=0, private_dirty=4743168, referenced=4718592, anonymous=4743168, swap=0),
 ...]

Availability: All platforms except OpenBSD and NetBSD.

	
children(recursive=False)

	Return the children of this process as a list of Process objects,
preemptively checking whether PID has been reused. If recursive is True
return all the parent descendants.
Pseudo code example assuming A == this process:

A ─┐
 │
 ├─ B (child) ─┐
 │ └─ X (grandchild) ─┐
 │ └─ Y (great grandchild)
 ├─ C (child)
 └─ D (child)

>>> p.children()
B, C, D
>>> p.children(recursive=True)
B, X, Y, C, D

Note that in the example above if process X disappears process Y won’t be
returned either as the reference to process A is lost.
This concept is well summaried by this
unit test [https://github.com/giampaolo/psutil/blob/fb9ae861cf3cf175c3da4a3cd4e558c6cbd6af91/psutil/tests/test_process.py#L1236-L1247].
See also how to kill a process tree and
terminate my children.

	
open_files()

	Return regular files opened by process as a list of named tuples including
the following fields:

	path: the absolute file name.

	fd: the file descriptor number; on Windows this is always -1.

Linux only:

	position (Linux): the file (offset) position.

	mode (Linux): a string indicating how the file was opened, similarly
open [https://docs.python.org/3/library/functions.html#open]‘s
mode argument. Possible values are 'r', 'w', 'a',
'r+' and 'a+'. There’s no distinction between files opened in
bynary or text mode ("b" or "t").

	flags (Linux): the flags which were passed to the underlying
os.open [https://docs.python.org/2/library/os.html#os.open] C call
when the file was opened (e.g.
os.O_RDONLY [https://docs.python.org/3/library/os.html#os.O_RDONLY],
os.O_TRUNC [https://docs.python.org/3/library/os.html#os.O_TRUNC],
etc).

>>> import psutil
>>> f = open('file.ext', 'w')
>>> p = psutil.Process()
>>> p.open_files()
[popenfile(path='/home/giampaolo/svn/psutil/file.ext', fd=3, position=0, mode='w', flags=32769)]

Warning

on Windows this method is not reliable due to some limitations of the
underlying Windows API which may hang when retrieving certain file
handles.
In order to work around that psutil spawns a thread for each handle and
kills it if it’s not responding after 100ms.
That implies that this method on Windows is not guaranteed to enumerate
all regular file handles (see
issue 597 [https://github.com/giampaolo/psutil/pull/597]).
Also, it will only list files living in the C:\ drive (see
issue 1020 [https://github.com/giampaolo/psutil/pull/1020]).

Warning

on BSD this method can return files with a null path (“”) due to a
kernel bug, hence it’s not reliable
(see issue 595 [https://github.com/giampaolo/psutil/pull/595]).

Changed in version 3.1.0: no longer hangs on Windows.

Changed in version 4.1.0: new position, mode and flags fields on Linux.

	
connections(kind="inet")

	Return socket connections opened by process as a list of named tuples.
To get system-wide connections use psutil.net_connections().
Every named tuple provides 6 attributes:

	fd: the socket file descriptor. This can be passed to
socket.fromfd() [http://docs.python.org/library/socket.html#socket.fromfd]
to obtain a usable socket object.
On Windows, FreeBSD and SunOS this is always set to -1.

	family: the address family, either AF_INET [http://docs.python.org//library/socket.html#socket.AF_INET],
AF_INET6 [http://docs.python.org//library/socket.html#socket.AF_INET6]
or AF_UNIX [http://docs.python.org//library/socket.html#socket.AF_UNIX].

	type: the address type, either
SOCK_STREAM [http://docs.python.org//library/socket.html#socket.SOCK_STREAM] or
SOCK_DGRAM [http://docs.python.org//library/socket.html#socket.SOCK_DGRAM].

	laddr: the local address as a (ip, port) named tuple or a path
in case of AF_UNIX sockets. For UNIX sockets see notes below.

	raddr: the remote address as a (ip, port) named tuple or an
absolute path in case of UNIX sockets.
When the remote endpoint is not connected you’ll get an empty tuple
(AF_INET*) or "" (AF_UNIX). For UNIX sockets see notes below.

	status: represents the status of a TCP connection. The return value
is one of the psutil.CONN_* constants.
For UDP and UNIX sockets this is always going to be
psutil.CONN_NONE.

The kind parameter is a string which filters for connections that fit the
following criteria:

	Kind value
	Connections using

	"inet"
	IPv4 and IPv6

	"inet4"
	IPv4

	"inet6"
	IPv6

	"tcp"
	TCP

	"tcp4"
	TCP over IPv4

	"tcp6"
	TCP over IPv6

	"udp"
	UDP

	"udp4"
	UDP over IPv4

	"udp6"
	UDP over IPv6

	"unix"
	UNIX socket (both UDP and TCP protocols)

	"all"
	the sum of all the possible families and protocols

Example:

>>> import psutil
>>> p = psutil.Process(1694)
>>> p.name()
'firefox'
>>> p.connections()
[pconn(fd=115, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK_STREAM: 1>, laddr=addr(ip='10.0.0.1', port=48776), raddr=addr(ip='93.186.135.91', port=80), status='ESTABLISHED'),
 pconn(fd=117, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK_STREAM: 1>, laddr=addr(ip='10.0.0.1', port=43761), raddr=addr(ip='72.14.234.100', port=80), status='CLOSING'),
 pconn(fd=119, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK_STREAM: 1>, laddr=addr(ip='10.0.0.1', port=60759), raddr=addr(ip='72.14.234.104', port=80), status='ESTABLISHED'),
 pconn(fd=123, family=<AddressFamily.AF_INET: 2>, type=<SocketType.SOCK_STREAM: 1>, laddr=addr(ip='10.0.0.1', port=51314), raddr=addr(ip='72.14.234.83', port=443), status='SYN_SENT')]

Note

(Solaris) UNIX sockets are not supported.

Note

(Linux, FreeBSD) “raddr” field for UNIX sockets is always set to “”.
This is a limitation of the OS.

Note

(OpenBSD) “laddr” and “raddr” fields for UNIX sockets are always set to
“”. This is a limitation of the OS.

Changed in version 5.3.0: : “laddr” and “raddr” are named tuples.

	
is_running()

	Return whether the current process is running in the current process list.
This is reliable also in case the process is gone and its PID reused by
another process, therefore it must be preferred over doing
psutil.pid_exists(p.pid).

Note

this will return True also if the process is a zombie
(p.status() == psutil.STATUS_ZOMBIE).

	
send_signal(signal)

	Send a signal to process (see
signal module [http://docs.python.org//library/signal.html]
constants) preemptively checking whether PID has been reused.
On UNIX this is the same as os.kill(pid, sig).
On Windows only SIGTERM, CTRL_C_EVENT and CTRL_BREAK_EVENT signals
are supported and SIGTERM is treated as an alias for kill().
See also how to kill a process tree and
terminate my children.

Changed in version 3.2.0: support for CTRL_C_EVENT and CTRL_BREAK_EVENT signals on Windows
was added.

	
suspend()

	Suspend process execution with SIGSTOP signal preemptively checking
whether PID has been reused.
On UNIX this is the same as os.kill(pid, signal.SIGSTOP).
On Windows this is done by suspending all process threads execution.

	
resume()

	Resume process execution with SIGCONT signal preemptively checking
whether PID has been reused.
On UNIX this is the same as os.kill(pid, signal.SIGCONT).
On Windows this is done by resuming all process threads execution.

	
terminate()

	Terminate the process with SIGTERM signal preemptively checking
whether PID has been reused.
On UNIX this is the same as os.kill(pid, signal.SIGTERM).
On Windows this is an alias for kill().
See also how to kill a process tree and
terminate my children.

	
kill()

	Kill the current process by using SIGKILL signal preemptively
checking whether PID has been reused.
On UNIX this is the same as os.kill(pid, signal.SIGKILL).
On Windows this is done by using
TerminateProcess [http://msdn.microsoft.com/en-us/library/windows/desktop/ms686714(v=vs.85).aspx].
See also how to kill a process tree and
terminate my children.

	
wait(timeout=None)

	Wait for process termination and if the process is a children of the
current one also return the exit code, else None. On Windows there’s
no such limitation (exit code is always returned). If the process is
already terminated immediately return None instead of raising
NoSuchProcess. If timeout is specified and process is still
alive raise TimeoutExpired exception. It can also be used in a
non-blocking fashion by specifying timeout=0 in which case it will
either return immediately or raise TimeoutExpired.
To wait for multiple processes use psutil.wait_procs().

>>> import psutil
>>> p = psutil.Process(9891)
>>> p.terminate()
>>> p.wait()

Popen class

	
class psutil.Popen(*args, **kwargs)

	A more convenient interface to stdlib
subprocess.Popen [http://docs.python.org/library/subprocess.html#subprocess.Popen].
It starts a sub process and you deal with it exactly as when using
subprocess.Popen [http://docs.python.org/library/subprocess.html#subprocess.Popen]
but in addition it also provides all the methods of psutil.Process
class.
For method names common to both classes such as
send_signal(),
terminate() and
kill()
psutil.Process implementation takes precedence.
For a complete documentation refer to
subprocess module documentation [http://docs.python.org/library/subprocess.html].

Note

Unlike subprocess.Popen [http://docs.python.org/library/subprocess.html#subprocess.Popen]
this class preemptively checks whether PID has been reused on
send_signal(),
terminate() and
kill()
so that you can’t accidentally terminate another process, fixing
http://bugs.python.org/issue6973.

>>> import psutil
>>> from subprocess import PIPE
>>>
>>> p = psutil.Popen(["/usr/bin/python", "-c", "print('hello')"], stdout=PIPE)
>>> p.name()
'python'
>>> p.username()
'giampaolo'
>>> p.communicate()
('hello\n', None)
>>> p.wait(timeout=2)
0
>>>

psutil.Popen objects are supported as context managers via the with
statement: on exit, standard file descriptors are closed, and the process
is waited for. This is supported on all Python versions.

>>> import psutil, subprocess
>>> with psutil.Popen(["ifconfig"], stdout=subprocess.PIPE) as proc:
>>> log.write(proc.stdout.read())

Changed in version 4.4.0: added context manager support

Windows services

	
psutil.win_service_iter()

	Return an iterator yielding a WindowsService class instance for all
Windows services installed.

New in version 4.2.0.

Availability: Windows

	
psutil.win_service_get(name)

	Get a Windows service by name, returning a WindowsService instance.
Raise psutil.NoSuchProcess if no service with such name exists.

New in version 4.2.0.

Availability: Windows

	
class psutil.WindowsService

	Represents a Windows service with the given name. This class is returned
by win_service_iter() and win_service_get() functions and it is
not supposed to be instantiated directly.

	
name()

	The service name. This string is how a service is referenced and can be
passed to win_service_get() to get a new WindowsService
instance.

	
display_name()

	The service display name. The value is cached when this class is
instantiated.

	
binpath()

	The fully qualified path to the service binary/exe file as a string,
including command line arguments.

	
username()

	The name of the user that owns this service.

	
start_type()

	A string which can either be “automatic”, “manual” or “disabled”.

	
pid()

	The process PID, if any, else None. This can be passed to
Process class to control the service’s process.

	
status()

	Service status as a string, which may be either “running”, “paused”,
“start_pending”, “pause_pending”, “continue_pending”,
“stop_pending” or “stopped”.

	
description()

	Service long description.

	
as_dict()

	Utility method retrieving all the information above as a dictionary.

New in version 4.2.0.

Availability: Windows

Example code:

>>> import psutil
>>> list(psutil.win_service_iter())
[<WindowsService(name='AeLookupSvc', display_name='Application Experience') at 38850096>,
 <WindowsService(name='ALG', display_name='Application Layer Gateway Service') at 38850128>,
 <WindowsService(name='APNMCP', display_name='Ask Update Service') at 38850160>,
 <WindowsService(name='AppIDSvc', display_name='Application Identity') at 38850192>,
 ...]
>>> s = psutil.win_service_get('alg')
>>> s.as_dict()
{'binpath': 'C:\\Windows\\System32\\alg.exe',
 'description': 'Provides support for 3rd party protocol plug-ins for Internet Connection Sharing',
 'display_name': 'Application Layer Gateway Service',
 'name': 'alg',
 'pid': None,
 'start_type': 'manual',
 'status': 'stopped',
 'username': 'NT AUTHORITY\\LocalService'}

Constants

	
psutil.POSIX

	

	
psutil.WINDOWS

	

	
psutil.LINUX

	

	
psutil.OSX

	

	
psutil.FREEBSD

	

	
psutil.NETBSD

	

	
psutil.OPENBSD

	

	
psutil.BSD

	

	
psutil.SUNOS

	bool constants which define what platform you’re on. E.g. if on Windows,
WINDOWS constant will be True, all others will be False.

New in version 4.0.0.

	
psutil.PROCFS_PATH

	The path of the /proc filesystem on Linux and Solaris (defaults to
"/proc").
You may want to re-set this constant right after importing psutil in case
your /proc filesystem is mounted elsewhere or if you want to retrieve
information about Linux containers such as
Docker [https://www.docker.io/],
Heroku [https://www.heroku.com/] or
LXC [https://linuxcontainers.org/] (see
here [https://fabiokung.com/2014/03/13/memory-inside-linux-containers/]
for more info).
It must be noted that this trick works only for APIs which rely on /proc
filesystem (e.g. memory APIs and most Process class methods).

Availability: Linux, Solaris

New in version 3.2.3.

Changed in version 3.4.2: also available on Solaris.

	
psutil.STATUS_RUNNING

	

	
psutil.STATUS_SLEEPING

	

	
psutil.STATUS_DISK_SLEEP

	

	
psutil.STATUS_STOPPED

	

	
psutil.STATUS_TRACING_STOP

	

	
psutil.STATUS_ZOMBIE

	

	
psutil.STATUS_DEAD

	

	
psutil.STATUS_WAKE_KILL

	

	
psutil.STATUS_WAKING

	

	
psutil.STATUS_IDLE(OSX, FreeBSD)

	

	
psutil.STATUS_LOCKED(FreeBSD)

	

	
psutil.STATUS_WAITING(FreeBSD)

	

	
psutil.STATUS_SUSPENDED(NetBSD)

	A set of strings representing the status of a process.
Returned by psutil.Process.status().

New in version 3.4.1: STATUS_SUSPENDED (NetBSD)

	
psutil.CONN_ESTABLISHED

	

	
psutil.CONN_SYN_SENT

	

	
psutil.CONN_SYN_RECV

	

	
psutil.CONN_FIN_WAIT1

	

	
psutil.CONN_FIN_WAIT2

	

	
psutil.CONN_TIME_WAIT

	

	
psutil.CONN_CLOSE

	

	
psutil.CONN_CLOSE_WAIT

	

	
psutil.CONN_LAST_ACK

	

	
psutil.CONN_LISTEN

	

	
psutil.CONN_CLOSING

	

	
psutil.CONN_NONE

	

	
psutil.CONN_DELETE_TCB(Windows)

	

	
psutil.CONN_IDLE(Solaris)

	

	
psutil.CONN_BOUND(Solaris)

	A set of strings representing the status of a TCP connection.
Returned by psutil.Process.connections() (status field).

	
psutil.ABOVE_NORMAL_PRIORITY_CLASS

	

	
psutil.BELOW_NORMAL_PRIORITY_CLASS

	

	
psutil.HIGH_PRIORITY_CLASS

	

	
psutil.IDLE_PRIORITY_CLASS

	

	
psutil.NORMAL_PRIORITY_CLASS

	

	
psutil.REALTIME_PRIORITY_CLASS

	A set of integers representing the priority of a process on Windows (see
MSDN documentation [http://msdn.microsoft.com/en-us/library/ms686219(v=vs.85).aspx]).
They can be used in conjunction with
psutil.Process.nice() to get or set process priority.

Availability: Windows

Changed in version 3.0.0: on Python >= 3.4 these constants are
enums [https://docs.python.org/3/library/enum.html#module-enum]
instead of a plain integer.

	
psutil.IOPRIO_CLASS_NONE

	

	
psutil.IOPRIO_CLASS_RT

	

	
psutil.IOPRIO_CLASS_BE

	

	
psutil.IOPRIO_CLASS_IDLE

	A set of integers representing the I/O priority of a process on Linux. They
can be used in conjunction with psutil.Process.ionice() to get or set
process I/O priority.
IOPRIO_CLASS_NONE and IOPRIO_CLASS_BE (best effort) is the default for
any process that hasn’t set a specific I/O priority.
IOPRIO_CLASS_RT (real time) means the process is given first access to the
disk, regardless of what else is going on in the system.
IOPRIO_CLASS_IDLE means the process will get I/O time when no-one else
needs the disk.
For further information refer to manuals of
ionice [http://linux.die.net/man/1/ionice]
command line utility or
ioprio_get [http://linux.die.net/man/2/ioprio_get]
system call.

Availability: Linux

Changed in version 3.0.0: on Python >= 3.4 these constants are
enums [https://docs.python.org/3/library/enum.html#module-enum]
instead of a plain integer.

	
psutil.RLIM_INFINITY

	

	
psutil.RLIMIT_AS

	

	
psutil.RLIMIT_CORE

	

	
psutil.RLIMIT_CPU

	

	
psutil.RLIMIT_DATA

	

	
psutil.RLIMIT_FSIZE

	

	
psutil.RLIMIT_LOCKS

	

	
psutil.RLIMIT_MEMLOCK

	

	
psutil.RLIMIT_MSGQUEUE

	

	
psutil.RLIMIT_NICE

	

	
psutil.RLIMIT_NOFILE

	

	
psutil.RLIMIT_NPROC

	

	
psutil.RLIMIT_RSS

	

	
psutil.RLIMIT_RTPRIO

	

	
psutil.RLIMIT_RTTIME

	

	
psutil.RLIMIT_SIGPENDING

	

	
psutil.RLIMIT_STACK

	Constants used for getting and setting process resource limits to be used in
conjunction with psutil.Process.rlimit(). See
man prlimit [http://linux.die.net/man/2/prlimit] for further information.

Availability: Linux

	
psutil.AF_LINK

	Constant which identifies a MAC address associated with a network interface.
To be used in conjunction with psutil.net_if_addrs().

New in version 3.0.0.

	
psutil.NIC_DUPLEX_FULL

	

	
psutil.NIC_DUPLEX_HALF

	

	
psutil.NIC_DUPLEX_UNKNOWN

	Constants which identifies whether a NIC (network interface card) has full or
half mode speed. NIC_DUPLEX_FULL means the NIC is able to send and receive
data (files) simultaneously, NIC_DUPLEX_FULL means the NIC can either send or
receive data at a time.
To be used in conjunction with psutil.net_if_stats().

New in version 3.0.0.

	
psutil.POWER_TIME_UNKNOWN

	

	
psutil.POWER_TIME_UNLIMITED

	Whether the remaining time of the battery cannot be determined or is
unlimited.
May be assigned to psutil.sensors_battery()‘s secsleft field.

New in version 5.1.0.

	
psutil.version_info

	A tuple to check psutil installed version. Example:

>>> import psutil
>>> if psutil.version_info >= (4, 5):
... pass

Unicode

Starting from version 5.3.0 psutil fully supports unicode, see
issue #1040 [https://github.com/giampaolo/psutil/issues/1040].
The notes below apply to any API returning a string such as
Process.exe() or Process.cwd(), including non-filesystem related
methods such as Process.username() or WindowsService.description():

	all strings are encoded by using the OS filesystem encoding
(sys.getfilesystemencoding()) which varies depending on the platform
(e.g. “UTF-8” on OSX, “mbcs” on Win)

	no API call is supposed to crash with UnicodeDecodeError

	
	instead, in case of badly encoded data returned by the OS, the following error handlers are used to replace the corrupted characters in the string:

	
	Python 3: sys.getfilesystemencodeerrors() (PY 3.6+) or
"surrogatescape" on POSIX and "replace" on Windows

	Python 2: "replace"

	on Python 2 all APIs return bytes (str type), never unicode

	on Python 2, you can go back to unicode by doing:

>>> unicode(p.exe(), sys.getdefaultencoding(), errors="replace")

Example which filters processes with a funky name working with both Python 2
and 3:

-*- coding: utf-8 -*-
import psutil, sys

PY3 = sys.version_info[0] == 2
LOOKFOR = u"ƒőő"
for proc in psutil.process_iter(attrs=['name']):
 name = proc.info['name']
 if not PY3:
 name = unicode(name, sys.getdefaultencoding(), errors="replace")
 if LOOKFOR == name:
 print("process %s found" % p)

Recipes

Follows a collection of utilities and examples which are common but not generic
enough to be part of the public API.

Find process by name

Check string against Process.name():

import psutil

def find_procs_by_name(name):
 "Return a list of processes matching 'name'."
 ls = []
 for p in psutil.process_iter(attrs=['name']):
 if p.info['name'] == name:
 ls.append(p)
 return ls

A bit more advanced, check string against Process.name(),
Process.exe() and Process.cmdline():

import os
import psutil

def find_procs_by_name(name):
 "Return a list of processes matching 'name'."
 ls = []
 for p in psutil.process_iter(attrs=["name", "exe", "cmdline"]):
 if name == p.info['name'] or \
 p.info['exe'] and os.path.basename(p.info['exe']) == name or \
 p.info['cmdline'] and p.info['cmdline'][0] == name:
 ls.append(p)
 return ls

Kill process tree

import os
import signal
import psutil

def kill_proc_tree(pid, sig=signal.SIGTERM, include_parent=True,
 timeout=None, on_terminate=None):
 """Kill a process tree (including grandchildren) with signal
 "sig" and return a (gone, still_alive) tuple.
 "on_terminate", if specified, is a callabck function which is
 called as soon as a child terminates.
 """
 if pid == os.getpid():
 raise RuntimeError("I refuse to kill myself")
 parent = psutil.Process(pid)
 children = parent.children(recursive=True)
 if include_parent:
 children.append(parent)
 for p in children:
 p.send_signal(sig)
 gone, alive = psutil.wait_procs(children, timeout=timeout,
 callback=on_terminate)
 return (gone, alive)

Terminate my children

This may be useful in unit tests whenever sub-processes are started.
This will help ensure that no extra children (zombies) stick around to hog
resources.

import psutil

def reap_children(timeout=3):
 "Tries hard to terminate and ultimately kill all the children of this process."
 def on_terminate(proc):
 print("process {} terminated with exit code {}".format(proc, proc.returncode))

 procs = psutil.Process().children()
 # send SIGTERM
 for p in procs:
 p.terminate()
 gone, alive = psutil.wait_procs(procs, timeout=timeout, callback=on_terminate)
 if not alive:
 # send SIGKILL
 for p in alive:
 print("process {} survived SIGTERM; trying SIGKILL" % p)
 p.kill()
 gone, alive = psutil.wait_procs(alive, timeout=timeout, callback=on_terminate)
 if not alive:
 # give up
 for p in alive:
 print("process {} survived SIGKILL; giving up" % p)

Filtering and sorting processes

This is a collection of one-liners showing how to use process_iter() in
order to filter for processes and sort them.

Setup:

>>> import psutil
>>> from pprint import pprint as pp

Processes having “python” in their name:

>>> pp([p.info for p in psutil.process_iter(attrs=['pid', 'name']) if 'python' in p.info['name']])
[{'name': 'python3', 'pid': 21947},
 {'name': 'python', 'pid': 23835}]

Processes owned by user:

>>> import getpass
>>> pp([(p.pid, p.info['name']) for p in psutil.process_iter(attrs=['name', 'username']) if p.info['username'] == getpass.getuser()])
(16832, 'bash'),
(19772, 'ssh'),
(20492, 'python')]

Processes actively running:

>>> pp([(p.pid, p.info) for p in psutil.process_iter(attrs=['name', 'status']) if p.info['status'] == psutil.STATUS_RUNNING])
[(1150, {'name': 'Xorg', 'status': 'running'}),
 (1776, {'name': 'unity-panel-service', 'status': 'running'}),
 (20492, {'name': 'python', 'status': 'running'})]

Processes using log files:

>>> import os
>>> import psutil
>>> for p in psutil.process_iter(attrs=['name', 'open_files']):
... for file in p.info['open_files'] or []:
... if os.path.splitext(file.path)[1] == '.log':
... print("%-5s %-10s %s" % (p.pid, p.info['name'][:10], file.path))
...
1510 upstart /home/giampaolo/.cache/upstart/unity-settings-daemon.log
2174 nautilus /home/giampaolo/.local/share/gvfs-metadata/home-ce08efac.log
2650 chrome /home/giampaolo/.config/google-chrome/Default/data_reduction_proxy_leveldb/000003.log

Processes consuming more than 500M of memory:

>>> pp([(p.pid, p.info['name'], p.info['memory_info'].rss) for p in psutil.process_iter(attrs=['name', 'memory_info']) if p.info['memory_info'].rss > 500 * 1024 * 1024])
[(2650, 'chrome', 532324352),
 (3038, 'chrome', 1120088064),
 (21915, 'sublime_text', 615407616)]

Top 3 most memory consuming processes:

>>> pp([(p.pid, p.info) for p in sorted(psutil.process_iter(attrs=['name', 'memory_percent']), key=lambda p: p.info['memory_percent'])][-3:])
[(21915, {'memory_percent': 3.6815453247662737, 'name': 'sublime_text'}),
 (3038, {'memory_percent': 6.732935429979187, 'name': 'chrome'}),
 (3249, {'memory_percent': 8.994554843376399, 'name': 'chrome'})]

Top 3 processes which consumed the most CPU time:

>>> pp([(p.pid, p.info['name'], sum(p.info['cpu_times'])) for p in sorted(psutil.process_iter(attrs=['name', 'cpu_times']), key=lambda p: sum(p.info['cpu_times'][:2]))][-3:])
[(2721, 'chrome', 10219.73),
 (1150, 'Xorg', 11116.989999999998),
 (2650, 'chrome', 18451.97)]

Top 3 processes which caused the most I/O:

>>> pp([(p.pid, p.info['name']) for p in sorted(psutil.process_iter(attrs=['name', 'io_counters']), key=lambda p: p.info['io_counters'] and p.info['io_counters'][:2])][-3:])
[(21915, 'sublime_text'),
 (1871, 'pulseaudio'),
 (1510, 'upstart')]

Top 3 processes opening more file descriptors:

 >>> pp([(p.pid, p.info) for p in sorted(psutil.process_iter(attrs=['name', 'num_fds']), key=lambda p: p.info['num_fds'])][-3:])
[(21915, {'name': 'sublime_text', 'num_fds': 105}),
 (2721, {'name': 'chrome', 'num_fds': 185}),
 (2650, {'name': 'chrome', 'num_fds': 354})]

Q&A

	Q: What Windows versions are supported?

	A: From Windows Vista onwards, both 32 and 64 bit versions.
Latest binary (wheel / exe) release which supports Windows 2000, XP
and 2003 server is
psutil 3.4.2 [https://pypi.python.org/pypi?name=psutil&version=3.4.2&:action=files].
On such old systems psutil is no longer tested or maintained, but it can
still be compiled from sources (you’ll need Visual Studio)
and it should “work” (more or less).

	Q: What SunOS versions are supported?

	A: From Solaris 10 onwards.

	Q: Why do I get AccessDenied for certain processes?

	A: This may happen when you query processess owned by another user,
especially on OSX [https://github.com/giampaolo/psutil/issues/883] and
Windows.
Unfortunately there’s not much you can do about this except running the
Python process with higher privileges.
On Unix you may run the the Python process as root or use the SUID bit
(this is the trick used by tools such as ps and netstat).
On Windows you may run the Python process as NT AUTHORITY\SYSTEM or install
the Python script as a Windows service (this is the trick used by tools
such as ProcessHacker).

	Q: What about load average?

	A: psutil does not expose any load average function as it’s already available
in python as
os.getloadavg [https://docs.python.org/2/library/os.html#os.getloadavg]

Running tests

There are two ways of running tests. If psutil is already installed use:

$ python -m psutil.tests

You can use this method as a quick way to make sure psutil fully works on your
platform. If you have a copy of the source code you can also use:

$ make test

Development guide

If you plan on hacking on psutil (e.g. want to add a new feature or fix a bug)
take a look at the
development guide [https://github.com/giampaolo/psutil/blob/master/DEVGUIDE.rst].

Timeline

	2017-09-01:
5.3.0 [https://pypi.python.org/pypi?name=psutil&version=5.3.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#530] -
diff [https://github.com/giampaolo/psutil/compare/release-5.2.2...release-5.3.0#files_bucket]

	2017-04-10:
5.2.2 [https://pypi.python.org/pypi?name=psutil&version=5.2.2&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#522] -
diff [https://github.com/giampaolo/psutil/compare/release-5.2.1...release-5.2.2#files_bucket]

	2017-03-24:
5.2.1 [https://pypi.python.org/pypi?name=psutil&version=5.2.1&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#521] -
diff [https://github.com/giampaolo/psutil/compare/release-5.2.0...release-5.2.1#files_bucket]

	2017-03-05:
5.2.0 [https://pypi.python.org/pypi?name=psutil&version=5.2.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#520] -
diff [https://github.com/giampaolo/psutil/compare/release-5.1.3...release-5.2.0#files_bucket]

	2017-02-07:
5.1.3 [https://pypi.python.org/pypi?name=psutil&version=5.1.3&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#513] -
diff [https://github.com/giampaolo/psutil/compare/release-5.1.2...release-5.1.3#files_bucket]

	2017-02-03:
5.1.2 [https://pypi.python.org/pypi?name=psutil&version=5.1.2&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#512] -
diff [https://github.com/giampaolo/psutil/compare/release-5.1.1...release-5.1.2#files_bucket]

	2017-02-03:
5.1.1 [https://pypi.python.org/pypi?name=psutil&version=5.1.1&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#511] -
diff [https://github.com/giampaolo/psutil/compare/release-5.1.0...release-5.1.1#files_bucket]

	2017-02-01:
5.1.0 [https://pypi.python.org/pypi?name=psutil&version=5.1.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#510] -
diff [https://github.com/giampaolo/psutil/compare/release-5.0.1...release-5.1.0#files_bucket]

	2016-12-21:
5.0.1 [https://pypi.python.org/pypi?name=psutil&version=5.0.1&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#501] -
diff [https://github.com/giampaolo/psutil/compare/release-5.0.0...release-5.0.1#files_bucket]

	2016-11-06:
5.0.0 [https://pypi.python.org/pypi?name=psutil&version=5.0.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#500] -
diff [https://github.com/giampaolo/psutil/compare/release-4.4.2...release-5.0.0#files_bucket]

	2016-10-05:
4.4.2 [https://pypi.python.org/pypi?name=psutil&version=4.4.2&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#442] -
diff [https://github.com/giampaolo/psutil/compare/release-4.4.1...release-4.4.2#files_bucket]

	2016-10-25:
4.4.1 [https://pypi.python.org/pypi?name=psutil&version=4.4.1&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#441] -
diff [https://github.com/giampaolo/psutil/compare/release-4.4.0...release-4.4.1#files_bucket]

	2016-10-23:
4.4.0 [https://pypi.python.org/pypi?name=psutil&version=4.4.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#440] -
diff [https://github.com/giampaolo/psutil/compare/release-4.3.1...release-4.4.0#files_bucket]

	2016-09-01:
4.3.1 [https://pypi.python.org/pypi?name=psutil&version=4.3.1&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#431] -
diff [https://github.com/giampaolo/psutil/compare/release-4.3.0...release-4.3.1#files_bucket]

	2016-06-18:
4.3.0 [https://pypi.python.org/pypi?name=psutil&version=4.3.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#430] -
diff [https://github.com/giampaolo/psutil/compare/release-4.2.0...release-4.3.0#files_bucket]

	2016-05-14:
4.2.0 [https://pypi.python.org/pypi?name=psutil&version=4.2.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#420] -
diff [https://github.com/giampaolo/psutil/compare/release-4.1.0...release-4.2.0#files_bucket]

	2016-03-12:
4.1.0 [https://pypi.python.org/pypi?name=psutil&version=4.1.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#410] -
diff [https://github.com/giampaolo/psutil/compare/release-4.0.0...release-4.1.0#files_bucket]

	2016-02-17:
4.0.0 [https://pypi.python.org/pypi?name=psutil&version=4.0.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#400] -
diff [https://github.com/giampaolo/psutil/compare/release-3.4.2...release-4.0.0#files_bucket]

	2016-01-20:
3.4.2 [https://pypi.python.org/pypi?name=psutil&version=3.4.2&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#342] -
diff [https://github.com/giampaolo/psutil/compare/release-3.4.1...release-3.4.2#files_bucket]

	2016-01-15:
3.4.1 [https://pypi.python.org/pypi?name=psutil&version=3.4.1&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#341] -
diff [https://github.com/giampaolo/psutil/compare/release-3.3.0...release-3.4.1#files_bucket]

	2015-11-25:
3.3.0 [https://pypi.python.org/pypi?name=psutil&version=3.3.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#330] -
diff [https://github.com/giampaolo/psutil/compare/release-3.2.2...release-3.3.0#files_bucket]

	2015-10-04:
3.2.2 [https://pypi.python.org/pypi?name=psutil&version=3.2.2&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#322] -
diff [https://github.com/giampaolo/psutil/compare/release-3.2.1...release-3.2.2#files_bucket]

	2015-09-03:
3.2.1 [https://pypi.python.org/pypi?name=psutil&version=3.2.1&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#321] -
diff [https://github.com/giampaolo/psutil/compare/release-3.2.0...release-3.2.1#files_bucket]

	2015-09-02:
3.2.0 [https://pypi.python.org/pypi?name=psutil&version=3.2.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#320] -
diff [https://github.com/giampaolo/psutil/compare/release-3.1.1...release-3.2.0#files_bucket]

	2015-07-15:
3.1.1 [https://pypi.python.org/pypi?name=psutil&version=3.1.1&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#311] -
diff [https://github.com/giampaolo/psutil/compare/release-3.1.0...release-3.1.1#files_bucket]

	2015-07-15:
3.1.0 [https://pypi.python.org/pypi?name=psutil&version=3.1.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#310] -
diff [https://github.com/giampaolo/psutil/compare/release-3.0.1...release-3.1.0#files_bucket]

	2015-06-18:
3.0.1 [https://pypi.python.org/pypi?name=psutil&version=3.0.1&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#301] -
diff [https://github.com/giampaolo/psutil/compare/release-3.0.0...release-3.0.1#files_bucket]

	2015-06-13:
3.0.0 [https://pypi.python.org/pypi?name=psutil&version=3.0.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#300] -
diff [https://github.com/giampaolo/psutil/compare/release-2.2.1...release-3.0.0#files_bucket]

	2015-02-02:
2.2.1 [https://pypi.python.org/pypi?name=psutil&version=2.2.1&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#221] -
diff [https://github.com/giampaolo/psutil/compare/release-2.2.0...release-2.2.1#files_bucket]

	2015-01-06:
2.2.0 [https://pypi.python.org/pypi?name=psutil&version=2.2.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#220] -
diff [https://github.com/giampaolo/psutil/compare/release-2.1.3...release-2.2.0#files_bucket]

	2014-09-26:
2.1.3 [https://pypi.python.org/pypi?name=psutil&version=2.1.3&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#213] -
diff [https://github.com/giampaolo/psutil/compare/release-2.1.2...release-2.1.3#files_bucket]

	2014-09-21:
2.1.2 [https://pypi.python.org/pypi?name=psutil&version=2.1.2&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#212] -
diff [https://github.com/giampaolo/psutil/compare/release-2.1.1...release-2.1.2#files_bucket]

	2014-04-30:
2.1.1 [https://pypi.python.org/pypi?name=psutil&version=2.1.1&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#211] -
diff [https://github.com/giampaolo/psutil/compare/release-2.1.0...release-2.1.1#files_bucket]

	2014-04-08:
2.1.0 [https://pypi.python.org/pypi?name=psutil&version=2.1.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#210] -
diff [https://github.com/giampaolo/psutil/compare/release-2.0.0...release-2.1.0#files_bucket]

	2014-03-10:
2.0.0 [https://pypi.python.org/pypi?name=psutil&version=2.0.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#200] -
diff [https://github.com/giampaolo/psutil/compare/release-1.2.1...release-2.0.0#files_bucket]

	2013-11-25:
1.2.1 [https://pypi.python.org/pypi?name=psutil&version=1.2.1&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#121] -
diff [https://github.com/giampaolo/psutil/compare/release-1.2.0...release-1.2.1#files_bucket]

	2013-11-20:
1.2.0 [https://pypi.python.org/pypi?name=psutil&version=1.2.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#120] -
diff [https://github.com/giampaolo/psutil/compare/release-1.1.2...release-1.2.0#files_bucket]

	2013-10-22:
1.1.2 [https://pypi.python.org/pypi?name=psutil&version=1.1.2&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#112] -
diff [https://github.com/giampaolo/psutil/compare/release-1.1.1...release-1.1.2#files_bucket]

	2013-10-08:
1.1.1 [https://pypi.python.org/pypi?name=psutil&version=1.1.1&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#111] -
diff [https://github.com/giampaolo/psutil/compare/release-1.1.0...release-1.1.1#files_bucket]

	2013-09-28:
1.1.0 [https://pypi.python.org/pypi?name=psutil&version=1.1.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#110] -
diff [https://github.com/giampaolo/psutil/compare/release-1.0.1...release-1.1.0#files_bucket]

	2013-07-12:
1.0.1 [https://pypi.python.org/pypi?name=psutil&version=1.0.1&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#101] -
diff [https://github.com/giampaolo/psutil/compare/release-1.0.0...release-1.0.1#files_bucket]

	2013-07-10:
1.0.0 [https://pypi.python.org/pypi?name=psutil&version=1.0.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#100] -
diff [https://github.com/giampaolo/psutil/compare/release-0.7.1...release-1.0.0#files_bucket]

	2013-05-03:
0.7.1 [https://pypi.python.org/pypi?name=psutil&version=0.7.1&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#071] -
diff [https://github.com/giampaolo/psutil/compare/release-0.7.0...release-0.7.1#files_bucket]

	2013-04-12:
0.7.0 [https://pypi.python.org/pypi?name=psutil&version=0.7.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#070] -
diff [https://github.com/giampaolo/psutil/compare/release-0.6.1...release-0.7.0#files_bucket]

	2012-08-16:
0.6.1 [https://pypi.python.org/pypi?name=psutil&version=0.6.1&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#061] -
diff [https://github.com/giampaolo/psutil/compare/release-0.6.0...release-0.6.1#files_bucket]

	2012-08-13:
0.6.0 [https://pypi.python.org/pypi?name=psutil&version=0.6.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#060] -
diff [https://github.com/giampaolo/psutil/compare/release-0.5.1...release-0.6.0#files_bucket]

	2012-06-29:
0.5.1 [https://pypi.python.org/pypi?name=psutil&version=0.5.1&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#051] -
diff [https://github.com/giampaolo/psutil/compare/release-0.5.0...release-0.5.1#files_bucket]

	2012-06-27:
0.5.0 [https://pypi.python.org/pypi?name=psutil&version=0.5.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#050] -
diff [https://github.com/giampaolo/psutil/compare/release-0.4.1...release-0.5.0#files_bucket]

	2011-12-14:
0.4.1 [https://pypi.python.org/pypi?name=psutil&version=0.4.1&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#041] -
diff [https://github.com/giampaolo/psutil/compare/release-0.4.0...release-0.4.1#files_bucket]

	2011-10-29:
0.4.0 [https://pypi.python.org/pypi?name=psutil&version=0.4.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#040] -
diff [https://github.com/giampaolo/psutil/compare/release-0.3.0...release-0.4.0#files_bucket]

	2011-07-08:
0.3.0 [https://pypi.python.org/pypi?name=psutil&version=0.3.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#030] -
diff [https://github.com/giampaolo/psutil/compare/release-0.2.1...release-0.3.0#files_bucket]

	2011-03-20:
0.2.1 [https://pypi.python.org/pypi?name=psutil&version=0.2.1&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#021] -
diff [https://github.com/giampaolo/psutil/compare/release-0.2.0...release-0.2.1#files_bucket]

	2010-11-13:
0.2.0 [https://pypi.python.org/pypi?name=psutil&version=0.2.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#020] -
diff [https://github.com/giampaolo/psutil/compare/release-0.1.3...release-0.2.0#files_bucket]

	2010-03-02:
0.1.3 [https://pypi.python.org/pypi?name=psutil&version=0.1.3&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#013] -
diff [https://github.com/giampaolo/psutil/compare/release-0.1.2...release-0.1.3#files_bucket]

	2009-05-06:
0.1.2 [https://pypi.python.org/pypi?name=psutil&version=0.1.2&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#012] -
diff [https://github.com/giampaolo/psutil/compare/release-0.1.1...release-0.1.2#files_bucket]

	2009-03-06:
0.1.1 [https://pypi.python.org/pypi?name=psutil&version=0.1.1&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#011] -
diff [https://github.com/giampaolo/psutil/compare/release-0.1.0...release-0.1.1#files_bucket]

	2009-01-27:
0.1.0 [https://pypi.python.org/pypi?name=psutil&version=0.1.0&:action=files] -
what’s new [https://github.com/giampaolo/psutil/blob/master/HISTORY.rst#010] -
diff [https://github.com/giampaolo/psutil/compare/d84cc9a783d977368a64016cdb3568d2c9bceacc...release-0.1.0#files_bucket]

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 psutil	
 psutil module

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

A

 	
 	ABOVE_NORMAL_PRIORITY_CLASS (in module psutil)

 	AccessDenied (class in psutil)

 	
 	AF_LINK (in module psutil)

 	as_dict() (psutil.Process method)

 	(psutil.WindowsService method)

B

 	
 	BELOW_NORMAL_PRIORITY_CLASS (in module psutil)

 	binpath() (psutil.WindowsService method)

 	
 	boot_time() (in module psutil)

 	BSD (in module psutil)

C

 	
 	children() (psutil.Process method)

 	cmdline() (psutil.Process method)

 	CONN_BOUND (in module psutil)

 	CONN_CLOSE (in module psutil)

 	CONN_CLOSE_WAIT (in module psutil)

 	CONN_CLOSING (in module psutil)

 	CONN_DELETE_TCB (in module psutil)

 	CONN_ESTABLISHED (in module psutil)

 	CONN_FIN_WAIT1 (in module psutil)

 	CONN_FIN_WAIT2 (in module psutil)

 	CONN_IDLE (in module psutil)

 	CONN_LAST_ACK (in module psutil)

 	CONN_LISTEN (in module psutil)

 	CONN_NONE (in module psutil)

 	CONN_SYN_RECV (in module psutil)

 	
 	CONN_SYN_SENT (in module psutil)

 	CONN_TIME_WAIT (in module psutil)

 	connections() (psutil.Process method)

 	cpu_affinity() (psutil.Process method)

 	cpu_count() (in module psutil)

 	cpu_freq() (in module psutil)

 	cpu_num() (psutil.Process method)

 	cpu_percent() (in module psutil)

 	(psutil.Process method)

 	cpu_stats() (in module psutil)

 	cpu_times() (in module psutil)

 	(psutil.Process method)

 	cpu_times_percent() (in module psutil)

 	create_time() (psutil.Process method)

 	cwd() (psutil.Process method)

D

 	
 	description() (psutil.WindowsService method)

 	disk_io_counters() (in module psutil)

 	
 	disk_partitions() (in module psutil)

 	disk_usage() (in module psutil)

 	display_name() (psutil.WindowsService method)

E

 	
 	environ() (psutil.Process method)

 	
 	Error (class in psutil)

 	exe() (psutil.Process method)

F

 	
 	FREEBSD (in module psutil)

G

 	
 	gids() (psutil.Process method)

H

 	
 	HIGH_PRIORITY_CLASS (in module psutil)

I

 	
 	IDLE_PRIORITY_CLASS (in module psutil)

 	io_counters() (psutil.Process method)

 	ionice() (psutil.Process method)

 	IOPRIO_CLASS_BE (in module psutil)

 	
 	IOPRIO_CLASS_IDLE (in module psutil)

 	IOPRIO_CLASS_NONE (in module psutil)

 	IOPRIO_CLASS_RT (in module psutil)

 	is_running() (psutil.Process method)

K

 	
 	kill() (psutil.Process method)

L

 	
 	LINUX (in module psutil)

M

 	
 	memory_full_info() (psutil.Process method)

 	memory_info() (psutil.Process method)

 	
 	memory_info_ex() (psutil.Process method)

 	memory_maps() (psutil.Process method)

 	memory_percent() (psutil.Process method)

N

 	
 	name() (psutil.Process method)

 	(psutil.WindowsService method)

 	net_connections() (in module psutil)

 	net_if_addrs() (in module psutil)

 	net_if_stats() (in module psutil)

 	net_io_counters() (in module psutil)

 	NETBSD (in module psutil)

 	NIC_DUPLEX_FULL (in module psutil)

 	
 	NIC_DUPLEX_HALF (in module psutil)

 	NIC_DUPLEX_UNKNOWN (in module psutil)

 	nice() (psutil.Process method)

 	NORMAL_PRIORITY_CLASS (in module psutil)

 	NoSuchProcess (class in psutil)

 	num_ctx_switches() (psutil.Process method)

 	num_fds() (psutil.Process method)

 	num_handles() (psutil.Process method)

 	num_threads() (psutil.Process method)

O

 	
 	oneshot() (psutil.Process method)

 	open_files() (psutil.Process method)

 	
 	OPENBSD (in module psutil)

 	OSX (in module psutil)

P

 	
 	parent() (psutil.Process method)

 	pid (psutil.Process attribute)

 	pid() (psutil.WindowsService method)

 	pid_exists() (in module psutil)

 	pids() (in module psutil)

 	Popen (class in psutil)

 	POSIX (in module psutil)

 	
 	POWER_TIME_UNKNOWN (in module psutil)

 	POWER_TIME_UNLIMITED (in module psutil)

 	ppid() (psutil.Process method)

 	Process (class in psutil)

 	process_iter() (in module psutil)

 	PROCFS_PATH (in module psutil)

 	psutil (module)

R

 	
 	REALTIME_PRIORITY_CLASS (in module psutil)

 	resume() (psutil.Process method)

 	RLIM_INFINITY (in module psutil)

 	rlimit() (psutil.Process method)

 	RLIMIT_AS (in module psutil)

 	RLIMIT_CORE (in module psutil)

 	RLIMIT_CPU (in module psutil)

 	RLIMIT_DATA (in module psutil)

 	RLIMIT_FSIZE (in module psutil)

 	RLIMIT_LOCKS (in module psutil)

 	
 	RLIMIT_MEMLOCK (in module psutil)

 	RLIMIT_MSGQUEUE (in module psutil)

 	RLIMIT_NICE (in module psutil)

 	RLIMIT_NOFILE (in module psutil)

 	RLIMIT_NPROC (in module psutil)

 	RLIMIT_RSS (in module psutil)

 	RLIMIT_RTPRIO (in module psutil)

 	RLIMIT_RTTIME (in module psutil)

 	RLIMIT_SIGPENDING (in module psutil)

 	RLIMIT_STACK (in module psutil)

S

 	
 	send_signal() (psutil.Process method)

 	sensors_battery() (in module psutil)

 	sensors_fans() (in module psutil)

 	sensors_temperatures() (in module psutil)

 	start_type() (psutil.WindowsService method)

 	status() (psutil.Process method)

 	(psutil.WindowsService method)

 	STATUS_DEAD (in module psutil)

 	STATUS_DISK_SLEEP (in module psutil)

 	STATUS_IDLE (in module psutil)

 	STATUS_LOCKED (in module psutil)

 	
 	STATUS_RUNNING (in module psutil)

 	STATUS_SLEEPING (in module psutil)

 	STATUS_STOPPED (in module psutil)

 	STATUS_SUSPENDED (in module psutil)

 	STATUS_TRACING_STOP (in module psutil)

 	STATUS_WAITING (in module psutil)

 	STATUS_WAKE_KILL (in module psutil)

 	STATUS_WAKING (in module psutil)

 	STATUS_ZOMBIE (in module psutil)

 	SUNOS (in module psutil)

 	suspend() (psutil.Process method)

 	swap_memory() (in module psutil)

T

 	
 	terminal() (psutil.Process method)

 	terminate() (psutil.Process method)

 	
 	threads() (psutil.Process method)

 	TimeoutExpired (class in psutil)

U

 	
 	uids() (psutil.Process method)

 	username() (psutil.Process method)

 	(psutil.WindowsService method)

 	
 	users() (in module psutil)

V

 	
 	version_info (in module psutil)

 	
 	virtual_memory() (in module psutil)

W

 	
 	wait() (psutil.Process method)

 	wait_procs() (in module psutil)

 	win_service_get() (in module psutil)

 	
 	win_service_iter() (in module psutil)

 	WINDOWS (in module psutil)

 	WindowsService (class in psutil)

Z

 	
 	ZombieProcess (class in psutil)

 nav.xhtml

 Table of Contents

 		psutil documentation

_static/ajax-loader.gif

_static/comment-close.png

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

