
gevent-socketio Documentation
Release 0.3.1

Jeffrey Gelens,Alex Bourget,John Anderson

March 19, 2015

Contents

1 Introduction 1

2 Concepts 3

3 Getting started 5

4 Examples 7

5 Security 9

6 API docs 11

7 References 13

8 Contacts 15

9 Credits 17

10 TODO 19

i

ii

CHAPTER 1

Introduction

Socket.IO is a WebSocket-like abstraction that enables real-time communication between a browser and a server.
gevent-socketio is a Python implementation of the protocol.

The reference server implementation of Socket.IO runs on Node.js and was developed by LearnBoost. There are now
server implementations in a variety of languages.

One aim of this project is to provide a single gevent-based API that works across the different WSGI-based web
frameworks out there (Pyramid, Pylons, Flask, web2py, Django, etc...). Only ~3 lines of code are required to
tie-in gevent-socketio in your framework. Note: you need to use the gevent python WSGI server to use
gevent-socketio.

Namespaces: since you mostly have one websocket/socket.io endpoint per website, it is important to be able to
namespace the different real-time activities of the different pages or parts of your site, just like you need routes to map
URLs to different parts of your code. The Socket.IO 0.7+ namespaces are a welcome addition, and if you don’t use
Socket.IO, you’ll probably end-up writing your own namespacing mechanism at some point.

Named events: To distinguish the messages that are coming and going, you most probably want to give them some
name. Here again, not using Socket.IO, you will find yourself implementing a way to tag your packets with names
representing different tasks or actions to perform. With Socket.IO 0.6 or with normal WebSockets, you would probably
encode a JSON object with one of the keys that is reserved for that (I used {"type": "submit_something"}.
Socket.IO 0.7+ implements named events, which put that information in a terse form on the wire. It also allows you to
define callbacks, that can be acknowledged by the other endpoint, and then fire back your function with some return
parameters. Something great for RPC, that you’d need to implement yourself the moment you need it.

Transports: One of the main feature of Socket.IO is the abstraction of the transport, that gives you real-time web
support down to Internet Explorer 6.0, using long-polling methods. It will also use native WebSockets when available
to the browser, for even lower latencies. Currently supported transports: websocket, flashsocket, htmlfile,
xhr-multipart, xhr-polling, jsonp-polling.

This implementation covers nearly all the features of the Socket.IO 0.7+ (up to at least 0.9.1) protocol, with events,
callbacks. It adds security in a pythonic way with granular ACLs (which don’t exist in the Node.js version) at the
method level. The project has several examples in the source code and in the documentation. Any addition and fixes
to the docs are warmly welcomed.

1

gevent-socketio Documentation, Release 0.3.1

2 Chapter 1. Introduction

CHAPTER 2

Concepts

In order to understand the following documentation articles, let’s clarify some of the terms used:

A Namespace is like a controller in the MVC world. It encompasses a set of methods that are logically in it. For
example, the send_private_message event would be in the /chat namespace, as well as the kick_ban
event. Whereas the scan_files event would be in the /filesystem namespace. Each namespace is represented
by a sub-class of BaseNamespace. A simple example would be, on the client side (the browser):

var socket = io.connect("/chat");

having loaded the socket.io.js library somewhere in your <head>. On the server (this is a Pyramid example, but
its pretty much the same for other frameworks):

from socketio.namespace import BaseNamespace

class ChatNamespace(BaseNamespace):
def on_chat(self, msg):

self.emit(’chat’, msg)

def socketio_service(request):
socketio_manage(request.environ, {’/chat’: ChatNamespace},

request)
return "out"

Here we use socketio.socketio_manage() to start the Socket.IO machine, and handle the real-time commu-
nication.

You will come across the notion of a Socket. This is a virtual socket, that abstracts the fact that some transports are
long-polling and others are stateful (like a Websocket), and exposes the same functionality for all. You can have many
namespaces inside a Socket, each delimited by their name like /chat, /filesystem or /foobar. Note also that
there is a global namespace, identified by an empty string. Some times, the global namespace has special features,
for backwards compatibilty reasons (we only have a global namespace in version 0.6 of the protocol). For example,
disconnecting the global namespace means disconnect the full socket. Disconnecting a qualified namespace, on the
other hand, only removes access to that namespace.

The Socket is responsible from taking the packets, which are, in the realm of a Namespace or a Socket object, a
dictionary that looks like:

{"type": "event",
"name": "launch_superhero",
"args": ["Superman", 123, "km", {"hair_color": "brown"}]}

These packets are serialized in a compact form when its time to put them on the wire. Socket.IO also has some
optimizations if we need to send many packets on some long-polling transports.

3

gevent-socketio Documentation, Release 0.3.1

At this point, if you don’t know gevent, you probably will want to learn a bit more about it, since it is the base you
will be working on:

http://www.gevent.org/

4 Chapter 2. Concepts

http://www.gevent.org/

CHAPTER 3

Getting started

Until we have a fully-fledged tutorial, please check out our example applications and the API documentation.

You can see a video that shows gevent-socketio in a live coding presentation here:

http://pyvideo.org/video/1573/gevent-socketio-cross-framework-real-time-web-li

To learn how to build your Namespace (the object dealing with requests and replies), see:

namespace_module

See this doc for different servers integration:

server_integration

5

http://pyvideo.org/video/1573/gevent-socketio-cross-framework-real-time-web-li

gevent-socketio Documentation, Release 0.3.1

6 Chapter 3. Getting started

CHAPTER 4

Examples

The gevent-socketio repository holds several examples:

https://github.com/abourget/gevent-socketio/tree/master/examples

• simple_chat is a bare-bone WSGI app with a minimal socketio integration

• simple_pyramid_chat is a simple chat application built on Pyramid

• live_cpu_graph is a simple realtime CPU graph (linux only)

• twitter_stream is a streaming feed of twitter updates

• pyramid_backbone_redis_chat is a Pyramid app using backbone.js and redis for pubsub

• pyramid_backbone_redis_chat_persistence is a Pyramid app using backbone.js, re-
dis for pubsub and features persistence

• testapp is the app we use to test the different features, so there are a couple of more advanced
use-cases demonstrated there

pyvore is an application that was developed to serve as real-time chat in conferences like the PyCon:

https://github.com/sontek/pyvore

This app is a Django tic-tac-toe application that uses the latest gevent-socketio:

https://github.com/sontek/django-tictactoe

7

https://github.com/abourget/gevent-socketio/tree/master/examples
https://github.com/sontek/pyvore
https://github.com/sontek/django-tictactoe

gevent-socketio Documentation, Release 0.3.1

8 Chapter 4. Examples

CHAPTER 5

Security

gevent-socketio provides method-level security, using an ACL model. You can read more about it in the names-
pace_module, but a basic example to secure one namespace would look like:

class AdminInterface(BaseNamespace):
def get_initial_acl(self):

"""Everything is locked at first"""
return []

def initialize(self):
This here assumes you have passed in a ‘request‘
to your socketio_manage() call, it has that
‘is_admin‘ attribute
if not request.is_admin:

return
else:

self.lift_acl_restrictions()

def on_blahblahblah(self, data):
"""This can’t be access until ‘lift_acl_restrictions()‘ has
been called

"""
pass

9

gevent-socketio Documentation, Release 0.3.1

10 Chapter 5. Security

CHAPTER 6

API docs

API documentation is where most of the juice/meat is. Read through and you’ll (hopefully) understand everything you
need about gevent-socketio.

The manager is the function you call from your framework. It is in:

socketio

Namespaces are the main interface the developer is going to use. You mostly define your own BaseNamespace
derivatives, and gevent-socketio maps the incoming messages to your methods automatically:

socketio.namespace

Mixins are components you can add to your namespaces, to provided added functionality.

socketio.mixins

Sockets are the virtual tunnels that are established and abstracted by the different Transports. They basically expose
socket-like send/receive functionality to the Namespace objects. Even when we use long-polling transports, only one
Socket is created per browser.

socketio.virtsocket

Packet is a library that handle the decoding of the messages encoded in the Socket.IO dialect. They take dictionaries
for encoding, and return decoded dictionaries also.

socketio.packet

Handler is a lower-level transports handler. It is responsible for calling your WSGI application

socketio.handler

Transports are responsible for translating the different fallback mechanisms to one abstracted Socket, dealing with
payload encoding, multi-message multiplexing and their reverse operation.

socketio.transports

Server is the component used to hook Gevent and its WSGI server to the WSGI app to be served, while dispatching
any Socket.IO related activities to the handler and the transports.

socketio.server

Auto-generated indexes:

• genindex

• modindex

11

gevent-socketio Documentation, Release 0.3.1

12 Chapter 6. API docs

CHAPTER 7

References

LearnBoost’s node.js version is the reference implementation, you can find the server component at this address:

https://github.com/learnboost/socket.io

The client JavaScript library’s development branch is here:

https://github.com/LearnBoost/socket.io-client

The specifications to the protocol are somehow in this repository:

https://github.com/LearnBoost/socket.io-spec

This is the original wow-website:

http://socket.io

Here is a list of the different frameworks integration to date, although not all have upgraded to the latest version of
gevent-socketio:

• pyramid_socketio: https://github.com/abourget/pyramid_socketio

• django-socketio: https://github.com/stephenmcd/django-socketio

The Flask guys will be working on an integration layer soon.

13

https://github.com/learnboost/socket.io
https://github.com/LearnBoost/socket.io-client
https://github.com/LearnBoost/socket.io-spec
http://socket.io
https://github.com/abourget/pyramid_socketio
https://github.com/stephenmcd/django-socketio

gevent-socketio Documentation, Release 0.3.1

14 Chapter 7. References

CHAPTER 8

Contacts

For any questions, you can use the Issue tracking at Github:

https://github.com/abourget/gevent-socketio https://github.com/abourget/gevent-socketio/issues

The mailing list:

https://groups.google.com/forum/#!forum/gevent-socketio

The maintainers:

https://twitter.com/bourgetalexndre https://twitter.com/sontek

15

https://github.com/abourget/gevent-socketio
https://github.com/abourget/gevent-socketio/issues
https://groups.google.com/forum/#!forum/gevent-socketio
https://twitter.com/bourgetalexndre
https://twitter.com/sontek

gevent-socketio Documentation, Release 0.3.1

16 Chapter 8. Contacts

CHAPTER 9

Credits

Jeffrey Gellens for starting and polishing this project over the years.

PyCon 2012 and the Sprints, for bringing this project up to version 0.9 of the protocol.

Current maintainers:

• Alexandre Bourget

• John Anderson

Contributors:

• Denis Bilenko

• Bobby Powers

• Lon Ingram

• Eugene Baumstein

• Sébastien Béal

• jpellerin (JP)

• Philip Neustrom

• Jonas Obrist

• fabiodive

• Dan O’Neill

• Whit Morriss

• Chakib (spike) Benziane

• Vivek Venugopalan

• Vladimir Protasov

• Bruno Bigras

• Gabriel de Labacheliere

• Flavio Curella

• thapar

• Marconi Moreto

• sv1jsb

17

gevent-socketio Documentation, Release 0.3.1

• Cliff Xuan

• Matt Billenstein

• Rolo

• Anthony Oliver

• Pierre Giraud

• m0sth8

• Daniel Swarbrick

18 Chapter 9. Credits

CHAPTER 10

TODO

How to integrate your framework’s “session” object (Beaker, memcached, or file-based). Beware: this can be tricky.
You need to manage that yourself.

19

	Introduction
	Concepts
	Getting started
	Examples
	Security
	API docs
	References
	Contacts
	Credits
	TODO

