

GeoPandas 0.1.1

GeoPandas is an open source project to make working with geospatial
data in python easier. GeoPandas extends the datatypes used by
pandas [http://pandas.pydata.org] to allow spatial operations on geometric types. Geometric
operations are performed by shapely [http://toblerity.github.io/shapely]. Geopandas further depends on
fiona [http://toblerity.github.io/fiona] for file access and descartes [https://pypi.python.org/pypi/descartes] and matplotlib [http://matplotlib.org] for plotting.

Description

The goal of GeoPandas is to make working with geospatial data in
python easier. It combines the capabilities of pandas and shapely,
providing geospatial operations in pandas and a high-level interface
to multiple geometries to shapely. GeoPandas enables you to easily do
operations in python that would otherwise require a spatial database
such as PostGIS.

	Installation
	Dependencies

	Testing

	User Guide
	GeoSeries

	GeoDataFrame

	Geopandas functions

	Examples

	About
	Known issues

Indices and tables

	Index

	Module Index

	Search Page

Installation

The released version of GeoPandas is 0.1. To install the released
version, use pip install geopandas.

You may install the latest development version by cloning the
GitHub [https://github.com/geopandas/geopandas] repository and using the setup script:

git clone https://github.com/geopandas/geopandas.git
cd geopandas
python setup.py install

It is also possible to install the latest development version
available on PyPI with pip by adding the --pre flag for pip 1.4
and later, or to use pip to install directly from the GitHub
repository with:

pip install git+git://github.com/geopandas/geopandas.git

Dependencies

Supports Python versions 2.6, 2.7, and 3.2+.

	numpy [http://www.numpy.org]

	pandas [http://pandas.pydata.org] (version 0.13 or later)

	shapely [http://toblerity.github.io/shapely]

	fiona [http://toblerity.github.io/fiona]

	six [https://pythonhosted.org/six]

	geopy [https://github.com/geopy/geopy] 0.99 (optional; for geocoding)

	psycopg2 [https://pypi.python.org/pypi/psycopg2] (optional; for PostGIS connection)

For plotting, these additional packages may be used:

	matplotlib [http://matplotlib.org]

	descartes [https://pypi.python.org/pypi/descartes]

	pysal [http://pysal.org]

Testing

To run the current set of tests from the source directory, run:

nosetests -v

from a command line.

Tests are automatically run on all commits on the GitHub repository,
including pull requests, on Travis CI [https://travis-ci.org/geopandas/geopandas].

GeoPandas User Guide

GeoPandas implements two main data structures, a GeoSeries and a
GeoDataFrame. These are subclasses of pandas Series and
DataFrame, respectively.

GeoSeries

A GeoSeries contains a sequence of geometries.

The GeoSeries class implements nearly all of the attributes and
methods of Shapely objects. When applied to a GeoSeries, they
will apply elementwise to all geometries in the series. Binary
operations can be applied between two GeoSeries, in which case the
operation is carried out elementwise. The two series will be aligned
by matching indices. Binary operations can also be applied to a
single geometry, in which case the operation is carried out for each
element of the series with that geometry. In either case, a
Series or a GeoSeries will be returned, as appropriate.

The following Shapely methods and attributes are available on
GeoSeries objects:

	
GeoSeries.area

	Returns a Series containing the area of each geometry in the GeoSeries.

	
GeoSeries.bounds

	Returns a DataFrame with columns minx, miny, maxx,
maxy values containing the bounds for each geometry.
(see GeoSeries.total_bounds for the limits of the entire series).

	
GeoSeries.length

	Returns a Series containing the length of each geometry.

	
GeoSeries.geom_type

	Returns a Series of strings specifying the Geometry Type of
each object.

	
GeoSeries.distance(other)

	Returns a Series containing the minimum distance to the other
GeoSeries (elementwise) or geometric object.

	
GeoSeries.representative_point()

	Returns a GeoSeries of (cheaply computed) points that are
guaranteed to be within each geometry.

	
GeoSeries.exterior

	Returns a GeoSeries of LinearRings representing the outer
boundary of each polygon in the GeoSeries. (Applies to GeoSeries
containing only Polygons).

	
GeoSeries.interiors

	Returns a GeoSeries of InteriorRingSequences representing the
inner rings of each polygon in the GeoSeries. (Applies to GeoSeries
containing only Polygons).

Unary Predicates

	
GeoSeries.is_empty

	Returns a Series of dtype('bool') with value True for
empty geometries.

	
GeoSeries.is_ring

	Returns a Series of dtype('bool') with value True for
features that are closed.

	
GeoSeries.is_simple

	Returns a Series of dtype('bool') with value True for
geometries that do not cross themselves (meaningful only for
LineStrings and LinearRings).

	
GeoSeries.is_valid

	Returns a Series of dtype('bool') with value True for
geometries that are valid.

Binary Predicates

	
GeoSeries.almost_equals(other[, decimal=6])

	Returns a Series of dtype('bool') with value True if
each object is approximately equal to the other at all
points to specified decimal place precision. (See also equals())

	
GeoSeries.contains(other)

	Returns a Series of dtype('bool') with value True if
each object’s interior contains the boundary and
interior of the other object and their boundaries do not touch at all.

	
GeoSeries.crosses(other)

	Returns a Series of dtype('bool') with value True if
the interior of each object intersects the interior of
the other but does not contain it, and the dimension of the intersection is
less than the dimension of the one or the other.

	
GeoSeries.disjoint(other)

	Returns a Series of dtype('bool') with value True if
the boundary and interior of each object does not
intersect at all with those of the other.

	
GeoSeries.equals(other)

	Returns a Series of dtype('bool') with value True if
if the set-theoretic boundary, interior, and exterior
of each object coincides with those of the other.

	
GeoSeries.intersects(other)

	Returns a Series of dtype('bool') with value True if
if the boundary and interior of each object intersects in
any way with those of the other.

	
GeoSeries.touches(other)

	Returns a Series of dtype('bool') with value True if
the objects have at least one point in common and their
interiors do not intersect with any part of the other.

	
GeoSeries.within(other)

	Returns a Series of dtype('bool') with value True if
each object’s boundary and interior intersect only
with the interior of the other (not its boundary or exterior).
(Inverse of contains())

Set-theoretic Methods

	
GeoSeries.boundary

	Returns a GeoSeries of lower dimensional objects representing
each geometries’s set-theoretic boundary.

	
GeoSeries.centroid

	Returns a GeoSeries of points for each geometric centroid.

	
GeoSeries.difference(other)

	Returns a GeoSeries of the points in each geometry that
are not in the other object.

	
GeoSeries.intersection(other)

	Returns a GeoSeries of the intersection of each object with the other
geometric object.

	
GeoSeries.symmetric_difference(other)

	Returns a GeoSeries of the points in each object not in the other
geometric object, and the points in the other not in this object.

	
GeoSeries.union(other)

	Returns a GeoSeries of the union of points from each object and the
other geometric object.

Constructive Methods

	
GeoSeries.buffer(distance, resolution=16)

	Returns a GeoSeries of geometries representing all points within a given distance
of each geometric object.

	
GeoSeries.convex_hull

	Returns a GeoSeries of geometries representing the smallest
convex Polygon containing all the points in each object unless the
number of points in the object is less than three. For two points,
the convex hull collapses to a LineString; for 1, a Point.

	
GeoSeries.envelope

	Returns a GeoSeries of geometries representing the point or
smallest rectangular polygon (with sides parallel to the coordinate
axes) that contains each object.

	
GeoSeries.simplify(tolerance, preserve_topology=True)

	Returns a GeoSeries containing a simplified representation of
each object.

Affine transformations

	
GeoSeries.rotate(self, angle, origin='center', use_radians=False)

	Rotate the coordinates of the GeoSeries.

	
GeoSeries.scale(self, xfact=1.0, yfact=1.0, zfact=1.0, origin='center')

	Scale the geometries of the GeoSeries along each (x, y, z) dimensio.

	
GeoSeries.skew(self, angle, origin='center', use_radians=False)

	Shear/Skew the geometries of the GeoSeries by angles along x and y dimensions.

	
GeoSeries.translate(self, angle, origin='center', use_radians=False)

	Shift the coordinates of the GeoSeries.

Aggregating methods

	
GeoSeries.unary_union

	Return a geometry containing the union of all geometries in the GeoSeries.

Additionally, the following methods are implemented:

	
GeoSeries.from_file()

	Load a GeoSeries from a file from any format recognized by
fiona [http://toblerity.github.io/fiona].

	
GeoSeries.to_crs(crs=None, epsg=None)

	Transform all geometries in a GeoSeries to a different coordinate
reference system. The crs attribute on the current GeoSeries
must be set. Either crs in dictionary form or an EPSG code may
be specified for output.

This method will transform all points in all objects. It has no
notion or projecting entire geometries. All segments joining points
are assumed to be lines in the current projection, not geodesics.
Objects crossing the dateline (or other projection boundary) will
have undesirable behavior.

	
GeoSeries.plot(colormap='Set1', alpha=0.5, axes=None)

	Generate a plot of the geometries in the GeoSeries.
colormap can be any recognized by matplotlib, but discrete
colormaps such as Accent, Dark2, Paired, Pastel1,
Pastel2, Set1, Set2, or Set3 are recommended.
Wraps the plot_series() function.

	
GeoSeries.total_bounds

	Returns a tuple containing minx, miny, maxx,
maxy values for the bounds of the series as a whole.
See GeoSeries.bounds for the bounds of the geometries contained
in the series.

Methods of pandas Series objects are also available, although not
all are applicable to geometric objects and some may return a
Series rather than a GeoSeries result. The methods
copy(), align(), isnull() and fillna() have been
implemented specifically for GeoSeries and are expected to work
correctly.

GeoDataFrame

A GeoDataFrame is a tablular data structure that contains a column
called geometry which contains a GeoSeries`.

Currently, the following methods are implemented for a GeoDataFrame:

	
classmethod GeoDataFrame.from_file(filename, **kwargs)

	Load a GeoDataFrame from a file from any format recognized by
fiona [http://toblerity.github.io/fiona]. See read_file().

	
classmethod GeoDataFrame.from_postgis(sql, con, geom_col='geom', crs=None, index_col=None, coerce_float=True, params=None)

	Load a GeoDataFrame from a file from a PostGIS database.
See read_postgis().

	
GeoSeries.to_crs(crs=None, epsg=None, inplace=False)

	Transform all geometries in the geometry column of a
GeoDataFrame to a different coordinate reference system. The
crs attribute on the current GeoSeries must be set. Either
crs in dictionary form or an EPSG code may be specified for
output. If inplace=True the geometry column will be replaced in
the current dataframe, otherwise a new GeoDataFrame will be returned.

This method will transform all points in all objects. It has no
notion or projecting entire geometries. All segments joining points
are assumed to be lines in the current projection, not geodesics.
Objects crossing the dateline (or other projection boundary) will
have undesirable behavior.

	
GeoSeries.to_file(filename, driver="ESRI Shapefile", **kwargs)

	Write the GeoDataFrame to a file. By default, an ESRI shapefile
is written, but any OGR data source supported by Fiona can be
written. **kwargs are passed to the Fiona driver.

	
GeoSeries.to_json(**kwargs)

	Returns a GeoJSON representation of the GeoDataFrame as a string.

	
GeoDataFrame.plot(column=None, colormap=None, alpha=0.5, categorical=False, legend=False, axes=None)

	Generate a plot of the geometries in the GeoDataFrame. If the
column parameter is given, colors plot according to values in
that column, otherwise calls GeoSeries.plot() on the
geometry column. Wraps the plot_dataframe() function.

All pandas DataFrame methods are also available, although they may
not operate in a meaningful way on the geometry column and may not
return a GeoDataFrame result even when it would be appropriate to
do so.

Geopandas functions

	
geopandas.geocode.geocode(strings, provider='googlev3', **kwargs)

	Geocode a list of strings and return a GeoDataFrame containing the
resulting points in its geometry column. Available
provider``s include ``googlev3, bing, google, yahoo,
mapquest, and openmapquest. **kwargs will be passed as
parameters to the appropriate geocoder.

Requires geopy [https://github.com/geopy/geopy]. Please consult the Terms of Service for the
chosen provider.

Examples

>>> p1 = Polygon([(0, 0), (1, 0), (1, 1)])
>>> p2 = Polygon([(0, 0), (1, 0), (1, 1), (0, 1)])
>>> p3 = Polygon([(2, 0), (3, 0), (3, 1), (2, 1)])
>>> g = GeoSeries([p1, p2, p3])
>>> g
0 POLYGON ((0.0000000000000000 0.000000000000000...
1 POLYGON ((0.0000000000000000 0.000000000000000...
2 POLYGON ((2.0000000000000000 0.000000000000000...
dtype: object

[image: _images/test.png]
Some geographic operations return normal pandas object. The area property of a GeoSeries will return a pandas.Series containing the area of each item in the GeoSeries:

>>> print g.area
0 0.5
1 1.0
2 1.0
dtype: float64

Other operations return GeoPandas objects:

>>> g.buffer(0.5)
Out[15]:
0 POLYGON ((-0.3535533905932737 0.35355339059327...
1 POLYGON ((-0.5000000000000000 0.00000000000000...
2 POLYGON ((1.5000000000000000 0.000000000000000...
dtype: object

[image: _images/test_buffer.png]
GeoPandas objects also know how to plot themselves. GeoPandas uses descartes [https://pypi.python.org/pypi/descartes] to generate a matplotlib [http://matplotlib.org] plot. To generate a plot of our GeoSeries, use:

>>> g.plot()

GeoPandas also implements alternate constructors that can read any data format recognized by fiona [http://toblerity.github.io/fiona]. To read a file containing the boroughs of New York City [http://www.nyc.gov/html/dcp/download/bytes/nybb_14aav.zip]:

>>> boros = GeoDataFrame.from_file('nybb.shp')
>>> boros.set_index('BoroCode', inplace=True)
>>> boros.sort()
>>> boros
 BoroName Shape_Area Shape_Leng \
BoroCode
1 Manhattan 6.364422e+08 358532.956418
2 Bronx 1.186804e+09 464517.890553
3 Brooklyn 1.959432e+09 726568.946340
4 Queens 3.049947e+09 861038.479299
5 Staten Island 1.623853e+09 330385.036974

 geometry
BoroCode
1 (POLYGON ((981219.0557861328125000 188655.3157...
2 (POLYGON ((1012821.8057861328125000 229228.264...
3 (POLYGON ((1021176.4790039062500000 151374.796...
4 (POLYGON ((1029606.0765991210937500 156073.814...
5 (POLYGON ((970217.0223999023437500 145643.3322...

[image: _images/nyc.png]
>>> boros['geometry'].convex_hull
0 POLYGON ((915517.6877458114176989 120121.88125...
1 POLYGON ((1000721.5317993164062500 136681.7761...
2 POLYGON ((988872.8212280273437500 146772.03179...
3 POLYGON ((977855.4451904296875000 188082.32238...
4 POLYGON ((1017949.9776000976562500 225426.8845...
dtype: object

[image: _images/nyc_hull.png]
To demonstrate a more complex operation, we’ll generate a
GeoSeries containing 2000 random points:

>>> from shapely.geometry import Point
>>> xmin, xmax, ymin, ymax = 900000, 1080000, 120000, 280000
>>> xc = (xmax - xmin) * np.random.random(2000) + xmin
>>> yc = (ymax - ymin) * np.random.random(2000) + ymin
>>> pts = GeoSeries([Point(x, y) for x, y in zip(xc, yc)])

Now draw a circle with fixed radius around each point:

>>> circles = pts.buffer(2000)

We can collapse these circles into a single shapely MultiPolygon
geometry with

>>> mp = circles.unary_union

To extract the part of this geometry contained in each borough, we can
just use:

>>> holes = boros['geometry'].intersection(mp)

[image: _images/holes.png]
and to get the area outside of the holes:

>>> boros_with_holes = boros['geometry'].difference(mp)

[image: _images/boros_with_holes.png]
Note that this can be simplified a bit, since geometry is
available as an attribute on a GeoDataFrame, and the
intersection and difference methods are implemented with the
“&” and “-” operators, respectively. For example, the latter could
have been expressed simply as boros.geometry - mp.

It’s easy to do things like calculate the fractional area in each
borough that are in the holes:

>>> holes.area / boros.geometry.area
BoroCode
1 0.602015
2 0.523457
3 0.585901
4 0.577020
5 0.559507
dtype: float64

About

Known issues

	The geopy API has changed significantly over recent versions.
geopy 0.99 is currently supported (though it is known to fail
with Python 3.2, it should work with other supported python
versions).

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	almost_equals() (GeoSeries method)

 	
 	area (GeoSeries attribute)

B

 	
 	boundary (GeoSeries attribute)

 	
 	bounds (GeoSeries attribute)

 	buffer() (GeoSeries method)

C

 	
 	centroid (GeoSeries attribute)

 	contains() (GeoSeries method)

 	
 	convex_hull (GeoSeries attribute)

 	crosses() (GeoSeries method)

D

 	
 	difference() (GeoSeries method)

 	
 	disjoint() (GeoSeries method)

 	distance() (GeoSeries method)

E

 	
 	envelope (GeoSeries attribute)

 	
 	equals() (GeoSeries method)

 	exterior (GeoSeries attribute)

F

 	
 	from_file() (GeoDataFrame class method)

 	(GeoSeries method)

 	
 	from_postgis() (GeoDataFrame class method)

G

 	
 	geom_type (GeoSeries attribute)

 	
 	geopandas.geocode.geocode() (built-in function)

I

 	
 	interiors (GeoSeries attribute)

 	intersection() (GeoSeries method)

 	intersects() (GeoSeries method)

 	
 	is_empty (GeoSeries attribute)

 	is_ring (GeoSeries attribute)

 	is_simple (GeoSeries attribute)

 	is_valid (GeoSeries attribute)

L

 	
 	length (GeoSeries attribute)

P

 	
 	plot() (GeoDataFrame method)

 	(GeoSeries method)

R

 	
 	representative_point() (GeoSeries method)

 	
 	rotate() (GeoSeries method)

S

 	
 	scale() (GeoSeries method)

 	simplify() (GeoSeries method)

 	
 	skew() (GeoSeries method)

 	symmetric_difference() (GeoSeries method)

T

 	
 	to_crs() (GeoSeries method), [1]

 	to_file() (GeoSeries method)

 	to_json() (GeoSeries method)

 	
 	total_bounds (GeoSeries attribute)

 	touches() (GeoSeries method)

 	translate() (GeoSeries method)

U

 	
 	unary_union (GeoSeries attribute)

 	
 	union() (GeoSeries method)

W

 	
 	within() (GeoSeries method)

 _images/nyc.png
000080T

000090T

0000¥0T

0000Z0T

000000T

000086

000096

0000¥6

000026

280000

260000 [~

240000 [~

220000 [~

200000 [

180000 -

160000 [

140000

000006

120000

_static/plus.png

_static/holes.png
280000

260000

240000

220000

200000

180000

160000

140000

120000

900000

920000 p

940000 |-

960000 |-

980000 -

1000000 |-

1020000 |-

1040000 |-

1060000 |-

1080000

_static/comment-close.png

_static/comment.png

_static/boros_with_holes.png
280000

260000

240000

220000

200000

180000

160000

140000

120000

900000

920000

940000

960000

980000

1000000

1020000

1040000

1060000

1080000

_static/test_buffer.png
15

1.0

0.5

0.0

0205

0.0

0.5

1.0

15

2.0

25

3.0

35

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/nyc_hull.png
000080T

000090T

0000¥0T

0000Z0T

000000T

000086

000096

0000¥6

000026

280000

260000 [~

240000 [~

220000 [~

200000 [

180000 -

160000 [

140000

000006

120000

_static/test.png
15

1.0

0.5

0.0

35

nav.xhtml

 Table of Contents

 		GeoPandas 0.1.1

 		Installation

 		Dependencies

 		Testing

 		User Guide

 		GeoSeries

 		GeoDataFrame

 		Geopandas functions

 		Examples

 		About

 		Known issues

_static/comment-bright.png

_static/up-pressed.png

_static/nyc.png
000080T

000090T

0000¥0T

0000Z0T

000000T

000086

000096

0000¥6

000026

280000

260000 [~

240000 [~

220000 [~

200000 [

180000 -

160000 [

140000

000006

120000

_images/test_buffer.png
15

1.0

0.5

0.0

0205

0.0

0.5

1.0

15

2.0

25

3.0

35

_images/boros_with_holes.png
280000

260000

240000

220000

200000

180000

160000

140000

120000

900000

920000

940000

960000

980000

1000000

1020000

1040000

1060000

1080000

_images/nyc_hull.png
000080T

000090T

0000¥0T

0000Z0T

000000T

000086

000096

0000¥6

000026

280000

260000 [~

240000 [~

220000 [~

200000 [

180000 -

160000 [

140000

000006

120000

_images/holes.png
280000

260000

240000

220000

200000

180000

160000

140000

120000

900000

920000 p

940000 |-

960000 |-

980000 -

1000000 |-

1020000 |-

1040000 |-

1060000 |-

1080000

_images/test.png
15

1.0

0.5

0.0

35

