

GeoPandas 0.2.0.dev

GeoPandas is an open source project to make working with geospatial
data in python easier. GeoPandas extends the datatypes used by
pandas [http://pandas.pydata.org] to allow spatial operations on geometric types. Geometric
operations are performed by shapely [http://toblerity.github.io/shapely]. Geopandas further depends on
fiona [http://toblerity.github.io/fiona] for file access and descartes [https://pypi.python.org/pypi/descartes] and matplotlib [http://matplotlib.org] for plotting.

Description

The goal of GeoPandas is to make working with geospatial data in
python easier. It combines the capabilities of pandas and shapely,
providing geospatial operations in pandas and a high-level interface
to multiple geometries to shapely. GeoPandas enables you to easily do
operations in python that would otherwise require a spatial database
such as PostGIS.

	Installation
	Installing GeoPandas

	Dependencies

	Data Structures
	GeoSeries

	GeoDataFrame

	Reading and Writing Files
	Reading Spatial Data

	Writing Spatial Data

	Making Maps
	Chloropleth Maps

	Maps with Layers

	Other Resources

	Managing Projections
	Coordinate Reference Systems

	Setting a Projection

	Re-Projecting

	Geometric Manipulations
	Set-theoretic Methods

	Constructive Methods

	Affine transformations

	Merging Data
	Attribute Joins

	Spatial Joins

	Geocoding

	Reference to All Attributes and Methods
	GeoDataFrame

	Contributing to GeoPandas
	Overview

	1) Forking the geopandas repository using Git

	2) Creating a development environment

	3) Installing Dependencies

	4) Making a development build

	5) Making changes and writing tests

	6) Updating the Documentation

	7) Submitting a Pull Request

	About
	Known issues

Indices and tables

	Index

	Module Index

	Search Page

Installation

Installing GeoPandas

To install the released version, you can use pip:

pip install geopandas

or you can install the conda package from the conda-forge channel:

conda install -c conda-forge geopandas

You may install the latest development version by cloning the
GitHub repository and using the setup script:

git clone https://github.com/geopandas/geopandas.git
cd geopandas
pip install .

It is also possible to install the latest development version
available on PyPI with pip by adding the --pre flag for pip 1.4
and later, or to use pip to install directly from the GitHub
repository with:

pip install git+git://github.com/geopandas/geopandas.git

Dependencies

Installation via conda should also install all dependencies, but a complete list is as follows:

	numpy [http://www.numpy.org]

	pandas [http://pandas.pydata.org] (version 0.13 or later)

	shapely [http://toblerity.github.io/shapely]

	fiona [http://toblerity.github.io/fiona]

	six [https://pythonhosted.org/six]

	pyproj [https://github.com/jswhit/pyproj]

Further, optional dependencies are:

	geopy [https://github.com/geopy/geopy] 0.99 (optional; for geocoding)

	psycopg2 [https://pypi.python.org/pypi/psycopg2] (optional; for PostGIS connection)

	rtree [https://github.com/Toblerity/rtree] (optional; spatial index to improve performance)

For plotting, these additional packages may be used:

	matplotlib [http://matplotlib.org]

	descartes [https://pypi.python.org/pypi/descartes]

	pysal [http://pysal.org]

These can be installed independently via the following set of commands:

conda install -c conda-forge fiona shapely pyproj rtree
conda install pandas

Data Structures

GeoPandas implements two main data structures, a GeoSeries and a
GeoDataFrame. These are subclasses of pandas Series and
DataFrame, respectively.

GeoSeries

A GeoSeries is essentially a vector where each entry in the vector
is a set of shapes corresponding to one observation. An entry may consist
of only one shape (like a single polygon) or multiple shapes that are
meant to be thought of as one observation (like the many polygons that
make up the State of Hawaii or a country like Indonesia).

geopandas has three basic classes of geometric objects (which are actually shapely objects):

	Points / Multi-Points

	Lines / Multi-Lines

	Polygons / Multi-Polygons

Note that all entries in a GeoSeries need not be of the same geometric type, although certain export operations will fail if this is not the case.

Overview of Attributes and Methods

The GeoSeries class implements nearly all of the attributes and
methods of Shapely objects. When applied to a GeoSeries, they
will apply elementwise to all geometries in the series. Binary
operations can be applied between two GeoSeries, in which case the
operation is carried out elementwise. The two series will be aligned
by matching indices. Binary operations can also be applied to a
single geometry, in which case the operation is carried out for each
element of the series with that geometry. In either case, a
Series or a GeoSeries will be returned, as appropriate.

A short summary of a few attributes and methods for GeoSeries is
presented here, and a full list can be found in the all attributes and methods page.
There is also a family of methods for creating new shapes by expanding
existing shapes or applying set-theoretic operations like “union” described
in geometric manipulations.

Attributes

	area: shape area (units of projection – see projections)

	bounds: tuple of max and min coordinates on each axis for each shape

	total_bounds: tuple of max and min coordinates on each axis for entire GeoSeries

	geom_type: type of geometry.

	is_valid: tests if coordinates make a shape that is reasonable geometric shape (according to this [http://www.opengeospatial.org/standards/sfa]).

Basic Methods

	distance(other): returns Series with minimum distance from each entry to other

	centroid: returns GeoSeries of centroids

	representative_point(): returns GeoSeries of points that are guaranteed to be within each geometry. It does NOT return centroids.

	to_crs(): change coordinate reference system. See projections

	plot(): plot GeoSeries. See mapping.

Relationship Tests

	almost_equals(other): is shape almost the same as other (good when floating point precision issues make shapes slightly different)

	contains(other): is shape contained within other

	intersects(other): does shape intersect other

GeoDataFrame

A GeoDataFrame is a tabular data structure that contains a GeoSeries.

The most important property of a GeoDataFrame is that it always has one GeoSeries column that holds a special status. This GeoSeries is referred to as the GeoDataFrame‘s “geometry”. When a spatial method is applied to a GeoDataFrame (or a spatial attribute like area is called), this commands will always act on the “geometry” column.

The “geometry” column – no matter its name – can be accessed through the geometry attribute (gdf.geometry), and the name of the geometry column can be found by typing gdf.geometry.name.

A GeoDataFrame may also contain other columns with geometrical (shapely) objects, but only one column can be the active geometry at a time. To change which column is the active geometry column, use the set_geometry method.

An example using the worlds GeoDataFrame:

In [1]: world.head()

NameError Traceback (most recent call last)
<ipython-input-1-6e4c6b8ad2c1> in <module>()
----> 1 world.head()

NameError: name 'world' is not defined

#Plot countries
In [2]: world.plot();

[image: _images/world_borders.png]
Currently, the column named “borders” with country borders is the active
geometry column:

In [3]: world.geometry.name

NameError Traceback (most recent call last)
<ipython-input-3-c347be3ed172> in <module>()
----> 1 world.geometry.name

NameError: name 'world' is not defined

Now, we create centroids and make it the geometry:

In [4]: world['centroid_column'] = world.centroid

NameError Traceback (most recent call last)
<ipython-input-4-342b4f803c99> in <module>()
----> 1 world['centroid_column'] = world.centroid

NameError: name 'world' is not defined

In [5]: world = world.set_geometry('centroid_column')

 Reading and Writing Files

Reading and Writing Files

Reading Spatial Data

geopandas can read almost any vector-based spatial data format including ESRI shapefile, GeoJSON files and more using the command:

gpd.read_file()

which returns a GeoDataFrame object. (This is possible because geopandas makes use of the great fiona [http://toblerity.org/fiona/manual.html] library, which in turn makes use of a massive open-source program called GDAL/OGR [http://www.gdal.org/] designed to facilitate spatial data transformations).

Any arguments passed to read_file() after the file name will be passed directly to fiona.open, which does the actual data importation. In general, read_file is pretty smart and should do what you want without extra arguments, but for more help, type:

import fiona; help(fiona.open)

Among other things, one can explicitly set the driver (shapefile, GeoJSON) with the driver keyword, or pick a single layer from a multi-layered file with the layer keyword.

geopandas can also get data from a PostGIS database using the read_postgis() command.

Writing Spatial Data

GeoDataFrames can be exported to many different standard formats using the GeoDataFrame.to_file() method. For a full list of supported formats, type import fiona; fiona.supported_drivers.

 Mapping Tools

Mapping Tools

geopandas provides a high-level interface to the matplotlib library for making maps. Mapping shapes is as easy as using the plot() method on a GeoSeries or GeoDataFrame.

Examine country GeoDataFrame
In [1]: world.head()

NameError Traceback (most recent call last)
<ipython-input-1-6e4c6b8ad2c1> in <module>()
----> 1 world.head()

NameError: name 'world' is not defined

Basic plot, random colors
In [2]: world.plot();

[image: _images/world_randomcolors.png]
Note that in general, any options one can pass to pyplot [http://matplotlib.org/api/pyplot_api.html] in matplotlib (or style options that work for lines [http://matplotlib.org/api/lines_api.html]) can be passed to the plot() method.

Chloropleth Maps

geopandas makes it easy to create Chloropleth maps (maps where the color of each shape is based on the value of an associated variable). Simply use the plot command with the column argument set to the column whose values you want used to assign colors.

Plot by GDP per capta
In [3]: world = world[(world.pop_est>0) & (world.name!="Antarctica")]

NameError Traceback (most recent call last)
<ipython-input-3-3d65aa1f3698> in <module>()
----> 1 world = world[(world.pop_est>0) & (world.name!="Antarctica")]

NameError: name 'world' is not defined

In [4]: world['gdp_per_cap'] = world.gdp_md_est / world.pop_est

 Managing Projections

Managing Projections

Coordinate Reference Systems

CRS are important because the geometric shapes in a GeoSeries or GeoDataFrame object are simply a collection of coordinates in an arbitrary space. A CRS tells Python how those coordinates related to places on the Earth.

CRS are referred to using codes called proj4 strings [https://en.wikipedia.org/wiki/PROJ.4]. You can find the codes for most commonly used projections from www.spatialreference.org [http://spatialreference.org/] or remotesensing.org [http://www.remotesensing.org/geotiff/proj_list/].

The same CRS can often be referred to in many ways. For example, one of the most commonly used CRS is the WGS84 latitude-longitude projection. One proj4 representation of this projection is: "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs". But common projections can also be referred to by EPSG codes, so this same projection can also called using the proj4 string "+init=epsg:4326".

geopandas can accept lots of representations of CRS, including the proj4 string itself ("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs") or parameters broken out in a dictionary: {'proj': 'latlong', 'ellps': 'WGS84', 'datum': 'WGS84', 'no_defs': True}). In addition, some functions will take EPSG codes directly.

For reference, a few very common projections and their proj4 strings:

	WGS84 Latitude/Longitude: "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs" or "+init=epsg:4326"

	UTM Zones (North): "+proj=utm +zone=33 +ellps=WGS84 +datum=WGS84 +units=m +no_defs"

	UTM Zones (South): "+proj=utm +zone=33 +ellps=WGS84 +datum=WGS84 +units=m +no_defs +south"

Setting a Projection

There are two relevant operations for projections: setting a projection and re-projecting.

Setting a projection may be necessary when for some reason geopandas has coordinate data (x-y values), but no information about how those coordinates refer to locations in the real world. Setting a projection is how one tells geopandas how to interpret coordinates. If no CRS is set, geopandas geometry operations will still work, but coordinate transformations will not be possible and exported files may not be interpreted correctly by other software.

Be aware that most of the time you don’t have to set a projection. Data loaded from a reputable source (using the from_file() command) should always include projection information. You can see an objects current CRS through the crs attribute: my_geoseries.crs.

From time to time, however, you may get data that does not include a projection. In this situation, you have to set the CRS so geopandas knows how to interpret the coordinates.

For example, if you convert a spreadsheet of latitudes and longitudes into a GeoSeries by hand, you would set the projection by assigning the WGS84 latitude-longitude CRS to the crs attribute:

my_geoseries.crs = {'init' :'epsg:4326'}

Re-Projecting

Re-projecting is the process of changing the representation of locations from one coordinate system to another. All projections of locations on the Earth into a two-dimensional plane are distortions [https://en.wikipedia.org/wiki/Map_projection#Which_projection_is_best.3F], the projection that is best for your application may be different from the projection associated with the data you import. In these cases, data can be re-projected using the to_crs command:

Check original projection
(it's Platte Carre! x-y are long and lat)
In [1]: world.crs

NameError Traceback (most recent call last)
<ipython-input-1-6dccfe34da9b> in <module>()
----> 1 world.crs

NameError: name 'world' is not defined

Visualize
In [2]: world.plot();

Reproject to Mercator (after dropping Antartica)
In [3]: world = world[(world.name != "Antarctica") & (world.name != "Fr. S. Antarctic Lands")]

NameError Traceback (most recent call last)
<ipython-input-3-0675a59ff78c> in <module>()
----> 1 world = world[(world.name != "Antarctica") & (world.name != "Fr. S. Antarctic Lands")]

NameError: name 'world' is not defined

In [4]: world = world.to_crs({'init': 'epsg:3395'}) # world.to_crs(epsg=3395) would also work

 Geometric Manipulations

Geometric Manipulations

Set-theoretic Methods

	
GeoSeries.boundary

	Returns a GeoSeries of lower dimensional objects representing
each geometries’s set-theoretic boundary.

	
GeoSeries.difference(other)

	Returns a GeoSeries of the points in each geometry that
are not in the other object.

	
GeoSeries.intersection(other)

	Returns a GeoSeries of the intersection of each object with the other
geometric object.

	
GeoSeries.symmetric_difference(other)

	Returns a GeoSeries of the points in each object not in the other
geometric object, and the points in the other not in this object.

	
GeoSeries.union(other)

	Returns a GeoSeries of the union of points from each object and the
other geometric object.

	
GeoSeries.unary_union

	Return a geometry containing the union of all geometries in the GeoSeries.

Constructive Methods

	
GeoSeries.buffer(distance, resolution=16)

	Returns a GeoSeries of geometries representing all points within a given distance
of each geometric object.

	
GeoSeries.convex_hull

	Returns a GeoSeries of geometries representing the smallest
convex Polygon containing all the points in each object unless the
number of points in the object is less than three. For two points,
the convex hull collapses to a LineString; for 1, a Point.

	
GeoSeries.envelope

	Returns a GeoSeries of geometries representing the point or
smallest rectangular polygon (with sides parallel to the coordinate
axes) that contains each object.

	
GeoSeries.simplify(tolerance, preserve_topology=True)

	Returns a GeoSeries containing a simplified representation of
each object.

Affine transformations

	
GeoSeries.rotate(self, angle, origin='center', use_radians=False)

	Rotate the coordinates of the GeoSeries.

	
GeoSeries.scale(self, xfact=1.0, yfact=1.0, zfact=1.0, origin='center')

	Scale the geometries of the GeoSeries along each (x, y, z) dimensio.

	
GeoSeries.skew(self, angle, origin='center', use_radians=False)

	Shear/Skew the geometries of the GeoSeries by angles along x and y dimensions.

	
GeoSeries.translate(self, angle, origin='center', use_radians=False)

	Shift the coordinates of the GeoSeries.

Aggregating methods

>>> p1 = Polygon([(0, 0), (1, 0), (1, 1)])
>>> p2 = Polygon([(0, 0), (1, 0), (1, 1), (0, 1)])
>>> p3 = Polygon([(2, 0), (3, 0), (3, 1), (2, 1)])
>>> g = GeoSeries([p1, p2, p3])
>>> g
0 POLYGON ((0.0000000000000000 0.000000000000000...
1 POLYGON ((0.0000000000000000 0.000000000000000...
2 POLYGON ((2.0000000000000000 0.000000000000000...
dtype: object

[image: _images/test.png]
Some geographic operations return normal pandas object. The area property of a GeoSeries will return a pandas.Series containing the area of each item in the GeoSeries:

>>> print g.area
0 0.5
1 1.0
2 1.0
dtype: float64

Other operations return GeoPandas objects:

>>> g.buffer(0.5)
Out[15]:
0 POLYGON ((-0.3535533905932737 0.35355339059327...
1 POLYGON ((-0.5000000000000000 0.00000000000000...
2 POLYGON ((1.5000000000000000 0.000000000000000...
dtype: object

[image: _images/test_buffer.png]
GeoPandas objects also know how to plot themselves. GeoPandas uses descartes [https://pypi.python.org/pypi/descartes] to generate a matplotlib [http://matplotlib.org] plot. To generate a plot of our GeoSeries, use:

>>> g.plot()

GeoPandas also implements alternate constructors that can read any data format recognized by fiona [http://toblerity.github.io/fiona]. To read a file containing the boroughs of New York City [http://www.nyc.gov/html/dcp/download/bytes/nybb_14aav.zip]:

>>> boros = GeoDataFrame.from_file('nybb.shp')
>>> boros.set_index('BoroCode', inplace=True)
>>> boros.sort()
>>> boros
 BoroName Shape_Area Shape_Leng \
BoroCode
1 Manhattan 6.364422e+08 358532.956418
2 Bronx 1.186804e+09 464517.890553
3 Brooklyn 1.959432e+09 726568.946340
4 Queens 3.049947e+09 861038.479299
5 Staten Island 1.623853e+09 330385.036974

 geometry
BoroCode
1 (POLYGON ((981219.0557861328125000 188655.3157...
2 (POLYGON ((1012821.8057861328125000 229228.264...
3 (POLYGON ((1021176.4790039062500000 151374.796...
4 (POLYGON ((1029606.0765991210937500 156073.814...
5 (POLYGON ((970217.0223999023437500 145643.3322...

[image: _images/nyc.png]
>>> boros['geometry'].convex_hull
0 POLYGON ((915517.6877458114176989 120121.88125...
1 POLYGON ((1000721.5317993164062500 136681.7761...
2 POLYGON ((988872.8212280273437500 146772.03179...
3 POLYGON ((977855.4451904296875000 188082.32238...
4 POLYGON ((1017949.9776000976562500 225426.8845...
dtype: object

[image: _images/nyc_hull.png]
To demonstrate a more complex operation, we’ll generate a
GeoSeries containing 2000 random points:

>>> from shapely.geometry import Point
>>> xmin, xmax, ymin, ymax = 900000, 1080000, 120000, 280000
>>> xc = (xmax - xmin) * np.random.random(2000) + xmin
>>> yc = (ymax - ymin) * np.random.random(2000) + ymin
>>> pts = GeoSeries([Point(x, y) for x, y in zip(xc, yc)])

Now draw a circle with fixed radius around each point:

>>> circles = pts.buffer(2000)

We can collapse these circles into a single shapely MultiPolygon
geometry with

>>> mp = circles.unary_union

To extract the part of this geometry contained in each borough, we can
just use:

>>> holes = boros['geometry'].intersection(mp)

[image: _images/holes.png]
and to get the area outside of the holes:

>>> boros_with_holes = boros['geometry'].difference(mp)

[image: _images/boros_with_holes.png]
Note that this can be simplified a bit, since geometry is
available as an attribute on a GeoDataFrame, and the
intersection and difference methods are implemented with the
“&” and “-” operators, respectively. For example, the latter could
have been expressed simply as boros.geometry - mp.

It’s easy to do things like calculate the fractional area in each
borough that are in the holes:

>>> holes.area / boros.geometry.area
BoroCode
1 0.602015
2 0.523457
3 0.585901
4 0.577020
5 0.559507
dtype: float64

 Merging Data

Merging Data

Attribute Joins

[TO BE COMPLETED – EXAMPLES OF JOINING GDF WITH PANDAS DATAFRAME]

Spatial Joins

[TO BE COMPLETED – EXAMPLES OF SPATIAL JOINS]

 Geocoding

Geocoding

[TO BE COMPLETED]

	
geopandas.geocode.geocode(strings, provider='googlev3', **kwargs)

	Geocode a list of strings and return a GeoDataFrame containing the
resulting points in its geometry column. Available
provider``s include ``googlev3, bing, google, yahoo,
mapquest, and openmapquest. **kwargs will be passed as
parameters to the appropriate geocoder.

Requires `geopy`_. Please consult the Terms of Service for the
chosen provider.

 Reference

Reference

The following Shapely methods and attributes are available on
GeoSeries objects:

	
GeoSeries.area

	Returns a Series containing the area of each geometry in the GeoSeries.

	
GeoSeries.bounds

	Returns a DataFrame with columns minx, miny, maxx,
maxy values containing the bounds for each geometry.
(see GeoSeries.total_bounds for the limits of the entire series).

	
GeoSeries.length

	Returns a Series containing the length of each geometry.

	
GeoSeries.geom_type

	Returns a Series of strings specifying the Geometry Type of
each object.

	
GeoSeries.distance(other)

	Returns a Series containing the minimum distance to the other
GeoSeries (elementwise) or geometric object.

	
GeoSeries.representative_point()

	Returns a GeoSeries of (cheaply computed) points that are
guaranteed to be within each geometry.

	
GeoSeries.exterior

	Returns a GeoSeries of LinearRings representing the outer
boundary of each polygon in the GeoSeries. (Applies to GeoSeries
containing only Polygons).

	
GeoSeries.interiors

	Returns a GeoSeries of InteriorRingSequences representing the
inner rings of each polygon in the GeoSeries. (Applies to GeoSeries
containing only Polygons).

Unary Predicates

	
GeoSeries.is_empty

	Returns a Series of dtype('bool') with value True for
empty geometries.

	
GeoSeries.is_ring

	Returns a Series of dtype('bool') with value True for
features that are closed.

	
GeoSeries.is_simple

	Returns a Series of dtype('bool') with value True for
geometries that do not cross themselves (meaningful only for
LineStrings and LinearRings).

	
GeoSeries.is_valid

	Returns a Series of dtype('bool') with value True for
geometries that are valid.

Binary Predicates

	
GeoSeries.almost_equals(other[, decimal=6])

	Returns a Series of dtype('bool') with value True if
each object is approximately equal to the other at all
points to specified decimal place precision. (See also equals())

	
GeoSeries.contains(other)

	Returns a Series of dtype('bool') with value True if
each object’s interior contains the boundary and
interior of the other object and their boundaries do not touch at all.

	
GeoSeries.crosses(other)

	Returns a Series of dtype('bool') with value True if
the interior of each object intersects the interior of
the other but does not contain it, and the dimension of the intersection is
less than the dimension of the one or the other.

	
GeoSeries.disjoint(other)

	Returns a Series of dtype('bool') with value True if
the boundary and interior of each object does not
intersect at all with those of the other.

	
GeoSeries.equals(other)

	Returns a Series of dtype('bool') with value True if
if the set-theoretic boundary, interior, and exterior
of each object coincides with those of the other.

	
GeoSeries.intersects(other)

	Returns a Series of dtype('bool') with value True if
if the boundary and interior of each object intersects in
any way with those of the other.

	
GeoSeries.touches(other)

	Returns a Series of dtype('bool') with value True if
the objects have at least one point in common and their
interiors do not intersect with any part of the other.

	
GeoSeries.within(other)

	Returns a Series of dtype('bool') with value True if
each object’s boundary and interior intersect only
with the interior of the other (not its boundary or exterior).
(Inverse of contains())

Set-theoretic Methods

	
GeoSeries.boundary

	Returns a GeoSeries of lower dimensional objects representing
each geometries’s set-theoretic boundary.

	
GeoSeries.centroid

	Returns a GeoSeries of points for each geometric centroid.

	
GeoSeries.difference(other)

	Returns a GeoSeries of the points in each geometry that
are not in the other object.

	
GeoSeries.intersection(other)

	Returns a GeoSeries of the intersection of each object with the other
geometric object.

	
GeoSeries.symmetric_difference(other)

	Returns a GeoSeries of the points in each object not in the other
geometric object, and the points in the other not in this object.

	
GeoSeries.union(other)

	Returns a GeoSeries of the union of points from each object and the
other geometric object.

Constructive Methods

	
GeoSeries.buffer(distance, resolution=16)

	Returns a GeoSeries of geometries representing all points within a given distance
of each geometric object.

	
GeoSeries.convex_hull

	Returns a GeoSeries of geometries representing the smallest
convex Polygon containing all the points in each object unless the
number of points in the object is less than three. For two points,
the convex hull collapses to a LineString; for 1, a Point.

	
GeoSeries.envelope

	Returns a GeoSeries of geometries representing the point or
smallest rectangular polygon (with sides parallel to the coordinate
axes) that contains each object.

	
GeoSeries.simplify(tolerance, preserve_topology=True)

	Returns a GeoSeries containing a simplified representation of
each object.

Affine transformations

	
GeoSeries.rotate(self, angle, origin='center', use_radians=False)

	Rotate the coordinates of the GeoSeries.

	
GeoSeries.scale(self, xfact=1.0, yfact=1.0, zfact=1.0, origin='center')

	Scale the geometries of the GeoSeries along each (x, y, z) dimensio.

	
GeoSeries.skew(self, angle, origin='center', use_radians=False)

	Shear/Skew the geometries of the GeoSeries by angles along x and y dimensions.

	
GeoSeries.translate(self, angle, origin='center', use_radians=False)

	Shift the coordinates of the GeoSeries.

Aggregating methods

	
GeoSeries.unary_union

	Return a geometry containing the union of all geometries in the GeoSeries.

Additionally, the following methods are implemented:

	
GeoSeries.from_file()

	Load a GeoSeries from a file from any format recognized by
`fiona`_.

	
GeoSeries.to_crs(crs=None, epsg=None)

	Transform all geometries in a GeoSeries to a different coordinate
reference system. The crs attribute on the current GeoSeries
must be set. Either crs in dictionary form or an EPSG code may
be specified for output.

This method will transform all points in all objects. It has no
notion or projecting entire geometries. All segments joining points
are assumed to be lines in the current projection, not geodesics.
Objects crossing the dateline (or other projection boundary) will
have undesirable behavior.

	
GeoSeries.plot(colormap='Set1', alpha=0.5, axes=None)

	Generate a plot of the geometries in the GeoSeries.
colormap can be any recognized by matplotlib, but discrete
colormaps such as Accent, Dark2, Paired, Pastel1,
Pastel2, Set1, Set2, or Set3 are recommended.
Wraps the plot_series() function.

	
GeoSeries.total_bounds

	Returns a tuple containing minx, miny, maxx,
maxy values for the bounds of the series as a whole.
See GeoSeries.bounds for the bounds of the geometries contained
in the series.

	
GeoSeries.__geo_interface__

	Implements the `geo_interface`_. Returns a python data structure
to represent the GeoSeries as a GeoJSON-like FeatureCollection.
Note that the features will have an empty properties dict as they don’t
have associated attributes (geometry only).

Methods of pandas Series objects are also available, although not
all are applicable to geometric objects and some may return a
Series rather than a GeoSeries result. The methods
copy(), align(), isnull() and fillna() have been
implemented specifically for GeoSeries and are expected to work
correctly.

GeoDataFrame

A GeoDataFrame is a tablular data structure that contains a column
called geometry which contains a GeoSeries`.

Currently, the following methods are implemented for a GeoDataFrame:

	
classmethod GeoDataFrame.from_file(filename, **kwargs)

	Load a GeoDataFrame from a file from any format recognized by
`fiona`_. See read_file().

	
classmethod GeoDataFrame.from_postgis(sql, con, geom_col='geom', crs=None, index_col=None, coerce_float=True, params=None)

	Load a GeoDataFrame from a file from a PostGIS database.
See read_postgis().

	
GeoSeries.to_crs(crs=None, epsg=None, inplace=False)

	Transform all geometries in the geometry column of a
GeoDataFrame to a different coordinate reference system. The
crs attribute on the current GeoSeries must be set. Either
crs in dictionary form or an EPSG code may be specified for
output. If inplace=True the geometry column will be replaced in
the current dataframe, otherwise a new GeoDataFrame will be returned.

This method will transform all points in all objects. It has no
notion or projecting entire geometries. All segments joining points
are assumed to be lines in the current projection, not geodesics.
Objects crossing the dateline (or other projection boundary) will
have undesirable behavior.

	
GeoSeries.to_file(filename, driver="ESRI Shapefile", **kwargs)

	Write the GeoDataFrame to a file. By default, an ESRI shapefile
is written, but any OGR data source supported by Fiona can be
written. **kwargs are passed to the Fiona driver.

	
GeoSeries.to_json(**kwargs)

	Returns a GeoJSON representation of the GeoDataFrame as a string.

	
GeoDataFrame.plot(column=None, colormap=None, alpha=0.5, categorical=False, legend=False, axes=None)

	Generate a plot of the geometries in the GeoDataFrame. If the
column parameter is given, colors plot according to values in
that column, otherwise calls GeoSeries.plot() on the
geometry column. Wraps the plot_dataframe() function.

	
GeoDataFrame.__geo_interface__

	Implements the `geo_interface`_. Returns a python data structure
to represent the GeoDataFrame as a GeoJSON-like FeatureCollection.

All pandas DataFrame methods are also available, although they may
not operate in a meaningful way on the geometry column and may not
return a GeoDataFrame result even when it would be appropriate to
do so.

 Contributing to GeoPandas

Contributing to GeoPandas

(Contribution guidelines largely copied from pandas [http://pandas.pydata.org/pandas-docs/stable/contributing.html])

Overview

Contributions to GeoPandas are very welcome. They are likely to
be accepted more quickly if they follow these guidelines.

At this stage of GeoPandas development, the priorities are to define a
simple, usable, and stable API and to have clean, maintainable,
readable code. Performance matters, but not at the expense of those
goals.

In general, GeoPandas follows the conventions of the pandas project
where applicable.

In particular, when submitting a pull request:

	All existing tests should pass. Please make sure that the test
suite passes, both locally and on
Travis CI [https://travis-ci.org/geopandas/geopandas]. Status on
Travis will be visible on a pull request. If you want to enable
Travis CI on your own fork, please read the pandas guidelines link
above or the
getting started docs [http://about.travis-ci.org/docs/user/getting-started/].

	New functionality should include tests. Please write reasonable
tests for your code and make sure that they pass on your pull request.

	Classes, methods, functions, etc. should have docstrings. The first
line of a docstring should be a standalone summary. Parameters and
return values should be ducumented explicitly.

	GeoPandas supports python 2 (2.6+) and python 3 (3.2+) with a single
code base. Use modern python idioms when possible that are
compatibile with both major versions, and use the
six [https://pythonhosted.org/six] library where helpful to smooth
over the differences. Use from __future__ import statements where
appropriate. Test code locally in both python 2 and python 3 when
possible (all supported versions will be automatically tested on
Travis CI).

	Follow PEP 8 when possible.

	Imports should be grouped with standard library imports first,
3rd-party libraries next, and geopandas imports third. Within each
grouping, imports should be alphabetized. Always use absolute
imports when possible, and explicit relative imports for local
imports when necessary in tests.

Seven Steps for Contributing

There are seven basic steps to contributing to geopandas:

	Fork the geopandas git repository

	Create a development environment

	Install geopandas dependencies

	Make a development build of geopandas

	Make changes to code and add tests

	Update the documentation

	Submit a Pull Request

Each of these 7 steps is detailed below.

1) Forking the geopandas repository using Git

To the new user, working with Git is one of the more daunting aspects of contributing to geopandas*.
It can very quickly become overwhelming, but sticking to the guidelines below will help keep the process
straightforward and mostly trouble free. As always, if you are having difficulties please
feel free to ask for help.

The code is hosted on GitHub [https://github.com/geopandas/geopandas]. To
contribute you will need to sign up for a free GitHub account [https://github.com/signup/free]. We use Git [http://git-scm.com/] for
version control to allow many people to work together on the project.

Some great resources for learning Git:

	Software Carpentry’s Git Tutorial [http://swcarpentry.github.io/git-novice/]

	Atlassian [https://www.atlassian.com/git/tutorials/what-is-version-control]

	the GitHub help pages [http://help.github.com/].

	Matthew Brett’s Pydagogue [http://matthew-brett.github.com/pydagogue/].

Getting started with Git

GitHub has instructions [http://help.github.com/set-up-git-redirect] for installing git,
setting up your SSH key, and configuring git. All these steps need to be completed before
you can work seamlessly between your local repository and GitHub.

Forking

You will need your own fork to work on the code. Go to the geopandas project
page [https://github.com/geopandas/geopandas] and hit the Fork button. You will
want to clone your fork to your machine:

git clone git@github.com:your-user-name/geopandas.git geopandas-yourname
cd geopandas-yourname
git remote add upstream git://github.com/geopandas/geopandas.git

This creates the directory geopandas-yourname and connects your repository to
the upstream (main project) geopandas repository.

The testing suite will run automatically on Travis-CI once your pull request is
submitted. However, if you wish to run the test suite on a branch prior to
submitting the pull request, then Travis-CI needs to be hooked up to your
GitHub repository. Instructions for doing so are here [http://about.travis-ci.org/docs/user/getting-started/].

Creating a branch

You want your master branch to reflect only production-ready code, so create a
feature branch for making your changes. For example:

git branch shiny-new-feature
git checkout shiny-new-feature

The above can be simplified to:

git checkout -b shiny-new-feature

This changes your working directory to the shiny-new-feature branch. Keep any
changes in this branch specific to one bug or feature so it is clear
what the branch brings to geopandas. You can have many shiny-new-features
and switch in between them using the git checkout command.

To update this branch, you need to retrieve the changes from the master branch:

git fetch upstream
git rebase upstream/master

This will replay your commits on top of the latest geopandas git master. If this
leads to merge conflicts, you must resolve these before submitting your pull
request. If you have uncommitted changes, you will need to stash them prior
to updating. This will effectively store your changes and they can be reapplied
after updating.

2) Creating a development environment

A development environment is a virtual space where you can keep an independent installation of geopandas.
This makes it easy to keep both a stable version of python in one place you use for work, and a development
version (which you may break while playing with code) in another.

An easy way to create a geopandas development environment is as follows:

	Install either Anaconda [http://docs.continuum.io/anaconda/] or
miniconda [http://conda.pydata.org/miniconda.html]

	Make sure that you have cloned the repository

	cd to the geopandas* source directory

Tell conda to create a new environment, named geopandas_dev, or any other name you would like
for this environment, by running:

conda create -n geopandas_dev

For a python 3 environment:

conda create -n geopandas_dev python=3.4

This will create the new environment, and not touch any of your existing environments,
nor any existing python installation.

To work in this environment, Windows users should activate it as follows:

activate geopandas_dev

Mac OSX and Linux users should use:

source activate geopandas_dev

You will then see a confirmation message to indicate you are in the new development environment.

To view your environments:

conda info -e

To return to you home root environment:

deactivate

See the full conda docs here [http://conda.pydata.org/docs].

At this point you can easily do a development install, as detailed in the next sections.

3) Installing Dependencies

To run geopandas in an development environment, you must first install
geopandas‘s dependencies. We suggest doing so using the following commands
(executed after your development environment has been activated):

conda install -c conda-forge fiona shapely pyproj rtree
conda install pandas

This should install all necessary dependencies.

4) Making a development build

Once dependencies are in place, make an in-place build by navigating to the git
clone of the geopandas repository and running:

python setup.py develop

5) Making changes and writing tests

geopandas is serious about testing and strongly encourages contributors to embrace
test-driven development (TDD) [http://en.wikipedia.org/wiki/Test-driven_development].
This development process “relies on the repetition of a very short development cycle:
first the developer writes an (initially failing) automated test case that defines a desired
improvement or new function, then produces the minimum amount of code to pass that test.”
So, before actually writing any code, you should write your tests. Often the test can be
taken from the original GitHub issue. However, it is always worth considering additional
use cases and writing corresponding tests.

Adding tests is one of the most common requests after code is pushed to geopandas. Therefore,
it is worth getting in the habit of writing tests ahead of time so this is never an issue.

Like many packages, geopandas uses the Nose testing system [http://nose.readthedocs.org/en/latest/index.html] and the convenient
extensions in numpy.testing [http://docs.scipy.org/doc/numpy/reference/routines.testing.html].

Writing tests

All tests should go into the tests directory. This folder contains many
current examples of tests, and we suggest looking to these for inspiration.

The .util module has some special assert functions that
make it easier to make statements about whether GeoSeries or GeoDataFrame
objects are equivalent. The easiest way to verify that your code is correct is to
explicitly construct the result you expect, then compare the actual result to
the expected correct result, using eg the function assert_geoseries_equal.

Running the test suite

The tests can then be run directly inside your Git clone (without having to
install geopandas) by typing:

nosetests -v

6) Updating the Documentation

geopandas documentation resides in the doc folder. Changes to the docs are
make by modifying the appropriate file in the source folder within doc.
geopandas docs us reStructuredText syntax, which is explained here [http://www.sphinx-doc.org/en/stable/rest.html#rst-primer]
and the docstrings follow the Numpy Docstring standard [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt].

Once you have made your changes, you can build the docs by navigating to the doc folder and typing:

make html

The resulting html pages will be located in doc/build/html.

7) Submitting a Pull Request

Once you’ve made changes and pushed them to your forked repository, you then
submit a pull request to have them integrated into the geopandas code base.

You can find a pull request (or PR) tutorial in the GitHub’s Help Docs [https://help.github.com/articles/using-pull-requests/].

 About

About

Known issues

	The geopy API has changed significantly over recent versions,
geopy 1.10.0 is currently supported.

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | P
 | R
 | S
 | T
 | U
 | W

_

 	
 	__geo_interface__ (GeoDataFrame attribute)

 	(GeoSeries attribute)

A

 	
 	almost_equals() (GeoSeries method)

 	
 	area (GeoSeries attribute)

B

 	
 	boundary (GeoSeries attribute), [1]

 	
 	bounds (GeoSeries attribute)

 	buffer() (GeoSeries method), [1]

C

 	
 	centroid (GeoSeries attribute)

 	contains() (GeoSeries method)

 	
 	convex_hull (GeoSeries attribute), [1]

 	crosses() (GeoSeries method)

D

 	
 	difference() (GeoSeries method), [1]

 	
 	disjoint() (GeoSeries method)

 	distance() (GeoSeries method)

E

 	
 	envelope (GeoSeries attribute), [1]

 	
 	equals() (GeoSeries method)

 	exterior (GeoSeries attribute)

F

 	
 	from_file() (GeoDataFrame class method)

 	(GeoSeries method)

 	
 	from_postgis() (GeoDataFrame class method)

G

 	
 	geom_type (GeoSeries attribute)

 	
 	geopandas.geocode.geocode() (built-in function)

I

 	
 	interiors (GeoSeries attribute)

 	intersection() (GeoSeries method), [1]

 	intersects() (GeoSeries method)

 	
 	is_empty (GeoSeries attribute)

 	is_ring (GeoSeries attribute)

 	is_simple (GeoSeries attribute)

 	is_valid (GeoSeries attribute)

L

 	
 	length (GeoSeries attribute)

P

 	
 	plot() (GeoDataFrame method)

 	(GeoSeries method)

R

 	
 	representative_point() (GeoSeries method)

 	
 	rotate() (GeoSeries method), [1]

S

 	
 	scale() (GeoSeries method), [1]

 	simplify() (GeoSeries method), [1]

 	
 	skew() (GeoSeries method), [1]

 	symmetric_difference() (GeoSeries method), [1]

T

 	
 	to_crs() (GeoSeries method), [1]

 	to_file() (GeoSeries method)

 	to_json() (GeoSeries method)

 	
 	total_bounds (GeoSeries attribute)

 	touches() (GeoSeries method)

 	translate() (GeoSeries method), [1]

U

 	
 	unary_union (GeoSeries attribute), [1]

 	
 	union() (GeoSeries method), [1]

W

 	
 	within() (GeoSeries method)

_static/nyc.png
000080T

000090T

0000¥0T

0000Z0T

000000T

000086

000096

0000¥6

000026

280000

260000 [~

240000 [~

220000 [~

200000 [

180000 -

160000 [

140000

000006

120000

_static/world_gdp_per_cap_quantiles.png

_static/capitals_over_countries_1.png

_static/down-pressed.png

_static/test.png
15

1.0

0.5

0.0

35

_images/world_centroids.png

_static/down.png

_static/capitals.png

_static/capitals_over_countries_2.png
1.0

0.8

0.6

0.4

0.2

0.0

0.0

0.2

0.4

0.6

0.8

1.0

_images/world_gdp_per_cap.png

_images/boros_with_holes.png
280000

260000

240000

220000

200000

180000

160000

140000

120000

900000

920000

940000

960000

980000

1000000

1020000

1040000

1060000

1080000

_images/nyc_hull.png
000080T

000090T

0000¥0T

0000Z0T

000000T

000086

000096

0000¥6

000026

280000

260000 [~

240000 [~

220000 [~

200000 [

180000 -

160000 [

140000

000006

120000

_static/up.png

_images/world_reproj.png

_static/up-pressed.png

_images/world_starting.png

_images/world_borders.png

_images/world_gdp_per_cap_red.png

nav.xhtml

 Table of Contents

 		GeoPandas 0.2.0.dev

 		Installation

 		Installing GeoPandas

 		Dependencies

 		Data Structures

 		GeoSeries

 		Overview of Attributes and Methods

 		GeoDataFrame

 		Attributes and Methods

 		Reading and Writing Files

 		Reading Spatial Data

 		Writing Spatial Data

 		Making Maps

 		Chloropleth Maps

 		Choosing colors

 		Maps with Layers

 		Other Resources

 		Managing Projections

 		Coordinate Reference Systems

 		Setting a Projection

 		Re-Projecting

 		Geometric Manipulations

 		Set-theoretic Methods

 		Constructive Methods

 		Affine transformations

 		Merging Data

 		Attribute Joins

 		Spatial Joins

 		Geocoding

 		Reference to All Attributes and Methods

 		GeoDataFrame

 		Contributing to GeoPandas

 		Overview

 		Seven Steps for Contributing

 		1) Forking the geopandas repository using Git

 		Getting started with Git

 		Forking

 		Creating a branch

 		2) Creating a development environment

 		3) Installing Dependencies

 		4) Making a development build

 		5) Making changes and writing tests

 		Writing tests

 		Running the test suite

 		6) Updating the Documentation

 		7) Submitting a Pull Request

 		About

 		Known issues

_images/capitals_over_countries_1.png

_images/nyc.png
000080T

000090T

0000¥0T

0000Z0T

000000T

000086

000096

0000¥6

000026

280000

260000 [~

240000 [~

220000 [~

200000 [

180000 -

160000 [

140000

000006

120000

_images/holes.png
280000

260000

240000

220000

200000

180000

160000

140000

120000

900000

920000 p

940000 |-

960000 |-

980000 -

1000000 |-

1020000 |-

1040000 |-

1060000 |-

1080000

_images/test_buffer.png
15

1.0

0.5

0.0

0205

0.0

0.5

1.0

15

2.0

25

3.0

35

_images/capitals_over_countries_2.png
1.0

0.8

0.6

0.4

0.2

0.0

0.0

0.2

0.4

0.6

0.8

1.0

_images/test.png
15

1.0

0.5

0.0

35

_images/world_gdp_per_cap_quantiles.png

_images/capitals.png

_images/world_randomcolors.png

_static/world_randomcolors.png

_static/world_centroids.png

_static/comment-bright.png

_static/comment-close.png

_static/nyc_hull.png
000080T

000090T

0000¥0T

0000Z0T

000000T

000086

000096

0000¥6

000026

280000

260000 [~

240000 [~

220000 [~

200000 [

180000 -

160000 [

140000

000006

120000

_static/world_reproj.png

_static/minus.png

_static/comment.png

_static/boros_with_holes.png
280000

260000

240000

220000

200000

180000

160000

140000

120000

900000

920000

940000

960000

980000

1000000

1020000

1040000

1060000

1080000

_static/file.png

_static/world_gdp_per_cap.png

_static/plus.png

_static/ajax-loader.gif

_static/world_starting.png

_static/world_border