

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

2.2.2 (2018-10-10)

Documentation Changes

	update docs around query functions (073991f4 [https://github.com/MichaelSolati/geofirestore/commit/073991f4b5d4fe72e93a5125ab202c7ab2d4cfe5])

2.2.1 (2018-09-25)

Chores

	update dependencies (504d7e09 [https://github.com/MichaelSolati/geofirestore/commit/504d7e094d297741e1710153db80f3ce4ab689f4])

Refactors

	GeoFirestoreQuery: move around event firing and fix typing (ff5fa228 [https://github.com/MichaelSolati/geofirestore/commit/ff5fa22873ea42f341b0b8cf33caa9cba144dc05])

2.2.0 (2018-09-17)

New Features

	GeoFirestore: add ability to use with persistence options, fixes #31 [https://github.com/MichaelSolati/geofirestore/pull/31] (9e2a2e40 [https://github.com/MichaelSolati/geofirestore/commit/9e2a2e403e9b22477fd879855352c6d4da7032bd])

2.1.2 (2018-08-24)

Chores

	node: add node typings (344602f0 [https://github.com/MichaelSolati/geofirestore/commit/344602f0012bf49e873a7bae673ae438076c1acb])

Bug Fixes

	firebase-admin: fix docChanges prop/method issue while adding more extensive typing (8c1d77f5 [https://github.com/MichaelSolati/geofirestore/commit/8c1d77f5c6bf6c87bebf2330863c9fe7619f3e35])

2.1.1 (2018-08-08)

Build System / Dependencies

	add lint to travis (8318f861 [https://github.com/MichaelSolati/geofirestore/commit/8318f861ff349f669f44b846f65376c870330259])

Bug Fixes

	resolve cloud typings, fixes #22 [https://github.com/MichaelSolati/geofirestore/pull/22] (4496b16c [https://github.com/MichaelSolati/geofirestore/commit/4496b16cfe82bc9fd2bd08ba3d680af9376cdd12])

2.1.0 (2018-08-07)

Chores

	update dependencies (346cd080 [https://github.com/MichaelSolati/geofirestore/commit/346cd08088b92268097fb8467e4c51835725b06b])

	fix coveralls badge in README (a1843f9e [https://github.com/MichaelSolati/geofirestore/commit/a1843f9ef151ae8672b8c34f8f22c5f80e7c215a])

Documentation Changes

	GeoFirestoreQuery: add docs for query function of GeoFirestoreQuery’s GeoFirestoreObj, fixes #8 [https://github.com/MichaelSolati/geofirestore/pull/8] (79976caf [https://github.com/MichaelSolati/geofirestore/commit/79976cafc45b40b826f929cc199f22efe571b86a])

	add example application as well as site deployment (1192262a [https://github.com/MichaelSolati/geofirestore/commit/1192262a99ce2a8b68a869ba0ef05e007dca6119])

New Features

	add support for firebase-admin sdk, fixes #9 [https://github.com/MichaelSolati/geofirestore/pull/9] (8a763041 [https://github.com/MichaelSolati/geofirestore/commit/8a763041591aed6836459c853ab6b927cf83298d])

	query: add ability to write custom query function for GeoFirestoreQuery (05bccde5 [https://github.com/MichaelSolati/geofirestore/commit/05bccde507f94a230c986cc8ea70240e8671e0fe])

Bug Fixes

	test: fix a remove test for GeoFirestore (521adabe [https://github.com/MichaelSolati/geofirestore/commit/521adabea0f4cb05ea821830655f05a4befc3463])

	validateCriteria: check QueryCriteria’s query to ensure it is of a valid type (4c299c80 [https://github.com/MichaelSolati/geofirestore/commit/4c299c807d876970df36dde50d6b56286b5c78ab])

Performance Improvements

	examples: throttle queries to Firestore (be8ab9a5 [https://github.com/MichaelSolati/geofirestore/commit/be8ab9a52af9dc075ec3f1e1c4acbd3cac6e73f8])

Tests

	GeoFirestoreQuery:

	add tests for _queryToString and _stringToQuery (44677f0c [https://github.com/MichaelSolati/geofirestore/commit/44677f0cacf1eed0572c51f0f52bbcc75fdcded5])

	use consts for query comparisons (72531203 [https://github.com/MichaelSolati/geofirestore/commit/7253120398b1fa7d595e0980981d53d2d609a584])

	add coverage for query function of QueryCriteria (01cc594c [https://github.com/MichaelSolati/geofirestore/commit/01cc594c2051a3803de0b4673bc1c844e08f1d2a])

	expand coverage for util functions (12b10e59 [https://github.com/MichaelSolati/geofirestore/commit/12b10e593781fb64cc366f9a7ba6e20bbcfdfecb])

	GeoFirestore:

	write better remove function tests (e6b77890 [https://github.com/MichaelSolati/geofirestore/commit/e6b77890b474ea008c510717eed556d72071df7a])

	add coverage for remove function (da11c3b3 [https://github.com/MichaelSolati/geofirestore/commit/da11c3b3e479d18e321aa031a9704f7ce880bb06])

2.0.2 (2018-07-23)

Build System / Dependencies

	add coveralls to testing process (e670b279 [https://github.com/MichaelSolati/geofirestore/commit/e670b279e072c00709968a9b3e6849cfcf5e98c5])

Documentation Changes

	README: stop referencing location where document should be used (72cc61af [https://github.com/MichaelSolati/geofirestore/commit/72cc61afdfb9e3f92b5f554e8fdea42231dacf3b])

Refactors

	remove external dependency of firebase (df31a871 [https://github.com/MichaelSolati/geofirestore/commit/df31a871a62a8836d9905ccf108e1ee6b4c26113])

2.0.1 (2018-07-23)

Build System / Dependencies

	set browser build to iife (7b0df7f0 [https://github.com/MichaelSolati/geofirestore/commit/7b0df7f0d6d39ba5d73e55d0171c37d26013bf0d])

Documentation Changes

	Fix minor typos in README.md (1ed6d659 [https://github.com/MichaelSolati/geofirestore/commit/1ed6d65993da7e12387181463029b649fe88173d])

Refactors

	modify how firestore is imported (8525def6 [https://github.com/MichaelSolati/geofirestore/commit/8525def6418a2e71a632a874413fe88b69581a61])

2.0.0 (2018-07-18)

Build System / Dependencies

	change build to use rollup (dddb80a2 [https://github.com/MichaelSolati/geofirestore/commit/dddb80a287d53efab9e5d598b5ce5f0647c402a2])

	configure npm deploy for master AND tag (7fd7c539 [https://github.com/MichaelSolati/geofirestore/commit/7fd7c539f6344c7ed1754fd6e479c5336ee2e8e2])

Chores

	release: minor version release (81a9d979 [https://github.com/MichaelSolati/geofirestore/commit/81a9d979d2857bd7374f0728952fd5707475cb80])

	lock to firebase 5.x.x (8779a2c7 [https://github.com/MichaelSolati/geofirestore/commit/8779a2c762314aaf1f3c34042caefaa08cfaee0f])

	bump firebase to v5.x.x (1442de38 [https://github.com/MichaelSolati/geofirestore/commit/1442de38fb667c1c3a13f0a08e8affda4bb15087])

Documentation Changes

	update docs (f040e981 [https://github.com/MichaelSolati/geofirestore/commit/f040e98190572d3c62f1661713c59299e7683573])

New Features

	query:

	add ‘on_modified’ event, this fixes #7 [https://github.com/MichaelSolati/geofirestore/pull/7] (8a69d9e8 [https://github.com/MichaelSolati/geofirestore/commit/8a69d9e83664782dce00df4300ce36ea2f6c6b22])

	return document instead of just coordinates (94fdc711 [https://github.com/MichaelSolati/geofirestore/commit/94fdc711d040a4808be1946565af2cfdaf043270])

	add: add ability to add/insert documents without set (1663b0e1 [https://github.com/MichaelSolati/geofirestore/commit/1663b0e1777093658ad16b90d975db295a980adc])

	set: update set function to use GeoPoints (5cf04fbd [https://github.com/MichaelSolati/geofirestore/commit/5cf04fbd445442fe8fe7c50aaae1c35df34d923b])

	remove: update remove function to no longer depend on set function (51814436 [https://github.com/MichaelSolati/geofirestore/commit/51814436b61e1275e4ff85d17bf44d5e4954822e])

	get: update get function to reflect new GeoFirestoreObj type (ec4ac975 [https://github.com/MichaelSolati/geofirestore/commit/ec4ac975feb9a278344a240863dbed79509d87a7])

Bug Fixes

	tweak some validations (7303a350 [https://github.com/MichaelSolati/geofirestore/commit/7303a350d4097fb678578f815e41fe601a07755d])

Refactors

	GeoFirestoreQuery: use Maps instead of Objects as well as general clean up (2263bccd [https://github.com/MichaelSolati/geofirestore/commit/2263bccda9fa8bbe6a7e93c605e07b30060af94b])

Tests

	update tests for new structure (37600fb6 [https://github.com/MichaelSolati/geofirestore/commit/37600fb6a9de903f144733f014fdb07490655e0d])

1.2.0 (2018-05-29)

Chores

	lock to firebase 5.x.x (295e9f7b [https://github.com/MichaelSolati/geofirestore/commit/295e9f7b3dd3aae227dcca089bb13cfefb0a2d40])

	update dependencies (b45d9e8e [https://github.com/MichaelSolati/geofirestore/commit/b45d9e8e6998b2391a9c9ad55d658e2eeb5ade03])

1.1.1 (2018-05-24)

Bug Fixes

	scripts: remove postinstall script (d2712d36 [https://github.com/MichaelSolati/geofirestore/commit/d2712d36e8edd067540d5e0fdc7948c93ccf6a7c])

1.1.0 (2018-05-24)

Build System / Dependencies

	include dist in npm deploy (0fe8aca3 [https://github.com/MichaelSolati/geofirestore/commit/0fe8aca3da0069b607119839519b37fea045a484])

Chores

	add scripts to generate changelogs and update version (3b90de44 [https://github.com/MichaelSolati/geofirestore/commit/3b90de4455a81307c95387528c2e3c6f9cc9ec4e])

	add commit guidline and update readme to include contributing section (6c519ad5 [https://github.com/MichaelSolati/geofirestore/commit/6c519ad55a9211eb10441bfa4f30528cf5350fb8])

	repurpose as a geofirestore npm package (f887310c [https://github.com/MichaelSolati/geofirestore/commit/f887310c00faa3b723fac0185926c92687cb6196])

New Features

	firestore: early implementation of geofirestore (51e76bda [https://github.com/MichaelSolati/geofirestore/commit/51e76bdaeef3bad607f134498d8a92301efc436e])

Bug Fixes

	firestore:

	set data from snapshot to variable to pass into decode (e750c65f [https://github.com/MichaelSolati/geofirestore/commit/e750c65f23947de979ec359b365d47e70bfefd31])

	fix single location removal by set function (ffb377aa [https://github.com/MichaelSolati/geofirestore/commit/ffb377aab702dc80e45006b5dd1daf8f6f0dbee7])

Refactors

	renamed folders and small tweaks (261445e6 [https://github.com/MichaelSolati/geofirestore/commit/261445e60ea2179f4735639f4b6c835bbbb6a354])

	change vars to consts and use in instead of hasOwnProperty (4a0d3127 [https://github.com/MichaelSolati/geofirestore/commit/4a0d31278e85aa86d8ac4765f0f81d3474563bbf])

Tests

	firestore:

	modify “‘key_exited’ registrations can be cancelled” timing (b5da5ee4 [https://github.com/MichaelSolati/geofirestore/commit/b5da5ee427e5665a0afd76c8e119e027b39dc10d])

	implement test against realtime db to firestore (b73d800e [https://github.com/MichaelSolati/geofirestore/commit/b73d800e48a0382465b7d7c1a28ddab448b7540b])

	increase mocha timeout (aa7b084e [https://github.com/MichaelSolati/geofirestore/commit/aa7b084eb6020e6169576f99baf6bf1c2486d3bf])

	reintroduce coveralls support with tweaks (361fc5b4 [https://github.com/MichaelSolati/geofirestore/commit/361fc5b4cb605678d2a933d43d539f4d7766f17c])

	fix tests for geofire callbacks and implement for geofirestore (8c007d81 [https://github.com/MichaelSolati/geofirestore/commit/8c007d81fba67dda70c7ba6b3511f3756eb182ab])

	geofirestore: check location against array instead of object (dd93bcde [https://github.com/MichaelSolati/geofirestore/commit/dd93bcde90bf33848dea9ccd2ff5678cd9b9ebb9])

Commit Message Guidelines

We have very precise rules over how our git commit messages can be formatted. This leads to more
readable messages that are easy to follow when looking through the project history. But also,
we use the git commit messages to generate the project change log.

Commit Message Format

Each commit message consists of a header, a body and a footer. The header has a special
format that includes a type, a scope and a subject:

<type>(<scope>): <subject>
<BLANK LINE>
<body>
<BLANK LINE>
<footer>

The header is mandatory and the scope of the header is optional.

Any line of the commit message cannot be longer 100 characters! This allows the message to be easier
to read on GitHub as well as in various git tools.

Revert

If the commit reverts a previous commit, it should begin with revert:, followed by the header of
the reverted commit. In the body it should say: This reverts commit <hash>., where the hash is
the SHA of the commit being reverted.

Type

Must be one of the following:

	feat: A new feature

	fix: A bug fix

	docs: Documentation only changes

	style: Changes that do not affect the meaning of the code (white-space, formatting, missing
semi-colons, etc)

	refactor: A code change that neither fixes a bug nor adds a feature

	perf: A code change that improves performance

	test: Adding missing tests or correcting existing tests

	build: Changes that affect the build system, CI configuration or external dependencies
(example scopes: gulp, broccoli, npm)

	chore: Other changes that don’t modify src or test files

geofirestore

[image: npm version] [https://badge.fury.io/js/geofirestore] [image: Build Status] [https://travis-ci.org/MichaelSolati/geofirestore] [image: Coverage Status] [https://coveralls.io/github/MichaelSolati/geofirestore?branch=master]

GeoFirestore is an open-source library that allows you to store and query a set of keys based on their geographic location. At its heart, GeoFirestore simply stores locations with string keys. Its main benefit, however, is the possibility of retrieving only those keys within a given geographic area - all in realtime.

GeoFirestore uses the Firebase Cloud Firestore [https://firebase.google.com/docs/firestore/] for data
storage, allowing query results to be updated in realtime as they change. GeoFirestore selectively loads
only the data near certain locations, keeping your applications light and responsive, even with
extremely large datasets.

GeoFirestore is designed as a lightweight add-on to Firebase. To keep things simple, GeoFirestore stores data
in its own format and its own location within your Firestore database. This allows your existing data
format and Security Rules to remain unchanged while still providing you with an easy solution for geo
queries.

Table of Contents

	Downloading GeoFirestore

	Example Usage

	Documentation

	Contributing

Downloading GeoFirestore

You can install GeoFirestore via npm. You will have to install Firebase separately (because it is a peer dependency to GeoFirestore):

npm install geofirestore firebase --save

Example Usage

Assume you are building an app to rate bars and you store all information for a bar, e.g. name, business hours and price range, and you want to add the possibility for users to search for bars in their vicinity. This is where GeoFirestore comes in. You can store each bar using GeoFirestore, using the location to build an easily queryable document. GeoFirestore then allows you to easily query which bars are nearby in a simalar fashion as geofire but will also return the bar information (not just the key or location).

Examples

You can find a full list of our demos and view the code for each of them in the examples directory of this repository. The examples cover some of the common use cases for GeoFirestore.

Documentation

	GeoFirestore

	new GeoFirestore(collectionRef)

	ref()

	get(key)

	add(document[, customKey])

	set(keyOrDocuments[, document, customKey])

	remove(key)

	query(queryCriteria)

	GeoFirestoreQuery

	center()

	radius()

	updateCriteria(newQueryCriteria)

	on(eventType, callback)

	cancel()

	GeoCallbackRegistration

	cancel()

	Helper Methods

	GeoFirestore.distance(location1, location2)

	Promises

GeoFirestore

A GeoFirestore instance is used to read and write geolocation data to your Firestore database and to create queries.

new GeoFirestore(collectionRef)

Creates and returns a new GeoFirestore instance to manage your location data. Data will be stored at
the collection defined by collectionRef. Note that this collectionRef must point to a collection in your Firestore Database.

// Initialize the Firebase SDK
firebase.initializeApp({
 // ...
});

// Create a Firebase reference where GeoFirestore will store its information
const collectionRef = firebase.firestore().collection('geofirestore');

// Create a GeoFirestore index
const geoFirestore = new GeoFirestore(collectionRef);

GeoFirestore.add(document[, customKey])

Adds a document to this GeoFirestore. If you want to use a custom attribute as for the location pass the attribute as a string as the customKey argument.

Returns a promise which is fulfilled when the new document has been synchronized with the Firebase servers.

geoFirestore.add({ coordinates: new firebase.firestore.GeoPoint(37.79, -122.41)}).then((docRef) => {
 console.log(docRef.id); // ID of newly added document
}, (error) => {
 console.log('Error: ' + error);
});

GeoFirestore.ref()

Returns the Firestore reference used to create this GeoFirestore instance.

const collectionRef = firebase.firestore().collection('geofirestore');
const geoFirestore = new GeoFirestore(collectionRef);

const ref = geoFirestore.ref(); // ref === collectionRef

GeoFirestore.get(key[, options])

Fetches the document stored for key. If on web, by providing a options (GetOptions) object, this method can be configured to fetch results only from the server, only from the local cache or attempt to fetch results from the server and fall back to the cache (which is the default).

Returns a promise fulfilled with the document corresponding to the provided key. If key does not exist, the returned promise is fulfilled with null.

geoFirestore.get('some_key').then((document) => {
 if (document === null) {
 console.log('Provided key is not in GeoFirestore');
 }
 else {
 console.log('Provided key\'s document is ' + document);
 }
}, (error) => {
 console.log('Error: ' + error);
});

GeoFirestore.set(keyOrDocuments[, document, customKey])

Adds the specified key - document pair(s) to this GeoFirestore. If the provided keyOrDocuments argument is a string, the single document will be added. The keyOrDocuments argument can also be an object containing a mapping between keys and documents allowing you to add several documents to GeoFirestore in one write. It is much more efficient to add several documents at once than to write each one individually.

If any of the provided keys already exist in this GeoFirestore, they will be overwritten with the new location values. Documents must have a coordinates field that is a Firestore GeoPoint.

If you want to use a custom attribute as for the location pass the attribute as a string as the customKey argument. Keep in mind that if you pass an object of key - document pairs, then your document object should be null.

Returns a promise which is fulfilled when the new document has been synchronized with the Firebase servers.

Keys must be strings and valid Firstore id [https://firebase.google.com/docs/database/web/structure-data].

geoFirestore.set('some_key', { coordinates: new firebase.firestore.GeoPoint(37.79, -122.41)}).then(() => {
 console.log('Provided key has been added to GeoFirestore');
}, (error) => {
 console.log('Error: ' + error);
});

geoFirestore.set({
 'some_key': { coordinates: new firebase.firestore.GeoPoint(37.79, -122.41)},
 'another_key': { coordinates: new firebase.firestore.GeoPoint(36.98, -122.56)}
}).then(() => {
 console.log('Provided keys have been added to GeoFirestore');
}, (error) => {
 console.log('Error: ' + error);
});

GeoFirestore.remove(key)

Removes the provided key from this GeoFirestore. Returns a promise fulfilled when the removal of key has been synchronized with the Firebase servers. If the provided key is not present in this GeoFirestore, the promise will still successfully resolve.

This is equivalent to calling set(key, null) or set({ <key>: null }).

geoFirestore.remove('some_key').then(() => {
 console.log('Provided key has been removed from GeoFirestore');
}, (error) => {
 console.log('Error: ' + error);
});

You may additionally pass in an array of keys to remove many documents at once.

GeoFirestore.query(queryCriteria)

Creates and returns a new GeoFirestoreQuery instance with the provided queryCriteria.

The queryCriteria describe a circular query and must be an object with the following keys:

	center - the center of this query, in the form of a Firestore GeoPoint

	radius - the radius, in kilometers, from the center of this query in which to include results

The queryCriteria optionally may include the following keys:

	query - the query, a function created by building on the firebase.firestore.CollectionReference [https://firebase.google.com/docs/reference/js/firebase.firestore.CollectionReference].

	Any field you wish to query on your original Document will be a sub object of the GeoFirestoreObj and should be prefixed with d. in order to query it. So if I was to want to query on the count of a Document I would refer to it as 'd.count'.

	Firestore has powerful querying syntax [https://firebase.google.com/docs/firestore/query-data/queries] and the GeoFirestoreQuery’s QueryCriteria provides a thin wrapper around it. This keeps you from having to learn two query syntax systems. If you know the Firestore query API [https://firebase.google.com/docs/reference/js/firebase.firestore.Query] then you know how to query in GeoFirestore.

	GeoFirestore queries locations on the g (geohash) field of a Document, In order to be able to query on an aditional field you must index your collection. For the aditional field remember that the field will be stored in the sub-object d and so must be indexed as seen here [https://github.com/MichaelSolati/geofirestore/blob/dev/firestore.indexes.json#L3]

	Updating your query function WILL NOT filter our documents by triggering the key_exited event. I’d read over this issue [https://github.com/MichaelSolati/geofirestore/issues/35] to better understand this specific situation as well as the full answer here. [https://github.com/MichaelSolati/geofirestore/issues/35#issuecomment-423521341]

	The only query modifier that will work properly is the wheres query modifier:

	orderBy and related modifiers (startAt, startAfter, endBefore, endAt) will not work in any way, and will never return anything. As per Michael Bleigh from the Firebase Team [https://stackoverflow.com/users/226391/michael-bleigh], “Because Cloud Firestore doesn’t support ordering by a different field than the supplied inequality [https://firebase.google.com/docs/firestore/query-data/order-limit-data], you won’t be able to sort by name directly from the query. Instead you’d need to sort client-side once you’ve fetched the data.” (source [https://stackoverflow.com/a/47541800/5076023]

	limit does not work because geofirestore wraps/scans hashes around the hash of your inputed center. That way if you’re point is by the borderline of where a hash could be we don’t miss areas right outside of the query. So if we’re doing multiple queries in order to ensure that we have the full area covered then we will hit the ref.limit for each query (which will obvs be more than the initial x that you wanted).

const geoQuery = geoFirestore.query({
 center: new firebase.firestore.GeoPoint(10.38, 2.41),
 radius: 10.5,
 query: (ref) => ref.where('d.count', '==', 1)
});

GeoFirestoreQuery

A standing query that tracks a set of keys matching a criteria. A new GeoFirestoreQuery is created every time you call GeoFirestore.query().

GeoFirestoreQuery.center()

Returns the location signifying the center of this query.

The returned location will be a Firestore GeoPoint.

const geoQuery = geoFirestore.query({
 center: new firebase.firestore.GeoPoint(10.38, 2.41),
 radius: 10.5,
 query: (ref) => ref.where('d.count', '==', 1)
});

const center = geoQuery.center(); // center === GeoPoint { _lat: 10.38, _long: 2.41 }

GeoFirestoreQuery.query()

Returns a Firestore Query which you can read or listen to.

const geoQuery = geoFirestore.query({
 center: new firebase.firestore.GeoPoint(10.38, 2.41),
 radius: 10.5,
 query: (ref) => ref.where('d.count', '==', 1)
});

const query = geoQuery.query(); // A query object

GeoFirestoreQuery.radius()

Returns the radius of this query, in kilometers.

const geoQuery = geoFirestore.query({
 center: new firebase.firestore.GeoPoint(10.38, 2.41),
 radius: 10.5,
 query: (ref) => ref.where('d.count', '==', 1)
});

const radius = geoQuery.radius(); // radius === 10.5

GeoFirestoreQuery.updateCriteria(newQueryCriteria)

Updates the criteria for this query.

newQueryCriteria must be an object containing center, radius, query, or all three.

const geoQuery = geoFirestore.query({
 center: new firebase.firestore.GeoPoint(10.38, 2.41),
 radius: 10.5,
 query: (ref) => ref.where('d.count', '==', 1)
});

let center = geoQuery.center(); // center === GeoPoint { _lat: 10.38, _long: 2.41 }
let radius = geoQuery.radius(); // radius === 10.5
const query = geoQuery.query(); // Firestore Query

geoQuery.updateCriteria({
 center: new firebase.firestore.GeoPoint(-50.83, 100.19),
 radius: 5
});

center = geoQuery.center(); // center === GeoPoint { _lat: -50.83, _long: 100.19 }
radius = geoQuery.radius(); // radius === 5
console.log(query.toString() === geoQuery.query().toString()); // true

geoQuery.updateCriteria({
 radius: 7,
 query: (ref) => ref.where('d.count', '==', 2)
});

center = geoQuery.center(); // center === GeoPoint { _lat: -50.83, _long: 100.19 }
radius = geoQuery.radius(); // radius === 7
console.log(query.toString() === geoQuery.query().toString()); // false

GeoFirestoreQuery.on(eventType, callback)

Attaches a callback to this query which will be run when the provided eventType fires. Valid eventType values are ready, key_entered, key_exited, key_moved, and key_modified. The ready event callback is passed no parameters. All other callbacks will be passed three parameters:

	the document’s key

	the Firestore Document

	the distance, in kilometers, from the location to this query’s center

ready fires once when this query’s initial state has been loaded from the server. The ready event will fire after all other events associated with the loaded data have been triggered. ready will fire again once each time updateCriteria() is called, after all new data is loaded and all other new events have been fired.

key_entered fires when a key enters this query. This can happen when a key moves from a location outside of this query to one inside of it or when a key is written to GeoFirestore for the first time and it falls within this query.

key_exited fires when a key moves from a location inside of this query to one outside of it. If the key was entirely removed from GeoFirestore, both the document and distance passed to the callback will be null.

key_moved fires when a key which is already in this query moves to another location inside of it.

key_modified fires when a key which is already in this query and the document has changed, while the location has stayed the same.

Returns a GeoCallbackRegistration which can be used to cancel the callback. You can add as many callbacks as you would like for the same eventType by repeatedly calling on(). Each one will get called when its corresponding eventType fires. Each callback must be cancelled individually.

const onReadyRegistration = geoQuery.on('ready', () => {
 console.log('GeoFirestoreQuery has loaded and fired all other events for initial data');
});

const onKeyEnteredRegistration = geoQuery.on('key_entered', function(key, document, distance) {
 console.log(key + ' entered query at ' + document.coordinates.latitude + ',' + document.coordinates.longitude + ' (' + distance + ' km from center)');
});

const onKeyExitedRegistration = geoQuery.on('key_exited', function(key, document, distance) {
 console.log(key + ' exited query to ' + document.coordinates.latitude + ',' + document.coordinates.longitude + ' (' + distance + ' km from center)');
});

const onKeyMovedRegistration = geoQuery.on('key_moved', function(key, document, distance) {
 console.log(key + ' moved within query to ' + document.coordinates.latitude + ',' + document.coordinates.longitude + ' (' + distance + ' km from center)');
});

const onKeyModifiedRegistration = geoQuery.on('key_modified', function (key, document, distance) {
 console.log(key + ' in query has been modified');
 });

GeoFirestoreQuery.cancel()

Terminates this query so that it no longer sends location/document updates. All callbacks attached to this query via on() will be cancelled. This query can no longer be used in the future.

// This example stops listening for all key events in the query once the first key leaves the query

const onKeyEnteredRegistration = geoQuery.on('key_entered', function(key, document, distance) {
 console.log(key + ' entered query at ' + document.coordinates.latitude + ',' + document.coordinates.longitude + ' (' + distance + ' km from center)');
});

const onKeyExitedRegistration = geoQuery.on('key_exited', function(key, document, distance) {
 console.log(key + ' exited query to ' + document.coordinates.latitude + ',' + document.coordinates.longitude + ' (' + distance + ' km from center)');

 // Cancel all of the query's callbacks
 geoQuery.cancel();
});

GeoCallbackRegistration

An event registration which is used to cancel a GeoFirestoreQuery.on() callback when it is no longer needed. A new GeoCallbackRegistration is returned every time you call GeoFirestoreQuery.on().

These are useful when you want to stop firing a callback for a certain eventType but do not want to cancel all of the query’s event callbacks.

GeoCallbackRegistration.cancel()

Cancels this callback registration so that it no longer fires its callback. This has no effect on any other callback registrations you may have created.

// This example stops listening for new keys entering the query once the first key leaves the query

const onKeyEnteredRegistration = geoQuery.on('key_entered', function(key, document, distance) {
 console.log(key + ' entered query at ' + document.coordinates.latitude + ',' + document.coordinates.longitude + ' (' + distance + ' km from center)');
});

const onKeyExitedRegistration = geoQuery.on('key_exited', function(key, document, distance) {
 console.log(key + ' exited query to ' + document.coordinates.latitude + ',' + document.coordinates.longitude + ' (' + distance + ' km from center)');

 // Cancel the 'key_entered' callback
 onKeyEnteredRegistration.cancel();
});

Helper Methods

GeoFirestore.distance(location1, location2)

Static helper method which returns the distance, in kilometers, between location1 and location2.

location1 and location1 must be in GeoPoint form.

const location1 = new firebase.firestore.GeoPoint(10.3, -55.3);
const location2 = new firebase.firestore.GeoPoint(-78.3, 105.6);

const distance = GeoFirestore.distance(location1, location2); // distance === 12378.536597423461

Promises

GeoFirestore uses promises when writing and retrieving data. Promises represent the result of a potentially
long-running operation and allow code to run asynchronously. Upon completion of the operation, the
promise will be ‘resolved’ / ‘fulfilled’ with the operation’s result. This result will be passed to
the function defined in the promise’s then() method.

If you are unfamiliar with promises, check out this blog post [http://www.html5rocks.com/en/tutorials/es6/promises/].
Here is a quick example of how to consume a promise:

promise.then(function(result) {
 console.log('Promise was successfully resolved with the following value: ' + result);
}, (error) => {
 console.log('Promise was rejected with the following error: ' + error);
})

Contributing

All code should pass tests, as well as be well documented. Please open PRs into the dev branch. Please also see the Commit Message Guidelines for how commit messages should be structured.

Examples | GeoFirestore

GeoFirestore is an open-source library that allows you to store and query a set of keys based on their
geographic location. At its heart, GeoFirestore simply stores locations with string keys. Its main
benefit, however, is the possibility of retrieving only those keys within a given geographic
area - all in realtime.

GeoFirestore uses the Firebase Cloud Firestore [https://firebase.google.com/docs/firestore/] for data
storage, allowing query results to be updated in realtime as they change. GeoFirestore selectively loads
only the data near certain locations, keeping your applications light and responsive, even with
extremely large datasets.

Running Locally

To run the following examples locally, clone this entire geofirestore repository
and then simply open each example’s respective index.html file in the browser
of your choice.

viewers - Writing To and Reading From GeoFire and Using a GeoQuery

This is a very basic example which shows you how to read from and write to GeoFirestore
and how to handle the promises returned by the set(), get(), and remove()
methods.

It also shows you how to create a GeoFirestoreQuery and respond to keys moving into,
out of, and within the query.

You can check out a live demo of this example here [https://geofirestore.firebaseapp.com/viewers/index.html].

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up.png

