

Welcome to geni-lib’s documentation!

Contents:

	Introduction

	Credentials
	Getting Credentials from the NSF GENI Portal

	Getting Credentials from the CloudLab Portal

	Installation
	Ubuntu 14.04

	Ubuntu 16.04

	MacOS X 10.10.x / 10.11.x

	Vagrant

	CentOS 7

	Tutorials / How-Tos
	Importing a Context from a bundle

	Creating a Context from Cloudlab Credentials

	Creating a Custom Context

	Querying the Federation

	Creating a Request for a Single VM

	VTS: Basic Single-Site Topology

	VTS: Basic WAN Topology

	API
	geni.aggregate

	geni.minigcf.config

	geni.portal

	geni.rspec

	geni.types

	geni.urn

	geni.util

	Development
	Supported Use Cases

	Coding Conventions

	Pattern Conventions

	Philosophy Notes

	Things That Don’t Belong

Indices and tables

	Module Index

	Search Page

Introduction

geni-lib is a Python library for interacting with the NSF GENI Federation [http://www.geni.net],
or any federation that uses components of the GENI Software Architecture [http://groups.geni.net/geni/raw-attachment/wiki/GeniArchitectTeam/GENI%20Software%20Architecture%20v1.0.pdf].

Common uses include orchestrating repeatable experiments and writing small tools for
inspecting the resources available in a given federation. There are also a number
of administrative API handlers available for interacting with software commonly used
in experiments - particularly those exposing services to other experimenters.

Credentials

Using geni-lib to interact with cloud / testbed resources requires credentials for your account
with a given provider (GENI, CloudLab, Emulab, etc.). The following guides provide documentation
for how to acquire the credentials that geni-lib needs for each environment.

Note

If you only want to use geni-lib to manipulate XML resource files (RSpecs) to use with another
tool, you do not need to install any credentials

Guides:

	Getting Credentials from the NSF GENI Portal

	Getting Credentials from the CloudLab Portal

Getting Credentials from the NSF GENI Portal

Download The omni.bundle

You need a file called omni.bundle which is available from the GENI Portal web
interface. Once you log into the GENI Portal you can use the following steps to locate your
omni.bundle download:

	At the top of the Portal home page click on the tab labeled Profile

	In the tabs on the Profile page click on the one labeled Configure omni

	Embedded in the text under the Option 1: Automatic omni configuration header, there
is a button labeled Download your omni data. Click this button.

Note

If you see a warning that no SSH keys have been uploaded you can still use the bundle, but
you will need to specify an SSH public key path later if you want to use resources that
require SSH login

	Click the Download your omni data button at the bottom of the next page and it should
start downloading immediately in your browser.

Getting Credentials from the CloudLab Portal

CloudLab only provides your x509 certificate from the web interface. You will
have to provide your own SSH public key for use with geni-lib when you set
up your context for using reserved resources.

	Log in to the CloudLab Portal [https://www.cloudlab.us/login.php].

	From the <your-username> dropdown at the top right of the interface, select the
Download Credentials option

	Save this text (either via copy/paste or Save As… in your brower) to
a file called cloudlab.pem for use when creating your context.

You will also need to take note of the projects of which you are a member, in order to
set up your context. You can view your projects by clicking on the Membership tab
on the user dashboard interface.

Installation

	Ubuntu 14.04
	High-Level Dependencies

	Install Dependencies

	Install

	Ubuntu 16.04
	High-Level Dependencies

	Install Dependencies

	Install

	MacOS X 10.10.x / 10.11.x
	Installation Dependencies

	Install / Setup

	Get geni-lib

	Install geni-lib

	Vagrant
	Installation Dependencies

	Set up your geni-lib VM directory

	Load the Jupyter web interface

	Accessing the VM Terminal

	Configurable Options

	CentOS 7
	High-Level Dependencies

	Install Dependencies

	Get geni-lib

	Install

Ubuntu 14.04

Release versions of geni-lib are delivered via PyPI, but some system dependencies
must be supplied, typically through the use of apt.

High-Level Dependencies

	Python 2.7.x (http://www.python.org)

	Pip

	OpenSSL

	LibXML

The above packages of course have their own dependencies which will be satisfied along the way.

Warning

The version of pip supplied via apt packages for Ubuntu 14.04 for Python 2.x is sufficiently broken
that it is unlikely to be able to install geni-lib (or many other packages). The instructions
below install pip outside of the package management system, using the most up-to-date installer. If
you are already using virtualenv or otherwise maintain a sane Python environment you likely do not
need to install a new pip.

Install Dependencies

$ sudo apt-get update
$ sudo apt-get install --no-install-recommends python libxml2 libssl1.0.0

$ wget https://bootstrap.pypa.io/get-pip.py
$ sudo python2 get-pip.py

Install

$ pip install geni-lib

Note

You may need to install with sudo if you are attempting to install system-wide.

Ubuntu 16.04

Release versions of geni-lib are delivered via PyPI, but some system dependencies
must be supplied, typically through the use of apt.

High-Level Dependencies

	Python 2.7.x (http://www.python.org)

	Pip

	OpenSSL

	LibXML

The above packages of course have their own dependencies which will be satisfied along the way.

Warning

The version of pip supplied via apt packages for Ubuntu 16.04 for Python 2.x is sufficiently broken
that it is unlikely to be able to install geni-lib (or many other packages). The instructions
below install pip outside of the package management system, using the most up-to-date installer. If
you are already using virtualenv or otherwise maintain a sane Python environment you likely do not
need to install a new pip.

Install Dependencies

$ sudo apt-get update
$ sudo apt-get install --no-install-recommends python2.7 libxml2 libssl1.0.0

$ wget https://bootstrap.pypa.io/get-pip.py
$ sudo python2.7 get-pip.py

Install

$ pip install geni-lib

Note

You may need to install with sudo if you are attempting to install system-wide.

MacOS X 10.10.x / 10.11.x

These installations require the use of HomeBrew (http://brew.sh). If you use
MacPorts or a different manager for installing open source tools on your system
you will need to satisfy the dependencies using your tool of choice.

Note

These instructions have not been tested on older versions of MacOS X

Installation Dependencies

	HomeBrew (http://brew.sh)

	Apple Command Line Tools for XCode (normally downloaded as part of Brew install)

Install / Setup

Using HomeBrew (accessible via the brew command in your terminal, once you have it installed)
we will install the necessary tools and library dependencies for typical geni-lib use:

$ brew install mercurial
$ brew install python

Note

You will now have two version of python installed on your system - the one that Apple ships
with your computer, and the one that we have now installed via brew. Only the brew-installed
python will work for running geni-lib scripts, which can be launched by running
/usr/local/bin/python or by changing your $PATH variable to have /usr/local/bin as the
first entry (by editing ~/.profile, typically).

Get geni-lib

You can place the geni-lib repository anywhere on your system that you prefer.

$ hg clone http://bitbucket.org/barnstorm/geni-lib

Install geni-lib

We can now install geni-lib into your Python environment:

$ cd geni-lib
$ hg update -C 0.9-DEV
$ python setup.py install

Congratulations, you are now ready to launch python and import geni lib modules!

Vagrant

geni-lib can be installed on any platform that supports Vagrant using the instructions
below.

Two variants of the Vagrant environment can be created - a lite version that only contains geni-lib
and should only be used by developers that are accustomed to working with Vagrant or similar environments,
and a lab version that is more fully-featured and should be used by new geni-lib users or those
using geni-lib for a class or conference tutorial.

The documentation here currently only covers the lab version.

The Vagrant VM created by this process automatically sets up your geni-lib context and
provides a web interface for creating Jupyter [http://jupyter.org] notebooks using GENI resources,
as well as a web-based interface for accessing the VM shell.

Note

See the Configurable Options section below for environment variables which can tweak the settings of the
VM environment that is created.

Installation Dependencies

Install these dependencies before creating the Vagrant VM.

	VirtualBox (https://www.virtualbox.org/wiki/Downloads)

	Vagrant (https://www.vagrantup.com/downloads.html)

Set up your geni-lib VM directory

	Create a directory on your system named genivm to hold your GENI environment

	Copy your omni.bundle to this directory

	Download the geni-lib Vagrant setup file to this directory from
https://bitbucket.org/barnstorm/geni-lib/raw/tip/support/Vagrantfile-lab and rename it to be called
Vagrantfile

	On systems with curl (MacOS X, Linux) you can use the following command:

curl https://bitbucket.org/barnstorm/geni-lib/raw/tip/support/Vagrantfile-lab -o Vagrantfile

	On Windows systems with Powershell you can use the following:

PS C:\genivm> $client = new-object System.Net.WebClient
PS C:\genivm> $client.DownloadFile("https://bitbucket.org/barnstorm/geni-lib/raw/tip/support/Vagrantfile-lab", "C:/genivm/Vagrantfile")

Note

The full path for the destination must be specified in the second argument to DownloadFile

	Create your vagrant vm using vagrant up in this directory

Note

This may take a long time (20+ minutes) depending on the speed of your internet connection

Load the Jupyter web interface

	Open any web browser and load http://localhost:8900

	In the upper right-hand corner of the UI, choose New->(Notebooks) Python 2 from the dropdown menu

	In the new notebook enter %load_ext genish in the first cell and enter your key passphrase if necessary
(otherwise just hit enter to skip the passphrase entry)

Accessing the VM Terminal

You may often want to access the VM command line for accessing your GENI resources, updating geni-lib,
etc. While you can use vagrant ssh on some platforms, this doesn’t work very well on Windows, so the VM
provides a web-based mechanism for accessing the VM shell directly.

	Open any web browser and load http://localhost:8900

	In the upper right-hand corner of the UI, choose New->Terminal from the dropdown menu

This will automatically log you into the VM and provide you a shell interface for using the VM OS directly.

Configurable Options

The following environment variables can be set to change the parameters under which the VM is created when
vagrant up is first executed:

	Name

	Default

	Description

	glv_port

	8900

	Local port the Jupyter web interface will be exposed on

	glv_ram

	1024

	Amount of memory available to the VM

	apt_cache

	unset

	URL of proxy used for apt downloads

	pypi_test

	unset

	If set, use the test PyPI repository instead of production

CentOS 7

geni-lib is currently delivered only as a source repository via mercurial, although
dependencies are installed as proper packages using yum.

High-Level Dependencies

	Mercurial (http://mercurial.selenic.com)

	Python 2.7.x (http://www.python.org)

	OpenSSL

	LibXML

The above packages of course have their own dependencies which will be satisfied along the way.

Install Dependencies

These instructions install dependencies using yum - it is also possible to install the Python packages
using pip if you prefer.

The dependencies rely on EPEL (https://fedoraproject.org/wiki/EPEL), so
install that first.

$ yum install epel-release

Now install the dependencies:

$ yum install mercurial python-lxml python-requests \
 python-pip python-devel libffi-devel gcc openssl-devel

Get geni-lib

$ hg clone http://bitbucket.org/barnstorm/geni-lib

Install

$ cd geni-lib
$ hg update -C 0.9-DEV
$ pip install .

Tutorials / How-Tos

	Importing a Context from a bundle
	Run Context Import Tool
	MacOS X / Linux

	Windows

	Test It Out!

	Finished!

	Creating a Context from Cloudlab Credentials

	Creating a Custom Context
	Test It Out!

	Querying the Federation
	Finding Aggregate Locations

	Getting Aggregate Information

	Iterating Over Aggregates

	Exercises

	Creating a Request for a Single VM
	Walk-through

	VTS: Basic Single-Site Topology
	Set up VTS Sliver

	Set up InstaGENI Compute Sliver

	VTS: Basic WAN Topology
	Set up VTS Slivers

	Set up InstaGENI Compute Slivers

Importing a Context from a bundle

In order to communicate with any federation resource using geni-lib you need to construct
a Context object that contains information about the framework you are using (for example
ProtoGENI, Emulab, GENI Clearinghouse, etc.), as well as your user information (SSH keys,
login username, federation urn, etc.). This simple tutorial will walk you through the easiest
way to create a Context if you have an account at the GENI Portal [http://portal.geni.net].

First you need to acquire your GENI credentials.

Run Context Import Tool

A script called context-from-bundle was installed as part of your geni-lib
installation, which can convert your omni.bundle into the data necessary for geni-lib
to create a Context object for you. The instructions for using this tool are below -
choose the section appropriate for your OS.

MacOS X / Linux

In most installations your path should already include the import tool and it should run
cleanly without any additional configuration:

$ context-from-bundle --bundle /path/to/omni.bundle

If no arguments are supplied the bundle is assumed to be in the current directory. If your
bundle does not contain an SSH public key you will be required to supply a path to one using
the --pubkey argument at the command line.

Windows

Unfortunately the default Python installation on Windows does not add the site Scripts
directory to your path, so you need to invoke it directly. If you are using Python 2.8 you
will need to replace Python27 with Python28 below:

C:\> python C:\Python27\Scripts\context-from-bundle --bundle path\to\omni.bundle

If no arguments are supplied the bundle is assumed to be in the current directory. If your
bundle does not contain an SSH public key you will be required to supply a path to one using
the --pubkey argument at the command line.

Test It Out!

Now we can take your newly imported information, instantiate our context, and query an aggregate:

$ python
>>> import geni.util
>>> context = geni.util.loadContext()
>>> import geni.aggregate.instageni as IG
>>> import pprint
>>> pprint.pprint(IG.GPO.getversion(context))
{'code': {'am_code': 0,
 'am_type': 'protogeni',
 'geni_code': 0,
 'protogeni_error_log': 'urn:publicid:IDN+instageni.gpolab.bbn.com+log+abedbcc20e6defe716eb83b8586c7e08',
 'protogeni_error_url': 'https://boss.instageni.gpolab.bbn.com/spewlogfile.php3?logfile=abedbcc20e6defe716eb83b8586c7e08'},
...snip...

You should get a large structure of formatted output telling you version and configuration
information about the GPO InstaGENI aggregate. If you get any errors read them thorougly and
review what they may be telling you about any mistakes you may have made. You can also ask your
instructor if at an in-person tutorial.

Finished!

Assuming you have experienced no errors, your geni-lib installation is now set up and
can communicate with all aggregates in the federation. If you have any issues you can
send a message to the geni-users [https://groups.google.com/forum/#!forum/geni-users]
google group for help.

Creating a Context from Cloudlab Credentials

You can use the generic build-context tool included with geni-lib to build a context
definition for use with Cloudlab. You will need the following files before you start:

	A Cloudlab x509 credential in .pem format

	The name of a project of which you are a member

	An ssh public key

Given the above, you can run the build-context tool directly:

build-context --type cloudlab --cert /path/to/cloudlab.pem \
 --pubkey /path/to/ssh_key.pub --project projectname

Replacing the paths and project name with values appropriate for your environment. This
will create a context definition which will be loaded automatically when using the genish
or ipython interfaces, and can be loaded into your custom scripts using
geni.util.loadContext().

Creating a Custom Context

In order to communicate with any federation resource using geni-lib you need to construct
a Context object that contains information about the framework you are using (for example
ProtoGENI, Emulab, GENI Clearinghouse, etc.), as well as your user information (SSH keys,
login username, federation urn, etc.). You can use the context-from-bundle script that
comes with geni-lib to create a context from an omni.bundle provided by the GENI Portal
as documented in the “Importing a Context from the GENI Portal” tutorial, or you can create one
using a small Python module which allows for more configurability, and we illustrate that
method here.

	To start, we will create a new Python file called mycontext.py and (inside the directory
containing your geni-lib clone) import the necessary modules to start building your own
context using your favorite editor:

from geni.aggregate import FrameworkRegistry
from geni.aggregate.context import Context
from geni.aggregate.user import User

	Now we add a function that you will call each time you want to create your context (using the
GENI Clearinghouse as the default framework):

def buildContext ():
 framework = FrameworkRegistry.get("portal")()

	You need to give the framework instance the location of your user certificate and key files:

framework.cert = "/home/user/.ssh/portal-user.pem"
framework.key = "/home/user/.ssh/portal-user.key"

Note

You may only have one file which contains both items - you can use the same path for both
variables if this is the case.

	Now we need to define an account and SSH key(s) that will be used to access reserved compute resources:

user = User()
user.name = "myusername"
user.urn = "urn:publicid:IDN+ch.geni.net+user+myusername"
user.addKey("/home/user/.ssh/geni_dsa.pub")

We create a User() object, give it a name (no spaces, commonly a username), and the user URN.
We then add an SSH public key that will be installed on any compute resources that you reserve
in order to authenticate with those resources.

	Next we make the parent Context object and add our user and framework to it, with a default project:

context = Context()
context.addUser(user, default = True)
context.cf = framework
context.project = "GEC21"

This adds the user we created above, sets the control framework (cf), and sets your default project.

	You now want to return this object so that you can use this function every time you need a context:

return context

Now to see the complete code in one block:

from geni.aggregate import FrameworkRegistry
from geni.aggregate.context import Context
from geni.aggregate.user import User

def buildContext ():
 framework = FrameworkRegistry.get("portal")()
 framework.cert = "/home/user/.ssh/portal-user.pem"
 framework.key = "/home/user/.ssh/portal-user.key"

 user = User()
 user.name = "myusername"
 user.urn = "urn:publicid:IDN+ch.geni.net+user+myusername"
 user.addKey("/home/user/.ssh/geni_dsa.pub")

 context = Context()
 context.addUser(user, default = True)
 context.cf = framework
 context.project = "GEC21"

 return context

You can dynamically alter this object at any time, but your defaults will serve your purposes for the vast
majority of your use cases.

Test It Out!

Now we can take your newly written file, instantiate our context, and query an aggregate:

$ python
>>> import mycontext
>>> context = mycontext.buildContext()
>>> import geni.aggregate.instageni as IG
>>> import pprint
>>> pprint.pprint(IG.GPO.getversion(context))
{'code': {'am_code': 0,
 'am_type': 'protogeni',
 'geni_code': 0,
 'protogeni_error_log': 'urn:publicid:IDN+instageni.gpolab.bbn.com+log+abedbcc20e6defe716eb83b8586c7e08',
 'protogeni_error_url': 'https://boss.instageni.gpolab.bbn.com/spewlogfile.php3?logfile=abedbcc20e6defe716eb83b8586c7e08'},
...snip...

You should get a large structure of formatted output telling you version and configuration
information about the GPO InstaGENI aggregate. If you get any errors read them thorougly and
review what they may be telling you about any mistakes you may have made. You can also ask your
instructor (if at a GEC / Live Tutorial), or send a message to the
geni-users [https://groups.google.com/forum/#!forum/geni-users] google group.

Querying the Federation

Before we can reserve resources, it is useful to know what resources are available across the
federation. This tutorial will walk you through using the Context object you created in
the previous tutorial to communicate with aggregates known to geni-lib.

Finding Aggregate Locations

geni-lib contains a set of package files which have pre-built objects representing known
aggregates that are ready for you to use, contained within the following Python modules:

geni.aggregate.exogeni
geni.aggregate.instageni
geni.aggregate.instageni_openflow
geni.aggregate.opengeni
geni.aggregate.protogeni
geni.aggregate.vts

While these aggregates objects will likely cover your needs, geni-lib may of course not be
updated as frequently as new aggregates come online. You can find a list of the current set of
aggregates on the GENI Wiki [http://groups.geni.net/geni/wiki/GeniAggregate].

Getting Aggregate Information

Given that we have our previously created Context object, and a wealth of aggregate objects
available to us, the GENI federation provides the ability to request two blocks of information
from each aggregate - the version information (which you may have seen briefly in a previous
tutorial), and a list of the advertised resources.

The result from getversion, as we saw in the previous tutorial, is reasonably concise and
human readable (but also contains information about API versions and supported request formats
that you may need to extract in your tools). The list of advertised resources is acquired using
the listresources call, and returns a large XML document describing the available resources,
which is relatively difficult to work with without a tool.

Note

We will be using GENI AM API version 2 throughout this tutorial. Some API call names will be
different if you elect to interact with aggregates using AM API version 3 in the future.

	Lets start by getting an advertisement from a single aggregate. If you built a custom
context using Python code you will need to replace the code below to load your custom
context:

$ python
>>> import geni.util
>>> context = geni.util.loadContext()
>>> import geni.aggregate.instageni as IGAM
>>> ad = IGAM.Illinois.listresources(context)

Now of course we have an advertisement (assuming everything went well) stored into a Python object,
which is reasonably boring!

Note

If you get timeouts or failures, you may want to try a different InstaGENI aggregate (this one may
be particularly busy). You can get a list of (mostly) aggregate objects by using the dir() command
on the IGAM module - dir(IGAM).

	We can simply print out the advertisement raw text to see what the
aggregate sent us:

>>> print ad.text
<rspec xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
...

As you can see, even with this relatively small rack (5 hosts) the amount of data is significant.

	As geni-lib has parsed this advertisement into a more functional object, we have access to
data objects instead of just raw xml. For example, we can inspect the routable address space available
at a site:

>>> ad.routable_addresses.available
167
>>> ad.routable_addresses.capacity
190

	You may have noticed that if you just print the routable_addresses attribute, you get nothing useful:

>>> ad.routable_addresses
<geni.rspec.pgad.RoutableAddresses object at 0x1717f10>

While we are adding online documentation for geni-lib objects, there are many objects that are
undocumented. However, you can still gain some insight by using the dir() built-in to see
what attributes are available:

>>> dir(ad.routable_addresses)
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__',
'__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__',
'__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'available', 'capacity', 'configured']

In general attributes starting with underscores are not useful to us, so we can see 3 attributes of
value - available, capacity, and configured. In most cases their meanings should be
obvious, so just knowing they exist even without documentation is quite helpful.

	There are also 3 iterators that are provided with Advertisement objects - nodes, links,
and shared_vlans:

>>> for svlan in ad.shared_vlans:
... print svlan
...
mesoscale-openflow
exclusive-openflow-1755
exclusive-openflow-1756
exclusive-openflow-1757
...snip...

	While shared_vlans just iterates over a set of strings, node objects are much more complex
and have many more attributes and nested data structures to allow you to fully inspect their state:

>>> print dir(ad.nodes[0])
[..., 'available', 'component_id', 'component_manager_id', 'exclusive', 'hardware_types', 'images',
'interfaces', 'location', 'name', 'shared', 'sliver_types']

	Particularly useful for the puposes of binding requests to certain nodes at a given site is the
component_id:

>>> for node in ad.nodes:
... print node.component_id
...
urn:publicid:IDN+instageni.illinois.edu+node+procurve2
urn:publicid:IDN+instageni.illinois.edu+node+pc3
urn:publicid:IDN+instageni.illinois.edu+node+pc5
urn:publicid:IDN+instageni.illinois.edu+node+interconnect-ion
urn:publicid:IDN+instageni.illinois.edu+node+pc1
urn:publicid:IDN+instageni.illinois.edu+node+interconnect-campus
urn:publicid:IDN+instageni.illinois.edu+node+pc2
urn:publicid:IDN+instageni.illinois.edu+node+interconnect-geni-core
urn:publicid:IDN+instageni.illinois.edu+node+pc4
urn:publicid:IDN+instageni.illinois.edu+node+internet

	Spend some time inspecting the other attributes of each node. You can get a specific node by using Python
indexing on the nodes iterator:

>>> node = ad.nodes[1]
>>> node.component_id
'urn:publicid:IDN+instageni.illinois.edu+node+pc3'

Iterating Over Aggregates

Often you will want to inspect a large number of aggregates (particularly if there are of an idential or
similar type) in order to find those that have availability in the resources that you require. The aggregate
modules in geni-lib provide some convenience methods for assisting in this task:

>>> import geni.aggregate.instageni as IGAM
>>> for am in IGAM.aggregates():
... print am.name
...
ig-cenic
ig-cwru
ig-clemson
ig-cornell
ig-ohmetrodc
ig-gatech
ig-gpo
ig-illinois
...snip...

Using this iterator you can act on each aggregate in a given module with the same snippet of code.

	Lets try getting (and saving) the getversion output from each InstaGENI site:

>>> import json
>>> for am in IGAM.aggregates():
... print am.name
... verdata = am.getversion(context)
... ver_file = open("%s-version.json" % (am.name), "w+")
... json.dump(verdata, ver_file)
...
ig-cenic
ig-cwru
ig-clemson
...snip...

This will write out a file for every aggregate (barring any exceptions) to the current directory.

Note

verdata in the above case is a Python dict object, so we need to pick a way to write it
(in a human readable form) to a file. In the above example we pick serializing to JSON (which is
reasonably readable), but you could also use the pprint module to format it nicely to a file
as a nice string.

Exercises

We can now combine all of the above pieces, plus some Python knowledge, into some useful scripts.

	Move the getversion code fragment above into a standalone script, and improve it to continue to
the next aggregate if any exceptions are thrown by the current aggregate (unreachable, busy, etc.).

	Write a script that prints out the number of availble routable IPs for each InstaGENI aggregate.

Creating a Request for a Single VM

This example walks through the basic of creating an RSpec (xml file) requesting
a single VM from a compute aggregate. This example does not require that geni-lib
is configured with user credentials or keys - it will create an XML file that you
can feed into another tool such as Jacks or Omni (other examples cover how to make
this request using geni-lib itself).

Note

You can find the complete source code for this example in a single file in the
geni-lib distribution in samples/onevm.py.

Walk-through

	Since we only want to output the XML of the request, we need very few imports:

import geni.rspec.pg as PG
import geni.rspec.egext as EGX
import geni.rspec.igext as IGX

Note

While the first module is named ‘pg’ (after ProtoGENI), the base rspec format is
common across compute aggregates and all will use the same Request
container, although the resources in that container will differ based on what
is available at a given site.

	Now we need to create the basic Request container:

r = PG.Request()

	Unfortunately there is no unified VM object for all compute aggregates, so you
will need to know which “flavor” of compute aggregate you intend to use (most
commonly either InstaGENI or ExoGENI).

Note

In later examples you will see how, if you are using geni-lib to make your
reservations directly with the aggregates, you can indeed create a single
VM request that can be used across aggregate “flavors”.

	Now we will allocate a VM object that can be added to our request (examples
shown here for both ExoGENI and InstaGENI):

ExoGENI
exovm = EGX.XOSmall("vm1")

InstaGENI
igvm = IGX.XenVM("vm1")

Note

The only required configuration for each resource is the name argument
that is passed to the constructor. These names must be unique within a
single site, but can be reused at different sites.

	For the purposes of this example we will only add the InstaGENI VM to the actual
request that we will produce:

r.addResource(igvm)

	Now that we have a request that contains a resource, we can write the XML to disk
that represents this request:

r.writeXML("onevm-request.xml")

VTS: Basic Single-Site Topology

This example walks through creating a simple VTS topology with one forwarding
element (an Open vSwitch instance) connected to two virtual machines provided
by the site compute aggregate. Resources for this request will come from two
different aggregate managers at the same site, using information returned from
the VTS aggregate to structure the second request to the compute aggregate.

The resultant topology will be as in the diagram below. The resources are
color-coded to indicate which aggregate will provision them:

[image: ../_images/vts-simple.png]
This obviously has no advantage over having the local site compute aggregate
connect the VMs directly, but it serves as the simplest example of how to
stage the provisioning of VTS resources and forms the basis for more advanced
use cases.

Note

This example requires that you have set up a valid context object with GENI
credentials.

Set up VTS Sliver

For this example we’ll use InstaGENI compute resources, but this would work
for ExoGENI sites that have VTS support as well if you change the InstaGENI
imports to the relevant ones for ExoGENI.

	We need to set up basic imports to create requests and send them to the
aggregate:

import geni.rspec.pg as PG
import geni.rspec.igext as IGX
import geni.rspec.vts as VTS

import geni.aggregate.instageni as IGAM
import geni.aggregate.vts as VTSAM

	Here we also set up the slice name you’re going to use, as well as the
context object that specifies your credential information. If you set up
your geni-lib using the GENI Portal Import method, the code below will
directly work. If you built a custom context using Python code you will
need to replace the code below to load your custom context:

import geni.util

context = geni.util.loadContext()
SLICENAME = "my-slice-name" # Change this to be your slice name

Note

If you do not have a slice available in your project, you may need to go back
to the GENI Portal web interface and create a new slice.

	VTS reservations are a two-stage process, where the VTS resources must be
reserved first and the results used to create the proper compute request:

vtsr = VTS.Request()

	First we select the image we want to use for our VTS forwarding elements:

image = VTS.OVSL2Image()

Note

Images support varying functionality that can be configured here, such as
sflow and netflow collectors, openflow controllers, etc.

	We then instantiate a single forwarding element with this image, and request
two local circuits to connect to our VMs:

felement = VTS.Datapath(image, "fe0")
felement.attachPort(VTS.LocalCircuit())
felement.attachPort(VTS.LocalCircuit())
vtsr.addResource(felement)

	Now the request object is complete - we need to contact the aggregate and
have it build our topology for us:

manifest = VTSAM.UtahDDC.createsliver(context, SLICENAME, vtsr)

Note

If you are at an in-person tutorial at GEC, etc., please replace VTSAM.UtahDDC
with the aggregate you have been given on your tutorial worksheet.

Set up InstaGENI Compute Sliver

The VTS aggregate manager returned to us a manifest containing information
about the resources we have provisioned - specifically identifying information
about the local circuits we requested. We will now use this information to
request compute resources and connect them to the VTS sliver.

	Initialize a basic GENI compute request:

igr = PG.Request()

	The VTS Manifest object allows us to iterate over the local circuits that
were returned, and we’ll make a VM with a single interface and link for
each one, and give them IPs in the same subnet:

IP = "10.50.1.%d"

for idx,circuit in enumerate(manifest.local_circuits):
 vm = IGX.XenVM("vm%d" % (idx))
 intf = vm.addInterface("if0")
 intf.addAddress(PG.IPv4Address(IP % (idx+1), "255.255.255.0"))
 igr.addResource(vm)

 lnk = PG.Link()
 lnk.addInterface(intf)
 lnk.connectSharedVlan(circuit)
 igr.addResource(lnk)

There is a lot of code above, but the workflow is fairly simple:

	First, we set up a simple string substitution so we can add a small number
of IP addresses in the same subnet (otherwise the compute AM will give
the interfaces IP addresses in different subnets and you will have to fix
them after you log into the nodes).

	Next we iterate over all of the circuits returned from the VTS AM that
match a certain type (“local”), while using the Python enumerate
built-in to maintain a counter.

	For each circuit we create a VM object, add an interface to it, give that
interface a unique IP address on our chosen subnet, and add that interface
to a Link object, along with the circuit ID (which in this case is a
shared VLAN).

	Now we just need to make the reservation and wait for our nodes to come up:

igm = IGAM.UtahDDC.createsliver(context, SLICENAME, igr)
geni.util.printlogininfo(manifest = igm)

Note

If you are at an in-person tutorial at GEC, etc., please replace IGAM.UtahDDC
with the aggregate you have been given on your tutorial worksheet.

	In a few minutes you should be able to log into your VMs with the info printed
out by the above step and send test traffic (ping, etc.) between the VMs across
your VTS topology.

	Once you are done using your topology and exploring the tutorial, please delete
all the resources you have reserved:

IGAM.UtahDDC.deletesliver(context, SLICENAME)
VTSAM.UtahDDC.deletesliver(context, SLICENAME)

VTS: Basic WAN Topology

This example walks through creating a two-site WAN topology with one forwarding
element at each site. Like all VTS reservations that require compute resources,
the resources for each site will come from two different aggregate managers.
This example also employs further sequencing constraints in order to build the
WAN circuit.

[image: ../_images/vts-simplewan.png]
In order to build a circuit between two sites those sites need to share a
common circuit plane. This is simply a named substrate that both sides have
a common attachment to. In this tutorial we will use the geni-al2s
circuit plane, which is currently available at most GENI VTS sites and replaces the
geni-mesoscale circuit plane that is available at some sites but is being phased
out.

Note

This example requires that you have set up a valid context object with GENI
credentials.

For this example we’ll use InstaGENI compute resources, but this would work
for ExoGENI sites that have VTS support as well if you change the InstaGENI
imports to the relevant ones for ExoGENI.

Set up VTS Slivers

We will first set up VTS slivers at both sites, before creating the local compute
resources. This is not a strict requirement - you must always set up the VTS sliver
at a site before the compute sliver, but you can request the compute sliver at a
site before requesting the next site VTS sliver if that better fits your workflow.

In this example we will save the VTS manifests for later use to get compute
resources, in case your interactive Python session needs to be restarted.

	We need to set up basic imports to create requests and send them to the
aggregate:

import geni.rspec.pg as PG
import geni.rspec.igext as IGX
import geni.rspec.vts as VTS

import geni.aggregate.instageni as IGAM
import geni.aggregate.vts as VTSAM

	Here we also set up the slice name you’re going to use, as well as the
context object that specifies your credential information. If you set up
your geni-lib using the GENI Portal Import method, the code below will
directly work. If you built a custom context using your own Python code
you will need to replace the code below to load your custom context:

import geni.util

context = geni.util.loadContext()
SLICENAME = "my-slice-name" # Change this to be your slice name

Note

If you do not have a slice available in your project, you may need to go back
to the GENI Portal web interface and create a new slice. Also if you have multiple
projects you may need to modify which one is being used by setting the
context.project attribute.

	VTS reservations are typically a multistage process, where the VTS resources at
a site must be reserved before the compute resources, or neighbour site VTS
resources, and the results from the earlier reservations will be used to seed
data in all subsequent reservations. In the case of WAN reservations we will
need advertisement information from the remote VTS site we intend to connect
our circuits to:

remote_ad = VTSAM.NPS.listresources(context)

	We need to search this remote advertisement for information that describes the
endpoint we want to use for our chosen circuit plane:

for cp in remote_ad.circuit_planes:
 if cp.label == "geni-al2s":
 remote_endpoint = cp.endpoint

	We now start to build our primary site VTS request rspec:

s1r = VTS.Request()

	As in previous tutorials we will select a default L2 learning image for our
forwarding elements:

image = VTS.OVSL2Image()

	We the instantiate a single forwarding element with this image, and request
a local circuit to connect to our VM, as well as a WAN circuit to connect to
the remote site:

felement = VTS.Datapath(image, "fe0")
felement.attachPort(VTS.LocalCircuit())
wan_port = felement.attachPort(VTS.GRECircuit("geni-al2s", remote_endpoint))
s1r.addResource(felement)

Note

We have chosen to use a GRE Circuit here to reach the remote site, although
other types might be available. Each site advertises a list of supported
encapsulation types for each circuit plane, allowing you to choose the one
that best suits your needs based on performance and packet overhead.

	Now our request object is complete for our first site, so we can contact the
aggregate manager and make the reservation:

ukym = VTSAM.UKYPKS2.createsliver(context, SLICENAME, s1r)

Note

If you are at an in-person tutorial you may need to replace VTSAM.UKYPKS2
with the aggregate you have been given on your tutorial worksheet.

	We will write out our returned manifest to disk in case we need to restart
our Python session:

ukym.writeXML("vts-ukypks2-manifest.xml")

	Now we will start building the VTS request at the remote site:

s2r = VTS.Request()

	The basic parts of the request are the same at each site:

felement = VTS.Datapath(image, "fe0")
felement.attachPort(VTS.LocalCircuit())
s2r.addResource(felement)

	Now we need to attach one port to our forwarding element that connects to the
remote site that we have already configured:

felement.attachPort(VTS.GRECircuit("geni-al2s", ukym.findPort(wan_port.clientid).local_endpoint))

This searches our previous manifest for the WAN port we have already defined,
and gathers the endpoint information to put in a remote request. The combination
of this inforamtion will create a complete WAN circuit.

	Having created our request, we send it to the aggregate manager to reserve our
resources, and write the output to a file:

npsm = VTSAM.NPS.createsliver(context, SLICENAME, s2r)
npsm.writeXML("vts-nps-manifest.xml")

Set up InstaGENI Compute Slivers

As we have two sites, we will need to set up our compute slivers at both sites, using
the manifests returned from each VTS request. We want to set up IP addresses that we
will use on both sides of our WAN topology:

IP = "10.50.1.%d"
NETMASK = "255.255.255.0"

	Each request is relatively simple, containing only a single VM connected to a single
VTS port, pulled from the site VTS manifest:

ukyr = PG.Request()

for idx,circuit in enumerate(ukym.local_circuits):
 vm = IGX.XenVM("vm%d" % (idx))
 intf = vm.addInterface("if0")
 intf.addAddress(PG.IPv4Address(IP % (1), NETMASK))
 ukyr.addResource(vm)
 lnk = PG.Link()
 lnk.addInterface(intf)
 lnk.connectSharedVlan(circuit)
 ukyr.addResource(lnk)

The code above is the same as in earlier tutorials, which you can refer to for more
thorough explanation.

	Now we make the reservation:

ukyigm = IGAM.UKYPKS2.createsliver(context, SLICENAME, ukyr)
geni.util.printlogininfo(manifest=ukyigm)

	We execute nearly identical code for the second site (note the IP address change):

npsr = PG.Request()

for idx,circuit in enumerate(npsm.local_circuits):
 vm = IGX.XenVM("vm%d" % (idx))
 intf = vm.addInterface("if0")
 intf.addAddress(PG.IPv4Address(IP % (2), NETMASK))
 npsr.addResource(vm)
 lnk = PG.Link()
 lnk.addInterface(intf)
 lnk.connectSharedVlan(circuit)
 npsr.addResource(lnk)

	Now we make the second site reservation:

npsigm = IGAM.NPS.createsliver(context, SLICENAME, npsr)
geni.util.printlogininfo(manifest=npsigm)

	In a few minutes you should be able to log into your VMs with the info printed
out by the above step and send test traffic (ping, etc.) between the VMs across
your VTS WAN topology.

	Once you are done using your topology and exploring the tutorial, please delete
all the resources you have reserved:

IGAM.NPS.deletesliver(context, SLICENAME)
IGAM.UKYPKS2.deletesliver(context, SLICENAME)
VTSAM.NPS.deletesliver(context, SLICENAME)
VTSAM.UKYPKS2.deletesliver(context, SLICENAME)

API

	geni.aggregate
	geni.aggregate.cloudlab

	geni.aggregate.exogeni

	geni.aggregate.instageni

	geni.aggregate.opengeni

	geni.aggregate.protogeni

	geni.aggregate.transit

	geni.aggregate.vts

	geni.minigcf.config

	geni.portal

	geni.rspec
	geni.rspec.emulab

	geni.rspec.emulab.emuext

	geni.rspec.igext

	geni.rspec.pg

	geni.rspec.pgad

	geni.rspec.vts

	geni.rspec.vtsmanifest

	geni.types

	geni.urn

	geni.util

geni.aggregate

	geni.aggregate.cloudlab

	geni.aggregate.exogeni

	geni.aggregate.instageni

	geni.aggregate.opengeni

	geni.aggregate.protogeni

	geni.aggregate.transit

	geni.aggregate.vts

geni.aggregate.cloudlab

	
class CloudLabAM(name, host, cmid=None, url=None)

	
	
exception InvalidRSpecPathError(path)

	
	
args

	

	
message

	

	
exception UnspecifiedComponentManagerError

	
	
args

	

	
message

	

	
amtype

	

	
api

	

	
component_manager_id

	

	
createsliver(context, sname, rspec)

	GENI AM APIv2 method to reserve resources at this aggregate.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	rspec (geni.rspec.RSpec) – Valid request RSpec

	
deletesliver(context, sname)

	GENI AM APIv2 method to delete a resource reservation at this aggregate.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	
geniCancelUpdateUsers(context, sname)

	

	
geniRestart(context, sname, urns)

	

	
geniStart(context, sname)

	

	
geniUpdateUsers(context, sname, user_info_list)

	

	
getConsoleURL(context, sname, urn)

	

	
getversion(context)

	GENI AM API method to get the version information for this aggregate.

	Parameters

	context – geni-lib context

	Returns

	dict – Dictionary of key/value pairs with version information from this aggregate.

	
listresources(context, sname=None, available=False)

	GENI AM APIv2 method to get available resources from an aggregate, or resources allocated to
a specific sliver.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name (optional)

	available (bool) – Only list available resources

	Returns

	geni.rspec.RSpec – If sname is provided, listresources will return a manifest rspec for the given slice name. Otherwise,
listresources will return the advertisement rspec for the given aggregate.

	
renewsliver(context, sname, date)

	GENI AM APIv2 method to renew a sliver until the given datetime.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	date (str) – RFC 3339-compliant date string for new expiration date

Note

Aggregates may have maximum expiration limits, restricting how far in
the future you can set your expiration. This call may result in an
error in such cases, or success with a sooner future date.

	
sliverstatus(context, sname)

	GENI AM APIv2 method to get the status of a current sliver at the given aggregate.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	Returns

	dict – Mapping of key/value pairs for status information the aggregate supports.

	
aggregates()

	

	
name_to_aggregate()

	

geni.aggregate.exogeni

	
class EGCompute(name, host, cmid=None, url=None)

	
	
exception InvalidRSpecPathError(path)

	
	
args

	

	
message

	

	
exception UnspecifiedComponentManagerError

	
	
args

	

	
message

	

	
amtype

	

	
api

	

	
component_manager_id

	

	
createsliver(context, sname, rspec)

	GENI AM APIv2 method to reserve resources at this aggregate.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	rspec (geni.rspec.RSpec) – Valid request RSpec

	
deletesliver(context, sname)

	GENI AM APIv2 method to delete a resource reservation at this aggregate.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	
getversion(context)

	GENI AM API method to get the version information for this aggregate.

	Parameters

	context – geni-lib context

	Returns

	dict – Dictionary of key/value pairs with version information from this aggregate.

	
listresources(context, sname=None, available=False)

	GENI AM APIv2 method to get available resources from an aggregate, or resources allocated to
a specific sliver.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name (optional)

	available (bool) – Only list available resources

	Returns

	geni.rspec.RSpec – If sname is provided, listresources will return a manifest rspec for the given slice name. Otherwise,
listresources will return the advertisement rspec for the given aggregate.

	
renewsliver(context, sname, date)

	GENI AM APIv2 method to renew a sliver until the given datetime.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	date (str) – RFC 3339-compliant date string for new expiration date

Note

Aggregates may have maximum expiration limits, restricting how far in
the future you can set your expiration. This call may result in an
error in such cases, or success with a sooner future date.

	
sliverstatus(context, sname)

	GENI AM APIv2 method to get the status of a current sliver at the given aggregate.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	Returns

	dict – Mapping of key/value pairs for status information the aggregate supports.

	
aggregates()

	

	
name_to_aggregate()

	

geni.aggregate.instageni

	
class IGCompute(name, host, cmid=None, url=None)

	
	
exception InvalidRSpecPathError(path)

	
	
args

	

	
message

	

	
exception UnspecifiedComponentManagerError

	
	
args

	

	
message

	

	
amtype

	

	
api

	

	
component_manager_id

	

	
createsliver(context, sname, rspec)

	GENI AM APIv2 method to reserve resources at this aggregate.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	rspec (geni.rspec.RSpec) – Valid request RSpec

	
deletesliver(context, sname)

	GENI AM APIv2 method to delete a resource reservation at this aggregate.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	
geniCancelUpdateUsers(context, sname)

	

	
geniRestart(context, sname, urns)

	

	
geniStart(context, sname)

	

	
geniUpdateUsers(context, sname, user_info_list)

	

	
getConsoleURL(context, sname, urn)

	

	
getversion(context)

	GENI AM API method to get the version information for this aggregate.

	Parameters

	context – geni-lib context

	Returns

	dict – Dictionary of key/value pairs with version information from this aggregate.

	
listresources(context, sname=None, available=False)

	GENI AM APIv2 method to get available resources from an aggregate, or resources allocated to
a specific sliver.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name (optional)

	available (bool) – Only list available resources

	Returns

	geni.rspec.RSpec – If sname is provided, listresources will return a manifest rspec for the given slice name. Otherwise,
listresources will return the advertisement rspec for the given aggregate.

	
renewsliver(context, sname, date)

	GENI AM APIv2 method to renew a sliver until the given datetime.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	date (str) – RFC 3339-compliant date string for new expiration date

Note

Aggregates may have maximum expiration limits, restricting how far in
the future you can set your expiration. This call may result in an
error in such cases, or success with a sooner future date.

	
sliverstatus(context, sname)

	GENI AM APIv2 method to get the status of a current sliver at the given aggregate.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	Returns

	dict – Mapping of key/value pairs for status information the aggregate supports.

	
aggregates()

	

	
cmid_to_aggregate()

	

	
name_to_aggregate()

	

geni.aggregate.opengeni

	
class OGCompute(name, host, cmid=None, url=None)

	
	
exception InvalidRSpecPathError(path)

	
	
args

	

	
message

	

	
exception UnspecifiedComponentManagerError

	
	
args

	

	
message

	

	
amtype

	

	
api

	

	
component_manager_id

	

	
createsliver(context, sname, rspec)

	GENI AM APIv2 method to reserve resources at this aggregate.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	rspec (geni.rspec.RSpec) – Valid request RSpec

	
deletesliver(context, sname)

	GENI AM APIv2 method to delete a resource reservation at this aggregate.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	
getversion(context)

	GENI AM API method to get the version information for this aggregate.

	Parameters

	context – geni-lib context

	Returns

	dict – Dictionary of key/value pairs with version information from this aggregate.

	
listresources(context, sname=None, available=False)

	GENI AM APIv2 method to get available resources from an aggregate, or resources allocated to
a specific sliver.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name (optional)

	available (bool) – Only list available resources

	Returns

	geni.rspec.RSpec – If sname is provided, listresources will return a manifest rspec for the given slice name. Otherwise,
listresources will return the advertisement rspec for the given aggregate.

	
renewsliver(context, sname, date)

	GENI AM APIv2 method to renew a sliver until the given datetime.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	date (str) – RFC 3339-compliant date string for new expiration date

Note

Aggregates may have maximum expiration limits, restricting how far in
the future you can set your expiration. This call may result in an
error in such cases, or success with a sooner future date.

	
sliverstatus(context, sname)

	GENI AM APIv2 method to get the status of a current sliver at the given aggregate.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	Returns

	dict – Mapping of key/value pairs for status information the aggregate supports.

	
aggregates()

	

	
name_to_aggregate()

	

geni.aggregate.protogeni

	
class PGCompute(name, host, cmid=None, url=None)

	
	
exception InvalidRSpecPathError(path)

	
	
args

	

	
message

	

	
exception UnspecifiedComponentManagerError

	
	
args

	

	
message

	

	
amtype

	

	
api

	

	
component_manager_id

	

	
createsliver(context, sname, rspec)

	GENI AM APIv2 method to reserve resources at this aggregate.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	rspec (geni.rspec.RSpec) – Valid request RSpec

	
deletesliver(context, sname)

	GENI AM APIv2 method to delete a resource reservation at this aggregate.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	
geniCancelUpdateUsers(context, sname)

	

	
geniRestart(context, sname, urns)

	

	
geniStart(context, sname)

	

	
geniUpdateUsers(context, sname, user_info_list)

	

	
getConsoleURL(context, sname, urn)

	

	
getversion(context)

	GENI AM API method to get the version information for this aggregate.

	Parameters

	context – geni-lib context

	Returns

	dict – Dictionary of key/value pairs with version information from this aggregate.

	
listresources(context, sname=None, available=False)

	GENI AM APIv2 method to get available resources from an aggregate, or resources allocated to
a specific sliver.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name (optional)

	available (bool) – Only list available resources

	Returns

	geni.rspec.RSpec – If sname is provided, listresources will return a manifest rspec for the given slice name. Otherwise,
listresources will return the advertisement rspec for the given aggregate.

	
renewsliver(context, sname, date)

	GENI AM APIv2 method to renew a sliver until the given datetime.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	date (str) – RFC 3339-compliant date string for new expiration date

Note

Aggregates may have maximum expiration limits, restricting how far in
the future you can set your expiration. This call may result in an
error in such cases, or success with a sooner future date.

	
sliverstatus(context, sname)

	GENI AM APIv2 method to get the status of a current sliver at the given aggregate.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	Returns

	dict – Mapping of key/value pairs for status information the aggregate supports.

	
aggregates()

	

	
name_to_aggregate()

	

geni.aggregate.transit

	
class Transit(name, amtype, cmid, url)

	
	
exception InvalidRSpecPathError(path)

	
	
args

	

	
message

	

	
exception UnspecifiedComponentManagerError

	
	
args

	

	
message

	

	
amtype

	

	
api

	

	
component_manager_id

	

	
createsliver(context, sname, rspec)

	GENI AM APIv2 method to reserve resources at this aggregate.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	rspec (geni.rspec.RSpec) – Valid request RSpec

	
deletesliver(context, sname)

	GENI AM APIv2 method to delete a resource reservation at this aggregate.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	
getversion(context)

	GENI AM API method to get the version information for this aggregate.

	Parameters

	context – geni-lib context

	Returns

	dict – Dictionary of key/value pairs with version information from this aggregate.

	
listresources(context, sname=None, available=False)

	GENI AM APIv2 method to get available resources from an aggregate, or resources allocated to
a specific sliver.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name (optional)

	available (bool) – Only list available resources

	Returns

	geni.rspec.RSpec – If sname is provided, listresources will return a manifest rspec for the given slice name. Otherwise,
listresources will return the advertisement rspec for the given aggregate.

	
renewsliver(context, sname, date)

	GENI AM APIv2 method to renew a sliver until the given datetime.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	date (str) – RFC 3339-compliant date string for new expiration date

Note

Aggregates may have maximum expiration limits, restricting how far in
the future you can set your expiration. This call may result in an
error in such cases, or success with a sooner future date.

	
sliverstatus(context, sname)

	GENI AM APIv2 method to get the status of a current sliver at the given aggregate.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	Returns

	dict – Mapping of key/value pairs for status information the aggregate supports.

	
aggregates()

	

	
name_to_aggregate()

	

geni.aggregate.vts

	
class HostPOAs(vtsam)

	
	
execcmd(context, sname, client_ids, cmd)

	

	
getARPTable(context, sname, client_ids)

	

	
getRouteTable(context, sname, client_ids)

	

	
svcStatus(context, sname, client_ids)

	

	
class Policy(vtsam)

	
	
getText(context, pid=None)

	Get the text contents of the policy requested. If no policy is specified and only one policy
exists at the aggregate, that policy text will be returned.

	Parameters

	
	context – geni-lib context

	pid – policy ID (typically from getversion output)

	Returns

	str – Text contents of policy

	
giveConsent(context, pid)

	Give consent to the policy indicated for the user URN in the credential used.

	Parameters

	
	context – geni-lib context

	pid – policy ID

	
revokeConsent(context, pid)

	Revoke consent from this date forward to the policy indicated for the user URN in the credential used.

	Parameters

	
	context – geni-lib context

	pid – policy ID

	
class VTS(name, host, url=None)

	Wrapper for all VTS-supported AMAPI functions

	
exception InvalidRSpecPathError(path)

	
	
args

	

	
message

	

	
exception UnspecifiedComponentManagerError

	
	
args

	

	
message

	

	
addDNSResourceRecord(context, sname, client_id, record_name, record_type, record_value, record_ttl=7200)

	

	
addFlows(context, sname, flows)

	

	
addSSHKeys(context, sname, client_ids, keys)

	

	
allocate(context, sname, rspec)

	

	
amtype

	

	
api

	

	
changeController(context, sname, url, datapaths, ofver=None)

	

	
clearFlows(context, sname, datapaths)

	Clear all installed flows from the requested datapaths.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	datapaths (list) – A list of datapath client_id strings

	
clearL2Table(context, sname, client_ids)

	

	
component_manager_id

	

	
createsliver(context, sname, rspec)

	GENI AM APIv2 method to reserve resources at this aggregate.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	rspec (geni.rspec.RSpec) – Valid request RSpec

	
deleteDNSResourceRecord(context, sname, client_id, record_name, record_type)

	

	
deletesliver(context, sname)

	GENI AM APIv2 method to delete a resource reservation at this aggregate.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	
dropboxFinalize(context, authcode)

	Finalize the Dropbox account link for this aggregate.

	Parameters

	
	context – geni-lib context

	authcode (str) – Authorization code given by Dropbox

	
dropboxLink(context)

	Link your user_urn to a Dropbox account at this aggregate.

	Parameters

	context – geni-lib context

	Returns

	str – Dropbox authorization URL to paste into web browser

	
dropboxUpload(context, sname, cvols)

	Trigger upload to associated Dropbox account from requested container volumes.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	cvols (list) – List of (container client-id, volume-id) tuples

	
dumpFlows(context, sname, datapaths, show_hidden=False)

	Get the current flows and flow stats from the requested datapaths.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	datapaths (list) – A list of datapath client_id strings

	show_hidden (bool) – Show hidden flows (if any)

	Returns

	dict – Key/Value dictionary of format { client_id : [(flow_field, …), …] }

	
getAllDNSResourceRecords(context, sname, client_ids)

	

	
getL2Table(context, sname, client_ids)

	

	
getLastDNSDHCPops(context, sname, client_ids, number_of_operations, dns_OR_dhcp)

	

	
getLeaseInfo(context, sname, client_ids)

	

	
getPortInfo(context, sname, datapaths)

	

	
getSTPInfo(context, sname, datapaths)

	

	
getversion(context)

	GENI AM API method to get the version information for this aggregate.

	Parameters

	context – geni-lib context

	Returns

	dict – Dictionary of key/value pairs with version information from this aggregate.

	
hgPull(context, sname, cvols)

	Update an HgMount volume with the latest data from the source repository.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	cvols (list) – List of (container client-id, volume-id) tuples

	
listresources(context, sname=None, available=False)

	GENI AM APIv2 method to get available resources from an aggregate, or resources allocated to
a specific sliver.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name (optional)

	available (bool) – Only list available resources

	Returns

	geni.rspec.RSpec – If sname is provided, listresources will return a manifest rspec for the given slice name. Otherwise,
listresources will return the advertisement rspec for the given aggregate.

	
portDown(context, sname, client_id)

	

	
portUp(context, sname, client_id)

	

	
provision(context, sname)

	

	
renewsliver(context, sname, date)

	GENI AM APIv2 method to renew a sliver until the given datetime.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	date (str) – RFC 3339-compliant date string for new expiration date

Note

Aggregates may have maximum expiration limits, restricting how far in
the future you can set your expiration. This call may result in an
error in such cases, or success with a sooner future date.

	
setDHCPSubnet(context, sname, subnet_tuples)

	

	
setDeleteLock(context, sname)

	Prevent the given sliver from being deleted by another user with the credential.

Note

Locks are cumulative, and removed by calling deletesliver. When the last locking
user calls deletesliver, the sliver will be deleted. It is not possible to remove
your lock without risking deletion.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	
setPortBehaviour(context, sname, port_list)

	

	
setPortTrunk(context, sname, port_list)

	

	
setPortVLAN(context, sname, port_tuples)

	

	
sliverstatus(context, sname)

	GENI AM APIv2 method to get the status of a current sliver at the given aggregate.

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	Returns

	dict – Mapping of key/value pairs for status information the aggregate supports.

	
aggregateFromHost(host)

	

	
aggregates()

	

	
name_to_aggregate()

	

	
class v4RouterPOAs(vtsam)

	
	
addOSPFNetworks(context, sname, client_ids, nets)

	Add OSPF Networks to areas on the given routers

	Parameters

	
	context – geni-lib context

	sname (str) – Slice name

	client_ids (list) – A list of client-id strings

	nets (list) – A list of (network, area) tuples

	
getOSPFNeighbors(context, sname, client_ids)

	

	
getRouteTable(context, sname, client_ids)

	

geni.minigcf.config

	
class HTTP

	Global configuration options for MiniGCF HTTP(S) calls.

	
ALLOW_REDIRECTS = False

	Allow MiniGCF to follow HTTP redirects (301).

	
LOG_RAW_REQUESTS = False

	If set to a valid (log_handle, log_level) tuple, will write all raw requests
(before any parsing) to AM API and CH API calls to that log at the given level.

	
LOG_RAW_RESPONSES = False

	If set to a valid (log_handle, log_level) tuple, will write all raw responses
(before any parsing) from AM API and CH API calls to that log at the given level.

	
LOG_URLS = False

	If set to a valid (log_handle, log_level) tuple, will log all URLs as they are used.

	
TIMEOUT = 60

	Initial response timeout. Note that this is not the time limit on the entire
download, just the initial server response.

geni.portal

Library for dealing with scripts that are run in the context of a portal.

	
class Context

	Handle context for scripts being run inside a portal.

This class handles context for the portal, including where to put output
RSpecs and handling parameterized scripts.

Scripts using this class can also be run “standalone” (ie. not by the
portal), in which case they take parameters on the command line and put
RSpecs on the standard output.

This class is a singleton. Most programs should access it through the
portal.context variable; any additional “instances” of the object will
be references to this.

	
bindParameters(altParamSrc=None)

	Returns values for the parameters defined by defineParameter().

Returns a Namespace (like argparse), so if you call foo = bindParameters(), a
parameter defined with name “bar” is accessed as foo.bar . Since defaults
are required, all parameters are guaranteed to have values in the Namespace

If run standaline (not in the portal), parameters are pulled from the command
line (try running with –help); if run in the portal, they are pulled from
the portal itself. Or, if you provide the altParamSrc argument, you can
specify your own parameters. If altParamSrc is a dict, we will bind the
params as a dict, using the keys as parameter names, and the values as
parameter values. If altParamSrc is a geni.rspec.pgmanifest.Manifest, we
will extract the parameters and their values from the Manifest. Finally,
if altParamSrc is a string, we’ll try to parse it as a PG manifest xml
document. No other forms of altParamSrc are currently specified.

	
bindRequestRSpec(rspec)

	Bind the given request RSpec to the context, so that it can be
automatically used with methods like printRequestRSpec.

At the present time, only one request can be bound to a context

	
defineParameter(name, description, typ, defaultValue, legalValues=None, longDescription=None, advanced=False, groupId=None, hide=False, prefix='emulab.net.parameter.')

	Define a new paramter to the script.

The given name will be used when parameters are bound. The description is
brief help text that will be shown to the user when making his/her selection. The
type should be one of the types defined by ParameterType. defaultValue is
required, but legalValues (a list) is optional; the defaultValue must be
one of the legalValues. Entries in the legalValues list may be either
simple strings (eg. “m400”), in which case they will be show directly to
the user, or 2-element tuples (eg. (“m400”, “ARM64”),), in which the second
entry is what is shown to the user. defaultValue may be a tuple, so that
one can pass, say, ‘legalvalues[0]’ for the option. The longDescription is
an optional, detailed description of this parameter and how it relates to
other parameters; it will be shown to the user if they ask to see the help,
or as a pop-up/tooltip. advanced, group, and groupName all provide parameter
group abstractions. Parameter groups are hidden by default from the user,
and the user can expand them to view and modify them if desired. By setting
advanced to True, you create a parameter group named “Advanced Parameters”;
this group will not exist or be shown if none of your parameters set the
‘advanced’ argument to True.

After defining parameters, bindParameters() must be called exactly once.

	
defineParameterGroup(groupId, groupName)

	Define a parameter group. Parameters may be added to this group, which has
an identifying token composed of alphanumeric characters (groupId), and a
human-readable name (groupName). Groups are intended to be used for advanced
parameters; in the portal UI, they hidden in an expandable panel with the
groupName — and the user can choose to see and modify them, or not. You
do not need to specify any groups; you can simply stuff all your parameters
into the “Advanced Parameters” group by setting the ‘advanced’ argument of
defineParameter to True. If you need multiple groups, define your own
groups this way.

	
makeParameterWarningsFatal()

	Enable this option if you want to return an error to the user for
incorrect parameter values, even if they can be autocorrected. This can
be useful to show the user that

	
makeRequestRSpec()

	Make a new request RSpec, bind it to this context, and return it

	
printRequestRSpec(rspec=None)

	Print the given request RSpec, or the one bound to this context if none
is given.

If run standalone (not in the portal), the request will be printed to the
standard output; if run in the portal, it will be placed someplace the
portal can pick it up.

If the given rspec does not have a Tour object, this will attempt to
build one from the file’s docstring

	
reportError(parameterError, immediate=False)

	Report a parameter error to the portal. @parameterError is an
exception object of type ParameterError. If @immediate is True,
your script will exit immediately at this point with a dump of the
errors (and fatal warnings, if enabled via
Context.makeParameterWarningsFatal) in JSON format. If @immediate
is False, the errors will accumulate until Context.verifyParameters
is called (and the errors will then be printed).

	
reportWarning(parameterError)

	Record a parameter warning. Warnings will be printed if there are
other errors or if warnings have been set to be fatal, when
Context.verifyParameters() is called, or when there is another
subsequent immediate error.

	
suppressAutoPrint()

	Suppress the automatic printing of the bound RSpec that normally happens
when the program exits.

	
verifyParameters()

	If there have been calls to Context.parameterError, and/or to
Context.parameterWarning (and Context.makeParameterWarningsFatal has
been called, making warnings fatal), this function will spit out some
nice JSON-formatted exception info on stderr

	
exception IllegalParameterDefaultError(val)

	

	
exception MultipleRSpecError(val)

	

	
exception NoRSpecError(val)

	

	
exception ParameterBindError(val)

	

	
exception ParameterError(message, paramList)

	A simple class to describe a parameter error. If you need to report
an error with a user-specified parameter value to the Portal UI,
please create (don’t throw) one of these error objects, and tell the
Portal about it by calling Context.reportError.

	
class ParameterType

	Parameter types understood by Context.defineParameter().

	
AGGREGATE = 'aggregate'

	URN specifying an Aggregate Manger

	
BANDWIDTH = 'bandwidth'

	Floating-point number to be used for bandwidth

	
BOOLEAN = 'boolean'

	True/False

	
IMAGE = 'image'

	URN specifying a particular image

	
INTEGER = 'integer'

	Simple integer

	
LATENCY = 'latency'

	Floating-point number to be used for latency

	
LOSSRATE = 'lossrate'

	Floating-point number 0.0 <= N < 1.0

	
NODETYPE = 'nodetype'

	String specifying a type of node

	
PUBKEY = 'pubkey'

	An RSA public key.

	
SIZE = 'size'

	Integer for size (eg. MB, GB, etc.)

	
STRING = 'string'

	Any string

	
exception ParameterWarning(message, paramList, fixedValues=None)

	A simple class to describe a parameter warning. If you need to
report an warning with a user-specified parameter value to the
Portal UI, please create (don’t throw) one of these error objects,
and tell the Portal about it by calling Context.reportWarning . The
first time the Portal UI runs your geni-lib script with a user’s
parameter values, it turns on the “warnings are fatal” mode (and
then warnings are reported as errors). This gives you a chance to
warn the user that they might be about to do something stupid,
and/or suggest a set of modified values that will improve the
situation. .

	
exception PortalError(message)

	

	
class PortalJSONEncoder(skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, encoding='utf-8', default=None)

	
	
default(o)

	Implement this method in a subclass such that it returns
a serializable object for o, or calls the base implementation
(to raise a TypeError).

For example, to support arbitrary iterators, you could
implement default like this:

def default(self, o):
 try:
 iterable = iter(o)
 except TypeError:
 pass
 else:
 return list(iterable)
 # Let the base class default method raise the TypeError
 return JSONEncoder.default(self, o)

	
context = <geni.portal.Context object>

	Module-global Context object - most users of this module should simply use
this rather than trying to create a new Context object

geni.rspec

	geni.rspec.emulab

	geni.rspec.emulab.emuext

	geni.rspec.igext

	geni.rspec.pg

	geni.rspec.pgad

	geni.rspec.vts

	geni.rspec.vtsmanifest

geni.rspec.emulab

Convenience library to load all extensions supported by Emulab-based
aggregates. In most cases, you will not need to load these extension libraries
individually, just load this one.

geni.rspec.emulab.emuext

Common set of RSpec extensions supported by many Emulab-based aggregates

	
class BridgedLink(name=None)

	A bridged link is syntactic sugar used to create two links
separated by an Emulab delay (bridge) node. The BridgedLink class will
create the following topology:

left-link right-link

node1 =========== bridge ============ node2

The bridge is a special node type (sliver_type=”delay”) that tells the
CM to insert an Emulab delay node instead of a plain (router) node. A
delay node is a transparent Ethernet bridge between the left and right
segments above, but on which the traffic can be shaped wrt. bandwidth,
latency, and loss. For example:

Create the bridged link between the two nodes.
link = request.BridgedLink(“link”)
Add two interfaces
link.addInterface(iface1)
link.addInterface(iface2)
Give the link (bridge) some shaping parameters.
link.bandwidth = 10000
link.latency = 15
link.plr = 0.01

	
addInterface(interface)

	

	
bandwidth

	

	
latency

	

	
plr

	

	
class InstantiateOn(parent)

	Added to a node to specify that it a Xen VM should be bound to
(instantiated on) another node in the topology. Argument is the
node instance or the client id of another node in the topology.

	
exception InvalidParent(parent)

	

	
class ProgramAgent(name, command, directory=None, onexpstart=False)

	Add an Emulab Program Agent, which can be controlled via the Emulab
event system. Optional argument ‘directory’ specifies where to invoke
the command from. Optional argument ‘onexpstart’ says to invoke the
command when the experiment starts (time=0 in event speak). This is
different than the Execute service, which runs every time the node boots.

	
class ShapedLink(name=None)

	A ShapedLink is a synonym for BridgedLink

	
class setCollocateFactor(mfactor)

	Added to a top-level Request object, this extension limits the number
of VMs from one experiment that Emulab will collocate on each physical
host.

	
class setDelayImage(urn)

	Added to a top-level Request object, this extension sets the disk image
that will be used for all delay nodes configured for the experiment.

	
class setFailureAction(action)

	Added to a node this extension will tell Emulab based aggregates to
ignore errors booting this node when starting an experiment. This allows
the experiment to proceed so that the user has time to debug.

	
class setForceShaping

	Added to a Link or LAN object, this extension forces Emulab link
shaping to be enabled, even if it is not strictly necessary. This
allows the link properties to be changed dynamically via the Emulab event
system.

	
class setNoBandwidthShaping

	Added to a Link or LAN object, this extension forces Emulab link
shaping to be disabled for bandwidth, even if it is necessary. This
is ignored if the link must be shaped for other reason (delay, loss).

	
class setNoInterSwitchLinks

	Added to a Link or LAN object, this extension forces the Emulab mapper
to disallow mapping a link in the request topology to an inter-switch
link. This allows users to require that specific nodes in their
topology be attached to the same switch(es).

	
class setPackingStrategy(strategy)

	Added to a top-level Request object, this extension controls the
strategy used for distributing VMs across physical hosts

	
class setRoutingStyle(style)

	Added to a top-level Request object, this extension controls the
routing that is automatically configured on the experiment (data-plane)
side of the network.

	
class setUseTypeDefaultImage

	Added to a node that does not specify a disk image, this extension
forces Emulab to use the hardware type default image instead of the
standard geni default image. Useful with special hardware that should
run a special image.

geni.rspec.igext

	
class AddressPool(name, count=1, type='any')

	A pool of public dynamic IP addresses belonging to a slice.

	
name

	

	
class Blockstore(name, mount=None)

	
	
size

	

	
class Bridge(name, if0name='if0', if1name='if1')

	
	
class Pipe

	

	
getPipe(interface)

	

	
class Desire(name, weight)

	

	
class Firewall(style)

	
	
class Direction

	
	
INCOMING = 'incoming'

	

	
OUTGOING = 'outgoing'

	

	
class Style

	
	
BASIC = 'basic'

	

	
CLOSED = 'closed'

	

	
OPEN = 'open'

	

	
addException(port, direction, ip=None)

	

	
class OFController(host, port=6633)

	OpenFlow controller specification to be used on a PG VLAN.

Add to link objects using the Link.addChild() method.

Note

This will have no effect if a trivial link is created by the aggregate.
You need to make sure that a VLAN will be provisioned (typically by making sure
that at least two interfaces on the link are on different physical hosts).

	
class ParameterData(parameters)

	

	
class Password(name=None)

	A declaration for a randomly generated password.

The portal will generate the password, encrypt it, and pass on the
encrypted value to the AM(s) and therefore the node(s).

	
class RemoteBlockstore(name, mount=None, ifacename='if0')

	
	
dataset

	

	
interface

	

	
mountpoint

	

	
placement

	

	
readonly

	

	
rwclone

	

	
size

	

	
class Site(id)

	

	
class Tour

	
	
Description(type, desc)

	

	
Instructions(type, inst)

	

	
MARKDOWN = 'markdown'

	

	
SPLIT_REGEX = <_sre.SRE_Pattern object>

	

	
class Step(target, description, steptype=None, description_type='markdown')

	
	
MARKDOWN = 'markdown'

	

	
TEXT = 'text'

	

	
TEXT = 'text'

	

	
addStep(step)

	

	
useDocstring(module=None)

	

	
class XenVM(client_id, component_id=None, exclusive=False)

	Xen-based Virtual Machine resource

	Parameters

	
	client_id (str) – Your name for this VM. This must be unique within a single Request object.

	component_id (Optional[str]) – The component_id of the site node you want to bind this VM to

	exclusive (Optional[bool]) – Request this VM on an isolated host used only by your sliver.

	
cores

	int – Number of CPU cores

	
ram

	int – Amount of memory in megabytes

	
disk

	int – Amount of disk space in gigabytes

	
xen_ptype

	str – Physical node type on which to instantiate the VM. Types are AM-specific.

geni.rspec.pg

	
class Address(atype)

	

	
class Command(cmd, data)

	
	
resolve()

	

	
exception DuplicateExtensionError(klass)

	

	
class Execute(shell, command)

	

	
class IPv4Address(address, netmask)

	

	
class Install(url, path)

	

	
class Interface(name, node, address=None)

	
	
exception InvalidAddressTypeError(addr)

	

	
addAddress(address)

	

	
name

	

	
class L2GRE(name=None)

	

	
class L3GRE(name=None)

	

	
class LAN(name=None)

	

	
class Link(name=None, ltype='', members=None)

	
	
DEFAULT_BW = -1

	

	
DEFAULT_LAT = 0

	

	
DEFAULT_PLR = 0.0

	

	
EXTENSIONS = [('Site', <class 'geni.rspec.igext.Site'>), ('setForceShaping', <class 'geni.rspec.emulab.emuext.setForceShaping'>), ('setNoBandwidthShaping', <class 'geni.rspec.emulab.emuext.setNoBandwidthShaping'>), ('setNoInterSwitchLinks', <class 'geni.rspec.emulab.emuext.setNoInterSwitchLinks'>), ('UserData', <class 'geni.rspec.emulab.userdata.UserData'>)]

	

	
LNKID = 0

	

	
addChild(obj)

	

	
addComponentManager(component_manager)

	

	
addInterface(intf)

	

	
addNode(node)

	

	
addRawElement(elem)

	

	
best_effort

	

	
connectSharedVlan(name)

	

	
disableMACLearning()

	

	
enableVlanTagging()

	

	
link_multiplexing

	

	
classmethod newLinkID()

	

	
trivial_ok

	

	
vlan_tagging

	

	
class Namespaces

	
	
CLIENT = http://www.protogeni.net/resources/rspec/ext/client/1

	

	
DATA = http://www.protogeni.net/resources/rspec/ext/user-data/1

	

	
DELAY = http://www.protogeni.net/resources/rspec/ext/delay/1

	

	
EMULAB = http://www.protogeni.net/resources/rspec/ext/emulab/1

	

	
INFO = http://www.protogeni.net/resources/rspec/ext/site-info/1

	

	
JACKS = http://www.protogeni.net/resources/rspec/ext/jacks/1

	

	
PARAMS = http://www.protogeni.net/resources/rspec/ext/profile-parameters/1

	

	
RS = http://www.protogeni.net/resources/rspec/ext/emulab/1

	

	
TOUR = http://www.protogeni.net/resources/rspec/ext/apt-tour/1

	

	
VTOP = http://www.protogeni.net/resources/rspec/ext/emulab/1

	

	
class Node(name, ntype, component_id=None, exclusive=None)

	
	
exception DuplicateInterfaceName

	

	
EXTENSIONS = [('Blockstore', <class 'geni.rspec.igext.Blockstore'>), ('Firewall', <class 'geni.rspec.igext.Firewall'>), ('Site', <class 'geni.rspec.igext.Site'>), ('Desire', <class 'geni.rspec.igext.Desire'>), ('setUseTypeDefaultImage', <class 'geni.rspec.emulab.emuext.setUseTypeDefaultImage'>), ('setFailureAction', <class 'geni.rspec.emulab.emuext.setFailureAction'>), ('InstantiateOn', <class 'geni.rspec.emulab.emuext.InstantiateOn'>), ('UserData', <class 'geni.rspec.emulab.userdata.UserData'>)]

	

	
addInterface(name=None, address=None)

	

	
addRawElement(elem)

	

	
addService(svc)

	

	
name

	

	
class NodeType

	
	
RAW = 'raw'

	

	
VM = 'emulab-xen'

	

	
XEN = 'emulab-xen'

	

	
class RawPC(name, component_id=None)

	

	
class Request

	
	
EXTENSIONS = [('Link', <class 'geni.rspec.pg.Link'>), ('LAN', <class 'geni.rspec.pg.LAN'>), ('L3GRE', <class 'geni.rspec.pg.L3GRE'>), ('L2GRE', <class 'geni.rspec.pg.L2GRE'>), ('StitchedLink', <class 'geni.rspec.pg.StitchedLink'>), ('Node', <class 'geni.rspec.pg.Node'>), ('RawPC', <class 'geni.rspec.pg.RawPC'>), ('XenVM', <class 'geni.rspec.igext.XenVM'>), ('AddressPool', <class 'geni.rspec.igext.AddressPool'>), ('RemoteBlockstore', <class 'geni.rspec.igext.RemoteBlockstore'>), ('Bridge', <class 'geni.rspec.igext.Bridge'>), ('ParameterData', <class 'geni.rspec.igext.ParameterData'>), ('setCollocateFactor', <class 'geni.rspec.emulab.emuext.setCollocateFactor'>), ('setPackingStrategy', <class 'geni.rspec.emulab.emuext.setPackingStrategy'>), ('setRoutingStyle', <class 'geni.rspec.emulab.emuext.setRoutingStyle'>), ('setDelayImage', <class 'geni.rspec.emulab.emuext.setDelayImage'>), ('BridgedLink', <class 'geni.rspec.emulab.emuext.BridgedLink'>), ('ShapedLink', <class 'geni.rspec.emulab.emuext.ShapedLink'>), ('EPClan', <class 'geni.rspec.emulab.epclan.EPClan'>), ('EPCNode', <class 'geni.rspec.emulab.epcnode.EPCNode'>), ('EPCVMNode', <class 'geni.rspec.emulab.epcnode.EPCVMNode'>), ('eNodeB', <class 'geni.rspec.emulab.enodeb.eNodeB'>), ('UE', <class 'geni.rspec.emulab.ue.UE'>), ('RFLink', <class 'geni.rspec.emulab.rflink.RFLink'>)]

	

	
addRawElement(elem)

	

	
addResource(rsrc)

	

	
addTour(tour)

	

	
hasTour()

	

	
resources

	

	
toXMLString(pretty_print=False)

	Return the current request contents as an XML string that represents an rspec
in the GENIv3 format.

	
writeXML(path)

	Write the current request contents as an XML file that represents an rspec
in the GENIv3 format.

	
class Resource

	
	
addNamespace(ns)

	

	
class Service

	

	
class StitchedLink(name=None)

	
	
exception TooManyInterfacesError

	

	
exception UnknownComponentManagerError(cid)

	

	
VM

	alias of geni.rspec.pg.XenVM

	
class VZContainer(name, exclusive=False)

	

	
class XenVM(name, component_id=None, exclusive=False)

	
Deprecated since version 0.4: Use geni.rspec.igext.XenVM instead.

geni.rspec.pgad

	
class AdInterface(name)

	Wrapper object for a Node Interface in a GENIv3 Advertisement.

	
component_id

	str – Component ID URN

	
role

	str – The resource role of this interface (typically
“control” or “experimental”). None if unset.

	
name

	str – Friendly name for this interface, None if unset.

	
class AdLink

	
	
text

	

	
class AdNode

	Wrapper object for a Node in a GENIv3 advertisement.

Note

In general this object is created on-demand through Advertisement objects,
but you can load this object from a Node XML element by using the _fromdom
classmethod.

	Attributes:

	component_id (str): Component ID URN
component_manager_id (str): Component Manager ID URN
name (str): Friendly name provided by aggregate for this resource.
exclusive (bool): True if a node can be reserved as a raw PC
available (bool): Whether this node is currently available for reservations
hardware_types (dict): Mapping of { type_name : type_slots, … }
sliver_types (set): Supported sliver type
images (dict): Mapping of { sliver_type : [supported_image_name, …], … }
shared (bool): True if currently being used as a shared resource
interfaces (list): List of AdInterface objects for this Node
location (AdLocation): None if not available
ram (int): Currently available system RAM in megabytes. None if not available.
cpu (int): Maximum Per-core CPU speed in Mhz. None if not available.

	
text

	

	
class AdSharedVLAN

	

	
class Advertisement(path=None, xml=None)

	Wrapper object for a GENIv3 XML advertisement.

Only one argument can be supplied (if both are provided path will be used)

	Parameters

	
	path (str, unicode) – Path to XML file on disk containing an advertisement

	xml (str, unicode) – In-memory XML byte stream containing an advertisement

	
images

	An iterable of the unique images found in this advertisement.

	
links

	An indexable iterator over the AdLink objects in this advertisement.

	
nodes

	An indexable iterator over the AdNode objects in this advertisement.

	
routable_addresses

	A RoutableAddresses object containing the number of configured and available publicly routable IP addresses at this site.

	
shared_vlans

	An indexable iterator of the shared vlan names found in this advertisement.

	
stitchinfo

	Reference to the stitching info in the manifest, if present.

	
text

	Advertisement XML contents as a string, formatted with whitespace for easier reading.

	
writeXML(path)

	Write the current advertisement as an XML file that contains an rspec in the format returned by the
aggregate.

	
class Image

	

	
class Location

	

	
class RoutableAddresses

	
	
capacity

	

geni.rspec.vts

	
exception BadImageTypeError(rtype)

	

	
class Container(image, name)

	
	
EXTENSIONS = [('Mount', <class 'geni.rspec.vts.Mount'>), ('HgMount', <class 'geni.rspec.vts.HgMount'>), ('SecureHgMount', <class 'geni.rspec.vts.SecureHgMount'>), ('DropboxMount', <class 'geni.rspec.vts.DropboxMount'>)]

	

	
addIPRoute(network, gateway)

	

	
attachPort(port)

	

	
connectCrossSliver(other_dp)

	

	
class ContainerPort(target, vlan=None, delay_info=None, loss_info=None)

	
	
addIPv4Address(value)

	

	
class Datapath(image, client_id)

	
	
attachPort(port)

	

	
connectCrossSliver(other_dp)

	

	
name

	

	
class DatapathImage(name)

	

	
class DelayInfo(time=None, jitter=None, correlation=None, distribution=None)

	

	
class DropboxMount(name, mount_path)

	

	
class GRECircuit(circuit_plane, endpoint)

	

	
class HgMount(name, source, mount_path, branch='default')

	Clone a public mercurial repo on a host

	Parameters

	
	name (str) – a reference name given on the mounting AM, must be unique within a sliver

	source (str) – the URL to the source of repository

	mount_path (str) – the path where the repository would be mounted in the host filesystem

	branch (str) – the branch of the repository to be cloned on host (if any)

	
exception IllegalModeForParamError(param)

	

	
class Image(name)

	
	
setImageAttribute(name, val)

	

	
class InternalCircuit(target, vlan=None, delay_info=None, loss_info=None)

	

	
class L2SSLVPNClient(client_id)

	

	
LocalCircuit

	alias of geni.rspec.vts.PGCircuit

	
class LossInfo(percent)

	

	
class MirrorPort(port)

	

	
class Mount(type, name, mount_path)

	

	
class Namespaces

	
	
SDN = http://geni.bssoftworks.com/rspec/ext/sdn/request/1

	

	
VTS = http://geni.bssoftworks.com/rspec/ext/vts/request/1

	

	
class NetFlow(collector_ip)

	

	
class OVSImage(name)

	
	
netflow

	

	
setMirror(port)

	

	
sflow

	

	
class OVSL2Image

	

	
class OVSL2STP

	
	
RSTP = 2

	

	
STP = 1

	

	
address

	

	
ageing_time

	

	
forward_delay

	

	
hello_time

	

	
max_age

	

	
mode

	

	
priority

	

	
system_id

	

	
type

	

	
xmit_hold_count

	

	
class OVSOpenFlowImage(controller, ofver='1.0', dpid=None)

	

	
class PGCircuit(name=None, delay_info=None)

	

	
class Port(name=None)

	

	
class ReorderInfo(percent, correlation, gap=None)

	

	
class Request

	
	
EXTENSIONS = [('SSLVPNFunction', <class 'geni.rspec.vts.SSLVPNFunction'>), ('L2SSLVPNServer', <class 'geni.rspec.vts.SSLVPNFunction'>), ('L2SSLVPNClient', <class 'geni.rspec.vts.L2SSLVPNClient'>), ('Datapath', <class 'geni.rspec.vts.Datapath'>), ('Container', <class 'geni.rspec.vts.Container'>)]

	

	
addResource(rsrc)

	

	
resources

	

	
toXMLString(pretty_print=False)

	

	
writeXML(path)

	

	
class SFlow(collector_ip)

	

	
class SSLVPNFunction(client_id)

	

	
class SecureHgMount(getversion_output, name, source, mount_path, branch='default')

	
	
rebind(getversion_output)

	

	
class SimpleDHCPImage(subnet=None)

	

	
exception UnknownSTPModeError(val)

	

	
class VFCircuit(target)

	

	
connectInternalCircuit(dp1, dp2, delay_info=None, loss_info=None)

	

geni.rspec.vtsmanifest

	
class Manifest(path=None, xml=None)

	Wrapper object for GENI XML manifest rspec, providing a pythonic API to the contained data

	
containers

	Iterator over all allocated containers as ManifestContainer objects.

	
datapaths

	Iterator over all allocated datapaths as ManifestDatapath objects.

	
findPort(client_id)

	Get the datapath port object representing the given client_id.

	Parameters

	client_id (str) – client_id of the port you want to find

	Returns

	GenericPort or None

	
findTarget(client_id)

	Get the container or datapath representing the given client_id in the manifest.

	Parameters

	client_id (str) – Requested client ID of the object you want to find

	Returns

	ManifestDatapath, ManifestContainer, or None

	
functions

	Iterator over all allocated functions as ManifestFunction objects.

	
local_circuits

	Iterator for allocated circuit names on the local PG circuit plane (as strings).

	
pg_circuits

	Iterator for allocated circuit names on the local PG circuit plane (as strings).

	
ports

	Iterator for all datapath and container ports as subclasses of GenericPort objects.

	
text

	String representation of original XML content, with added whitespace for easier reading

	
write(path)

	
Deprecated since version 0.4: Use geni.rspec.vtsmanifest.Manifest.writeXML() instead.

	
writeXML(path)

	Write the XML representation of this manifest to the supplied path.

	Parameters

	path (str) – Path to output file

	
exception UnhandledPortTypeError(typ)

	

geni.types

	
class DPID(val)

	Utility class representing OpenFlow Datapath IDs

This class tries to handle all likely inputs and desired outputs, while
providing a single internal type to work with in the code.

String representations passed in must be represented in hex, but may contain
common separators (colon, dash, and period) in any configuration.

	Parameters

	val (int, long, unicode, str) –

	Raises

	
	DPID.OutOfRangeError – If the DPID represented by val is larger than the spec allows
or less than zero.

	DPID.InputTypeError – If val is not a supported data type

	
exception InputTypeError(val)

	

	
MAX = 18446744073709551615L

	

	
exception OutOfRangeError(val)

	

	
hexstr()

	Unformatted hex representation of DPID

	Returns

	str – Hex formatted DPID, without colons

	
class EthernetMAC(val)

	Utility class representing 48-bit Ethernet MAC Addresses

This class tries to handle all likely inputs and desired outputs, while
providing a single internal type to work with in the code.

String representations passed in must be represented in hex, but may contain
common separators (colon, dash, and period) in any configuration.

	Parameters

	val (int, long, unicode, str) –

	Raises

	
	EthernetMAC.OutOfRangeError – If the MAC represented by val is larger than
than 48-bits or less than zero.

	EthernetMAC.InputTypeError – If val is not a supported data type

	
exception InputTypeError(val)

	

	
MAX = 281474976710656

	

	
exception OutOfRangeError(val)

	

	
hexstr()

	Unformatted hex representation of MAC

	Returns

	str – Hex formatted MAC, without separators

geni.urn

Simple library for manipulating URNs, particularly those used for GENI
objects

	
Authority(authorities, name)

	Create a new GENI URN with type ‘authority’.

	
class Base(*args)

	Base class representing any URN (RFC 2141).

	
__init__(*args)

	Create a new generic URN

URNs can be initialized in one of two ways:

	Passing a single string in URN format (‘urn:NID:NSS’)

	Passing two strings (the NID and the NSS) separately

	
__repr__()

	x.__str__() <==> str(x)

	
__str__() <==> str(x)

	

	
static isValidNID(s)

	Returns True if the string is a valid NID, False if not.

	
static isValidNSS(s)

	Returns True if the string is a valid NSS, False if not.

	
static isValidURN(s)

	Returns True if the string is a valid URN, False if not.

	
class GENI(*args)

	Class representing the URNs used by GENI, which use the publicid NID and
IDN (domain name) scheme, then impose some additional strucutre.

	
static GENIURNType(s)

	Returns the type of the object if the URN is a valid GENI URN, or
None otherwise.

	
TYPE_AUTHORITY = 'authority'

	Aggregate Managers, Slice Authorities, etc.

	
TYPE_IMAGE = 'image'

	Disk images

	
TYPE_INTERFACE = 'interface'

	Network interfaces

	
TYPE_LINK = 'link'

	Point-to-point and multipoint links

	
TYPE_NODE = 'node'

	Physical and virtual machines

	
TYPE_SLICE = 'slice'

	Container for allocated resources

	
TYPE_SLIVER = 'sliver'

	Slice of a specific resource

	
TYPE_USER = 'user'

	Principal

	
__init__(*args)

	Create a URN in the format used for GENI objects

There are four forms of this constructor:

	Pass a single string in GENI URN format (‘urn:publicid:IDN+auth+type+name’)

	Pass three arguments: the authority (a single string), the type (see the
TYPE_ variables in this class), and the object name

	Pass three arguments: as #2, but the authorit(ies) are passed as a list,
with the top-level authority coming first, followed by any subauthorities

	Pass three arguments: as #2, but the authority is a
geni.aggregate.core.AM object, and the authority is taken from that
object

	
authorities

	Returns a list containing at least one authority string (the top level
authority) and possibly additional subauthorities.

	
authority

	Return a single string capturing the entire authority/subauthority chain

	
static isValidGENIURN(s)

	Returns True if the given string is a valid URN in GENI format, False
otherwise.

	
name

	Returns the ‘name’ part of a GENI URN.

	
type

	Returns the ‘type’ part of a GENI URN.

	
Image(authorities, name, version=None)

	Create a new GENI URN with type ‘image’.

	
Interface(authorities, name)

	Create a new GENI URN with type ‘interface’.

	
Link(authorities, name)

	Create a new GENI URN with type ‘link’.

	
Make(s)

	Returns the ‘most specific’ URN object that it can for the given string.

Specifically, returns a GENI URN if the string is in GENI format, or a Base
URN if it is not. May throw a MalformedURNError exception if the string is not a
valid URN at all.

	
exception MalformedURNError(val)

	Exception indicating that a string is not a proper URN.

	
__init__(val)

	x.__init__(…) initializes x; see help(type(x)) for signature

	
__str__() <==> str(x)

	

	
Node(authorities, name)

	Create a new GENI URN with type ‘node’.

	
Slice(authorities, name)

	Create a new GENI URN with type ‘slice’.

	
Sliver(authorities, name)

	Create a new GENI URN with type ‘sliver’.

	
User(authorities, name)

	Create a new GENI URN with type ‘user’.

geni.util

	
class APIEncoder(skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, sort_keys=False, indent=None, separators=None, encoding='utf-8', default=None)

	
	
default(obj)

	Implement this method in a subclass such that it returns
a serializable object for o, or calls the base implementation
(to raise a TypeError).

For example, to support arbitrary iterators, you could
implement default like this:

def default(self, o):
 try:
 iterable = iter(o)
 except TypeError:
 pass
 else:
 return list(iterable)
 # Let the base class default method raise the TypeError
 return JSONEncoder.default(self, o)

	
exception MissingPublicKeyError

	

	
exception PathNotFoundError(path)

	

	
buildContextFromBundle(bundle_path, pubkey_path=None, cert_pkey_path=None)

	

	
builddot(manifests)

	Constructs a dotfile of the topology described in the passed in manifest list and returns it as a string.

	
checkavailrawpc(context, am)

	Returns a list of node objects representing available raw PCs at the
given aggregate.

	
deleteSliverExists(am, context, slice)

	Attempts to delete all slivers for the given slice at the given AM, suppressing all returned errors.

	
getAdvertisements(context, ams)

	Returns a dictionary of the form:

{ site_object : advertisement_object, ...}

Containing the advertisements for all the requested aggregates. Requests
are made in parallel and the function blocks until the slowest site
returns (or times out).

Warning

Particularly large advertisements may break the shared memory queue
used by this function.

	
getManifests(context, ams, slices)

	Returns a two-level dictionary of the form:

{slice_name : { site_object : manifest_object, ... }, ...}

Containing the manifests for all provided slices at all the provided
sites. Requests are made in parallel and the function blocks until the
slowest site returns (or times out).

	
hasDataContext()

	

	
loadAggregates(path=None)

	

	
loadContext(path=None, key_passphrase=None)

	

	
printlogininfo(context=None, am=None, slice=None, manifest=None)

	Prints out host login info in the format:

[client_id][username] hostname:port

If a manifest object is provided the information will be mined from this data,
otherwise you must supply a context, slice, and am and a manifest will be
requested from the given aggregate.

	
saveAggregates(ammap, path=None)

	

	
updateAggregates(context, ammap)

	

Development

This section of the documentation is for people wishing to contribute to the geni-lib project, or at least
hoping to gain further insight into the existing code internals. This documentation is even less complete
than the other sections, but hopefully will be useful.

	Supported Use Cases
	Exact Request Rspec Creation

	Modular / Multi-rspec Creation

	Federation Querying

	Aggregate / Clearinghouse Actions

	Coding Conventions

	Pattern Conventions

	Philosophy Notes

	Things That Don’t Belong

Supported Use Cases

This document makes a weak stab at articulating the use cases which geni-lib is expected to support. This is in
an attempt to provide guidance on architecture decisions for new features to make sure we don’t break existing use
cases.

Exact Request Rspec Creation

The most basic use of geni-lib is to write a small script whose sole purpose is to create a single rspec, from
a simple evaluation of end-to-end instructions. Such a use may involve basic parameters, but does not take input from
active querying of the federation. This provides code that is easy to edit to change behaviour, but otherwise is
indistinguishable from editing an XML file.

This use case should not be complicated.

Modular / Multi-rspec Creation

It is often useful to provide subtrees of resource definitions that are not complete Request objects (a specific VM
disk image, memory/disk configuration and execution scripts, etc). These trees can then be composed into Request
objects for novel topologies. In this vein, it is also useful to create more than one Request at a time, composing
them together for issuing to separate aggregates.

Federation Querying

It is valuable and must be possible for users to hold in memory multiple advertisement and manifest rspec wrappers
at the same time. At the very minimum the following resource tuples must be able to exist in memory at the same
time:

	(site, advertisement)

	(site, slice, manifest)

At the moment any number of instances of these combinations are supported - any change to restrict these instances
to being unique (e.g. only one advertisement per site at a time, etc.) will have to be well justified.

Aggregate / Clearinghouse Actions

Users should be able to operate on many aggregates and clearinghouses in the same script. There is a current (and likely
ongoing) requirement that the user only be configured to use one control framework (and credentials) at a time. If
more than one CH supports the same credentials and API, they should be able to be used concurrently, as AMs also must.
Users are responsible for completing all previous credentialed federation actions before changing the CF or credentials
their context refers to.

Coding Conventions

There is a pylint.rc file that is tweaked for most of the project style. It is not perfect, but is a good
check to run immediately after cloning, and then right before a pull request (as pylint will report the
difference in compliance once you have run it once). The script lint.sh in the root directory will run
pylint with this file over the proper directory tree.

	All indentation uses spaces

	Indents are 2 spaces

	Exceptions that exist only for specializing names should be written on one line:

class MyCommonException(Exception):
 def __init__ (self, some_data):
 ...
 def __str__ (self):
 ...

class SpecificNameOne(MyCommonException): pass
class SpecificNameTwo(MyCommonException): pass

There is an example of this use case in geni.aggregate.pgutil

	Maximum line length is 132 characters

	Class-level and global variables are highly discouraged

	Never use bare except: clauses

	Do not use print

Pattern Conventions

	Exception hierarchies are highly encouraged, as they allow users to dispatch their own scripting on the
the type of exception, rather than having a single exception with varying messages or errno-like mechanics.

	Anything that imports cryptography should never be imported at module level. Always import crypto and network
functionality inside functions, as this minimizes the dependencies for users who are only generating or parsing
XML.

	All public attribute storage types should be internally consistent for reads. If you want to support setting an
underlying float storage type using a string or integer, use a property. Non-public attributes should also follow
this rule unless there is a really good reason not to.

	If you can foresee a problem in the future, but don’t have time to fix it now, at least leave a # TODO note.

	At the moment many geni-lib instances are re-entrant. However, while we should support this where possible,
it is not required nor will it be guaranteed to users.

Philosophy Notes

geni-lib is a surprisingly useful tool for end-users. However, that does not mean it is designed as a user
tool. As it is a library, constraints and “convenience” can always be wrapped around it, but they can’t be removed
if the library is too opinionated at a base level. Convenience is generally acceptable if the underlying
functionality can be directly accessed by the user should they want to avoid whatever level of “help” is being
offered.

	Do not provide Magic(tm) to users in the base API. geni-lib should not go out of its’ way to protect the user
from building a request that we believe the be impossible to satisfy, or from passing “bad” data to AM API calls.

	AM wrappers provide some basic level of sanity checking of input values (specifically for POAs in the VTS
support). This is acceptable as there is a lower-level API a user may use if they want to ignore those
checks (geni.minigcf.amapi3). That being said, this level of convenience should be limited.

	While we support IronPython and Jython, those geni-lib users should still prefer multiprocessing for
parallel execution, instead of threading.

	Providing convenience shouldn’t extend to essentially providing new tools - it’s hard to say where this line is,
but providing too much tool-like functionality in geni-lib puts pressure on both the release schedule and
the versioning and API stability.

Things That Don’t Belong

For legacy reasons, geni-lib includes code that either doesn’t belong entirely, or is in the wrong place.
Anything enumerated here should not be referred to as an example of good practice moving forward:

	geni.aggregate.* - This package is a mess. Frameworks need to move out somewhere else, and the AM
locations should not be in the code (they should be loaded from data files which can be updated independently
of the geni-lib code). context also doesn’t belong here, once framework support moves.

	geni.rspec.pg* - The “pg” rspec is now the “GENI” rspec, and we should rename accordingly. Things that are
actually part of Emulab and not the base functionality should live in extensions.

 Python Module Index

 a |
 m |
 p |
 r |
 t |
 u

 		 	

 		
 a	

 	[image: -]
 	
 geni.aggregate	

 	
 	
 geni.aggregate.cloudlab	

 	
 	
 geni.aggregate.exogeni	

 	
 	
 geni.aggregate.instageni	

 	
 	
 geni.aggregate.opengeni	

 	
 	
 geni.aggregate.protogeni	

 	
 	
 geni.aggregate.transit	

 	
 	
 geni.aggregate.vts	

 		 	

 		
 m	

 	[image: -]
 	
 geni.minigcf	

 	
 	
 geni.minigcf.config	

 		 	

 		
 p	

 	
 	
 geni.portal	

 		 	

 		
 r	

 	[image: -]
 	
 geni.rspec	

 	
 	
 geni.rspec.emulab	

 	
 	
 geni.rspec.emulab.emuext	

 	
 	
 geni.rspec.igext	

 	
 	
 geni.rspec.pg	

 	
 	
 geni.rspec.pgad	

 	
 	
 geni.rspec.vts	

 	
 	
 geni.rspec.vtsmanifest	

 		 	

 		
 t	

 	
 	
 geni.types	

 		 	

 		
 u	

 	
 	
 geni.urn	

 	
 	
 geni.util	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

_

 	
 	__init__() (Base method)

 	(GENI method)

 	(MalformedURNError method)

 	
 	__repr__() (Base method)

 	__str__() (Base method)

 	(MalformedURNError method)

A

 	
 	addAddress() (Interface method)

 	addChild() (Link method)

 	addComponentManager() (Link method)

 	addDNSResourceRecord() (VTS method)

 	addException() (Firewall method)

 	addFlows() (VTS method)

 	addInterface() (BridgedLink method)

 	(Link method)

 	(Node method)

 	addIPRoute() (Container method)

 	addIPv4Address() (ContainerPort method)

 	addNamespace() (Resource method)

 	addNode() (Link method)

 	addOSPFNetworks() (v4RouterPOAs method)

 	addRawElement() (Link method)

 	(Node method)

 	(Request method)

 	addResource() (Request method), [1]

 	Address (class in geni.rspec.pg)

 	address (OVSL2STP attribute)

 	AddressPool (class in geni.rspec.igext)

 	addService() (Node method)

 	addSSHKeys() (VTS method)

 	addStep() (Tour method)

 	addTour() (Request method)

 	AdInterface (class in geni.rspec.pgad)

 	AdLink (class in geni.rspec.pgad)

 	AdNode (class in geni.rspec.pgad)

 	AdSharedVLAN (class in geni.rspec.pgad)

 	Advertisement (class in geni.rspec.pgad)

 	ageing_time (OVSL2STP attribute)

 	AGGREGATE (ParameterType attribute)

 	aggregateFromHost() (in module geni.aggregate.vts)

 	aggregates() (in module geni.aggregate.cloudlab)

 	(in module geni.aggregate.exogeni)

 	(in module geni.aggregate.instageni)

 	(in module geni.aggregate.opengeni)

 	(in module geni.aggregate.protogeni)

 	(in module geni.aggregate.transit)

 	(in module geni.aggregate.vts)

 	
 	allocate() (VTS method)

 	ALLOW_REDIRECTS (HTTP attribute)

 	amtype (CloudLabAM attribute)

 	(EGCompute attribute)

 	(IGCompute attribute)

 	(OGCompute attribute)

 	(PGCompute attribute)

 	(Transit attribute)

 	(VTS attribute)

 	api (CloudLabAM attribute)

 	(EGCompute attribute)

 	(IGCompute attribute)

 	(OGCompute attribute)

 	(PGCompute attribute)

 	(Transit attribute)

 	(VTS attribute)

 	APIEncoder (class in geni.util)

 	args (CloudLabAM.InvalidRSpecPathError attribute)

 	(CloudLabAM.UnspecifiedComponentManagerError attribute)

 	(EGCompute.InvalidRSpecPathError attribute)

 	(EGCompute.UnspecifiedComponentManagerError attribute)

 	(IGCompute.InvalidRSpecPathError attribute)

 	(IGCompute.UnspecifiedComponentManagerError attribute)

 	(OGCompute.InvalidRSpecPathError attribute)

 	(OGCompute.UnspecifiedComponentManagerError attribute)

 	(PGCompute.InvalidRSpecPathError attribute)

 	(PGCompute.UnspecifiedComponentManagerError attribute)

 	(Transit.InvalidRSpecPathError attribute)

 	(Transit.UnspecifiedComponentManagerError attribute)

 	(VTS.InvalidRSpecPathError attribute)

 	(VTS.UnspecifiedComponentManagerError attribute)

 	attachPort() (Container method)

 	(Datapath method)

 	authorities (GENI attribute)

 	authority (GENI attribute)

 	Authority() (in module geni.urn)

B

 	
 	BadImageTypeError

 	bandwidth (BridgedLink attribute)

 	BANDWIDTH (ParameterType attribute)

 	Base (class in geni.urn)

 	BASIC (Firewall.Style attribute)

 	best_effort (Link attribute)

 	bindParameters() (Context method)

 	
 	bindRequestRSpec() (Context method)

 	Blockstore (class in geni.rspec.igext)

 	BOOLEAN (ParameterType attribute)

 	Bridge (class in geni.rspec.igext)

 	Bridge.Pipe (class in geni.rspec.igext)

 	BridgedLink (class in geni.rspec.emulab.emuext)

 	buildContextFromBundle() (in module geni.util)

 	builddot() (in module geni.util)

C

 	
 	capacity (RoutableAddresses attribute)

 	changeController() (VTS method)

 	checkavailrawpc() (in module geni.util)

 	clearFlows() (VTS method)

 	clearL2Table() (VTS method)

 	CLIENT (Namespaces attribute)

 	CLOSED (Firewall.Style attribute)

 	CloudLabAM (class in geni.aggregate.cloudlab)

 	CloudLabAM.InvalidRSpecPathError

 	CloudLabAM.UnspecifiedComponentManagerError

 	cmid_to_aggregate() (in module geni.aggregate.instageni)

 	Command (class in geni.rspec.pg)

 	component_id (AdInterface attribute)

 	component_manager_id (CloudLabAM attribute)

 	(EGCompute attribute)

 	(IGCompute attribute)

 	(OGCompute attribute)

 	(PGCompute attribute)

 	(Transit attribute)

 	(VTS attribute)

 	
 	connectCrossSliver() (Container method)

 	(Datapath method)

 	connectInternalCircuit() (in module geni.rspec.vts)

 	connectSharedVlan() (Link method)

 	Container (class in geni.rspec.vts)

 	ContainerPort (class in geni.rspec.vts)

 	containers (Manifest attribute)

 	Context (class in geni.portal)

 	context (in module geni.portal)

 	cores (XenVM attribute)

 	createsliver() (CloudLabAM method)

 	(EGCompute method)

 	(IGCompute method)

 	(OGCompute method)

 	(PGCompute method)

 	(Transit method)

 	(VTS method)

D

 	
 	DATA (Namespaces attribute)

 	Datapath (class in geni.rspec.vts)

 	DatapathImage (class in geni.rspec.vts)

 	datapaths (Manifest attribute)

 	dataset (RemoteBlockstore attribute)

 	default() (APIEncoder method)

 	(PortalJSONEncoder method)

 	DEFAULT_BW (Link attribute)

 	DEFAULT_LAT (Link attribute)

 	DEFAULT_PLR (Link attribute)

 	defineParameter() (Context method)

 	defineParameterGroup() (Context method)

 	DELAY (Namespaces attribute)

 	DelayInfo (class in geni.rspec.vts)

 	deleteDNSResourceRecord() (VTS method)

 	deletesliver() (CloudLabAM method)

 	(EGCompute method)

 	(IGCompute method)

 	(OGCompute method)

 	(PGCompute method)

 	(Transit method)

 	(VTS method)

 	
 	deleteSliverExists() (in module geni.util)

 	Description() (Tour method)

 	Desire (class in geni.rspec.igext)

 	disableMACLearning() (Link method)

 	disk (XenVM attribute)

 	DPID (class in geni.types)

 	DPID.InputTypeError

 	DPID.OutOfRangeError

 	dropboxFinalize() (VTS method)

 	dropboxLink() (VTS method)

 	DropboxMount (class in geni.rspec.vts)

 	dropboxUpload() (VTS method)

 	dumpFlows() (VTS method)

 	DuplicateExtensionError

E

 	
 	EGCompute (class in geni.aggregate.exogeni)

 	EGCompute.InvalidRSpecPathError

 	EGCompute.UnspecifiedComponentManagerError

 	EMULAB (Namespaces attribute)

 	enableVlanTagging() (Link method)

 	EthernetMAC (class in geni.types)

 	EthernetMAC.InputTypeError

 	
 	EthernetMAC.OutOfRangeError

 	execcmd() (HostPOAs method)

 	Execute (class in geni.rspec.pg)

 	EXTENSIONS (Container attribute)

 	(Link attribute)

 	(Node attribute)

 	(Request attribute), [1]

F

 	
 	findPort() (Manifest method)

 	findTarget() (Manifest method)

 	Firewall (class in geni.rspec.igext)

 	
 	Firewall.Direction (class in geni.rspec.igext)

 	Firewall.Style (class in geni.rspec.igext)

 	forward_delay (OVSL2STP attribute)

 	functions (Manifest attribute)

G

 	
 	GENI (class in geni.urn)

 	geni.aggregate.cloudlab (module)

 	geni.aggregate.exogeni (module)

 	geni.aggregate.instageni (module)

 	geni.aggregate.opengeni (module)

 	geni.aggregate.protogeni (module)

 	geni.aggregate.transit (module)

 	geni.aggregate.vts (module)

 	geni.minigcf.config (module)

 	geni.portal (module)

 	geni.rspec.emulab (module)

 	geni.rspec.emulab.emuext (module)

 	geni.rspec.igext (module)

 	geni.rspec.pg (module)

 	geni.rspec.pgad (module)

 	geni.rspec.vts (module)

 	geni.rspec.vtsmanifest (module)

 	geni.types (module)

 	geni.urn (module)

 	geni.util (module)

 	geniCancelUpdateUsers() (CloudLabAM method)

 	(IGCompute method)

 	(PGCompute method)

 	geniRestart() (CloudLabAM method)

 	(IGCompute method)

 	(PGCompute method)

 	geniStart() (CloudLabAM method)

 	(IGCompute method)

 	(PGCompute method)

 	
 	geniUpdateUsers() (CloudLabAM method)

 	(IGCompute method)

 	(PGCompute method)

 	GENIURNType() (GENI static method)

 	getAdvertisements() (in module geni.util)

 	getAllDNSResourceRecords() (VTS method)

 	getARPTable() (HostPOAs method)

 	getConsoleURL() (CloudLabAM method)

 	(IGCompute method)

 	(PGCompute method)

 	getL2Table() (VTS method)

 	getLastDNSDHCPops() (VTS method)

 	getLeaseInfo() (VTS method)

 	getManifests() (in module geni.util)

 	getOSPFNeighbors() (v4RouterPOAs method)

 	getPipe() (Bridge method)

 	getPortInfo() (VTS method)

 	getRouteTable() (HostPOAs method)

 	(v4RouterPOAs method)

 	getSTPInfo() (VTS method)

 	getText() (Policy method)

 	getversion() (CloudLabAM method)

 	(EGCompute method)

 	(IGCompute method)

 	(OGCompute method)

 	(PGCompute method)

 	(Transit method)

 	(VTS method)

 	giveConsent() (Policy method)

 	GRECircuit (class in geni.rspec.vts)

H

 	
 	hasDataContext() (in module geni.util)

 	hasTour() (Request method)

 	hello_time (OVSL2STP attribute)

 	hexstr() (DPID method)

 	(EthernetMAC method)

 	
 	HgMount (class in geni.rspec.vts)

 	hgPull() (VTS method)

 	HostPOAs (class in geni.aggregate.vts)

 	HTTP (class in geni.minigcf.config)

I

 	
 	IGCompute (class in geni.aggregate.instageni)

 	IGCompute.InvalidRSpecPathError

 	IGCompute.UnspecifiedComponentManagerError

 	IllegalModeForParamError

 	IllegalParameterDefaultError

 	Image (class in geni.rspec.pgad)

 	(class in geni.rspec.vts)

 	IMAGE (ParameterType attribute)

 	Image() (in module geni.urn)

 	images (Advertisement attribute)

 	INCOMING (Firewall.Direction attribute)

 	INFO (Namespaces attribute)

 	Install (class in geni.rspec.pg)

 	
 	InstantiateOn (class in geni.rspec.emulab.emuext)

 	InstantiateOn.InvalidParent

 	Instructions() (Tour method)

 	INTEGER (ParameterType attribute)

 	Interface (class in geni.rspec.pg)

 	interface (RemoteBlockstore attribute)

 	Interface() (in module geni.urn)

 	Interface.InvalidAddressTypeError

 	InternalCircuit (class in geni.rspec.vts)

 	IPv4Address (class in geni.rspec.pg)

 	isValidGENIURN() (GENI static method)

 	isValidNID() (Base static method)

 	isValidNSS() (Base static method)

 	isValidURN() (Base static method)

J

 	
 	JACKS (Namespaces attribute)

L

 	
 	L2GRE (class in geni.rspec.pg)

 	L2SSLVPNClient (class in geni.rspec.vts)

 	L3GRE (class in geni.rspec.pg)

 	LAN (class in geni.rspec.pg)

 	latency (BridgedLink attribute)

 	LATENCY (ParameterType attribute)

 	Link (class in geni.rspec.pg)

 	Link() (in module geni.urn)

 	link_multiplexing (Link attribute)

 	links (Advertisement attribute)

 	listresources() (CloudLabAM method)

 	(EGCompute method)

 	(IGCompute method)

 	(OGCompute method)

 	(PGCompute method)

 	(Transit method)

 	(VTS method)

 	
 	LNKID (Link attribute)

 	loadAggregates() (in module geni.util)

 	loadContext() (in module geni.util)

 	local_circuits (Manifest attribute)

 	LocalCircuit (in module geni.rspec.vts)

 	Location (class in geni.rspec.pgad)

 	LOG_RAW_REQUESTS (HTTP attribute)

 	LOG_RAW_RESPONSES (HTTP attribute)

 	LOG_URLS (HTTP attribute)

 	LossInfo (class in geni.rspec.vts)

 	LOSSRATE (ParameterType attribute)

M

 	
 	Make() (in module geni.urn)

 	makeParameterWarningsFatal() (Context method)

 	makeRequestRSpec() (Context method)

 	MalformedURNError

 	Manifest (class in geni.rspec.vtsmanifest)

 	MARKDOWN (Tour attribute)

 	(Tour.Step attribute)

 	MAX (DPID attribute)

 	(EthernetMAC attribute)

 	max_age (OVSL2STP attribute)

 	message (CloudLabAM.InvalidRSpecPathError attribute)

 	(CloudLabAM.UnspecifiedComponentManagerError attribute)

 	(EGCompute.InvalidRSpecPathError attribute)

 	(EGCompute.UnspecifiedComponentManagerError attribute)

 	(IGCompute.InvalidRSpecPathError attribute)

 	(IGCompute.UnspecifiedComponentManagerError attribute)

 	(OGCompute.InvalidRSpecPathError attribute)

 	(OGCompute.UnspecifiedComponentManagerError attribute)

 	(PGCompute.InvalidRSpecPathError attribute)

 	(PGCompute.UnspecifiedComponentManagerError attribute)

 	(Transit.InvalidRSpecPathError attribute)

 	(Transit.UnspecifiedComponentManagerError attribute)

 	(VTS.InvalidRSpecPathError attribute)

 	(VTS.UnspecifiedComponentManagerError attribute)

 	
 	MirrorPort (class in geni.rspec.vts)

 	MissingPublicKeyError

 	mode (OVSL2STP attribute)

 	Mount (class in geni.rspec.vts)

 	mountpoint (RemoteBlockstore attribute)

 	MultipleRSpecError

N

 	
 	name (AddressPool attribute)

 	(AdInterface attribute)

 	(Datapath attribute)

 	(GENI attribute)

 	(Interface attribute)

 	(Node attribute)

 	name_to_aggregate() (in module geni.aggregate.cloudlab)

 	(in module geni.aggregate.exogeni)

 	(in module geni.aggregate.instageni)

 	(in module geni.aggregate.opengeni)

 	(in module geni.aggregate.protogeni)

 	(in module geni.aggregate.transit)

 	(in module geni.aggregate.vts)

 	
 	Namespaces (class in geni.rspec.pg)

 	(class in geni.rspec.vts)

 	NetFlow (class in geni.rspec.vts)

 	netflow (OVSImage attribute)

 	newLinkID() (geni.rspec.pg.Link class method)

 	Node (class in geni.rspec.pg)

 	Node() (in module geni.urn)

 	Node.DuplicateInterfaceName

 	nodes (Advertisement attribute)

 	NodeType (class in geni.rspec.pg)

 	NODETYPE (ParameterType attribute)

 	NoRSpecError

O

 	
 	OFController (class in geni.rspec.igext)

 	OGCompute (class in geni.aggregate.opengeni)

 	OGCompute.InvalidRSpecPathError

 	OGCompute.UnspecifiedComponentManagerError

 	OPEN (Firewall.Style attribute)

 	
 	OUTGOING (Firewall.Direction attribute)

 	OVSImage (class in geni.rspec.vts)

 	OVSL2Image (class in geni.rspec.vts)

 	OVSL2STP (class in geni.rspec.vts)

 	OVSOpenFlowImage (class in geni.rspec.vts)

P

 	
 	ParameterBindError

 	ParameterData (class in geni.rspec.igext)

 	ParameterError

 	ParameterType (class in geni.portal)

 	ParameterWarning

 	PARAMS (Namespaces attribute)

 	Password (class in geni.rspec.igext)

 	PathNotFoundError

 	pg_circuits (Manifest attribute)

 	PGCircuit (class in geni.rspec.vts)

 	PGCompute (class in geni.aggregate.protogeni)

 	PGCompute.InvalidRSpecPathError

 	PGCompute.UnspecifiedComponentManagerError

 	placement (RemoteBlockstore attribute)

 	
 	plr (BridgedLink attribute)

 	Policy (class in geni.aggregate.vts)

 	Port (class in geni.rspec.vts)

 	PortalError

 	PortalJSONEncoder (class in geni.portal)

 	portDown() (VTS method)

 	ports (Manifest attribute)

 	portUp() (VTS method)

 	printlogininfo() (in module geni.util)

 	printRequestRSpec() (Context method)

 	priority (OVSL2STP attribute)

 	ProgramAgent (class in geni.rspec.emulab.emuext)

 	provision() (VTS method)

 	PUBKEY (ParameterType attribute)

R

 	
 	ram (XenVM attribute)

 	RAW (NodeType attribute)

 	RawPC (class in geni.rspec.pg)

 	readonly (RemoteBlockstore attribute)

 	rebind() (SecureHgMount method)

 	RemoteBlockstore (class in geni.rspec.igext)

 	renewsliver() (CloudLabAM method)

 	(EGCompute method)

 	(IGCompute method)

 	(OGCompute method)

 	(PGCompute method)

 	(Transit method)

 	(VTS method)

 	ReorderInfo (class in geni.rspec.vts)

 	
 	reportError() (Context method)

 	reportWarning() (Context method)

 	Request (class in geni.rspec.pg)

 	(class in geni.rspec.vts)

 	resolve() (Command method)

 	Resource (class in geni.rspec.pg)

 	resources (Request attribute), [1]

 	revokeConsent() (Policy method)

 	role (AdInterface attribute)

 	routable_addresses (Advertisement attribute)

 	RoutableAddresses (class in geni.rspec.pgad)

 	RS (Namespaces attribute)

 	RSTP (OVSL2STP attribute)

 	rwclone (RemoteBlockstore attribute)

S

 	
 	saveAggregates() (in module geni.util)

 	SDN (Namespaces attribute)

 	SecureHgMount (class in geni.rspec.vts)

 	Service (class in geni.rspec.pg)

 	setCollocateFactor (class in geni.rspec.emulab.emuext)

 	setDelayImage (class in geni.rspec.emulab.emuext)

 	setDeleteLock() (VTS method)

 	setDHCPSubnet() (VTS method)

 	setFailureAction (class in geni.rspec.emulab.emuext)

 	setForceShaping (class in geni.rspec.emulab.emuext)

 	setImageAttribute() (Image method)

 	setMirror() (OVSImage method)

 	setNoBandwidthShaping (class in geni.rspec.emulab.emuext)

 	setNoInterSwitchLinks (class in geni.rspec.emulab.emuext)

 	setPackingStrategy (class in geni.rspec.emulab.emuext)

 	setPortBehaviour() (VTS method)

 	setPortTrunk() (VTS method)

 	setPortVLAN() (VTS method)

 	setRoutingStyle (class in geni.rspec.emulab.emuext)

 	setUseTypeDefaultImage (class in geni.rspec.emulab.emuext)

 	SFlow (class in geni.rspec.vts)

 	sflow (OVSImage attribute)

 	ShapedLink (class in geni.rspec.emulab.emuext)

 	shared_vlans (Advertisement attribute)

 	
 	SimpleDHCPImage (class in geni.rspec.vts)

 	Site (class in geni.rspec.igext)

 	size (Blockstore attribute)

 	SIZE (ParameterType attribute)

 	size (RemoteBlockstore attribute)

 	Slice() (in module geni.urn)

 	Sliver() (in module geni.urn)

 	sliverstatus() (CloudLabAM method)

 	(EGCompute method)

 	(IGCompute method)

 	(OGCompute method)

 	(PGCompute method)

 	(Transit method)

 	(VTS method)

 	SPLIT_REGEX (Tour attribute)

 	SSLVPNFunction (class in geni.rspec.vts)

 	StitchedLink (class in geni.rspec.pg)

 	StitchedLink.TooManyInterfacesError

 	StitchedLink.UnknownComponentManagerError

 	stitchinfo (Advertisement attribute)

 	STP (OVSL2STP attribute)

 	STRING (ParameterType attribute)

 	suppressAutoPrint() (Context method)

 	svcStatus() (HostPOAs method)

 	system_id (OVSL2STP attribute)

T

 	
 	text (AdLink attribute)

 	(AdNode attribute)

 	(Advertisement attribute)

 	(Manifest attribute)

 	TEXT (Tour attribute)

 	(Tour.Step attribute)

 	TIMEOUT (HTTP attribute)

 	Tour (class in geni.rspec.igext)

 	TOUR (Namespaces attribute)

 	Tour.Step (class in geni.rspec.igext)

 	toXMLString() (Request method), [1]

 	Transit (class in geni.aggregate.transit)

 	
 	Transit.InvalidRSpecPathError

 	Transit.UnspecifiedComponentManagerError

 	trivial_ok (Link attribute)

 	type (GENI attribute)

 	(OVSL2STP attribute)

 	TYPE_AUTHORITY (GENI attribute)

 	TYPE_IMAGE (GENI attribute)

 	TYPE_INTERFACE (GENI attribute)

 	TYPE_LINK (GENI attribute)

 	TYPE_NODE (GENI attribute)

 	TYPE_SLICE (GENI attribute)

 	TYPE_SLIVER (GENI attribute)

 	TYPE_USER (GENI attribute)

U

 	
 	UnhandledPortTypeError

 	UnknownSTPModeError

 	
 	updateAggregates() (in module geni.util)

 	useDocstring() (Tour method)

 	User() (in module geni.urn)

V

 	
 	v4RouterPOAs (class in geni.aggregate.vts)

 	verifyParameters() (Context method)

 	VFCircuit (class in geni.rspec.vts)

 	vlan_tagging (Link attribute)

 	VM (in module geni.rspec.pg)

 	(NodeType attribute)

 	
 	VTOP (Namespaces attribute)

 	VTS (class in geni.aggregate.vts)

 	(Namespaces attribute)

 	VTS.InvalidRSpecPathError

 	VTS.UnspecifiedComponentManagerError

 	VZContainer (class in geni.rspec.pg)

W

 	
 	write() (Manifest method)

 	writeXML() (Advertisement method)

 	(Manifest method)

 	(Request method), [1]

X

 	
 	XEN (NodeType attribute)

 	xen_ptype (XenVM attribute)

 	
 	XenVM (class in geni.rspec.igext)

 	(class in geni.rspec.pg)

 	xmit_hold_count (OVSL2STP attribute)

Examples / How-Tos

Windows 7 (32-bit)

These instructions may work on later versions of Windows, and/or 64-bit versions, but they have not been tested.

Installation Dependencies

	Mercurial 3.8.2 (http://mercurial.selenic.com/wiki/Download)

	Python 2.7.11 (http://www.python.org)

Note

Make sure to set the installation option to add Python.exe to your PATH, or you will have to do this
manually later, or type out the full path to python during geni-lib installation and use.

Install / Basic Setup

	Install the above dependencies

	Open a Powershell command line and clone the geni-lib repository:

C:\> mkdir C:\Development
C:\> cd C:\Development
C:\Development> hg clone https://bitbucket.org/barnstorm/geni-lib
C:\Development> cd geni-lib
C:\Development\geni-lib> hg update -C 0.9-DEV

	Install some dependencies directly:

C:\Development\geni-lib> pip install cryptography lxml wrapt

	Install the main geni-lib packages:

C:\Development\geni-lib> python setup.py install

Note

(The location of the geni-lib clone can be changed, just alter these paths accordingly)

Congratulations, you are now ready to launch python and import geni lib modules!

Extended Dependencies

Some of the applications in the tools/ directory require additional dependencies. For the most part
these dependencies can be installed using pip, but pip is not included in the Python 2.7
distribution by default on windows.

You can install pip on Windows 7 and later by launching Powershell (not cmd.exe) and doing:

PS C:\> $client = new-object System.Net.WebClient
PS C:\> $client.DownloadFile("http://bootstrap.pypa.io/get-pip.py", "C:/Development/get-pip.py")

Note that the second argument must be a valid full path. Remember where you placed this file.

Now, open cmd.exe and run the batch file that sets up the geni-lib environment (or use your previously
created shortcut), and do the following:

C:\> cd C:\Development
C:\Development> python get-pip.py

Now you can use pip to install new dependencies that the additional tools may require.

Building Resource Requests

Creating and Managing Slice Credentials

This example will walk you through creating a number of slices within a single project
and assigning individual project members to each slice. This is a common use case for
a classroom instructor, allowing class members to have their own slices while not being
able to interact with those of other members.

Note

You may skip any of the below steps that you might have executed using another interface
(e.g. the GENI Portal or Cloudlab Web Interface).

Create Slices for Each Member

Working with and Managing Projects

This example will walk you through creating a project at the NSF GENI Clearinghouse,
listing your projects, and managing their membership.

Note

You will need to have sufficient privileges in order to perform these operations. If you
are a project admin but cannot create projects (or already have one you want to use), you
can still use the examples below to manage project membership. All users with valid
credentials can list their projects and inspect their membership.

Create Project

In order to create a project, you need three pieces of information to give to the Clearinghouse:

	Project Name

Note

Names must be unique for all projects at a given Clearinghouse and you will get an error
if you happen to choose a name which has already been used. If you are likely to create
multiple projects for similar purposes (different sections of the same class, etc.), you
may want to include date and organization information in your name (e.g. spr17-UH-cs410),
in order to use consistent names which are still unique.

	Expiration Date

	Project Description

Warning

Projects can not be manually deleted from most Clearinghouses, so if you are just testing out this
functionality please set a short expiration date so that it will expire out of the system.

Using your existing context that is set up for the Clearinghouse where you want to create a
project, you can set up your values and make a single call to create your project:

>>> import datetime

>>> name = "prj-test-1"
>>> desc = "My test project"
>>> exp = datetime.datetime.now() + datetime.timedelta(hours=12)

>>> prjinfo = context.cf.createProject(context, name, exp, desc)

An exception will be raised if this action fails, otherwise prjinfo will contain information
about our new project returned from the Clearinghouse:

>>> from pprint import pprint as PP
>>> PP(prjinfo)
{'PROJECT_CREATION': '2017-01-11T02:24:29Z',
 'PROJECT_DESCRIPTION': 'My test project',
 'PROJECT_EXPIRATION': '2017-01-11T03:23:49Z',
 'PROJECT_EXPIRED': False,
 'PROJECT_NAME': 'prj-test-1',
 'PROJECT_UID': '8bbfa399-efcd-4a1d-bb74-932213d8491f',
 'PROJECT_URN': 'urn:publicid:IDN+ch.geni.net+project+prj-test-1',
 '_GENI_PROJECT_EMAIL': None,
 '_GENI_PROJECT_OWNER': '8a447f06-8bd5-4f32-8fd6-1a3528e7fa37'}

For the most part this information is not important - just remember the name you gave your
project so that you can add members and make slices. Your geni-lib context has an
attribute for the “current” project, which you should set whenever you are working with this
project:

>>> context.project = "prj-test-1"

Of course if you have multiple projects, you’ll need to change the value of context.project
as you change which project you are working with.

Listing Your Projects

You can list all of the current projects for which you are a member with a single call:

>>> projects = context.cf.listProjects(context)

>>> PP(projects)
[{'EXPIRED': False,
 'PROJECT_ROLE': 'LEAD',
 'PROJECT_UID': '5f5fbc4a-f5e4-4688-8901-07109f60f151',
 'PROJECT_URN': 'urn:publicid:IDN+ch.geni.net+project+bss-sw-test'},
 ...
 {'EXPIRED': False,
 'PROJECT_ROLE': 'LEAD',
 'PROJECT_UID': '8bbfa399-efcd-4a1d-bb74-932213d8491f',
 'PROJECT_URN': 'urn:publicid:IDN+ch.geni.net+project+prj-test-1'}]

If you would like to see every project that the Clearinghouse knows about (this list can be
very large), you can remove the own filter:

>>> projects = context.cf.listProjects(context, own = False)
>>> len(projects)
391

You can also see your projects which have expired by using the expired filter:

>>> expired_projects = context.cf.listProjects(context, expired = True)

Listing Project Members

Add Members to Project

Remove Members from Project

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to geni-lib’s documentation!

 		
 Introduction

 		
 Credentials

 		
 Getting Credentials from the NSF GENI Portal

 		
 Download The omni.bundle

 		
 Getting Credentials from the CloudLab Portal

 		
 Installation

 		
 Ubuntu 14.04

 		
 High-Level Dependencies

 		
 Install Dependencies

 		
 Install

 		
 Ubuntu 16.04

 		
 High-Level Dependencies

 		
 Install Dependencies

 		
 Install

 		
 MacOS X 10.10.x / 10.11.x

 		
 Installation Dependencies

 		
 Install / Setup

 		
 Get geni-lib

 		
 Install geni-lib

 		
 Vagrant

 		
 Installation Dependencies

 		
 Set up your geni-lib VM directory

 		
 Load the Jupyter web interface

 		
 Accessing the VM Terminal

 		
 Configurable Options

 		
 CentOS 7

 		
 High-Level Dependencies

 		
 Install Dependencies

 		
 Get geni-lib

 		
 Install

 		
 Tutorials / How-Tos

 		
 Importing a Context from a bundle

 		
 Run Context Import Tool

 		
 Test It Out!

 		
 Finished!

 		
 Creating a Context from Cloudlab Credentials

 		
 Creating a Custom Context

 		
 Test It Out!

 		
 Querying the Federation

 		
 Finding Aggregate Locations

 		
 Getting Aggregate Information

 		
 Iterating Over Aggregates

 		
 Exercises

 		
 Creating a Request for a Single VM

 		
 Walk-through

 		
 VTS: Basic Single-Site Topology

 		
 Set up VTS Sliver

 		
 Set up InstaGENI Compute Sliver

 		
 VTS: Basic WAN Topology

 		
 Set up VTS Slivers

 		
 Set up InstaGENI Compute Slivers

 		
 API

 		
 geni.aggregate

 		
 geni.aggregate.cloudlab

 		
 geni.aggregate.exogeni

 		
 geni.aggregate.instageni

 		
 geni.aggregate.opengeni

 		
 geni.aggregate.protogeni

 		
 geni.aggregate.transit

 		
 geni.aggregate.vts

 		
 geni.minigcf.config

 		
 geni.portal

 		
 geni.rspec

 		
 geni.rspec.emulab

 		
 geni.rspec.emulab.emuext

 		
 geni.rspec.igext

 		
 geni.rspec.pg

 		
 geni.rspec.pgad

 		
 geni.rspec.vts

 		
 geni.rspec.vtsmanifest

 		
 geni.types

 		
 geni.urn

 		
 geni.util

 		
 Development

 		
 Supported Use Cases

 		
 Exact Request Rspec Creation

 		
 Modular / Multi-rspec Creation

 		
 Federation Querying

 		
 Aggregate / Clearinghouse Actions

 		
 Coding Conventions

 		
 Pattern Conventions

 		
 Philosophy Notes

 		
 Things That Don’t Belong

_images/vts-simple.png
(O VTS Resource

(O InstaGENI / ExoGENI Compute Resource

_images/vts-simplewan.png
Site-1 Site-2

GG |

© VTS Resource

@ InstaGENI / ExoGENI Compute Resource:

