

Welcome to GENDIS’s documentation!

In the time series classification domain, shapelets are small subseries
that are discriminative for a certain class. It has been shown that by
projecting the original dataset to a distance space, where each axis
corresponds to the distance to a certain shapelet, classifiers are able
to achieve state-of-the-art results on a plethora of datasets.

This repository contains an implementation of GENDIS, an algorithm
that searches for a set of shapelets in a genetic fashion. The algorithm
is insensitive to its parameters (such as population size, crossover and
mutation probability, …) and can quickly extract a small set of
shapelets that is able to achieve predictive performances similar (or
better) to that of other shapelet techniques.

	Installation

	Getting Started
	1. Loading & preprocessing the datasets

	2. Creating a GeneticExtractor object

	3. Fit the GeneticExtractor and construct distance matrix

	4. Fit ML classifier on constructed distance matrix

	GENDIS

	Contributing, Citing and Contact

Installation

We currently support Python 3.5 & Python 3.6. For installation, there
are two alternatives:

	Clone the repository https://github.com/IBCNServices/GENDIS.git
and run (python3 -m) pip -r install requirements.txt

	GENDIS is hosted on PyPi. You can just run
(python3 -m) pip install gendis to add gendis to your
dist-packages (you can use it from everywhere).

Getting Started

1. Loading & preprocessing the datasets

In a first step, we need to construct at least a matrix with timeseries
(X_train) and a vector with labels (y_train). Additionally, test
data can be loaded as well in order to evaluate the pipeline in the end.

import pandas as pd
Read in the datafiles
train_df = pd.read_csv(<DATA_FILE>)
test_df = pd.read_csv(<DATA_FILE>)
Split into feature matrices and label vectors
X_train = train_df.drop('target', axis=1)
y_train = train_df['target']
X_test = test_df.drop('target', axis=1)
y_test = test_df['target']

2. Creating a GeneticExtractor object

Construct the object. For a list of all possible parameters, and a
description, please refer to the documentation in the code

from gendis.genetic import GeneticExtractor
genetic_extractor = GeneticExtractor(population_size=50, iterations=25, verbose=False,
 normed=False, add_noise_prob=0.3, add_shapelet_prob=0.3,
 wait=10, plot='notebook', remove_shapelet_prob=0.3,
 crossover_prob=0.66, n_jobs=4)

3. Fit the GeneticExtractor and construct distance matrix

shapelets = genetic_extractor.fit(X_train, y_train)
distances_train = genetic_extractor.transform(X_train)
distances_test = genetic_extractor.transform(X_test)

4. Fit ML classifier on constructed distance matrix

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
lr = LogisticRegression()
lr.fit(distances_train, y_train)

print('Accuracy = {}'.format(accuracy_score(y_test, lr.predict(distances_test))))

GENDIS

	
class gendis.genetic.GeneticExtractor(population_size=50, iterations=25, verbose=False, normed=False, add_noise_prob=0.4, add_shapelet_prob=0.4, wait=10, plot=None, remove_shapelet_prob=0.4, crossover_prob=0.66, n_jobs=4)

	Feature selection with genetic algorithm.

	population_sizeint

	The number of individuals in our population. Increasing this parameter
increases both the runtime per generation, as the probability of
finding a good solution.

	iterationsint

	The maximum number of generations the algorithm may run.

	waitint

	If no improvement has been found for wait iterations, then stop

	add_noise_probfloat

	The chance that gaussian noise is added to a random shapelet from a
random individual every generation

	add_shapelet_probfloat

	The chance that a shapelet is added to a random shapelet set every gen

	remove_shapelet_probfloat

	The chance that a shapelet is deleted to a random shapelet set every gen

	crossover_probfloat

	The chance that of crossing over two shapelet sets every generation

	normedboolean

	Whether we first have to normalize before calculating distances

	n_jobsint

	The number of threads to use

	verboseboolean

	Whether to print some statistics in every generation

	plotobject

	Whether to plot the individuals every generation (if the population
size is smaller than or equal to 20), or to plot the fittest individual

	shapeletsarray-like

	The fittest shapelet set after evolution

	label_mapping: dict

	A dictionary that maps the labels to the range [0, …, C-1]

An example showing genetic shapelet extraction on a simple dataset:

>>> from tslearn.generators import random_walk_blobs
>>> from genetic import GeneticExtractor
>>> from sklearn.linear_model import LogisticRegression
>>> import numpy as np
>>> np.random.seed(1337)
>>> X, y = random_walk_blobs(n_ts_per_blob=20, sz=64, noise_level=0.1)
>>> X = np.reshape(X, (X.shape[0], X.shape[1]))
>>> extractor = GeneticExtractor(iterations=5, n_jobs=1, population_size=10)
>>> distances = extractor.fit_transform(X, y)
>>> lr = LogisticRegression()
>>> _ = lr.fit(distances, y)
>>> lr.score(distances, y)
1.0

Methods

	__init__([population_size, iterations, …])

	Initialize self.

	fit(X, y)

	Extract shapelets from the provided timeseries and labels.

	transform(X)

	After fitting the Extractor, we can transform collections of timeseries in matrices with distances to each of the shapelets in the evolved shapelet set.

	fit_transform(X, y)

	Combine both the fit and transform method in one.

	save(path)

	Write away all hyper-parameters and discovered shapelets to disk

	load(path)

	Instantiate a saved GeneticExtractor

Contributing, Citing and Contact

For now, please refer to this repository. A paper, to which you can then
refer, will be published in the nearby future. If you have any
questions, are experiencing bugs in the GENDIS implementation, or would
like to contribute, please feel free to create an issue/pull request in
this repository or take contact with me at
gilles(dot)vandewiele(at)ugent(dot)be

Index

 G

G

 	
 	GeneticExtractor (class in gendis.genetic)

 nav.xhtml

 Table of Contents

 		
 Welcome to GENDIS’s documentation!

 		
 Installation

 		
 Getting Started

 		
 1. Loading & preprocessing the datasets

 		
 2. Creating a GeneticExtractor object

 		
 3. Fit the GeneticExtractor and construct distance matrix

 		
 4. Fit ML classifier on constructed distance matrix

 		
 GENDIS

 		
 Contributing, Citing and Contact

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

