

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Gearthonic 0.2.0 documentation

Gearthonic

A simple client for the API of Homegear.

Look at the documentation [http://gearthonic.readthedocs.io/en/latest/] for detailed information.

Quickstart

Install gearthonic via pip:

pip install gearthonic

Initialise the client:

from gearthonic import GearClient
You only have to provide the host and port of the Homegear server
gc = GearClient('192.168.1.100', 2001, secure=False, verify=False)

Use the predefined methods to make requests to the API:

gc.system.list_methods()
gc.device.get_value(1, 4, 'ACTUAL_TEMPERATURE')

Alternatively you can call any method directly via the client:

gc.getValue(1, 4, 'ACTUAL_TEMPERATURE')

The default communication protocol is XML-RPC. If you want to use another
protocol like JSON-RPC or a MQTT broker, see the full documentation [http://gearthonic.readthedocs.io/en/latest/].

Contents:

	Usage
	Basic usage

	Communication protocols

	Security

	Additional information

	API
	API Reference

	Method Reference

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Changelog
	0.2.0 (2016-08-08)

	0.1.2 (2016-07-13)

	0.1.1 (2016-07-13)

	0.1.0 (2016-07-13)

Feedback

If you have any suggestions or questions about gearthonic feel free to email me
at mumpitz@wumpitz.de.

If you encounter any errors or problems with gearthonic, please let me know!
Open an Issue at the Gitlab http://gitlab.com/wumpitz/gearthonic main repository.

 Copyright 2016, Timo Steidle.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gearthonic 0.2.0 documentation

Usage

Basic usage

To use Gearthonic in a project:

from gearthonic import GearClient
Initialise the client with the host and port of your homegear server
gc = GearClient('192.168.1.100', 2003)
Now you can make your requests
gc.system.list_methods()
gc.device.get_value(1, 4, 'ACTUAL_TEMPERATURE')

All methods are already implemented within the client to make it easy to use. You don’t have to lookup all methods and
their parameters, just look at the code or see Method Reference.

Alternatively you can call any method directly via the client or use the generic ‘’call’‘-method:

gc.getValue(1, 4, 'ACTUAL_TEMPERATURE')
gc.call('system.listDevices')
gc.call('getValue', 1, 4, 'ACTUAL_TEMPERATURE')

A full list of all available methods provided by the Homegear API can be found in the wiki of the Homegear project [https://www.homegear.eu/index.php/XML_RPC_Method_Reference].

Communication protocols

Gearthonic supports different communication protocols to communicate with your Homegear server. Set the protocol while
initialising the client:

from gearthonic import JSONRPC
gc = GearClient('192.168.1.100', 2003, protocol=JSONRPC)

The default protocol is XMLRPC.

Any protocol can accept additional parameters. You can supply them while initialising the client:

gc = GearClient('192.168.1.100', 2003, secure=False, verify=False)

For a complete list of available protocols and supported parameters look at gearthonic.protocols.

Security

XML RPC and JSON RPC

If you set secure=True while initialising the GearClient, the client tries to establish a secure connection to the
server via SSL. It’s highly recommended to use SSL for the network traffic. Otherwise the communication is not
encrypted.

If you are using a self signed certificate, you can skip the verification of the certificate. Set verify=False while
initialising the GearClient and the certificate won’t be verified. But keep in mind: that’s not suggested!

Additional information

	Documentation of all available data endpoints for all devices [http://www.eq-3.de/Downloads/eq3/download%20bereich/hm_web_ui_doku/hm_devices_Endkunden.pdf]

	wiki of the Homegear project [https://www.homegear.eu/index.php/XML_RPC_Method_Reference]

 Copyright 2016, Timo Steidle.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gearthonic 0.2.0 documentation

API

	API Reference
	GearClient

	Communication protocols

	Method Reference
	System methods

	General methods

	Device methods

	Pairing methods

	Family methods

	Event Server methods

	Physical Interface methods

	Metadata methods

	System variables methods

 Copyright 2016, Timo Steidle.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gearthonic 0.2.0 documentation

 	API

API Reference

See Method Reference for all API methods.

GearClient

Client for the APIs provided by Homegear.

	
class gearthonic.client.GearClient(host, port, protocol=0, **kwargs)[source]

	Client for the APIs provided by Homegear.

Usage:

>>> gc = GearClient('localhost', 1234)
>>> gc.device.list_devices()

The default communication protocol is XML RPC. Additionally, JSON RPC is supported:

>>> from gearthonic import JSONRPC
>>> GearClient('localhost', 1234, protocol=JSONRPC)

Any protocol can accept additional parameters. Provide them while initialising the client:

>>> GearClient('localhost', 1234, protocol=JSONRPC, secure=False, username='ham')

For a full list of supported parameters, have a look at each protocol class or see the documentation for the
protocols. :class:

	
call(method_name, *args, **kwargs)[source]

	Call the given method using the instantiated protocol.

	Parameters:	
	method_name – method to be called

	args – arguments passed through

	kwargs – keyword arguments passed through

	Returns:	return value of the call

	
device

	Smart access to all device related API methods.

	
system

	Smart access to all system related API methods.

Communication protocols

These classes are used to communicate with the different APIs provided by the Homegear server.

	
class gearthonic.protocols.JsonRpcProtocol(host, port, secure=True, verify=True, username=None, password=None)[source]

	Communicate with Homegear via JSON RPC.

>>> jp = JsonRpcProtocol('host.example.com', 2003)
>>> jp.call('listDevices')
[...]

Set secure=False to use http instead off https. Set verify=False to skip the verification of the
SSL cert.

Provide credentials via username and password if the Homegear server is secured by basic auth. It’s not
possible to use authentication with an insecure connection (http)!

	
call(method_name, *args, **kwargs)[source]

	Call the given method using the HTTPServer.

	Parameters:	
	method_name – Method to be called

	args – Arguments passed through

	kwargs – Keyword arguments passed through

	Returns:	Return value of the XML RPC method

	
class gearthonic.protocols.XmlRpcProtocol(host, port, secure=True, verify=True, username=None, password=None)[source]

	Communicate with Homegear via XML RPC.

>>> xp = XmlRpcProtocol('host.example.com', 2003)
>>> xp.call('listDevices')
[...]

Set secure=False to use http instead off https. Set verify=False to skip the verification of the
SSL cert.

Provide credentials via username and password if the Homegear server is secured by basic auth. It’s not
possible to use authentication with an insecure connection (http)!

	
call(method_name, *args, **kwargs)[source]

	Call the given method using the ServerProxy.

	Parameters:	
	method_name – Method to be called

	args – Arguments passed through

	kwargs – Keyword arguments passed through

	Returns:	Return value of the XML RPC method

	
gearthonic.protocols.initialise_protocol(protocol, host, port, **kwargs)[source]

	Factory method to initialise a specific protocol.

	Parameters:	
	protocol (int) – ID of the protocol to initialise

	host (str) – host of the server

	port (int) – port of the server

	kwargs – will be used to initialise the protocol

	Return type:	_ProtocolInterface

 Copyright 2016, Timo Steidle.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gearthonic 0.2.0 documentation

 	API

Method Reference

Includes all functions provided by the XML RPC API, split into logical entities.

System methods

	
class gearthonic.methods.SystemMethodsCollection(caller)[source]

	All XML RPC server provide a set of standard methods.

	
get_capabilities()[source]

	Lists server’s XML RPC capabilities.

Example output:

{
 'xmlrpc': {'specUrl': 'http://example.com', 'specVersion': 1}
 'faults_interop': {'specUrl': 'http://example2.com', 'specVersion': 101}
 'introspection': {'specUrl': 'http://example3.com', 'specVersion': 42}
}

	Returns:	A dict containing all information

	Return type:	dict

	
list_methods()[source]

	Lists servers’s XML RPC methods.

	Returns:	A list of available methods

	Return type:	list

	
method_help(method_name)[source]

	Returns the description of a method.

	Parameters:	method_name (str) – The name of the method

	Returns:	The description of the method

	Return type:	str

	
method_signature(method_name)[source]

	Returns the signature of a method.

	Parameters:	method_name (str) – The name of the method

	Returns:	The signature of the method

	Return type:	list

	
multicall(methods)[source]

	Call multiple methods at once.

Example list of methods:

[
 {'methodName': 'getValue', 'params': [13, 4, 'TEMPERATURE']},
 {'methodName': 'getValue', 'params': [3, 3, 'HUMIDITY']}
]

Return value of the multicall:

[22.0, 58]

	Parameters:	methods (list) – A list of methods and their parameters

	Returns:	A list of method responses.

	Return type:	list

General methods

	
class gearthonic.methods.GeneralMethodsCollection(caller)[source]

	All general methods.

	
get_service_messages(return_id)[source]

	Return all service messages.

This method returns all service messages that are currently active in Homegear (device unreachable, config
pending, low battery, sabotage, ...).

	Parameters:	return_id (bool) – Recommended. If true, Homegear returns the peer ID instead of the “address” (serial number
and channel separated by a colon). By default, the address is returned for compatibility
reasons.

	
get_version()[source]

	Return Homegear’s version number.

	
log_level(level=None)[source]

	Get or set the current log level.

Valid values are:

	0: Log nothing

	1: Critical

	2: Error

	3: Warning

	4: Info

	5: Debug

Warning

Don’t use “debug” for normal operation as it slows down Homegear.

	Parameters:	level (int) – (optional) This is the log level that you want to set.

	
write_log(message, log_level=None)[source]

	Write a message to the Homegear log.

This method writes a message to Homegear’s log. It’s possible to set the log level. Valid values are:

	1: Critical

	2: Error

	3: Warning

	4: Info

	5: Debug

	Parameters:	
	message (str) – This is the message you want to write to the log file. The date is automatically prepended.

	log_level (int) – (optional) This is the log level of the message. If Homegear’s log level value is lower than
this value, no message is logged.

Device methods

	
class gearthonic.methods.DeviceMethodsCollection(caller)[source]

	All device related methods.

	
activate_link_paramset(peer_id, channel, remote_peer_id, remote_channel, long_press=False)[source]

	Simulate a remote key press.

This method can be used to simulate a remote key press. For most cases,
set_value() should be sufficient. Use activate_link_paramset
if you want to execute commands that can be configured only using the link parameter set.

	Parameters:	
	peer_id (int) – The ID of the actuator

	channel (int) – The channel of the actuator

	remote_peer_id (int) – The ID of a peer linked to the actuator or “0” if you want to use a virtual peer

	remote_channel (int) – The channel of a remote peer linked to the peer; use the same “channel” value if a
virtual peer is specified.

	long_press (bool) – (optional) Set to “True” to simulate a long key press. The default setting is “False”.

	
add_link(sender_id, sender_channel, receiver_id, receiver_channel, name='', description='')[source]

	Create a link between two devices.

This method links two devices so that they can send commands to each other directly.

	Parameters:	
	sender_id (int) – The ID of the sending peer (e.g. a remote)

	sender_channel (int) – The channel of the sending peer or “-1”

	receiver_id (int) – The ID of the receiving peer (e.g. a switch)

	receiver_channel (int) – The channel of the receiving peer or “-1”

	name (str) – (optional) A descriptive name for the link

	description (str) – (optional) A short description of the link

	
get_all_config(peer_id=None)[source]

	Return all peer configuration parameters and some additional metadata.

This method returns all configuration parameter values and information about all configuration parameters for
one or all peers. Variables are not returned. To get all variables, call
get_all_values().

	Parameters:	peer_id (int) – (optional) When specified, only variables of this peer are returned.

	
get_all_values(peer_id=None, return_write_only_variables=False)[source]

	Return all peer configuration parameters and some additional metadata.

This method returns all variable values and information about all variables for one or all peers. Configuration
parameters are not returned. To get all configuration parameters, call
get_all_config().

	Parameters:	
	peer_id (int) – (optional) When specified, only variables of this peer are returned.

	return_write_only_variables (bool) – (optional) When specifed, write only variables are also returned.

	
get_value(peer_id, channel, key, request_from_device=False, asynchronous=False)[source]

	Return the value of the device, specified by channel and key (parameterName).

Per default the value is read from the local cache of Homegear. If the value should be read from the device, use
request_from_device. If the value should be read from the device, this can be done asynchronously. The
method returns immediately and doesn’t wait for the current value. The value will be sent as an event as soon as
it’s returned by the device.

Error codes:

	Returns -2 when the device or channel is unknown

	Returns -5 when the key (parameter) is unknown

	Parameters:	
	peer_id (int) – ID of the device

	channel (int) – Channel of the device to get the value for

	key (str) – Name of the parameter to get the value for

	request_from_device (bool) – If true value is read from the device

	asynchronous (bool) – If true value is read asynchronously

	Returns:	The value of the parameter or error code

	Return type:	unknown

	
list_devices()[source]

	Return a list of devices.

	Returns:	List of devices

	Return type:	list

	
set_value(peer_id, channel, key, value)[source]

	Set the value of the device, specified by channel and key (parameterName).

	Parameters:	
	peer_id (int) – ID of the device

	channel (int) – Channel of the device to set the value for

	key (str) – Name of the parameter to get the value for

	value (unknown) – The value to set

	Returns:	
	None on success

	-2 when the device or channel is unknown

	-5 when the key (parameter) is unknown

	-100 when the device did not respond

	-101 when the device returns an error

Pairing methods

	
class gearthonic.methods.PairingMethodsCollection(caller)[source]

	All pairing related methods.

	
add_device(serial_number, family_id=None)[source]

	Pair a device without enabling pairing mode.

This method pairs a device by its serial number, but this does not work for all devices.

	Parameters:	
	serial_number (str) – The serial number of the device to be paired

	family_id (int) – (optional) ID of the family you want to add the device to; if not specified, “addDevice” is
executed for all device families that support it.

	
create_device(family_id, device_type, serial_number, address, firmware_version)[source]

	Create a device manually.

This method manually creates a new device. It is not supported by all device families, and it is also not
supported for all devices. createDevice can be used to create virtual devices in the family “Miscellaneous”.

	Parameters:	
	family_id (int) – This is the ID of the family you want to create the device in. See:
list_families().

	device_type (int) – The type ID of the device as specified in the device’s XML file

	serial_number (str) – The serial number of the new device

	address (int) – This is the physical address of the new device. Depending on the device family, this parameter
might be optional. If it is not needed, set it to “-1”.

	firmware_version (int) – This is the firmware version of the new device. Depending on the device family, this
parameter might be optional. If the firmware version is “1.2”, set this variable to
0x12 = 18. If it is not needed, set it to “-1”.

	
get_install_mode(family_id=None)[source]

	Return the time left in pairing mode.

This method returns the remaining amount of time the central will be in pairing mode.

	Parameters:	family_id (int) – (optional) This is the ID of the family for which you want to get the remaining time in
pairing mode. If not specified, the remaining time in pairing mode of the first
central for which pairing mode enabled is returned.

	
get_pairing_methods(family_id)[source]

	Return the pairing methods supported by a device family.

This method returns all pairing methods supported by the specified device family.

	Parameters:	family_id (int) – The ID of the family for which you want to get the supported pairing methods

	
search_devices(family_id=None)[source]

	Start a device search for all supported device families.

When you use this method, Homegear searches for new devices in all device families that support the method.

	Parameters:	family_id (int) – (optional) This is the ID of the family that you want to search for devices.

	
set_install_mode(on, family_id=None, duration=60)[source]

	Enable pairing mode.

This method enables or disables pairing mode for all device families if it is supported by the device family.

	Parameters:	
	on (bool) – When this is true, pairing mode is enabled. Otherwise, pairing mode is disabled.

	family_id (int) – (optional) This is the ID of the family for which you want to enable pairing mode. If it is
not specified, pairing mode will be enabled for all device families.

	duration (int) – (optional) This is the duration in seconds that the central should remain in pairing mode.
The minimum duration is 5 seconds, and the maximum duration is 3600 seconds.
The default duration is 60 seconds.

Family methods

	
class gearthonic.methods.FamilyMethodsCollection(caller)[source]

	All pairing related methods.

	
list_families()[source]

	Return information about all device families (ID, name, pairing methods).

This method returns information about all available device families. Use this method to get the ID of a family
if you have only the name or only the ID. You can also use this method to get the pairing methods supported by
the family.

Event Server methods

	
class gearthonic.methods.EventServerMethodsCollection(caller)[source]

	All EventServer related methods

	
client_server_initialized(interface_id)[source]

	Check if an RPC client’s RPC server was successfully registered and if it still is registered.

This method checks if an RPC client’s RPC server is registered and connected to Homegear. You can register your
RPC “event” server by calling init().

	Parameters:	interface_id (str) – The interface ID as specified in init()

	
init(url, interface_id, flags=None)[source]

	Register a client’s RPC server with Homegear to receive events.

This method is used to register or unregister an RPC event server with Homegear. After calling this method,
Homegear’s RPC client starts sending events and device updates to the registered server. It is not necessary to
call “init” for MQTT or WebSockets.

It’s possible to configure the communication between Homegear and the client’s RPC server by using flags.
The following (bitmask) flags are available:

	0x01: keepAlive: Do not close the connection after each packet.

	0x02: binaryMode: Send RPC data in binary format. Equivalent to “binary://” or
“binarys://”.

	0x04: newFormat: (Recommended) Send device’s ID in broadcast methods instead of
the serial number and activates variable types ARRAY and STRUCT. This is
recommended because serial numbers are not necessarily unique.

	0x08: subscribePeers: If this is set, Homegear will send events only for peers
subscribed with subscribePeers to the event server.

	0x10: jsonMode: Send RPC data in JSON format.

So if you want to enable binaryMode and subscribePeers, you have to provide 10. If you want to set
newFormat additionally, provide 14. And if you want to enable jsonMode additionally, provide 30.

	Parameters:	
	url (str) – The URL of the event server that you want to register, including “http://” and the port. If you use
“binary://”, RPC data is sent in binary format. If you pass “https://” or “binarys://”, SSL is
enabled.

	interface_id (str) – This is an arbitrary name for the interface. To unregister an event server, pass an empty
string to interfaceId.

	flags (int) – (optional) Used to configure the communication between Homegear and the registered server.

	
list_client_servers(interface_id=None)[source]

	Return information about all RPC servers registered with Homegear by clients.

This method returns an array with one entry for each RPC server registered with Homegear.

	Parameters:	interface_id (str) – (optional) This is the interface ID of the RPC server as it was passed to
init(). If it is specified,
only the information for this server is returned.

	
subscribe_peers(event_server_id)[source]

	Subscribe peer events that are to be sent to an event server.

This method is used to subscribe peer events after calling
init() with the subscribe_peers flag set.

	Parameters:	event_server_id (str) – This is either the url specified in
init() or the WebSocket client ID.

	
trigger_rpc_event(event_method)[source]

	Send an RPC event to all RPC event servers.

This method manually calls an RPC event method on all RPC event servers. Currently supported methods are
deleteDevices, newDevices and updateDevice.

	Parameters:	event_method (str) – This is the method you want to call.

	
unsubscribe_peers(event_server_id)[source]

	Unsubscribe peer events.

This method is used to unsubscribe peer events after
subscribe_peers() has been called.

	Parameters:	event_server_id (str) – This is either the url specified in
init() or the WebSocket client ID.

Physical Interface methods

	
class gearthonic.methods.PhysicalInterfaceMethodsCollection(caller)[source]

	All methods related to the physical interface.

	
list_bidcos_interfaces()[source]

	Exist only for compatibility reasons.

This method exists only for reasons of backward compatibility with the CCU and has no real function.

	
list_interfaces(family_id=None)[source]

	List all physical interfaces with status information.

This method returns a list of all physical interfaces. It can be used to determine if an interface is available.

	Parameters:	family_id (int) – (optional) The ID of the family for which you want to get interfaces

	
set_interface(peer_id, interface_id)[source]

	Set the physical interface Homegear uses to communicate with a peer.

This method sets the physical interface that Homegear is to use to communicate with a peer.

	Parameters:	
	peer_id (int) – The ID of the peer you want to set the interface for

	interface_id (str) – This is the ID of the physical interface as defined in the family interface settings. If
it is empty, the physical interface is reset to the default interface.

Metadata methods

	
class gearthonic.methods.MetadataMethodsCollection(caller)[source]

	All metadata related methods.

	
delete_metadata(peer_id, data_id=None)[source]

	Delete previously stored metadata.

	Parameters:	
	peer_id (int) – The ID of the peer for which the metadata is stored.

	data_id (str) – (optional) The dataId

	
get_all_metadata(peer_id)[source]

	Return all the metadata of one peer.

	Parameters:	peer_id (int) – The ID of the peer for which you want to get metadata

	
get_metadata(peer_id, data_id)[source]

	Retrieve previously stored metadata.

This method returns metadata that was previously stored with
setMetadata().

	Parameters:	
	peer_id (int) – The ID of the peer for which you want to get the metadata

	data_id (str) – The data ID

	
set_metadata(peer_id, data_id, value)[source]

	Store metadata for a peer.

This method can be used to store metadata for devices in Homegear’s database. You can retrieve this metadata
later by calling get_metadata().

	Parameters:	
	peer_id (int) – The ID of the peer for which you want to store metadata

	data_id (str) – A name of your choice

	value – The value you want to store

System variables methods

	
class gearthonic.methods.SystemVariableMethodsCollection(caller)[source]

	All system variables related methods.

	
delete_system_variable(name)[source]

	Delete a system variable.

This method deletes a system variable created with
set_system_variable().

	Parameters:	name (str) – The name of the system variable to be deleted

	
get_all_system_variables()[source]

	Return all system variables.

	
get_system_variable(name)[source]

	Get the value of a system variable.

This method returns a system variable’s value that was previously stored with
set_system_variable().

	Parameters:	name (str) – The name of the system variable

	
set_system_variable(name, value)[source]

	Create or update a system variable.

This method can be used to store arbitrary data in Homegear’s database. You can retrieve this data later by
calling getSystemVariable().

	Parameters:	
	name (str) – A name of your choice

	value – The value to be stored

 Copyright 2016, Timo Steidle.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gearthonic 0.2.0 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://gitlab.com/wumpitz/gearthonic/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the Gitlab issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the Gitlab issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Gearthonic could always use more documentation, whether as part of the
official gearthonic docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://gitlab.com/wumpitz/gearthonic/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up gearthonic for
local development.

	Fork the gearthonic repo on Gitlab.

	Clone your fork locally:

$ git clone git@gitlab.com:your_name_here/gearthonic.git

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass style and unit
tests, including testing other Python versions with tox:

$ tox

To get tox, just pip install it.

	Commit your changes and push your branch to Gitlab:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the Gitlab website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7 and 3.5, and for PyPy.
Run the tox command and make sure that the tests pass for all supported
Python versions.

Tips

To run a subset of tests:

$ py.test test/test_gearthonic.py

 Copyright 2016, Timo Steidle.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Gearthonic 0.2.0 documentation

Changelog

0.2.0 (2016-08-08)

	Introduced different communication protocols (XML RPC and JSON RPC)

0.1.2 (2016-07-13)

	Fixed broken setup.py.

0.1.1 (2016-07-13)

	Added documentation.

0.1.0 (2016-07-13)

	Initial release to pypi.

 Copyright 2016, Timo Steidle.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Gearthonic 0.2.0 documentation

 Python Module Index

 g

 			

 		
 g	

 	[image: -]
 	
 gearthonic	

 	
 	
 gearthonic.client	

 	
 	
 gearthonic.protocols	

 Copyright 2016, Timo Steidle.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Gearthonic 0.2.0 documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | L
 | M
 | P
 | S
 | T
 | U
 | W
 | X

A

 	

 	activate_link_paramset() (gearthonic.methods.DeviceMethodsCollection method)

 	add_device() (gearthonic.methods.PairingMethodsCollection method)

 	

 	add_link() (gearthonic.methods.DeviceMethodsCollection method)

C

 	

 	call() (gearthonic.client.GearClient method)

 	

 	(gearthonic.protocols.JsonRpcProtocol method)

 	(gearthonic.protocols.XmlRpcProtocol method)

 	client_server_initialized() (gearthonic.methods.EventServerMethodsCollection method)

 	

 	create_device() (gearthonic.methods.PairingMethodsCollection method)

D

 	

 	delete_metadata() (gearthonic.methods.MetadataMethodsCollection method)

 	delete_system_variable() (gearthonic.methods.SystemVariableMethodsCollection method)

 	

 	device (gearthonic.client.GearClient attribute)

 	DeviceMethodsCollection (class in gearthonic.methods)

E

 	

 	EventServerMethodsCollection (class in gearthonic.methods)

F

 	

 	FamilyMethodsCollection (class in gearthonic.methods)

G

 	

 	GearClient (class in gearthonic.client)

 	gearthonic.client (module)

 	gearthonic.protocols (module)

 	GeneralMethodsCollection (class in gearthonic.methods)

 	get_all_config() (gearthonic.methods.DeviceMethodsCollection method)

 	get_all_metadata() (gearthonic.methods.MetadataMethodsCollection method)

 	get_all_system_variables() (gearthonic.methods.SystemVariableMethodsCollection method)

 	get_all_values() (gearthonic.methods.DeviceMethodsCollection method)

 	

 	get_capabilities() (gearthonic.methods.SystemMethodsCollection method)

 	get_install_mode() (gearthonic.methods.PairingMethodsCollection method)

 	get_metadata() (gearthonic.methods.MetadataMethodsCollection method)

 	get_pairing_methods() (gearthonic.methods.PairingMethodsCollection method)

 	get_service_messages() (gearthonic.methods.GeneralMethodsCollection method)

 	get_system_variable() (gearthonic.methods.SystemVariableMethodsCollection method)

 	get_value() (gearthonic.methods.DeviceMethodsCollection method)

 	get_version() (gearthonic.methods.GeneralMethodsCollection method)

I

 	

 	init() (gearthonic.methods.EventServerMethodsCollection method)

 	

 	initialise_protocol() (in module gearthonic.protocols)

J

 	

 	JsonRpcProtocol (class in gearthonic.protocols)

L

 	

 	list_bidcos_interfaces() (gearthonic.methods.PhysicalInterfaceMethodsCollection method)

 	list_client_servers() (gearthonic.methods.EventServerMethodsCollection method)

 	list_devices() (gearthonic.methods.DeviceMethodsCollection method)

 	list_families() (gearthonic.methods.FamilyMethodsCollection method)

 	

 	list_interfaces() (gearthonic.methods.PhysicalInterfaceMethodsCollection method)

 	list_methods() (gearthonic.methods.SystemMethodsCollection method)

 	log_level() (gearthonic.methods.GeneralMethodsCollection method)

M

 	

 	MetadataMethodsCollection (class in gearthonic.methods)

 	method_help() (gearthonic.methods.SystemMethodsCollection method)

 	

 	method_signature() (gearthonic.methods.SystemMethodsCollection method)

 	multicall() (gearthonic.methods.SystemMethodsCollection method)

P

 	

 	PairingMethodsCollection (class in gearthonic.methods)

 	

 	PhysicalInterfaceMethodsCollection (class in gearthonic.methods)

S

 	

 	search_devices() (gearthonic.methods.PairingMethodsCollection method)

 	set_install_mode() (gearthonic.methods.PairingMethodsCollection method)

 	set_interface() (gearthonic.methods.PhysicalInterfaceMethodsCollection method)

 	set_metadata() (gearthonic.methods.MetadataMethodsCollection method)

 	set_system_variable() (gearthonic.methods.SystemVariableMethodsCollection method)

 	

 	set_value() (gearthonic.methods.DeviceMethodsCollection method)

 	subscribe_peers() (gearthonic.methods.EventServerMethodsCollection method)

 	system (gearthonic.client.GearClient attribute)

 	SystemMethodsCollection (class in gearthonic.methods)

 	SystemVariableMethodsCollection (class in gearthonic.methods)

T

 	

 	trigger_rpc_event() (gearthonic.methods.EventServerMethodsCollection method)

U

 	

 	unsubscribe_peers() (gearthonic.methods.EventServerMethodsCollection method)

W

 	

 	write_log() (gearthonic.methods.GeneralMethodsCollection method)

X

 	

 	XmlRpcProtocol (class in gearthonic.protocols)

 Copyright 2016, Timo Steidle.
 Created using Sphinx 1.3.5.

 _modules/gearthonic/methods.html

 Navigation

 		
 index

 		
 modules |

 		Gearthonic 0.2.0 documentation »

 		Module code »

 Source code for gearthonic.methods

"""Includes all functions provided by the XML RPC API, split into logical entities."""

class BaseCollection(object):
 """Provide the interface to call XML RPC methods."""

 def __init__(self, caller):
 """
 :param caller: interface to call XML RPC methods
 """
 self._caller = caller

 def call(self, method_name, *args, **kwargs):
 """Make a call to the XML RPC API.

 :param method_name: name of the method to call
 :type method_name: str
 :param args: arguments to pass to the method
 :param kwargs: keyword arguments to pass to the method
 """
 return self._caller.call(method_name, *args, **kwargs)

[docs]class SystemMethodsCollection(BaseCollection):
 """
 All XML RPC server provide a set of standard methods.
 """
[docs] def get_capabilities(self):
 """Lists server's XML RPC capabilities.

 Example output::

 {
 'xmlrpc': {'specUrl': 'http://example.com', 'specVersion': 1}
 'faults_interop': {'specUrl': 'http://example2.com', 'specVersion': 101}
 'introspection': {'specUrl': 'http://example3.com', 'specVersion': 42}
 }

 :return: A dict containing all information
 :rtype: dict
 """
 return self.call('system.getCapabilities')

[docs] def list_methods(self):
 """Lists servers's XML RPC methods.

 :return: A list of available methods
 :rtype: list
 """
 return self.call('system.listMethods')

[docs] def method_help(self, method_name):
 """Returns the description of a method.

 :param method_name: The name of the method
 :type method_name: str
 :return: The description of the method
 :rtype: str
 """
 return self.call('system.methodHelp', method_name)

[docs] def method_signature(self, method_name):
 """Returns the signature of a method.

 :param method_name: The name of the method
 :type method_name: str
 :return: The signature of the method
 :rtype: list
 """
 return self.call('system.methodSignature', method_name)

[docs] def multicall(self, methods):
 """Call multiple methods at once.

 Example list of ``methods``::

 [
 {'methodName': 'getValue', 'params': [13, 4, 'TEMPERATURE']},
 {'methodName': 'getValue', 'params': [3, 3, 'HUMIDITY']}
]

 Return value of the multicall::

 [22.0, 58]

 :param methods: A list of methods and their parameters
 :type methods: list
 :return: A list of method responses.
 :rtype: list
 """
 return self.call('system.multicall', methods)

[docs]class GeneralMethodsCollection(BaseCollection):
 """All general methods."""

[docs] def write_log(self, message, log_level=None):
 """Write a message to the Homegear log.

 This method writes a message to Homegear's log. It's possible to set the log level. Valid values are:

 * 1: Critical
 * 2: Error
 * 3: Warning
 * 4: Info
 * 5: Debug

 :param message: This is the message you want to write to the log file. The date is automatically prepended.
 :type message: str
 :param log_level: (optional) This is the log level of the message. If Homegear's log level value is lower than
 this value, no message is logged.
 :type log_level: int
 """
 return self.call('writeLog', message, log_level=log_level)

[docs] def get_service_messages(self, return_id):
 """Return all service messages.

 This method returns all service messages that are currently active in Homegear (device unreachable, config
 pending, low battery, sabotage, ...).

 :param return_id: Recommended. If true, Homegear returns the peer ID instead of the "address" (serial number
 and channel separated by a colon). By default, the address is returned for compatibility
 reasons.
 :type return_id: bool
 """

 return self.call('getServiceMessages', return_id)

[docs] def log_level(self, level=None):
 """Get or set the current log level.

 Valid values are:

 * 0: Log nothing
 * 1: Critical
 * 2: Error
 * 3: Warning
 * 4: Info
 * 5: Debug

 .. warning:: Don't use "debug" for normal operation as it slows down Homegear.

 :param level: (optional) This is the log level that you want to set.
 :type level: int
 """
 return self.call('logLevel', level=level)

[docs] def get_version(self):
 """Return Homegear's version number.
 """
 return self.call('getVersion')

[docs]class DeviceMethodsCollection(BaseCollection):
 """All device related methods."""

[docs] def list_devices(self):
 """Return a list of devices.

 :return: List of devices
 :rtype: list
 """
 return self.call('listDevices')

[docs] def get_value(self, peer_id, channel, key, request_from_device=False, asynchronous=False):
 """Return the value of the device, specified by channel and key (parameterName).

 Per default the value is read from the local cache of Homegear. If the value should be read from the device, use
 ``request_from_device``. If the value should be read from the device, this can be done asynchronously. The
 method returns immediately and doesn't wait for the current value. The value will be sent as an event as soon as
 it's returned by the device.

 Error codes:

 * Returns ``-2`` when the device or channel is unknown
 * Returns ``-5`` when the key (parameter) is unknown

 :param peer_id: ID of the device
 :type peer_id: int
 :param channel: Channel of the device to get the value for
 :type channel: int
 :param key: Name of the parameter to get the value for
 :type key: str
 :param request_from_device: If true value is read from the device
 :type request_from_device: bool
 :param asynchronous: If true value is read asynchronously
 :type asynchronous: bool
 :return: The value of the parameter or error code
 :rtype: unknown
 """
 return self.call('getValue', peer_id, channel, key, request_from_device, asynchronous)

[docs] def set_value(self, peer_id, channel, key, value):
 """Set the value of the device, specified by channel and key (parameterName).

 :param peer_id: ID of the device
 :type peer_id: int
 :param channel: Channel of the device to set the value for
 :type channel: int
 :param key: Name of the parameter to get the value for
 :type key: str
 :param value: The value to set
 :type value: unknown
 :return: * ``None`` on success
 * ``-2`` when the device or channel is unknown
 * ``-5`` when the key (parameter) is unknown
 * ``-100`` when the device did not respond
 * ``-101`` when the device returns an error
 """
 return self.call('setValue', peer_id, channel, key, value)

[docs] def get_all_config(self, peer_id=None):
 """Return all peer configuration parameters and some additional metadata.

 This method returns all configuration parameter values and information about all configuration parameters for
 one or all peers. Variables are not returned. To get all variables, call
 :func:`~gearthonic.methods.DeviceMethodsCollection.get_all_values`.

 :param peer_id: (optional) When specified, only variables of this peer are returned.
 :type peer_id: int
 """
 return self.call('getAllConfig', peer_id=peer_id)

[docs] def add_link(self, sender_id, sender_channel, receiver_id, receiver_channel, name='', description=''):
 """Create a link between two devices.

 This method links two devices so that they can send commands to each other directly.

 :param sender_id: The ID of the sending peer (e.g. a remote)
 :type sender_id: int
 :param sender_channel: The channel of the sending peer or "-1"
 :type sender_channel: int
 :param receiver_id: The ID of the receiving peer (e.g. a switch)
 :type receiver_id: int
 :param receiver_channel: The channel of the receiving peer or "-1"
 :type receiver_channel: int
 :param name: (optional) A descriptive name for the link
 :type name: str
 :param description: (optional) A short description of the link
 :type description: str
 """
 return self.call('addLink', sender_id, sender_channel, receiver_id, receiver_channel, name=name,
 description=description)

[docs] def activate_link_paramset(self, peer_id, channel, remote_peer_id, remote_channel, long_press=False):
 """Simulate a remote key press.

 This method can be used to simulate a remote key press. For most cases,
 :func:`~gearthonic.methods.DeviceMethodsCollection.set_value` should be sufficient. Use `activate_link_paramset`
 if you want to execute commands that can be configured only using the link parameter set.

 :param peer_id: The ID of the actuator
 :type peer_id: int
 :param channel: The channel of the actuator
 :type channel: int
 :param remote_peer_id: The ID of a peer linked to the actuator or "0" if you want to use a virtual peer
 :type remote_peer_id: int
 :param remote_channel: The channel of a remote peer linked to the peer; use the same "channel" value if a
 virtual peer is specified.
 :type remote_channel: int
 :param long_press: (optional) Set to "True" to simulate a long key press. The default setting is "False".
 :type long_press: bool
 """
 return self.call('activateLinkParamset', peer_id, channel, remote_peer_id, remote_channel,
 long_press=long_press)

[docs] def get_all_values(self, peer_id=None, return_write_only_variables=False):
 """Return all peer configuration parameters and some additional metadata.

 This method returns all variable values and information about all variables for one or all peers. Configuration
 parameters are not returned. To get all configuration parameters, call
 :func:`~gearthonic.methods.DeviceMethodsCollection.get_all_config`.

 :param peer_id: (optional) When specified, only variables of this peer are returned.
 :type peer_id: int
 :param return_write_only_variables: (optional) When specifed, write only variables are also returned.
 :type return_write_only_variables: bool
 """
 return self.call('getAllValues', peer_id=peer_id, return_write_only_variables=return_write_only_variables)

[docs]class PairingMethodsCollection(BaseCollection):
 """All pairing related methods."""

[docs] def add_device(self, serial_number, family_id=None):
 """Pair a device without enabling pairing mode.

 This method pairs a device by its serial number, but this does not work for all devices.

 :param serial_number: The serial number of the device to be paired
 :type serial_number: str
 :param family_id: (optional) ID of the family you want to add the device to; if not specified, "addDevice" is
 executed for all device families that support it.
 :type family_id: int
 """
 return self.call('addDevice', serial_number, family_id=family_id)

[docs] def search_devices(self, family_id=None):
 """Start a device search for all supported device families.

 When you use this method, Homegear searches for new devices in all device families that support the method.

 :param family_id: (optional) This is the ID of the family that you want to search for devices.
 :type family_id: int
 """
 return self.call('searchDevices', family_id=family_id)

[docs] def set_install_mode(self, on, family_id=None, duration=60):
 """Enable pairing mode.

 This method enables or disables pairing mode for all device families if it is supported by the device family.

 :param on: When this is true, pairing mode is enabled. Otherwise, pairing mode is disabled.
 :type on: bool
 :param family_id: (optional) This is the ID of the family for which you want to enable pairing mode. If it is
 not specified, pairing mode will be enabled for all device families.
 :type family_id: int
 :param duration: (optional) This is the duration in seconds that the central should remain in pairing mode.
 The minimum duration is 5 seconds, and the maximum duration is 3600 seconds.
 The default duration is 60 seconds.
 :type duration: int
 """
 return self.call('setInstallMode', on=on, family_id=family_id, duration=duration)

[docs] def get_install_mode(self, family_id=None):
 """Return the time left in pairing mode.

 This method returns the remaining amount of time the central will be in pairing mode.

 :param family_id: (optional) This is the ID of the family for which you want to get the remaining time in
 pairing mode. If not specified, the remaining time in pairing mode of the first
 central for which pairing mode enabled is returned.
 :type family_id: int
 """
 return self.call('getInstallMode', family_id=family_id)

[docs] def create_device(self, family_id, device_type, serial_number, address, firmware_version):
 """Create a device manually.

 This method manually creates a new device. It is not supported by all device families, and it is also not
 supported for all devices. createDevice can be used to create virtual devices in the family "Miscellaneous".

 :param family_id: This is the ID of the family you want to create the device in. See:
 :func:`~gearthonic.methods.FamilyMethodsCollection.list_families`.
 :type family_id: int
 :param device_type: The type ID of the device as specified in the device's XML file
 :type device_type: int
 :param serial_number: The serial number of the new device
 :type serial_number: str
 :param address: This is the physical address of the new device. Depending on the device family, this parameter
 might be optional. If it is not needed, set it to "-1".
 :type address: int
 :param firmware_version: This is the firmware version of the new device. Depending on the device family, this
 parameter might be optional. If the firmware version is "1.2", set this variable to
 0x12 = 18. If it is not needed, set it to "-1".
 :type firmware_version: int
 """
 return self.call('createDevice', family_id, device_type, serial_number, address, firmware_version)

[docs] def get_pairing_methods(self, family_id):
 """Return the pairing methods supported by a device family.

 This method returns all pairing methods supported by the specified device family.

 :param family_id: The ID of the family for which you want to get the supported pairing methods
 :type family_id: int
 """
 return self.call('getPairingMethods', family_id)

[docs]class FamilyMethodsCollection(BaseCollection):
 """All pairing related methods."""

[docs] def list_families(self):
 """Return information about all device families (ID, name, pairing methods).

 This method returns information about all available device families. Use this method to get the ID of a family
 if you have only the name or only the ID. You can also use this method to get the pairing methods supported by
 the family.
 """
 return self.call('listFamilies')

[docs]class EventServerMethodsCollection(BaseCollection):
 """All EventServer related methods"""

[docs] def unsubscribe_peers(self, event_server_id):
 """Unsubscribe peer events.

 This method is used to unsubscribe peer events after
 :func:`~gearthonic.methods.EventServerMethodsCollection.subscribe_peers` has been called.

 :param event_server_id: This is either the url specified in
 :func:`~gearthonic.methods.EventServerMethodsCollection.init` or the WebSocket client ID.
 :type event_server_id: str
 """
 return self.call('unsubscribePeers', event_server_id)

[docs] def client_server_initialized(self, interface_id):
 """Check if an RPC client's RPC server was successfully registered and if it still is registered.

 This method checks if an RPC client's RPC server is registered and connected to Homegear. You can register your
 RPC "event" server by calling :func:`~gearthonic.methods.EventServerMethodsCollection.init`.

 :param interface_id: The interface ID as specified in :func:`~gearthonic.methods.EventServerMethodsCollection.init`
 :type interface_id: str
 """
 return self.call('clientServerInitialized', interface_id)

[docs] def subscribe_peers(self, event_server_id):
 """Subscribe peer events that are to be sent to an event server.

 This method is used to subscribe peer events after calling
 :func:`~gearthonic.methods.EventServerMethodsCollection.init` with the `subscribe_peers` flag set.

 :param event_server_id: This is either the url specified in
 :func:`~gearthonic.methods.EventServerMethodsCollection.init` or the WebSocket client ID.
 :type event_server_id: str
 """
 return self.call('subscribePeers', event_server_id)

[docs] def trigger_rpc_event(self, event_method):
 """Send an RPC event to all RPC event servers.

 This method manually calls an RPC event method on all RPC event servers. Currently supported methods are
 `deleteDevices`, `newDevices` and `updateDevice`.

 :param event_method: This is the method you want to call.
 :type event_method: str
 """
 return self.call('triggerRpcEvent', event_method)

[docs] def list_client_servers(self, interface_id=None):
 """Return information about all RPC servers registered with Homegear by clients.

 This method returns an array with one entry for each RPC server registered with Homegear.

 :param interface_id: (optional) This is the interface ID of the RPC server as it was passed to
 :func:`~gearthonic.methods.EventServerMethodsCollection.init`. If it is specified,
 only the information for this server is returned.
 :type interface_id: str
 """
 return self.call('listClientServers', interface_id=interface_id)

[docs] def init(self, url, interface_id, flags=None):
 """Register a client's RPC server with Homegear to receive events.

 This method is used to register or unregister an RPC event server with Homegear. After calling this method,
 Homegear's RPC client starts sending events and device updates to the registered server. It is not necessary to
 call "init" for MQTT or WebSockets.

 It's possible to configure the communication between Homegear and the client's RPC server by using `flags`.
 The following (bitmask) flags are available:

 * 0x01: keepAlive: Do not close the connection after each packet.
 * 0x02: binaryMode: Send RPC data in binary format. Equivalent to "binary://" or
 "binarys://".
 * 0x04: newFormat: (Recommended) Send device's ID in broadcast methods instead of
 the serial number and activates variable types ARRAY and STRUCT. This is
 recommended because serial numbers are not necessarily unique.
 * 0x08: subscribePeers: If this is set, Homegear will send events only for peers
 subscribed with `subscribePeers` to the event server.
 * 0x10: jsonMode: Send RPC data in JSON format.

 So if you want to enable `binaryMode` and `subscribePeers`, you have to provide `10`. If you want to set
 `newFormat` additionally, provide `14`. And if you want to enable `jsonMode` additionally, provide `30`.

 :param url: The URL of the event server that you want to register, including "http://" and the port. If you use
 "binary://", RPC data is sent in binary format. If you pass "https://" or "binarys://", SSL is
 enabled.
 :type url: str
 :param interface_id: This is an arbitrary name for the interface. To unregister an event server, pass an empty
 string to interfaceId.
 :type interface_id: str
 :param flags: (optional) Used to configure the communication between Homegear and the registered server.
 :type flags: int
 """
 return self.call('init', url, interface_id, flags=flags)

[docs]class PhysicalInterfaceMethodsCollection(BaseCollection):
 """All methods related to the physical interface."""

[docs] def list_bidcos_interfaces(self):
 """Exist only for compatibility reasons.

 This method exists only for reasons of backward compatibility with the CCU and has no real function.
 """
 return self.call('listBidcosInterfaces')

[docs] def set_interface(self, peer_id, interface_id):
 """Set the physical interface Homegear uses to communicate with a peer.

 This method sets the physical interface that Homegear is to use to communicate with a peer.

 :param peer_id: The ID of the peer you want to set the interface for
 :type peer_id: int
 :param interface_id: This is the ID of the physical interface as defined in the family interface settings. If
 it is empty, the physical interface is reset to the default interface.
 :type interface_id: str
 """
 return self.call('setInterface', peer_id, interface_id)

[docs] def list_interfaces(self, family_id=None):
 """List all physical interfaces with status information.

 This method returns a list of all physical interfaces. It can be used to determine if an interface is available.

 :param family_id: (optional) The ID of the family for which you want to get interfaces
 :type family_id: int
 """
 return self.call('listInterfaces', family_id=family_id)

[docs]class MetadataMethodsCollection(BaseCollection):
 """All metadata related methods."""

[docs] def set_metadata(self, peer_id, data_id, value):
 """Store metadata for a peer.

 This method can be used to store metadata for devices in Homegear's database. You can retrieve this metadata
 later by calling :func:`~gearthonic.methods.MetadataMethodsCollection.get_metadata`.

 :param peer_id: The ID of the peer for which you want to store metadata
 :type peer_id: int
 :param data_id: A name of your choice
 :type data_id: str
 :param value: The value you want to store
 """
 return self.call('setMetadata', peer_id, data_id, value)

[docs] def get_all_metadata(self, peer_id):
 """Return all the metadata of one peer.

 :param peer_id: The ID of the peer for which you want to get metadata
 :type peer_id: int
 """
 return self.call('getAllMetadata', peer_id)

[docs] def get_metadata(self, peer_id, data_id):
 """Retrieve previously stored metadata.

 This method returns metadata that was previously stored with
 :func:`~gearthonic.methods.MetadataMethodsCollection.setMetadata`.

 :param peer_id: The ID of the peer for which you want to get the metadata
 :type peer_id: int
 :param data_id: The data ID
 :type data_id: str
 """
 return self.call('getMetadata', peer_id, data_id)

[docs] def delete_metadata(self, peer_id, data_id=None):
 """Delete previously stored metadata.

 :param peer_id: The ID of the peer for which the metadata is stored.
 :type peer_id: int
 :param data_id: (optional) The dataId
 :type data_id: str
 """
 return self.call('deleteMetadata', peer_id, data_id=data_id)

[docs]class SystemVariableMethodsCollection(BaseCollection):
 """All system variables related methods."""

[docs] def delete_system_variable(self, name):
 """Delete a system variable.

 This method deletes a system variable created with
 :func:`~gearthonic.methods.SystemVariableMethodsCollection.set_system_variable`.

 :param name: The name of the system variable to be deleted
 :type name: str
 """
 return self.call('deleteSystemVariable', name)

[docs] def set_system_variable(self, name, value):
 """Create or update a system variable.

 This method can be used to store arbitrary data in Homegear's database. You can retrieve this data later by
 calling :func:`~gearthonic.methods.SystemVariableMethodsCollection.getSystemVariable`.

 :param name: A name of your choice
 :type name: str
 :param value: The value to be stored
 """
 return self.call('setSystemVariable', name, value)

[docs] def get_system_variable(self, name):
 """Get the value of a system variable.

 This method returns a system variable's value that was previously stored with
 :func:`~gearthonic.methods.SystemVariableMethodsCollection.set_system_variable`.

 :param name: The name of the system variable
 :type name: str
 """
 return self.call('getSystemVariable', name)

[docs] def get_all_system_variables(self):
 """Return all system variables."""
 return self.call('getAllSystemVariables')

 © Copyright 2016, Timo Steidle.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

_static/comment.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Gearthonic 0.2.0 documentation »

 All modules for which code is available

		gearthonic.client

		gearthonic.methods

		gearthonic.protocols

 © Copyright 2016, Timo Steidle.
 Created using Sphinx 1.3.5.

_modules/gearthonic/protocols.html

 Navigation

 		
 index

 		
 modules |

 		Gearthonic 0.2.0 documentation »

 		Module code »

 Source code for gearthonic.protocols

"""Communication protocols
=======================

These classes are used to communicate with the different APIs provided by the Homegear server.
"""
from _ssl import CERT_REQUIRED
from ssl import SSLContext, CERT_NONE, PROTOCOL_SSLv23

from xmlrpc.client import ServerProxy

from jsonrpcclient import Request
from jsonrpcclient.http_server import HTTPServer

from .exceptions import ProtocolUnknown, ConfigurationError

XMLRPC = 0
JSONRPC = 1
MQTT = 2

class _ProtocolInterface(object):
 """Interface for all protocols."""

 def call(self, method_name, *args, **kwargs):
 raise NotImplementedError("You can't use the {} directly.".format(self.__class__.__name__))

[docs]class XmlRpcProtocol(_ProtocolInterface):
 """Communicate with Homegear via XML RPC.

 >>> xp = XmlRpcProtocol('host.example.com', 2003)
 >>> xp.call('listDevices')
 [...]

 Set ``secure=False`` to use ``http`` instead off ``https``. Set ``verify=False`` to skip the verification of the
 SSL cert.

 Provide credentials via ``username`` and ``password`` if the Homegear server is secured by basic auth. It's not
 possible to use authentication with an insecure connection (http)!
 """

 def __init__(self, host, port, secure=True, verify=True, username=None, password=None):
 self.secure = secure
 self.protocol = 'https' if self.secure else 'http'
 self.port = port
 self.host = host

 # Authentication required?
 auth = ''
 if username and password:
 if not self.secure:
 raise ConfigurationError("You can't use authentication with an insecure (http) connection.")
 auth = '{0}:{1}@'.format(username, password)
 self.authentication = bool(auth)

 self.uri = u'{0}://{1}{2}:{3}'.format(self.protocol, auth, self.host, self.port)

 # Create the XML RPC ServerProxy
 context = None
 if secure:
 context = SSLContext(PROTOCOL_SSLv23)
 context.verify_mode = CERT_REQUIRED if verify else CERT_NONE
 self.proxy = ServerProxy(self.uri, context=context)

[docs] def call(self, method_name, *args, **kwargs):
 """Call the given method using the ServerProxy.

 :param method_name: Method to be called
 :param args: Arguments passed through
 :param kwargs: Keyword arguments passed through
 :return: Return value of the XML RPC method
 """
 return getattr(self.proxy, method_name)(*args, **kwargs)

[docs]class JsonRpcProtocol(_ProtocolInterface):
 """Communicate with Homegear via JSON RPC.

 >>> jp = JsonRpcProtocol('host.example.com', 2003)
 >>> jp.call('listDevices')
 [...]

 Set ``secure=False`` to use ``http`` instead off ``https``. Set ``verify=False`` to skip the verification of the
 SSL cert.

 Provide credentials via ``username`` and ``password`` if the Homegear server is secured by basic auth. It's not
 possible to use authentication with an insecure connection (http)!
 """

 def __init__(self, host, port, secure=True, verify=True, username=None, password=None):
 self.secure = secure
 self.protocol = 'https' if self.secure else 'http'
 self.host = host
 self.port = port
 self.uri = u'{0}://{1}:{2}'.format(self.protocol, self.host, self.port)
 self.server = HTTPServer(self.uri)
 if not verify:
 self.server.session.verify = False
 if username and password:
 if not self.secure:
 raise ConfigurationError("You can't use authentication with an insecure (http) connection.")
 self.server.session.auth = (username, password)
 self.authentication = bool(username and password and self.secure)

[docs] def call(self, method_name, *args, **kwargs):
 """Call the given method using the HTTPServer.

 :param method_name: Method to be called
 :param args: Arguments passed through
 :param kwargs: Keyword arguments passed through
 :return: Return value of the XML RPC method
 """
 return self.server.send(Request(method_name, *args, **kwargs))

class _MqttProtocol(_ProtocolInterface):
 """MQTT protocol to communicate with Homegear via a MQTT message broker.

 Not yet finished."""

_PROTOCOL_MAPPING = {
 XMLRPC: XmlRpcProtocol,
 JSONRPC: JsonRpcProtocol,
 MQTT: _MqttProtocol
}

[docs]def initialise_protocol(protocol, host, port, **kwargs):
 """Factory method to initialise a specific protocol.

 :param protocol: ID of the protocol to initialise
 :type protocol: int
 :param host: host of the server
 :type host: str
 :param port: port of the server
 :type port: int
 :param kwargs: will be used to initialise the protocol
 :rtype: _ProtocolInterface
 """
 try:
 klass = _PROTOCOL_MAPPING[protocol]
 except KeyError:
 raise ProtocolUnknown("Protocol with ID {} unknown.".format(protocol))
 return klass(host, port, **kwargs)

 © Copyright 2016, Timo Steidle.
 Created using Sphinx 1.3.5.

_modules/gearthonic/client.html

 Navigation

 		
 index

 		
 modules |

 		Gearthonic 0.2.0 documentation »

 		Module code »

 Source code for gearthonic.client

"""GearClient

Client for the APIs provided by Homegear.
"""

import future # noqa

from .methods import SystemMethodsCollection, DeviceMethodsCollection
from .protocols import XMLRPC, initialise_protocol

[docs]class GearClient(object):
 """Client for the APIs provided by Homegear.

 Usage:

 >>> gc = GearClient('localhost', 1234)
 >>> gc.device.list_devices()

 The default communication protocol is ``XML RPC``. Additionally, ``JSON RPC`` is supported:

 >>> from gearthonic import JSONRPC
 >>> GearClient('localhost', 1234, protocol=JSONRPC)

 Any protocol can accept additional parameters. Provide them while initialising the client:

 >>> GearClient('localhost', 1234, protocol=JSONRPC, secure=False, username='ham')

 For a full list of supported parameters, have a look at each protocol class or see the documentation for the
 protocols. :class:
 """

 def __init__(self, host, port, protocol=XMLRPC, **kwargs):
 self.port = port
 self.host = host
 self.protocol_kwargs = kwargs
 self.protocol = self.__initialise_protocol(protocol)

 self.__system = SystemMethodsCollection(self)
 self.__device = DeviceMethodsCollection(self)

 @property
 def system(self):
 """Smart access to all system related API methods."""
 return self.__system

 @property
 def device(self):
 """Smart access to all device related API methods."""
 return self.__device

 def __initialise_protocol(self, protocol):
 """Initialise the given protocol.

 :param protocol: protocol to initialise
 :return: the protocol instance
 :rtype: gearthonic.protocols._ProtocolInterface
 """
 return initialise_protocol(protocol, self.host, self.port, **self.protocol_kwargs)

 def __getattr__(self, item):
 """Allow to call any method directly through the GearClient.

 :param item: the method name to call
 :type item: str
 :return: function which calls the given method
 :rtype: function
 """
 def wrapper(*args, **kwargs):
 return self.call(item, *args, **kwargs)
 return wrapper

[docs] def call(self, method_name, *args, **kwargs):
 """Call the given method using the instantiated protocol.

 :param method_name: method to be called
 :param args: arguments passed through
 :param kwargs: keyword arguments passed through
 :return: return value of the call
 """
 return self.protocol.call(method_name, *args, **kwargs)

 © Copyright 2016, Timo Steidle.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Gearthonic 0.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Timo Steidle.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

