
gcc-python-plugin Documentation
Release 0.16

David Malcolm

Oct 02, 2018

Contents

1 Requirements 3

2 Prebuilt-packages 5

3 Building the plugin from source 7
3.1 Build-time dependencies . 7
3.2 Building the code . 7

4 Basic usage of the plugin 9
4.1 Debugging your script . 10
4.2 Accessing parameters . 10
4.3 Adding new passes to the compiler . 11
4.4 Wiring up callbacks . 11

5 Global data access 13

6 Overview of GCC’s internals 15

7 Example scripts 19
7.1 show-docs.py . 19
7.2 show-passes.py . 20
7.3 show-gimple.py . 20
7.4 show-ssa.py . 21
7.5 show-callgraph.py . 22

8 Working with C code 25
8.1 “Hello world” . 25
8.2 Spell-checking string constants within source code . 26
8.3 Finding global variables . 28

9 Locations 33

10 Generating custom errors and warnings 35

11 Working with functions and control flow graphs 37

12 gcc.Tree and its subclasses 41
12.1 Blocks . 43

i

12.2 Declarations . 44
12.3 Types . 46
12.4 Constants . 50
12.5 Binary Expressions . 51
12.6 Unary Expressions . 55
12.7 Comparisons . 57
12.8 References to storage . 58
12.9 Other expression subclasses . 59
12.10 Statements . 64
12.11 SSA Names . 64

13 Gimple statements 65

14 Optimization passes 71
14.1 Working with existing passes . 71
14.2 Creating new optimization passes . 73
14.3 Dumping per-pass information . 74

15 Working with callbacks 77

16 Creating custom GCC attributes 81
16.1 Using the preprocessor to guard attribute usage . 83

17 Usage example: a static analysis tool for CPython extension code 85
17.1 gcc-with-cpychecker . 85
17.2 Reference-count checking . 86
17.3 Error-handling checking . 89
17.4 Errors in exception-handling . 90
17.5 Format string checking . 91
17.6 Verification of PyMethodDef tables . 93
17.7 Additional tests . 94
17.8 Limitations and caveats . 94
17.9 Ideas for future tests . 95
17.10 Reusing this code for other projects . 95
17.11 Common mistakes . 96

18 Success Stories 97
18.1 The GNU Debugger . 97
18.2 LibreOffice . 98
18.3 psycopg . 98
18.4 pycups . 98
18.5 python-krbV . 98
18.6 Bugs found in itself . 98

19 Getting Involved 99
19.1 Ideas for using the plugin . 99
19.2 Tour of the C code . 100
19.3 Using the plugin to check itself . 101
19.4 Test suite . 101
19.5 Debugging the plugin’s C code . 101
19.6 Patches . 104

20 Documentation 107

21 Miscellanea 109

ii

21.1 Interprocedural analysis (IPA) . 109
21.2 Whole-program Analysis via Link-Time Optimization (LTO) . 110
21.3 Inspecting GCC’s command-line options . 111
21.4 Working with GCC’s tunable parameters . 113
21.5 Working with the preprocessor . 114
21.6 Version handling . 115
21.7 Register Transfer Language (RTL) . 116

22 Release Notes 117
22.1 0.16 . 117
22.2 0.15 . 117
22.3 0.14 . 118
22.4 0.13 . 118
22.5 0.12 . 120
22.6 0.11 . 122
22.7 0.10 . 123
22.8 0.9 . 125
22.9 0.8 . 127
22.10 0.7 . 130

23 Appendices 137
23.1 All of GCC’s passes . 137
23.2 gcc.Tree operators by symbol . 143

24 Indices and tables 147

iii

iv

gcc-python-plugin Documentation, Release 0.16

Contents:

Contents 1

gcc-python-plugin Documentation, Release 0.16

2 Contents

CHAPTER 1

Requirements

The plugin has the following requirements:

• GCC: 4.6 or later (it uses APIs that weren’t exposed to plugins in 4.5)

• Python: requires 2.7 or 3.2 or later

• “six”: The libcpychecker code uses the “six” Python compatibility library to smooth over Python 2 vs Python 3
differences, both at build-time and run-time:

http://pypi.python.org/pypi/six/

• “pygments”: The libcpychecker code uses the “pygments” Python syntax-highlighting library when writing out
error reports:

http://pygments.org/

• “lxml”: The libcpychecker code uses the “lxml” internally when writing out error reports.

• graphviz: many of the interesting examples use “dot” to draw diagrams (e.g. control-flow graphs), so it’s worth
having graphviz installed.

3

http://pypi.python.org/pypi/six/
http://pygments.org/

gcc-python-plugin Documentation, Release 0.16

4 Chapter 1. Requirements

CHAPTER 2

Prebuilt-packages

Various distributions ship with pre-built copies of the plugin. If you’re using Fedora, you can install the plugin via
RPM on Fedora 16 onwards using:

yum install gcc-python2-plugin

as root for the Python 2 build of the plugin, or:

yum install gcc-python3-plugin

for the Python 3 build of the plugin.

On Gentoo, use layman to add the dMaggot overlay and emerge the gcc-python-plugin package. This will build the
plugin for Python 2 and Python 3 should you have both of them installed in your system. A live ebuild is also provided
to install the plugin from git sources.

5

gcc-python-plugin Documentation, Release 0.16

6 Chapter 2. Prebuilt-packages

CHAPTER 3

Building the plugin from source

3.1 Build-time dependencies

If you plan to build the plugin from scratch, you’ll need the build-time dependencies.

On a Fedora box you can install them by running the following as root:

yum install gcc-plugin-devel python-devel python-six python-pygments graphviz

for building against Python 2, or:

yum install gcc-plugin-devel python3-devel python3-six python3-pygments graphviz

when building for Python 3.

3.2 Building the code

You can obtain the source code from git by using:

$ git clone git@github.com:davidmalcolm/gcc-python-plugin.git

To build the plugin, run:

make plugin

To build the plugin and run the selftests, run:

make

You can also use:

make demo

7

gcc-python-plugin Documentation, Release 0.16

to demonstrate the new compiler errors.

By default, the Makefile builds the plugin using the first python-config tool found in $PATH (e.g. /usr/bin/python-
config), which is typically the system copy of Python 2. You can override this (e.g. to build against Python 3) by
overriding the PYTHON and PYTHON_CONFIG Makefile variables with:

make PYTHON=python3 PYTHON_CONFIG=python3-config

There isn’t a well-defined process yet for installing the plugin (though the rpm specfile in the source tree contains
some work-in-progress towards this).

Some notes on GCC plugins can be seen at http://gcc.gnu.org/wiki/plugins and http://gcc.gnu.org/onlinedocs/gccint/
Plugins.html

Note: Unfortunately, the layout of the header files for GCC plugin development has changed somewhat between
different GCC releases. In particular, older builds of GCC flattened the “c-family” directory in the installed plugin
headers.

This was fixed in this GCC commit:

http://gcc.gnu.org/viewcvs?view=revision&revision=176741

So if you’re using an earlier build of GCC using the old layout you’ll need to apply the following patch (reversed with
“-R”) to the plugin’s source tree to get it to compile:

$ git show 215730cbec40a6fe482fabb7f1ecc3d747f1b5d2 | patch -p1 -R

If you have a way to make the plugin’s source work with either layout, please email the plugin’s mailing list

8 Chapter 3. Building the plugin from source

http://gcc.gnu.org/wiki/plugins
http://gcc.gnu.org/onlinedocs/gccint/Plugins.html
http://gcc.gnu.org/onlinedocs/gccint/Plugins.html
http://gcc.gnu.org/viewcvs?view=revision&revision=176741
https://fedorahosted.org/mailman/listinfo/gcc-python-plugin/

CHAPTER 4

Basic usage of the plugin

Once you’ve built the plugin, you can invoke a Python script like this:

gcc -fplugin=./python.so -fplugin-arg-python-script=PATH_TO_SCRIPT.py OTHER_ARGS

and have it run your script as the plugin starts up.

Alternatively, you can run a one-shot Python command like this:

gcc -fplugin=./python.so -fplugin-arg-python-command="python code" OTHER_ARGS

such as:

gcc -fplugin=./python.so -fplugin-arg-python-command="import sys; print(sys.path)"
→˓OTHER_ARGS

The plugin automatically adds the absolute path to its own directory to the end of its sys.path, so that it can find support
modules, such as gccutils.py and libcpychecker.

There is also a helper script, gcc-with-python, which expects a python script as its first argument, then regular gcc
arguments:

./gcc-with-python PATH_TO_SCRIPT.py other args follow

For example, this command will use graphviz to draw how GCC “sees” the internals of each function in test.c (within
its SSA representation):

./gcc-with-python examples/show-ssa.py test.c

Most of the rest of this document describes the Python API visible for scripting.

The plugin GCC’s various types as Python objects, within a “gcc” module. You can see the API by running the
following within a script:

import gcc
help(gcc)

9

gcc-python-plugin Documentation, Release 0.16

To make this easier, there’s a script to do this for you:

./gcc-python-docs

from where you can review the built-in documentation strings (this document may be easier to follow though).

The exact API is still in flux: and may well change (this is an early version of the code; we may have to change things
as GCC changes in future releases also).

4.1 Debugging your script

You can place a forced breakpoint in your script using this standard Python one-liner:

import pdb; pdb.set_trace()

If Python reaches this location it will interrupt the compile and put you within the pdb interactive debugger, from
where you can investigate.

See http://docs.python.org/library/pdb.html#debugger-commands for more information.

If an exception occurs during Python code, and isn’t handled by a try/except before returning into the plugin, the
plugin prints the traceback to stderr and treats it as an error:

/home/david/test.c: In function ‘main’:
/home/david/test.c:28:1: error: Unhandled Python exception raised within callback
Traceback (most recent call last):

File "test.py", line 38, in my_pass_execution_callback
dot = gccutils.tree_to_dot(fun)

NameError: global name 'gccutils' is not defined

(In this case, it was a missing import statement in the script)

GCC reports errors at a particular location within the source code. For an unhandled exception such as the one above,
by default, the plugin reports the error as occurring as the top of the current source function (or the last location within
the current source file for passes and callbacks that aren’t associated with a function).

You can override this using gcc.set_location:

gcc.set_location(loc)
Temporarily overrides the error-reporting location, so that if an exception occurs, it will use this gcc.Location,
rather than the default. This may be of use when debugging tracebacks from scripts. The location is reset each
time after returning from Python back to the plugin, after printing any traceback.

4.2 Accessing parameters

gcc.argument_dict
Exposes the arguments passed to the plugin as a dictionary.

For example, running:

gcc -fplugin=python.so \
-fplugin-arg-python-script=test.py \
-fplugin-arg-python-foo=bar

with test.py containing:

10 Chapter 4. Basic usage of the plugin

http://docs.python.org/library/pdb.html#debugger-commands

gcc-python-plugin Documentation, Release 0.16

import gcc
print(gcc.argument_dict)

has output:

{'script': 'test.py', 'foo': 'bar'}

gcc.argument_tuple
Exposes the arguments passed to the plugin as a tuple of (key, value) pairs, so you have ordering. (Probably
worth removing, and replacing argument_dict with an OrderedDict instead; what about duplicate args
though?)

4.3 Adding new passes to the compiler

You can create new compiler passes by subclassing the appropriate gcc.Pass subclasss. For example, here’s how to
wire up a new pass that displays the control flow graph of each function:

Show the GIMPLE form of each function, using GraphViz
import gcc
from gccutils import get_src_for_loc, cfg_to_dot, invoke_dot

We'll implement this as a custom pass, to be called directly after the
builtin "cfg" pass, which generates the CFG:

class ShowGimple(gcc.GimplePass):
def execute(self, fun):

(the CFG should be set up by this point, and the GIMPLE is not yet
in SSA form)
if fun and fun.cfg:

dot = cfg_to_dot(fun.cfg, fun.decl.name)
print dot
invoke_dot(dot, name=fun.decl.name)

ps = ShowGimple(name='show-gimple')
ps.register_after('cfg')

For more information, see Creating new optimization passes

4.4 Wiring up callbacks

The other way to write scripts is to register callback functions to be called when various events happen during compi-
lation, such as using gcc.PLUGIN_PASS_EXECUTION to piggyback off of an existing GCC pass.

Show all the passes that get executed
import gcc

def my_pass_execution_callback(*args, **kwargs):
(optpass, fun) = args
print(args)

gcc.register_callback(gcc.PLUGIN_PASS_EXECUTION,
my_pass_execution_callback)

4.3. Adding new passes to the compiler 11

gcc-python-plugin Documentation, Release 0.16

For more information, see Working with callbacks

12 Chapter 4. Basic usage of the plugin

CHAPTER 5

Global data access

gcc.get_variables()
Get all variables in this compilation unit as a list of gcc.Variable

class gcc.Variable
Wrapper around GCC’s struct varpool_node, representing a variable in the code being compiled.

decl
The declaration of this variable, as a gcc.Tree

gccutils.get_variables_as_dict()
Get a dictionary of all variables, where the keys are the variable names (as strings), and the values are instances
of gcc.Variable

gcc.maybe_get_identifier(str)
Get the gcc.IdentifierNode with this name, if it exists, otherwise None. (However, after the
front-end has run, the identifier node may no longer point at anything useful to you; see gccutils.
get_global_typedef() for an example of working around this)

gcc.get_translation_units()
Get a list of all gcc.TranslationUnitDecl for the compilation units within this invocation of GCC (that’s
“source code files” for the layperson).

class TranslationUnitDecl
Subclass of gcc.Tree representing a compilation unit

block
The gcc.Block representing global scope within this source file.

language
The source language of this translation unit, as a string (e.g. “GNU C”)

gcc.get_global_namespace()
C++ only: locate the gcc.NamespaceDecl for the global namespace (a.k.a. “::”)

gccutils.get_global_typedef(name)
Given a string name, look for a C/C++ typedef in global scope with that name, returning it as a gcc.
TypeDecl, or None if it wasn’t found

13

gcc-python-plugin Documentation, Release 0.16

gccutils.get_global_vardecl_by_name(name)
Given a string name, look for a C/C++ variable in global scope with that name, returning it as a gcc.VarDecl,
or None if it wasn’t found

gccutils.get_field_by_name(decl, name)
Given one of a gcc.RecordType, gcc.UnionType, or gcc.QualUnionType, along with a string
name, look for a field with that name within the given struct or union, returning it as a gcc.FieldDecl,
or None if it wasn’t found

14 Chapter 5. Global data access

CHAPTER 6

Overview of GCC’s internals

To add a new compiler warning to GCC, it’s helpful to have a high-level understanding of how GCC works, so here’s
the 10,000 foot view of how GCC turns source code into machine code.

The short version is that GCC applies a series of optimization passes to your code, gradually converting it from a
high-level representation into machine code, via several different internal representations.

Each programming language supported by GCC has a “frontend”, which parses the source files.

For the case of C and C++, the preprocessor manipulates the code first before the frontend sees it. You can see the
preprocessor output with the -E option.

Exactly what happens in each frontend varies by language: some language frontends emit language-specific trees,
and some convert to a language-independent tree representation known as GENERIC. In any case, we eventually we
reach a representation known as GIMPLE. The GIMPLE representation contains simplified operations, with temporary
variables added as necessary to avoid nested sub-expressions.

For example, given this C code:

int
main(int argc, char **argv)
{

int i;

printf("argc: %i\n", argc);

for (i = 0; i < argc; i++) {
printf("argv[%i]: %s\n", argv[i]);

}

helper_function();

return 0;
}

15

gcc-python-plugin Documentation, Release 0.16

we can see a dump of a C-like representation of the GIMPLE form by passing -fdump-tree-gimple to the command-
line:

$ gcc -fdump-tree-gimple test.c
$ cat test.c.004t.gimple

giving something like this:

main (int argc, char * * argv)
{

const char * restrict D.3258;
long unsigned int D.3259;
long unsigned int D.3260;
char * * D.3261;
char * D.3262;
const char * restrict D.3263;
int D.3264;
int i;

D.3258 = (const char * restrict) &"argc: %i\n"[0];
printf (D.3258, argc);
i = 0;
goto <D.2050>;
<D.2049>:
D.3259 = (long unsigned int) i;
D.3260 = D.3259 * 8;
D.3261 = argv + D.3260;
D.3262 = *D.3261;
D.3263 = (const char * restrict) &"argv[%i]: %s\n"[0];
printf (D.3263, D.3262);
i = i + 1;
<D.2050>:
if (i < argc) goto <D.2049>; else goto <D.2051>;
<D.2051>:
helper_function ();
D.3264 = 0;
return D.3264;

}

It’s far easier to see the GIMPLE using:

./gcc-with-python examples/show-gimple.py test.c

which generates bitmaps showing the “control flow graph” of the functions in the file, with source on the left-hand
side, and GIMPLE on the right-hand side:

Each function is divided into “basic blocks”. Each basic block consists of a straight-line sequence of code with a single
entrypoint and exit: all branching happens between basic blocks, not within them. The basic blocks form a “control
flow graph” of basic blocks, linked together by edges. Each block can contain a list of gcc.Gimple statements.

You can work with this representation from Python using gcc.Cfg

Once the code is in GIMPLE form, GCC then attempts a series of optimizations on it.

Some of these optimizations are listed here: http://gcc.gnu.org/onlinedocs/gccint/Tree-SSA-passes.html

If you’re looking to add new compiler warnings, it’s probably best to hook your code into these early passes.

The GIMPLE representation actually has several forms:

16 Chapter 6. Overview of GCC’s internals

http://gcc.gnu.org/onlinedocs/gccint/Tree-SSA-passes.html

gcc-python-plugin Documentation, Release 0.16

• an initial “high gimple” form, potentially containing certain high-level operations (e.g. control flow, exception
handling)

• the lower level gimple forms, as each of these operations are rewritten in lower-level terms (turning control flow
from jumps into a CFG etc)

• the SSA form of GIMPLE. In Static Single Assignment form, every variable is assigned to at most once, with
additional versions of variables added to help track the impact of assignments on the data flowing through a
function. See http://gcc.gnu.org/onlinedocs/gccint/SSA.html

You can tell what form a function is in by looking at the flags of the current pass. For example:

if ps.properties_provided & gcc.PROP_cfg:
...then this gcc.Function ought to have a gcc.Cfg:
do_something_with_cfg(fn.cfg)

if ps.properties_provided & gcc.PROP_ssa:
...then we have SSA data
do_something_with_ssa(fn)

Here’s our example function, after conversion to GIMPLE SSA:

./gcc-with-python examples/show-ssa.py test.c

You can see that the local variable i has been split into three versions:

• i_4, assigned to in block 2

• i_11, assigned to at the end of block 3

• i_1, assigned to at the top of block 4.

17

http://gcc.gnu.org/onlinedocs/gccint/SSA.html

gcc-python-plugin Documentation, Release 0.16

As is normal with SSA, GCC inserts fake functions known as “PHI” at the start of basic blocks where needed in order
to merge the multiple possible values of a variable. You can see one in our example at the top of the loop in block 4:

i_1 = PHI <i_4(2), i_11(3)>

where i_1 either gets the value of i_4, or of i_11, depending on whether we reach here via block 2 (at the start of the
iteration) or block 3 (continuing the “for” loop).

After these optimizations passes are done, GCC converts the GIMPLE SSA representation into a lower-level represen-
tation known as Register Transfer Language (RTL). This is probably too low-level to be of interest to those seeking to
add new compiler warnings: at this point it’s attempting to work with the available opcodes and registers on the target
CPU with the aim of generating efficient machine code.

See http://gcc.gnu.org/onlinedocs/gccint/RTL.html

The RTL form uses the same Control Flow Graph machinery as the GIMPLE representation, but with RTL expressions
within the basic blocks.

Once in RTL, GCC applies a series of further optimizations, before finally generating assembly language (which it
submits to as, the GNU assembler): http://gcc.gnu.org/onlinedocs/gccint/RTL-passes.html You can see the assembly
language using the -S command line option.

$./gcc -S test.c
$ cat test.s

18 Chapter 6. Overview of GCC’s internals

http://gcc.gnu.org/onlinedocs/gccint/RTL.html
http://gcc.gnu.org/onlinedocs/gccint/RTL-passes.html

CHAPTER 7

Example scripts

There are various sample scripts located in the examples subdirectory.

Once you’ve built the plugin (with make), you can run them via:

$./gcc-with-python examples/NAME-OF-SCRIPT.py test.c

7.1 show-docs.py

A trivial script to make it easy to read the builtin documentation for the gcc API:

$./gcc-with-python examples/show-docs.py test.c

with this source:

import gcc
help(gcc)

giving output:

Help on built-in module gcc:

NAME
gcc

FILE
(built-in)

CLASSES
__builtin__.object

BasicBlock
Cfg

(continues on next page)

19

gcc-python-plugin Documentation, Release 0.16

(continued from previous page)

Edge
Function
Gimple

(truncated)

7.2 show-passes.py

You can see the passes being executed via:

$./gcc-with-python examples/show-passes.py test.c

This is a simple script that registers a trivial callback:

Sample python script, to be run by our gcc plugin
Show all the passes that get executed
import gcc

def my_pass_execution_callback(*args, **kwargs):
(optpass, fun) = args
print(args)

gcc.register_callback(gcc.PLUGIN_PASS_EXECUTION,
my_pass_execution_callback)

Sample output, showing passes being called on two different functions (main and helper_function):

(gcc.GimplePass(name='*warn_unused_result'), gcc.Function('main'))
(gcc.GimplePass(name='omplower'), gcc.Function('main'))
(gcc.GimplePass(name='lower'), gcc.Function('main'))
(gcc.GimplePass(name='eh'), gcc.Function('main'))
(gcc.GimplePass(name='cfg'), gcc.Function('main'))
(gcc.GimplePass(name='*warn_function_return'), gcc.Function('main'))
(gcc.GimplePass(name='*build_cgraph_edges'), gcc.Function('main'))
(gcc.GimplePass(name='*warn_unused_result'), gcc.Function('helper_function'))
(gcc.GimplePass(name='omplower'), gcc.Function('helper_function'))
(gcc.GimplePass(name='lower'), gcc.Function('helper_function'))
(gcc.GimplePass(name='eh'), gcc.Function('helper_function'))
(gcc.GimplePass(name='cfg'), gcc.Function('helper_function'))
[...truncated...]

7.3 show-gimple.py

A simple script for viewing each function in the source file after it’s been converted to “GIMPLE” form, using
GraphViz to visualize the control flow graph:

$./gcc-with-python examples/show-gimple.py test.c

It will generate a file test.png for each function, and opens it in an image viewer.

The Python code for this is:

20 Chapter 7. Example scripts

gcc-python-plugin Documentation, Release 0.16

Show the GIMPLE form of each function, using GraphViz
import gcc
from gccutils import get_src_for_loc, cfg_to_dot, invoke_dot

We'll implement this as a custom pass, to be called directly after the
builtin "cfg" pass, which generates the CFG:

class ShowGimple(gcc.GimplePass):
def execute(self, fun):

(the CFG should be set up by this point, and the GIMPLE is not yet
in SSA form)
if fun and fun.cfg:

dot = cfg_to_dot(fun.cfg, fun.decl.name)
print dot
invoke_dot(dot, name=fun.decl.name)

ps = ShowGimple(name='show-gimple')
ps.register_after('cfg')

7.4 show-ssa.py

This is similar to show-gimple.py, but shows each function after the GIMPLE has been converted to Static Single
Assignment form (“SSA”):

$./gcc-with-python examples/show-ssa.py test.c

As before, it generates an image file for each function and opens it in a viewer.

7.4. show-ssa.py 21

gcc-python-plugin Documentation, Release 0.16

The Python code for this is:

Sample python script, to be run by our gcc plugin
Show the SSA form of each function, using GraphViz
import gcc
from gccutils import get_src_for_loc, cfg_to_dot, invoke_dot

A custom GCC pass, to be called directly after the builtin "ssa" pass,
→˓which
generates the Static Single Assignment form of the GIMPLE within the CFG:
class ShowSsa(gcc.GimplePass):

def execute(self, fun):
(the SSA form of each function should have just been set up)
if fun and fun.cfg:

dot = cfg_to_dot(fun.cfg, fun.decl.name)
print(dot)
invoke_dot(dot, name=fun.decl.name)

ps = ShowSsa(name='show-ssa')
ps.register_after('ssa')

7.5 show-callgraph.py

This simple script sends GCC’s interprocedural analysis data through GraphViz.

22 Chapter 7. Example scripts

gcc-python-plugin Documentation, Release 0.16

$./gcc-with-python examples/show-callgraph.py test.c

It generates an image file showing which functions call which other functions, and opens it in a viewer.

The Python code for this is:

Sample python script, to be run by our gcc plugin
Show the call graph (interprocedural analysis), using GraphViz
import gcc
from gccutils import callgraph_to_dot, invoke_dot

In theory we could have done this with a custom gcc.Pass registered
directly after "*build_cgraph_edges". However, we can only register
relative to passes of the same kind, and that pass is a
gcc.GimplePass, which is called per-function, and we want a one-time
pass instead.
#
So we instead register a callback on the one-time pass that follows it

def on_pass_execution(p, fn):
if p.name == '*free_lang_data':

The '*free_lang_data' pass is called once, rather than per-
→˓function,

and occurs immediately after "*build_cgraph_edges", which is the
pass that initially builds the callgraph
#
So at this point we're likely to get a good view of the callgraph
before further optimization passes manipulate it
dot = callgraph_to_dot()
invoke_dot(dot)

gcc.register_callback(gcc.PLUGIN_PASS_EXECUTION,
on_pass_execution)

7.5. show-callgraph.py 23

gcc-python-plugin Documentation, Release 0.16

24 Chapter 7. Example scripts

CHAPTER 8

Working with C code

8.1 “Hello world”

Here’s a simple “hello world” C program:

#include <stdio.h>

int main(int argc, char *argv[])
{

printf("Hello, python\n");
}

Here’s a Python script that locates the function at one pass within the compile and prints various interesting things
about it:

import gcc

Here's a callback. We will wire it up below:
def on_pass_execution(p, fn):

This pass is called fairly early on, per-function, after the
CFG has been built:
if p.name == '*warn_function_return':

For this pass, "fn" will be an instance of gcc.Function:
print('fn: %r' % fn)
print('fn.decl.name: %r' % fn.decl.name)

fn.decl is an instance of gcc.FunctionDecl:
print('return type: %r' % str(fn.decl.type.type))
print('argument types: %r' % [str(t) for t in fn.decl.type.argument_

→˓types])

assert isinstance(fn.cfg, gcc.Cfg) # None for some early passes

(continues on next page)

25

gcc-python-plugin Documentation, Release 0.16

(continued from previous page)

assert len(fn.cfg.basic_blocks) == 3
assert fn.cfg.basic_blocks[0] == fn.cfg.entry
assert fn.cfg.basic_blocks[1] == fn.cfg.exit
bb = fn.cfg.basic_blocks[2]
for i,stmt in enumerate(bb.gimple):

print('gimple[%i]:' % i)
print(' str(stmt): %r' % str(stmt))
print(' repr(stmt): %r' % repr(stmt))
if isinstance(stmt, gcc.GimpleCall):

from gccutils import pprint
print(' type(stmt.fn): %r' % type(stmt.fn))
print(' str(stmt.fn): %r' % str(stmt.fn))
for i, arg in enumerate(stmt.args):

print(' str(stmt.args[%i]): %r' % (i, str(stmt.
→˓args[i])))

print(' str(stmt.lhs): %s' % str(stmt.lhs))

Wire up our callback:
gcc.register_callback(gcc.PLUGIN_PASS_EXECUTION,

on_pass_execution)

We can run the script during the compile like this:

./gcc-with-python script.py test.c

Here’s the expected output:

fn: gcc.Function('main')
fn.decl.name: 'main'
return type: 'int'
argument types: ['int', 'char * *']
gimple[0]:
str(stmt): '__builtin_puts (&"Hello, python"[0]);'
repr(stmt): 'gcc.GimpleCall()'
type(stmt.fn): <type 'gcc.AddrExpr'>
str(stmt.fn): '__builtin_puts'
str(stmt.args[0]): '&"Hello, python"[0]'
str(stmt.lhs): None

gimple[1]:
str(stmt): 'return;'
repr(stmt): 'gcc.GimpleReturn()'

Notice how the call to printf has already been optimized into a call to __builtin_puts.

8.2 Spell-checking string constants within source code

This example add a spell-checker pass to GCC: all string constants are run through the “enchant” spelling-checker:

$./gcc-with-python tests/examples/spelling-checker/script.py input.c

The Python code for this is:

26 Chapter 8. Working with C code

gcc-python-plugin Documentation, Release 0.16

import gcc

Use the Python bindings to the "enchant" spellchecker:
import enchant
spellingdict = enchant.Dict("en_US")

class SpellcheckingPass(gcc.GimplePass):
def execute(self, fun):

This is called per-function during compilation:
for bb in fun.cfg.basic_blocks:

if bb.gimple:
for stmt in bb.gimple:

stmt.walk_tree(self.spellcheck_node, stmt.loc)

def spellcheck_node(self, node, loc):
Spellcheck any textual constants found within the node:
if isinstance(node, gcc.StringCst):

words = node.constant.split()
for word in words:

if not spellingdict.check(word):
Warn about the spelling error (controlling the warning
with the -Wall command-line option):
if gcc.warning(loc,

'Possibly misspelt word in string
→˓constant: %r' % word,

gcc.Option('-Wall')):
and, if the warning was not suppressed at the

→˓command line, emit
suggested respellings:
suggestions = spellingdict.suggest(word)
if suggestions:

gcc.inform(loc, 'Suggested respellings: %r' % ',
→˓'.join(suggestions))

ps = SpellcheckingPass(name='spellchecker')
ps.register_after('cfg')

Given this sample C source file:

#include <stdio.h>

int main(int argc, char *argv[])
{

const char *p = argc ? "correctly spelled" : "not so korectly speled";

printf("The quick brown fox jumps over the lazy dog\n");

printf("Ths s n xmple f spllng mstke\n");
}

these warnings are emitted on stderr:

tests/examples/spelling-checker/input.c: In function 'main':
tests/examples/spelling-checker/input.c:24:48: warning: Possibly misspelt
→˓word in string constant: 'korectly' [-Wall]

(continues on next page)

8.2. Spell-checking string constants within source code 27

gcc-python-plugin Documentation, Release 0.16

(continued from previous page)

tests/examples/spelling-checker/input.c:24:48: note: Suggested respellings:
→˓'correctly'
tests/examples/spelling-checker/input.c:24:48: warning: Possibly misspelt
→˓word in string constant: 'speled' [-Wall]
tests/examples/spelling-checker/input.c:24:48: note: Suggested respellings:
→˓'speed, spieled, spelled, spewed, speckled, peeled, sped'
tests/examples/spelling-checker/input.c:28:11: warning: Possibly misspelt
→˓word in string constant: 'Ths' [-Wall]
tests/examples/spelling-checker/input.c:28:11: note: Suggested respellings:
→˓"Th, Th's, Ohs, Thu, TVs, T's, Th s, Ts, This, Thus, The, Tho, Tbs, Thy,
→˓Goths"
tests/examples/spelling-checker/input.c:28:11: warning: Possibly misspelt
→˓word in string constant: 'xmple' [-Wall]
tests/examples/spelling-checker/input.c:28:11: note: Suggested respellings:
→˓'ample'
tests/examples/spelling-checker/input.c:28:11: warning: Possibly misspelt
→˓word in string constant: 'spllng' [-Wall]
tests/examples/spelling-checker/input.c:28:11: note: Suggested respellings:
→˓'spelling'
tests/examples/spelling-checker/input.c:28:11: warning: Possibly misspelt
→˓word in string constant: 'mstke' [-Wall]
tests/examples/spelling-checker/input.c:28:11: note: Suggested respellings:
→˓'mistake'

8.3 Finding global variables

This example adds a pass that warns about uses of global variables:

$./gcc-with-python \
tests/examples/find-global-state/script.py \
-c \
tests/examples/find-global-state/input.c

The Python code for this is:

import gcc
from gccutils import get_src_for_loc

DEBUG=0

def is_const(type_):
if DEBUG:

type_.debug()

if hasattr(type_, 'const'):
if type_.const:

return True

Don't bother warning about an array of const e.g.
const char []
if isinstance(type_, gcc.ArrayType):

item_type = type_.dereference
if is_const(item_type):

return True

(continues on next page)

28 Chapter 8. Working with C code

gcc-python-plugin Documentation, Release 0.16

(continued from previous page)

class StateFinder:
def __init__(self):

Locate all declarations of variables holding "global" state:
self.global_decls = set()

for var in gcc.get_variables():
type_ = var.decl.type

if DEBUG:
print('var.decl: %r' % var.decl)
print(type_)

Don't bother warning about const data:
if is_const(type_):

continue

self.global_decls.add(var.decl)
if DEBUG:

print('self.global_decls: %r' % self.global_decls)

self.state_users = set()

def find_state_users(self, node, loc):
if isinstance(node, gcc.VarDecl):

if node in self.global_decls:
store the state users for later replay, so that
we can eliminate duplicates
e.g. two references to "q" in "q += p"
and replay in source-location order:
self.state_users.add((loc, node))

def flush(self):
Emit warnings, sorted by source location:
for loc, node in sorted(self.state_users,

key=lambda pair:pair[0]):
gcc.inform(loc,

'use of global state "%s %s" here'
% (node.type, node))

def on_pass_execution(p, fn):
if p.name == '*free_lang_data':

sf = StateFinder()

Locate uses of such variables:
for node in gcc.get_callgraph_nodes():

fun = node.decl.function
if fun:

cfg = fun.cfg
if cfg:

for bb in cfg.basic_blocks:
stmts = bb.gimple
if stmts:

for stmt in stmts:
stmt.walk_tree(sf.find_state_users,

stmt.loc)
(continues on next page)

8.3. Finding global variables 29

gcc-python-plugin Documentation, Release 0.16

(continued from previous page)

Flush the data that was found:
sf.flush()

gcc.register_callback(gcc.PLUGIN_PASS_EXECUTION,
on_pass_execution)

Given this sample C source file:

#include <stdio.h>

static int a_global;

struct {
int f;

} bar;

extern int foo;

int test(int j)
{
/* A local variable, which should *not* be reported: */
int i;
i = j * 4;
return i + 1;

}

int test2(int p)
{
static int q = 0;
q += p;
return p * q;

}

int test3(int k)
{
/* We should *not* report about __FUNCTION__ here: */
printf("%s:%i:%s\n", __FILE__, __LINE__, __FUNCTION__);

}

int test4()
{
return foo;

}

int test6()
{
return bar.f;

}

struct banana {
int f;

};

const struct banana a_banana;

(continues on next page)

30 Chapter 8. Working with C code

gcc-python-plugin Documentation, Release 0.16

(continued from previous page)

int test7()
{
return a_banana.f;

}

these warnings are emitted on stderr:

tests/examples/find-global-state/input.c:41:nn: note: use of global state
→˓"int q" here
tests/examples/find-global-state/input.c:41:nn: note: use of global state
→˓"int q" here
tests/examples/find-global-state/input.c:42:nn: note: use of global state
→˓"int q" here
tests/examples/find-global-state/input.c:53:nn: note: use of global state
→˓"int foo" here
tests/examples/find-global-state/input.c:58:nn: note: use of global state
→˓"struct
{
int f;

} bar" here

8.3. Finding global variables 31

gcc-python-plugin Documentation, Release 0.16

32 Chapter 8. Working with C code

CHAPTER 9

Locations

gccutils.get_src_for_loc(loc)
Given a gcc.Location, get the source line as a string (without trailing whitespace or newlines)

class gcc.Location
Wrapper around GCC’s location_t, representing a location within the source code. Use gccutils.
get_src_for_loc() to get at the line of actual source code.

The output from __repr__ looks like this:

gcc.Location(file='./src/test.c', line=42)

The output from__str__ looks like this:

./src/test.c:42

file
(string) Name of the source file (or header file)

line
(int) Line number within source file (starting at 1, not 0)

column
(int) Column number within source file (starting at 1, not 0)

in_system_header
(bool) This attribute flags locations that are within a system header file. It may be of use when writing
custom warnings, so that you can filter out issues in system headers, leaving just those within the user’s
code:

Don't report on issues found in system headers:
if decl.location.in_system_header:

return

offset_column(self, offset)
Generate a new gcc.Location based on the caret location of this location, offsetting the column by the
given amount.

33

gcc-python-plugin Documentation, Release 0.16

From GCC 6 onwards, these values can represent both a caret and a range, e.g.:

a = (foo && bar)
~~~~~^~~~~~~

__init__(self, caret, start, finish)
Construct a location, using the caret location of caret as the caret, and the start/finish of start and finish
respectively:

compound_loc = gcc.Location(caret, start, finish)

caret
(gcc.Location) The caret location within this location. In the above example, the caret is on the first
‘&’ character.

start
(gcc.Location) The start location of this range. In the above example, the start is on the opening
parenthesis.

finish
(gcc.Location) The finish location of this range. In the above example, the finish is on the closing
parenthesis.

class gcc.RichLocation
Wrapper around GCC’s rich_location, representing one or more locations within the source code, and zero or
more fix-it hints.

Note: gcc.RichLocation is only available from GCC 6 onwards

add_fixit_replace(self, new_content)
Add a fix-it hint, suggesting replacement of the content covered by range 0 of the rich location with
new_content.

34 Chapter 9. Locations



CHAPTER 10

Generating custom errors and warnings

gcc.warning(location, message, option=None)
Emits a compiler warning at the given gcc.Location, potentially controlled by a gcc.Option.

If no option is supplied (or None is supplied), then the warning is an unconditional one, always issued:

gcc.warning(func.start, 'this is an unconditional warning')

$ ./gcc-with-python script.py input.c
input.c:25:1: warning: this is an unconditional warning [enabled by default]

and will be an error if -Werror is supplied as a command-line argument to GCC:

$ ./gcc-with-python script.py -Werror input.c
input.c:25:1: error: this is an unconditional warning [-Werror]

It’s possible to associate the warning with a command-line option, so that it is controlled by that option.

For example, given this Python code:

gcc.warning(func.start, 'Incorrect formatting', gcc.Option('-Wformat'))

if the given warning is enabled, a warning will be printed to stderr:

$ ./gcc-with-python script.py input.c
input.c:25:1: warning: incorrect formatting [-Wformat]

If the given warning is being treated as an error (through the usage of -Werror), then an error will be printed:

$ ./gcc-with-python script.py -Werror input.c
input.c:25:1: error: incorrect formatting [-Werror=format]
cc1: all warnings being treated as errors

$ ./gcc-with-python script.py -Werror=format input.c
input.c:25:1: error: incorrect formatting [-Werror=format]
cc1: some warnings being treated as errors

35



gcc-python-plugin Documentation, Release 0.16

If the given warning is disabled, the warning will not be printed:

$ ./gcc-with-python script.py -Wno-format input.c

Note: Due to the way GCC implements some options, it’s not always possible for the plugin to fully disable
some warnings. See gcc.Option.is_enabled for more information.

The function returns a boolean, indicating whether or not anything was actually printed.

gcc.error(location, message)
Emits a compiler error at the given gcc.Location.

For example:

gcc.error(func.start, 'something bad was detected')

would lead to this error being printed to stderr:

$ ./gcc-with-python script.py input.c
input.c:25:1: error: something bad was detected

gcc.permerror(loc, str)
This is a wrapper around GCC’s permerror function.

Expects an instance of gcc.Location (not None) and a string

Emit a “permissive” error at that location, intended for things that really ought to be errors, but might be present
in legacy code.

In theory it’s suppressable using “-fpermissive” at the GCC command line (which turns it into a warning), but
this only seems to be legal for C++ source files.

Returns True if the warning was actually printed, False otherwise

gcc.inform(location, message)
This is a wrapper around GCC’s inform function.

Expects an instance of gcc.Location or gcc.RichLocation, (not None) and a string

Emit an informational message at that location.

For example:

gcc.inform(stmt.loc, 'this is where X was defined')

would lead to this informational message being printed to stderr:

$ ./gcc-with-python script.py input.c
input.c:23:3: note: this is where X was defined

36 Chapter 10. Generating custom errors and warnings



CHAPTER 11

Working with functions and control flow graphs

Many of the plugin events are called for each function within the source code being compiled. Each time, the plugin
passes a gcc.Function instance as a parameter to your callback, so that you can work on it.

You can get at the control flow graph of a gcc.Function via its cfg attribute. This is an instance of gcc.Cfg.

class gcc.Function
Wrapper around one of GCC’s struct function *

cfg
An instance of gcc.Cfg for this function (or None during early passes)

decl
The declaration of this function, as a gcc.FunctionDecl

local_decls
List of gcc.VarDecl for the function’s local variables. It does not contain arguments; for those see the
arguments property of the function’s decl.

Note that for locals with initializers, initial only seems to get set on those local_decls that are static vari-
ables. For other locals, it appears that you have to go into the gimple representation to locate assignments.

start
The gcc.Location of the beginning of the function

end
The gcc.Location of the end of the function

funcdef_no
Integer: a sequence number for profiling, debugging, etc.

class gcc.Cfg
A gcc.Cfg is a wrapper around GCC’s struct control_flow_graph.

basic_blocks
List of gcc.BasicBlock, giving all of the basic blocks within this CFG

entry
Instance of gcc.BasicBlock: the entrypoint for this CFG

37



gcc-python-plugin Documentation, Release 0.16

exit
Instance of gcc.BasicBlock: the final one within this CFG

get_block_for_label(labeldecl)
Given a gcc.LabelDecl, get the corresponding gcc.BasicBlock

You can use gccutils.cfg_to_dot to render a gcc.Cfg as a graphviz diagram. It will render the diagram,
showing each basic block, with source code on the left-hand side, interleaved with the “gimple” representation
on the right-hand side. Each block is labelled with its index, and edges are labelled with appropriate flags.

For example, given this sample C code:

int
main(int argc, char **argv)
{

int i;

printf("argc: %i\n", argc);

for (i = 0; i < argc; i++) {
printf("argv[%i]: %s\n", argv[i]);

}

helper_function();

return 0;
}

then the following Python code:

dot = gccutils.cfg_to_dot(fun.cfg)
gccutils.invoke_dot(dot)

will render a CFG bitmap like this:

class gcc.BasicBlock
A gcc.BasicBlock is a wrapper around GCC’s basic_block type.

index
The index of the block (an int), as seen in the cfg_to_dot rendering.

preds
The list of predecessor gcc.Edge instances leading into this block

succs
The list of successor gcc.Edge instances leading out of this block

phi_nodes
The list of gcc.GimplePhi phoney functions at the top of this block, if appropriate for this pass, or
None

gimple
The list of gcc.Gimple instructions, if appropriate for this pass, or None

rtl
The list of gcc.Rtl expressions, if appropriate for this pass, or None

class gcc.Edge
A wrapper around GCC’s edge type.

38 Chapter 11. Working with functions and control flow graphs



gcc-python-plugin Documentation, Release 0.16

src
The source gcc.BasicBlock of this edge

dest
The destination gcc.BasicBlock of this edge

true_value
Boolean: True if this edge is taken when a gcc.GimpleCond conditional is true, False otherwise

false_value
Boolean: True if this edge is taken when a gcc.GimpleCond conditional is false, False otherwise

complex
Boolean: True if this edge is “special” e.g. due to exception-handling, or some other kind of “strange”
control flow transfer, False otherwise

39



gcc-python-plugin Documentation, Release 0.16

40 Chapter 11. Working with functions and control flow graphs



CHAPTER 12

gcc.Tree and its subclasses

The various language front-ends for GCC emit “tree” structures (which I believe are actually graphs), used throughout
the rest of the internal representation of the code passing through GCC.

class gcc.Tree
A gcc.Tree is a wrapper around GCC’s tree type

debug()
Dump the tree to stderr, using GCC’s own diagnostic routines

type
Instance of gcc.Tree giving the type of the node

addr
(long) The address of the underlying GCC object in memory

The __str__ method is implemented using GCC’s own pretty-printer for trees, so e.g.:

str(t)

might return:

'int <T531> (int, char * *)'

for a gcc.FunctionDecl

str_no_uid
A string representation of this object, like str(), but without including any internal UIDs.

This is intended for use in selftests that compare output against some expected value, to avoid embedding
values that change into the expected output.

For example, given the type declaration above, where str(t) might return:

'int <T531> (int, char * *)'

where the UID “531” is liable to change from compile to compile, whereas t.str_no_uid has value:

41



gcc-python-plugin Documentation, Release 0.16

'int <Txxx> (int, char * *)'

which won’t arbitrarily change each time.

There are numerous subclasses of gcc.Tree, some with numerous subclasses of their own. Some important parts of
the class hierarchy include:

Subclass Meaning
gcc.Binary A binary arithmetic expression, with numerous subclasses
gcc.Block A symbol-binding block
gcc.Comparison A relational operators (with various subclasses)
gcc.Constant Subclasses for constants
gcc.Constructor An aggregate value (e.g. in C, a structure or array initializer)
gcc.Declaration Subclasses relating to declarations (variables, functions, etc)
gcc.Expression Subclasses relating to expressions
gcc.IdentifierNode A name
gcc.Reference Subclasses for relating to reference to storage (e.g. pointer values)
gcc.SsaName A variable reference for SSA analysis
gcc.Statement Subclasses for statement expressions, which have side-effects
gcc.Type Subclasses for describing the types of variables
gcc.Unary Subclasses for unary arithmetic expressions

Note: Each subclass of gcc.Tree is typically named after either one of the enum tree_code_class or enum tree_code
values, with the names converted to Camel Case:

For example a gcc.Binary is a wrapper around a tree of type tcc_binary, and a gcc.PlusExpr is a wrapper
around a tree of type PLUS_EXPR.

As of this writing, only a small subset of the various fields of the different subclasses have been wrapped yet, but it’s
generally easy to add new ones. To add new fields, I’ve found it easiest to look at gcc/tree.h and gcc/print-tree.c within
the GCC source tree and use the print_node function to figure out what the valid fields are. With that information, you
should then look at generate-tree-c.py, which is the code that generates the Python wrapper classes (it’s used when
building the plugin to create autogenerated-tree.c). Ideally when exposing a field to Python you should also add it to
the API documentation, and add a test case.

gccutils.pformat(tree)
This function attempts to generate a debug dump of a gcc.Tree and all of its “interesting” attributes, recur-
sively. It’s loosely modelled on Python’s pprint module and GCC’s own debug_tree diagnostic routine using
indentation to try to show the structure.

It returns a string.

It differs from gcc.Tree.debug() in that it shows the Python wrapper objects, rather than the underlying
GCC data structures themselves. For example, it can’t show attributes that haven’t been wrapped yet.

Objects that have already been reported within this call are abbreviated to “. . . ” to try to keep the output readable.

Example output:

<FunctionDecl
repr() = gcc.FunctionDecl('main')
superclasses = (<type 'gcc.Declaration'>, <type 'gcc.Tree'>)
.function = gcc.Function('main')
.location = /home/david/coding/gcc-python/test.c:15

(continues on next page)

42 Chapter 12. gcc.Tree and its subclasses



gcc-python-plugin Documentation, Release 0.16

(continued from previous page)

.name = 'main'

.type = <FunctionType
repr() = <gcc.FunctionType object at 0x2f62a60>
str() = 'int <T531> (int, char * *)'
superclasses = (<type 'gcc.Type'>, <type 'gcc.Tree'>)
.name = None
.type = <IntegerType

repr() = <gcc.IntegerType object at 0x2f629d0>
str() = 'int'
superclasses = (<type 'gcc.Type'>, <type 'gcc.Tree'>)
.const = False
.name = <TypeDecl

repr() = gcc.TypeDecl('int')
superclasses = (<type 'gcc.Declaration'>, <type

→˓'gcc.Tree'>)
.location = None
.name = 'int'
.pointer = <PointerType

repr() = <gcc.PointerType object at
→˓0x2f62b80>

str() = ' *'
superclasses = (<type 'gcc.Type'>,

→˓<type 'gcc.Tree'>)
.dereference = ... ("gcc.TypeDecl(

→˓'int')")
.name = None
.type = ... ("gcc.TypeDecl('int')")

>
.type = ... ('<gcc.IntegerType object at

→˓0x2f629d0>')
>

.precision = 32

.restrict = False

.type = None

.unsigned = False

.volatile = False
>

>
>

gccutils.pprint(tree)
Similar to gccutils.pformat(), but prints the output to stdout.

(should this be stderr instead? probably should take a stream as an arg, but what should the default be?)

12.1 Blocks

class gcc.Block
A symbol binding block, such as the global symbols within a compilation unit.

vars
The list of gcc.Tree for the declarations and labels in this block

12.1. Blocks 43



gcc-python-plugin Documentation, Release 0.16

12.2 Declarations

class gcc.Declaration
A subclass of gcc.Tree indicating a declaration

Corresponds to the tcc_declaration value of enum tree_code_class within GCC’s own C sources.

name
(string) the name of this declaration

location
The gcc.Location for this declaration

is_artificial
(bool) Is this declaration a compiler-generated entity, rather than one provided by the user?

An example of such an “artificial” declaration occurs within the arguments of C++ methods: the initial
this argument is a compiler-generated gcc.ParmDecl.

is_builtin
(bool) Is this declaration a compiler-builtin?

class gcc.FieldDecl
A subclass of gcc.Declaration indicating the declaration of a field within a structure.

name
(string) The name of this field

class gcc.FunctionDecl
A subclass of gcc.Declaration indicating the declaration of a function. Internally, this wraps a (struct
tree_function_decl *)

function
The gcc.Function for this declaration

arguments
List of gcc.ParmDecl representing the arguments of this function

result
The gcc.ResultDecl representing the return value of this function

fullname

Note: This attribute is only usable with C++ code. Attempting to use it from another language will lead
to a RuntimeError exception.

(string) The “full name” of this function, including the scope, return type and default arguments.

For example, given this code:

namespace Example {
struct Coord {

int x;
int y;

};

class Widget {
public:

(continues on next page)

44 Chapter 12. gcc.Tree and its subclasses



gcc-python-plugin Documentation, Release 0.16

(continued from previous page)

void set_location(const struct Coord& coord);
};

};

set_location’s fullname is:

'void Example::Widget::set_location(const Example::Coord&)'

callgraph_node
The gcc.CallgraphNode for this function declaration, or None

is_public
(bool) For C++: is this declaration “public”

is_private
(bool) For C++: is this declaration “private”

is_protected
(bool) For C++: is this declaration “protected”

is_static
(bool) For C++: is this declaration “static”

class gcc.ParmDecl
A subclass of gcc.Declaration indicating the declaration of a parameter to a function or method.

class gcc.ResultDecl
A subclass of gcc.Declaration declararing a dummy variable that will hold the return value from a func-
tion.

class gcc.VarDecl
A subclass of gcc.Declaration indicating the declaration of a variable (e.g. a global or a local).

initial
The initial value for this variable as a gcc.Constructor, or None

static
(boolean) Is this variable to be allocated with static storage?

class gcc.NamespaceDecl

A subclass of gcc.Declaration representing a C++ namespace

alias_of
The gcc.NamespaceDecl which this namespace is an alias of or None if this namespace is
not an alias.

declarations

Note: This attribute is only usable with non-alias namespaces. Accessing it on an alias will
lead to a RuntimeError exception.

List of gcc.Declaration objects in this namespace. This attribute is only valid for non-
aliases

namespaces

12.2. Declarations 45



gcc-python-plugin Documentation, Release 0.16

Note: This attribute is only usable with non-alias namespaces. Accessing it on an alias will
lead to a RuntimeError exception.

List of gcc.NamespaceDecl objects nested in this namespace. This attribute is only valid
for non-aliases

lookup(name)
Locate the given name within the namespace, returning a gcc.Tree or None

unalias()
Always returns a gcc.NamespaceDecl object which is not an alias. Returns self if this
namespace is not an alias.

12.3 Types

class gcc.Type
A subclass of gcc.Tree indicating a type

Corresponds to the tcc_type value of enum tree_code_class within GCC’s own C sources.

name
The gcc.IdentifierNode for the name of the type, or None.

pointer
The gcc.PointerType representing the (this_type *) type

attributes
The user-defined attributes on this type (using GCC’s __attribute syntax), as a dictionary (mapping from
attribute names to list of values). Typically this will be the empty dictionary.

sizeof
sizeof() this type, as an int, or raising TypeError for those types which don’t have a well-defined size

Note: This attribute is not usable from within lto1; attempting to use it there will lead to a RuntimeError
exception.

Additional attributes for various gcc.Type subclasses:

const
(Boolean) Does this type have the const modifier?

const_equivalent
The gcc.Type for the const version of this type

volatile
(Boolean) Does this type have the volatile modifier?

volatile_equivalent
The gcc.Type for the volatile version of this type

restrict
(Boolean) Does this type have the restrict modifier?

restrict_equivalent
The gcc.Type for the restrict version of this type

46 Chapter 12. gcc.Tree and its subclasses



gcc-python-plugin Documentation, Release 0.16

unqualified_equivalent
The gcc.Type for the version of this type that does not have any qualifiers.

The standard C types are accessible via class methods of gcc.Type. They are only created by GCC after
plugins are loaded, and so they’re only visible during callbacks, not during the initial run of the code. (yes,
having them as class methods is slightly clumsy).

Each of the following returns a gcc.Type instance representing the given type (or None at startup before
any passes, when the types don’t yet exist)

Class method C Type
gcc.Type.void() void
gcc.Type.size_t() size_t
gcc.Type.char() char
gcc.Type.signed_char() signed char
gcc.Type.unsigned_char() unsigned char
gcc.Type.double() double
gcc.Type.float() float
gcc.Type.short() short
gcc.Type.unsigned_short() unsigned short
gcc.Type.int() int
gcc.Type.unsigned_int() unsigned int
gcc.Type.long() long
gcc.Type.unsigned_long() unsigned long
gcc.Type.long_double() long double
gcc.Type.long_long() long long
gcc.Type.unsigned_long_long() unsigned long long
gcc.Type.int128() int128
gcc.Type.unsigned_int128() unsigned int128
gcc.Type.uint32() uint32
gcc.Type.uint64() uint64

class gcc.IntegerType
Subclass of gcc.Type, adding a few properties:

unsigned
(Boolean) True for ‘unsigned’, False for ‘signed’

precision
(int) The precision of this type in bits, as an int (e.g. 32)

signed_equivalent
The gcc.IntegerType for the signed version of this type

Note: This attribute is not usable from within lto1; attempting to use it there will lead to a RuntimeError
exception.

unsigned_equivalent
The gcc.IntegerType for the unsigned version of this type

Note: This attribute is not usable from within lto1; attempting to use it there will lead to a RuntimeError
exception.

12.3. Types 47



gcc-python-plugin Documentation, Release 0.16

max_value
The maximum possible value for this type, as a gcc.IntegerCst

min_value
The minimum possible value for this type, as a gcc.IntegerCst

class gcc.FloatType
Subclass of gcc.Type representing C’s float and double types

precision
(int) The precision of this type in bits (32 for float; 64 for double)

class gcc.PointerType
Subclass of gcc.Type representing a pointer type, such as an int *

dereference
The gcc.Type that this type points to. In the above example (int *), this would be the int type.

class gcc.EnumeralType
Subclass of gcc.Type representing an enumeral type.

values
A list of tuple representing the constants defined in this enumeration. Each tuple consists of two elements;
the first being the name of the constant, a gcc.IdentifierNode; and the second being the value, a
gcc.Constant.

class gcc.ArrayType
Subclass of gcc.Type representing an array type. For example, in a C declaration such as:

char buf[16]

we have a gcc.VarDecl for buf, and its type is an instance of gcc.ArrayType, representing char [16].

dereference
The gcc.Type that this type points to. In the above example, this would be the char type.

range
The gcc.Type that represents the range of the array’s indices. If the array has a known range, then this
will ordinarily be an gcc.IntegerType whose min_value and max_value are the (inclusive) bounds of
the array. If the array does not have a known range, then this attribute will be None.

That is, in the example above, range.min_val is 0, and range.max_val is 15.

But, for a C declaration like:

extern char array[];

the type’s range would be None.

class gcc.VectorType

dereference
The gcc.Type that this type points to

class gcc.FunctionType
Subclass of gcc.Type representing the type of a given function (or or a typedef to a function type, e.g. for
callbacks).

See also gcc.FunctionType

The type attribute holds the return type.

48 Chapter 12. gcc.Tree and its subclasses



gcc-python-plugin Documentation, Release 0.16

is_variadic
True if this type represents a variadic function. Note that for a variadic function, the final . . . argument is
not explicitly represented in argument_types.

argument_types
A tuple of gcc.Type instances, representing the function’s argument types

gccutils.get_nonnull_arguments(funtype)
This is a utility function for working with the “nonnull” custom attribute on function types:

http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html

Return a frozenset of 0-based integers, giving the arguments for which we can assume “nonnull-ness”,
handling the various cases of:

• the attribute isn’t present (returning the empty frozenset)

• the attribute is present, without args (all pointer args are non-NULL)

• the attribute is present, with a list of 1-based argument indices (Note that the result is still 0-based)

class gcc.MethodType
Subclass of gcc.Type representing the type of a given method. Similar to gcc.FunctionType

The type attribute holds the return type.

argument_types
A tuple of gcc.Type instances, representing the function’s argument types

class gcc.RecordType

A compound type, such as a C struct

fields
The fields of this type, as a list of gcc.FieldDecl instances

methods
The methods of this type, as a list of gcc.MethodType instances

You can look up C structures by looking within the top-level gcc.Block within the current trans-
lation unit. For example, given this sample C code:

/* Example of a struct: */
struct test_struct {

int a;
char b;
float c;

};

void foo()
{
}

then the following Python code:

import gcc

class TestPass(gcc.GimplePass):
def execute(self, fn):

print('fn: %r' % fn)
for u in gcc.get_translation_units():

(continues on next page)

12.3. Types 49

http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html


gcc-python-plugin Documentation, Release 0.16

(continued from previous page)

for decl in u.block.vars:
if isinstance(decl, gcc.TypeDecl):

# "decl" is a gcc.TypeDecl
# "decl.type" is a gcc.RecordType:
print(' type(decl): %s' % type(decl))
print(' type(decl.type): %s' % type(decl.type))
print(' decl.type.name: %r' % decl.type.name)
for f in decl.type.fields:

print(' type(f): %s' % type(f))
print(' f.name: %r' % f.name)
print(' f.type: %s' % f.type)
print(' type(f.type): %s' % type(f.type))

test_pass = TestPass(name='test-pass')

will generate this output:

fn: gcc.Function('foo')
type(decl): <type 'gcc.TypeDecl'>
type(decl.type): <type 'gcc.RecordType'>
decl.type.name: gcc.IdentifierNode(name='test_struct')
type(f): <type 'gcc.FieldDecl'>
f.name: 'a'
f.type: int
type(f.type): <type 'gcc.IntegerType'>

type(f): <type 'gcc.FieldDecl'>
f.name: 'b'
f.type: char
type(f.type): <type 'gcc.IntegerType'>

type(f): <type 'gcc.FieldDecl'>
f.name: 'c'
f.type: float
type(f.type): <type 'gcc.RealType'>

12.4 Constants

class gcc.Constant
Subclass of gcc.Tree indicating a constant value.

Corresponds to the tcc_constant value of enum tree_code_class within GCC’s own C sources.

constant
The actual value of this constant, as the appropriate Python type:

50 Chapter 12. gcc.Tree and its subclasses



gcc-python-plugin Documentation, Release 0.16

Subclass Python type

class ComplexCst

class FixedCst

class IntegerCst
int or long

class PtrmemCst

class RealCst
float

class StringCst
str

class VectorCst

12.5 Binary Expressions

class gcc.Binary

Subclass of gcc.Tree indicating a binary expression.

Corresponds to the tcc_binary value of enum tree_code_class within GCC’s own C sources.

location
The gcc.Location for this binary expression

classmethod get_symbol()
Get the symbol used in debug dumps for this gcc.Binary subclass, if any, as a str. A table
showing these strings can be seen here.

Has subclasses for the various kinds of binary expression. These include:

Simple arithmetic:

Subclass C/C++ operators enum tree_code

class gcc.PlusExpr
+ PLUS_EXPR

class gcc.MinusExpr
- MINUS_EXPR

class gcc.MultExpr
* MULT_EXPR

Pointer addition:

12.5. Binary Expressions 51



gcc-python-plugin Documentation, Release 0.16

Subclass C/C++ operators enum tree_code

class gcc.PointerPlusExpr
POINTER_PLUS_EXPR

Various division operations:

Subclass C/C++ operators

class gcc.TruncDivExr

class gcc.CeilDivExpr

class gcc.FloorDivExpr

class gcc.RoundDivExpr

The remainder counterparts of the above division operators:

Subclass C/C++ operators

class gcc.TruncModExpr

class gcc.CeilModExpr

class gcc.FloorModExpr

class gcc.RoundModExpr

Division for reals:

Subclass C/C++ operators

class gcc.RdivExpr

Division that does not need rounding (e.g. for pointer subtraction in C):

Subclass C/C++ operators

class gcc.ExactDivExpr

Max and min:

52 Chapter 12. gcc.Tree and its subclasses



gcc-python-plugin Documentation, Release 0.16

Subclass C/C++ operators

class gcc.MaxExpr

class gcc.MinExpr

Shift and rotate operations:

Subclass C/C++ operators

class gcc.LrotateExpr

class gcc.LshiftExpr
<<, <<=

class gcc.RrotateExpr

class gcc.RshiftExpr
>>, >>=

Bitwise binary expressions:

Subclass C/C++ operators

class gcc.BitAndExpr
&, &= (bitwise “and”)

class gcc.BitIorExpr
|, |= (bitwise “or”)

class gcc.BitXorExpr
^, ^= (bitwise “xor”)

Other gcc.Binary subclasses:

12.5. Binary Expressions 53



gcc-python-plugin Documentation, Release 0.16

Subclass Usage

class gcc.CompareExpr

class gcc.CompareGExpr

class gcc.CompareLExpr

class gcc.ComplexExpr

class gcc.MinusNomodExpr

class gcc.PlusNomodExpr

class gcc.RangeExpr

class gcc.UrshiftExpr

class gcc.VecExtractevenExpr

class gcc.VecExtractoddExpr

class gcc.VecInterleavehighExpr

class gcc.VecInterleavelowExpr

class gcc.VecLshiftExpr

class gcc.VecPackFixTruncExpr

class gcc.VecPackSatExpr

class gcc.VecPackTruncExpr

class gcc.VecRshiftExpr

class gcc.WidenMultExpr

class gcc.WidenMultHiExpr

class gcc.WidenMultLoExpr

class gcc.WidenSumExpr

54 Chapter 12. gcc.Tree and its subclasses



gcc-python-plugin Documentation, Release 0.16

12.6 Unary Expressions

class gcc.Unary
Subclass of gcc.Tree indicating a unary expression (i.e. taking a single argument).

Corresponds to the tcc_unary value of enum tree_code_class within GCC’s own C sources.

operand
The operand of this operator, as a gcc.Tree.

location
The gcc.Location for this unary expression

classmethod get_symbol()
Get the symbol used in debug dumps for this gcc.Unary subclass, if any, as a str. A table showing these
strings can be seen here.

Subclasses include:

12.6. Unary Expressions 55



gcc-python-plugin Documentation, Release 0.16

Subclass Meaning; C/C++ operators

class gcc.AbsExpr
Absolute value

class gcc.AddrSpaceConvertExpr
Conversion of pointers between address spaces

class gcc.BitNotExpr
~ (bitwise “not”)

class gcc.CastExpr

class gcc.ConjExpr
For complex types: complex conjugate

class gcc.ConstCastExpr

class gcc.ConvertExpr

class gcc.DynamicCastExpr

class gcc.FixTruncExpr
Convert real to fixed-point, via truncation

class gcc.FixedConvertExpr

class gcc.FloatExpr
Convert integer to real

class gcc.NegateExpr
Unary negation

class gcc.NoexceptExpr

class gcc.NonLvalueExpr

class gcc.NopExpr

class gcc.ParenExpr

class gcc.ReducMaxExpr

class gcc.ReducMinExpr

class gcc.ReducPlusExpr

class gcc.ReinterpretCastExpr

class gcc.StaticCastExpr

class gcc.UnaryPlusExpr56 Chapter 12. gcc.Tree and its subclasses



gcc-python-plugin Documentation, Release 0.16

12.7 Comparisons

class gcc.Comparison
Subclass of gcc.Tree for comparison expressions

Corresponds to the tcc_comparison value of enum tree_code_class within GCC’s own C sources.

location
The gcc.Location for this comparison

classmethod get_symbol()
Get the symbol used in debug dumps for this gcc.Comparison subclass, if any, as a str. A table
showing these strings can be seen here.

Subclasses include:

Subclass C/C++ operators

class EqExpr
==

class GeExpr
>=

class GtExpr
>

class LeExpr
<=

class LtExpr
<

class LtgtExpr

class NeExpr
!=

class OrderedExpr

class UneqExpr

class UngeExpr

class UngtExpr

class UnleExpr

class UnltExpr

class UnorderedExpr

12.7. Comparisons 57



gcc-python-plugin Documentation, Release 0.16

12.8 References to storage

class gcc.Reference
Subclass of gcc.Tree for expressions involving a reference to storage.

Corresponds to the tcc_reference value of enum tree_code_class within GCC’s own C sources.

location
The gcc.Location for this storage reference

classmethod get_symbol()
Get the symbol used in debug dumps for this gcc.Reference subclass, if any, as a str. A table showing
these strings can be seen here.

class gcc.ArrayRef
A subclass of gcc.Reference for expressions involving an array reference:

unsigned char buffer[4096];
...
/* The left-hand side of this gcc.GimpleAssign is a gcc.ArrayRef: */
buffer[42] = 0xff;

array
The gcc.Tree for the array within the reference (gcc.VarDecl(‘buffer’) in the example above)

index
The gcc.Tree for the index within the reference (gcc.IntegerCst(42) in the example above)

class gcc.ComponentRef
A subclass of gcc.Reference for expressions involving a field lookup.

This can mean either a direct field lookup, as in:

struct mystruct s;
...
s.idx = 42;

or dereferenced field lookup:

struct mystruct *p;
...
p->idx = 42;

target
The gcc.Tree for the container of the field (either s or *p in the examples above)

field
The gcc.FieldDecl for the field within the target.

class gcc.MemRef
A subclass of gcc.Reference for expressions involving dereferencing a pointer:

int p, *q;
...
p = *q;

operand
The gcc.Tree for the expression describing the target of the pointer

Other subclasses of gcc.Reference include:

58 Chapter 12. gcc.Tree and its subclasses



gcc-python-plugin Documentation, Release 0.16

Subclass C/C++ operators

class ArrayRangeRef

class AttrAddrExpr

class BitFieldRef

class ImagpartExpr

class IndirectRef

class MemberRef

class OffsetRef

class RealpartExpr

class ScopeRef

class TargetMemRef

class UnconstrainedArrayRef

class ViewConvertExpr

12.9 Other expression subclasses

class gcc.Expression
Subclass of gcc.Tree indicating an expression that doesn’t fit into the other categories.

Corresponds to the tcc_expression value of enum tree_code_class within GCC’s own C sources.

location
The gcc.Location for this expression

classmethod get_symbol()
Get the symbol used in debug dumps for this gcc.Expression subclass, if any, as a str. A table
showing these strings can be seen here.

Subclasses include:

12.9. Other expression subclasses 59



gcc-python-plugin Documentation, Release 0.16

Subclass C/C++ operators

class gcc.AddrExpr

class gcc.AlignofExpr

class gcc.ArrowExpr

class gcc.AssertExpr

class gcc.AtEncodeExpr

class gcc.BindExpr

class gcc.CMaybeConstExpr

class gcc.ClassReferenceExpr

class gcc.CleanupPointExpr

class gcc.CompoundExpr

class gcc.CompoundLiteralExpr

class gcc.CondExpr

class gcc.CtorInitializer

class gcc.DlExpr

class gcc.DotProdExpr

class gcc.DotstarExpr

class gcc.EmptyClassExpr

Continued on next page

60 Chapter 12. gcc.Tree and its subclasses



gcc-python-plugin Documentation, Release 0.16

Table 1 – continued from previous page
Subclass C/C++ operators

class gcc.ExcessPrecisionExpr

class gcc.ExprPackExpansion

class gcc.ExprStmt

class gcc.FdescExpr

class gcc.FmaExpr

class gcc.InitExpr

class gcc.MessageSendExpr

class gcc.ModifyExpr

class gcc.ModopExpr

class gcc.MustNotThrowExpr

class gcc.NonDependentExpr

class gcc.NontypeArgumentPack

class gcc.NullExpr

class gcc.NwExpr

class gcc.ObjTypeRef

class gcc.OffsetofExpr

Continued on next page

12.9. Other expression subclasses 61



gcc-python-plugin Documentation, Release 0.16

Table 1 – continued from previous page
Subclass C/C++ operators

class gcc.PolynomialChrec

class gcc.PostdecrementExpr

class gcc.PostincrementExpr

class gcc.PredecrementExpr

class gcc.PredictExpr

class gcc.PreincrementExpr

class gcc.PropertyRef

class gcc.PseudoDtorExpr

class gcc.RealignLoad

class gcc.SaveExpr

class gcc.ScevKnown

class gcc.ScevNotKnown

class gcc.SizeofExpr

class gcc.StmtExpr

class gcc.TagDefn

class gcc.TargetExpr

Continued on next page

62 Chapter 12. gcc.Tree and its subclasses



gcc-python-plugin Documentation, Release 0.16

Table 1 – continued from previous page
Subclass C/C++ operators

class gcc.TemplateIdExpr

class gcc.ThrowExpr

class gcc.TruthAndExpr

class gcc.TruthAndifExpr

class gcc.TruthNotExpr

class gcc.TruthOrExpr

class gcc.TruthOrifExpr

class gcc.TruthXorExpr

class gcc.TypeExpr

class gcc.TypeidExpr

class gcc.VaArgExpr

class gcc.VecCondExpr

class gcc.VecDlExpr

class gcc.VecInitExpr

class gcc.VecNwExpr

class gcc.WidenMultMinusExpr

Continued on next page

12.9. Other expression subclasses 63



gcc-python-plugin Documentation, Release 0.16

Table 1 – continued from previous page
Subclass C/C++ operators

class gcc.WidenMultPlusExpr

class gcc.WithCleanupExpr

class gcc.WithSizeExpr

TODO

12.10 Statements

class gcc.Statement
A subclass of gcc.Tree for statements

Corresponds to the tcc_statement value of enum tree_code_class within GCC’s own C sources.

class gcc.CaseLabelExpr
A subclass of gcc.Statement for the case and default labels within a switch statement.

low

• for single-valued case labels, the value, as a gcc.Tree

• for range-valued case labels, the lower bound, as a gcc.Tree

• None for the default label

high
For range-valued case labels, the upper bound, as a gcc.Tree.

None for single-valued case labels, and for the default label

target
The target of the case label, as a gcc.LabelDecl

12.11 SSA Names

class gcc.SsaName

A subclass of gcc.Tree representing a variable references during SSA analysis. New SSA names
are created every time a variable is assigned a new value.

var
The variable being referenced, as a gcc.VarDecl or gcc.ParmDecl

def_stmt
The gcc.Gimple statement which defines this SSA name

version
An int value giving the version number of this SSA name

64 Chapter 12. gcc.Tree and its subclasses



CHAPTER 13

Gimple statements

class gcc.Gimple
A statement, in GCC’s Gimple representation.

The __str__ method is implemented using GCC’s own pretty-printer for gimple, so e.g.:

str(stmt)

might return:

'D.3259 = (long unsigned int) i;'

loc
Source code location of this statement, as a gcc.Location (or None)

block
The lexical block holding this statement, as a gcc.Tree

exprtype
The type of the main expression computed by this statement, as a gcc.Tree (which might be gcc.
VoidType)

str_no_uid
A string representation of this statement, like str(), but without including any internal UIDs.

This is intended for use in selftests that compare output against some expected value, to avoid embedding
values that change into the expected output.

For example, given an assignment to a temporary, the str(stmt) for the gcc.GimpleAssign might be:

'D.3259 = (long unsigned int) i;'

where the UID “3259” is liable to change from compile to compile, whereas the stmt.str_no_uid has value:

'D.xxxx = (long unsigned int) i;'

which won’t arbitrarily change each time.

65



gcc-python-plugin Documentation, Release 0.16

walk_tree(callback, *args, **kwargs)
Visit all gcc.Tree nodes associated with this statement, potentially more than once each. This will visit
both the left-hand-side and right-hand-side operands of the statement (if any), and recursively visit any of
their child nodes.

For each node, the callback is invoked, supplying the node, and any extra positional and keyword argu-
ments passed to walk_tree:

callback(node, *args, **kwargs)

If the callback returns a true value, the traversal stops, and that gcc.Tree is the result of the call to
walk_tree. Otherwise, the traversal continues, and walk_tree eventually returns None.

gcc.Gimple has various subclasses, each corresponding to the one of the kinds of statement within GCC’s internal
representation.

The following subclasses have been wrapped for use from Python scripts:

Subclass Meaning
gcc.GimpleAsm One or more inline assembly statements
gcc.GimpleAssign An assignment of an expression to an l-value:

LHS = RHS1 EXPRCODE RHS2;

gcc.GimpleCall A function call:
[ LHS = ] FN(ARG1, ..., ARGN);

gcc.GimpleCond A conditional jump, of the form:

if (LHS EXPRCODE RHS) goto TRUE_LABEL
→˓else goto FALSE_LABEL;

gcc.GimpleLabel A label statement (jump target):

LABEL:

gcc.GimpleNop The “do nothing” statement
gcc.GimplePhi Used in the SSA passes:

LHS = PHI <ARG1, ..., ARGN>;

gcc.GimpleReturn A “return” statement:
RETURN [RETVAL];

gcc.GimpleSwitch A switch statement:
switch (INDEXVAR)
{
case LAB1: ...; break;
...
case LABN: ...; break;
default: ...

}

There are some additional subclasses that have not yet been fully wrapped by the Python plugin (email the gcc-python-
plugin’s mailing list if you’re interested in working with these):

66 Chapter 13. Gimple statements

https://fedorahosted.org/mailman/listinfo/gcc-python-plugin/
https://fedorahosted.org/mailman/listinfo/gcc-python-plugin/


gcc-python-plugin Documentation, Release 0.16

Subclass Meaning
gcc.GimpleBind A lexical scope
gcc.GimpleCatch An exception handler
gcc.GimpleDebug A debug statement
gcc.GimpleEhDispatch Used in exception-handling
gcc.GimpleEhFilter Used in exception-handling
gcc.GimpleEhMustNotThrow Used in exception-handling
gcc.GimpleErrorMark A dummy statement used for handling internal errors
gcc.GimpleGoto An unconditional jump
gcc.GimpleOmpAtomicLoad Used for implementing OpenMP
gcc.GimpleOmpAtomicStore (ditto)
gcc.GimpleOmpContinue (ditto)
gcc.GimpleOmpCritical (ditto)
gcc.GimpleOmpFor (ditto)
gcc.GimpleOmpMaster (ditto)
gcc.GimpleOmpOrdered (ditto)
gcc.GimpleOmpParallel (ditto)
gcc.GimpleOmpReturn (ditto)
gcc.GimpleOmpSection (ditto)
gcc.GimpleOmpSections (ditto)
gcc.GimpleOmpSectionsSwitch (ditto)
gcc.GimpleOmpSingle (ditto)
gcc.GimpleOmpTask (ditto)
gcc.GimplePredict A hint for branch prediction
gcc.GimpleResx Resumes execution after an exception
gcc.GimpleTry A try/catch or try/finally statement
gcc.GimpleWithCleanupExpr Internally used when generating GIMPLE

class gcc.GimpleAsm
Subclass of gcc.Gimple: a fragment of inline assembler code.

string
The inline assembler code, as a str.

class gcc.GimpleAssign
Subclass of gcc.Gimple: an assignment of an expression to an l-value:

LHS = RHS1 EXPRCODE RHS2;

lhs
Left-hand-side of the assignment, as a gcc.Tree

rhs
The operands on the right-hand-side of the expression, as a list of gcc.Tree instances (either of length
1 or length 2, depending on the expression).

exprcode
The kind of the expression, as an gcc.Tree subclass (the type itself, not an instance)

class gcc.GimpleCall
Subclass of gcc.Gimple: an invocation of a function, potentially assigning the result to an l-value:

[ LHS = ] FN(ARG1, ..., ARGN);

67

http://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html


gcc-python-plugin Documentation, Release 0.16

lhs
Left-hand-side of the assignment, as a gcc.Tree, or None

rhs
The operands on the right-hand-side of the expression, as a list of gcc.Tree instances

fn
The function being called, as a gcc.Tree

fndecl
The declaration of the function being called (if any), as a gcc.Tree

args
The arguments for the call, as a list of gcc.Tree

noreturn
(boolean) Has this call been marked as not returning? (e.g. a call to exit)

class gcc.GimpleReturn
Subclass of gcc.Gimple: a “return” statement, signifying the end of a gcc.BasicBlock:

RETURN [RETVAL];

retval

The return value, as a gcc.Tree, or None.

class gcc.GimpleCond
Subclass of gcc.Gimple: a conditional jump, of the form:

if (LHS EXPRCODE RHS) goto TRUE_LABEL else goto FALSE_LABEL

lhs
Left-hand-side of the comparison, as a gcc.Tree

exprcode
The comparison predicate, as a gcc.Comparison subclass (the type itself, not an instance). For exam-
ple, the gcc.GimpleCond statement for this fragment of C code:

if (a == b)

would have stmt.exprcode == gcc.EqExpr

rhs
The right-hand-side of the comparison, as a gcc.Tree

true_label
The gcc.LabelDecl node used as the jump target for when the comparison is true

false_label
The gcc.LabelDecl node used as the jump target for when the comparison is false

Note that a C conditional of the form:

if (some_int) {suiteA} else {suiteB}

is implicitly expanded to:

if (some_int != 0) {suiteA} else {suiteB}

and this becomes a gcc.GimpleCond with lhs as the integer, exprcode as <type ‘gcc.NeExpr’>, and rhs as
gcc.IntegerCst(0).

68 Chapter 13. Gimple statements



gcc-python-plugin Documentation, Release 0.16

class gcc.GimplePhi
Subclass of gcc.Gimple used in the SSA passes: a “PHI” or “phoney” function, for merging the various
possible values a variable can have based on the edge that we entered this gcc.BasicBlock on:

LHS = PHI <ARG1, ..., ARGN>;

lhs
Left-hand-side of the assignment, as a gcc.SsaName

args
A list of (gcc.Tree, gcc.Edge) pairs representing the possible (expr, edge) inputs. Each expr is either
a gcc.SsaName or a gcc.Constant

class gcc.GimpleSwitch
Subclass of gcc.Gimple: a switch statement, signifying the end of a gcc.BasicBlock:

switch (INDEXVAR)
{
case LAB1: ...; break;
...
case LABN: ...; break;
default: ...

}

indexvar
The index variable used by the switch statement, as a gcc.Tree

labels
The labels of the switch statement, as a list of gcc.CaseLabelExpr.

The initial label in the list is always the default.

class gcc.GimpleLabel
Subclass of gcc.Gimple, representing a “label” statement:

.. py:attribute:: labels

The underlying gcc.LabelDecl node representing this jump target

class gcc.GimpleAssign
Subclass of gcc.Gimple: an assignment of an expression to an l-value:

LHS = RHS1 EXPRCODE RHS2;

lhs
Left-hand-side of the assignment, as a gcc.Tree

rhs
The operands on the right-hand-side of the expression, as a list of gcc.Tree instances (either of length
1 or length 2, depending on the expression).

exprcode
The kind of the expression, as an gcc.Tree subclass (the type itself, not an instance)

class gcc.GimpleNop

Subclass of gcc.Gimple, representing a “do-nothing” statement (a.k.a. “no operation”).

69



gcc-python-plugin Documentation, Release 0.16

70 Chapter 13. Gimple statements



CHAPTER 14

Optimization passes

14.1 Working with existing passes

GCC organizes the optimization work it does as “passes”, and these form trees: passes can have both successors and
child passes.

There are actually five “roots” to this tree:

• The gcc.Pass holding all “lowering” passes, invoked per function within the callgraph, to turn high-level
GIMPLE into lower-level forms (this wraps all_lowering_passes within gcc/passes.c).

• The gcc.Pass holding all “small IPA” passes, working on the whole callgraph (IPA is “Interprocedural
Analysis”; all_small_ipa_passes within gcc/passes.c)

• The gcc.Pass holding all regular IPA passes (all_regular_ipa_passes within gcc/passes.c)

• The gcc.Pass holding those passes relating to link-time-optimization (all_lto_gen_passes within
gcc/passes.c)

• The “all other passes” gcc.Pass catchall, holding the majority of the passes. These are called on each function
within the call graph (all_passes within gcc/passes.c)

classmethod gcc.Pass.get_roots()
Returns a 5-tuple of gcc.Pass instances, giving the 5 top-level passes within GCC’s tree of passes, in the
order described above.

classmethod gcc.Pass.get_by_name(name)
Get the gcc.Pass instance for the pass with the given name, raising ValueError if it isn’t found

class gcc.Pass
This wraps one of GCC’s struct opt_pass * instances.

Beware: “pass” is a reserved word in Python, so use e.g. ps as a variable name for an instance of gcc.Pass

name
The name of the pass, as a string

71



gcc-python-plugin Documentation, Release 0.16

sub
The first child pass of this pass (if any)

next
The next sibling pass of this pass (if any)

properties_required

properties_provided

properties_destroyed
Currently these are int bitfields, expressing the flow of data betweeen the various passes.

They can be accessed using bitwise arithmetic:

if ps.properties_provided & gcc.PROP_cfg:
print(fn.cfg)

Here are the bitfield flags:

Mask Meaning Which
pass sets
this up?

Which
pass
clears
this?

gcc.PROP_gimple_anyIs the full GIMPLE grammar allowed? (the fron-
tend)

“expand”

gcc.PROP_gimple_lcfHas control flow been lowered? “lower” “expand”
gcc.PROP_gimple_lehHas exception-handling been lowered? “eh” “expand”
gcc.PROP_cfgDoes the gcc.Function have a non-None “cfg”? “cfg” “*free_cfg”
gcc.PROP_referenced_varsDo we have data on which functions reference

which variables? (Dataflow analysis, aka DFA).
This flag was removed in GCC 4.8

“*refer-
enced_vars”

(none)

gcc.PROP_ssaIs the GIMPLE in SSA form? “ssa” “expand”
gcc.PROP_no_crit_edgesHave all critical edges within the CFG been split? “crited” (none)
gcc.PROP_rtl Is the function now in RTL form? (rather than

GIMPLE-SSA)
“expand” “*clean_state”

gcc.PROP_gimple_lompHave OpenMP directives been lowered into explicit
calls to the runtime library (libgomp)

“om-
plower”

“expand”

gcc.PROP_cfglayoutAre we reorganizing the CFG into a more efficient
order?

“into_cfglayout”“outof_cfglayout”

gcc.PROP_gimple_lcxHave operations on complex numbers been lowered
to scalar operations?

“cplxlower” “cplxlower0”

static_pass_number
(int) The number of this pass, used as a fragment of the dump file name. This is assigned automatically for
custom passes.

dump_enabled
(boolean) Is dumping enabled for this pass? Set this attribute to True to enable dumping. Not available
from GCC 4.8 onwards

There are four subclasses of gcc.Pass:

class gcc.GimplePass
Subclass of gcc.Pass, signifying a pass called per-function on the GIMPLE representation of that function.

72 Chapter 14. Optimization passes



gcc-python-plugin Documentation, Release 0.16

class gcc.RtlPass
Subclass of gcc.Pass, signifying a pass called per-function on the RTL representation of that function.

class gcc.SimpleIpaPass
Subclass of gcc.Pass, signifying a pass called once (not per-function)

class gcc.IpaPass
Subclass of gcc.Pass, signifying a pass called once (not per-function)

14.2 Creating new optimization passes

You can create new optimization passes. This involves three steps:

• subclassing the appropriate gcc.Pass subclass (e.g. gcc.GimplePass)

• creating an instance of your subclass

• registering the instance within the pass tree, relative to another pass

Here’s an example:

# Here's the (trivial) implementation of our new pass:
class MyPass(gcc.GimplePass):

# This is optional.
# If present, it should return a bool, specifying whether or not
# to execute this pass (and any child passes)
def gate(self, fun):

print('gate() called for %r' % fun)
return True

def execute(self, fun):
print('execute() called for %r' % fun)

# We now create an instance of the class:
my_pass = MyPass(name='my-pass')

# ...and wire it up, after the "cfg" pass:
my_pass.register_after('cfg')

For gcc.GimplePass and gcc.RtlPass, the signatures of gate and execute are:

gate(self, fun)

execute(self, fun)

where fun is a gcc.Function.

For gcc.SimpleIpaPass and gcc.IpaPass, the signature of gate and execute are:

gate(self)

execute(self)

Warning: Unfortunately it doesn’t appear to be possible to implement gate() for gcc.IpaPass yet; for now, the
gate() method on such passes will not be called. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=54959

If an unhandled exception is raised within gate or execute, it will lead to a GCC error:

14.2. Creating new optimization passes 73

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=54959


gcc-python-plugin Documentation, Release 0.16

/home/david/test.c:36:1: error: Unhandled Python exception raised calling 'execute'
→˓method
Traceback (most recent call last):

File "script.py", line 79, in execute
dot = gccutils.tree_to_dot(fun)

NameError: global name 'gccutils' is not defined

gcc.Pass.register_after(name[, instance_number=0])
Given the name of another pass, register this gcc.Pass to occur immediately after that other pass.

If the other pass occurs multiple times, the pass will be inserted at the specified instance number, or at every
instance, if supplied 0.

Note: The other pass must be of the same kind as this pass. For example, if it is a subclass of gcc.
GimplePass, then this pass must also be a subclass of gcc.GimplePass.

If they don’t match, GCC won’t be able to find the other pass, giving an error like this:

cc1: fatal error: pass 'ssa' not found but is referenced by new pass 'my-ipa-pass'

where we attempted to register a gcc.IpaPass subclass relative to ‘ssa’, which is a gcc.GimplePass

gcc.Pass.register_before(name[, instance_number=0])
As above, but this pass is registered immediately before the referenced pass.

gcc.Pass.replace(name[, instance_number=0])
As above, but replace the given pass. This method is included for completeness; the result is unlikely to work
well.

14.3 Dumping per-pass information

GCC has a logging framework which supports per-pass logging (“dump files”).

By default, no logging is done; dumping must be explicitly enabled.

Dumping of passes can be enabled from the command-line in groups:

• -fdump-tree-all enables dumping for all gcc.GimplePass (both builtin, and custom ones from plugins)

• -fdump-rtl-all is similar, but for all gcc.RtlPass

• -fdump-ipa-all as above, but for all gcc.IpaPass and gcc.SimpleIpaPass

For more information, see http://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html

It’s not possible to directly enable dumping for a custom pass from the command-line (it would require adding new
GCC command-line options). However, your script can directly enable dumping for a custom pass by writing to the
dump_enabled attribute (perhaps in response to the arguments passed to plugin, or a driver script).

If enabled for a pass, then a file is written to the same directory as the output file, with a name based on the input file
and the pass number.

For example, given a custom gcc.Pass with name ‘test-pass’, then when input.c is compiled to build/output.o:

$ gcc -fdump-tree-all -o build/output.o src/input.c

then a dump file input.c.225t.test-pass will be written to the directory build. In this case, 225 is the static_pass_number
field, “t” signifies a tree pass, with the pass name appearing as the suffix.

74 Chapter 14. Optimization passes

http://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html


gcc-python-plugin Documentation, Release 0.16

gcc.dump(obj)
Write str() of the argument to the current dump file. No newlines or other whitespace are added.

Note that dumping is disabled by default; in this case, the call will do nothing.

gcc.get_dump_file_name()
Get the name of the current dump file.

If called from within a pass for which dumping is enabled, it will return the filename in string form.

If dumping is disabled for this pass, it will return None.

The typical output of a dump file will contain:

;; Function bar (bar)

(dumped information when handling function bar goes here)

;; Function foo (foo)

(dumped information when handling function foo goes here)

For example:

class TestPass(gcc.GimplePass):
def execute(self, fun):

# Dumping of strings:
gcc.dump('hello world')

# Dumping of other objects:
gcc.dump(42)

ps = TestPass(name='test-pass')
ps.register_after('cfg')
ps.dump_enabled = True

would have a dump file like this:

;; Function bar (bar)

hello world42
;; Function foo (foo)

hello world42

Alternatively, it can be simpler to create your own logging system, given that one can simply open a file and write to
it.

gcc.get_dump_base_name()
Get the base file path and name prefix for GCC’s dump files.

You can use this when creating non-standard logfiles and other output.

For example, the libcpychecker code can write HTML reports on reference-counting errors within a function,
writing the output to a file named:

filename = '%s.%s-refcount-errors.html' % (gcc.get_dump_base_name(),
fun.decl.name)

given fun, a gcc.Function.

14.3. Dumping per-pass information 75



gcc-python-plugin Documentation, Release 0.16

By default, this is the name of the input file, but within the output file’s directory. (It can be overridden using
the -dumpbase command-line option).

76 Chapter 14. Optimization passes



CHAPTER 15

Working with callbacks

One way to work with GCC from the Python plugin is via callbacks. It’s possible to register callback functions, which
will be called when various events happen during compilation.

For example, it’s possible to piggyback off of an existing GCC pass by using gcc.PLUGIN_PASS_EXECUTION to
piggyback off of an existing GCC pass.

gcc.register_callback(event_id, function[, extraargs], **kwargs)
Wire up a python function as a callback. It will be called when the given event occurs during compilation. For
some events, the callback will be called just once; for other events, the callback is called once per function
within the source code being compiled. In the latter case, the plugin passes a gcc.Function instance as a
parameter to your callback, so that you can work on it:

import gcc

def my_pass_execution_callback(*args, **kwargs):
print('my_pass_execution_callback was called: args=%r kwargs=%r'

% (args, kwargs))

gcc.register_callback(gcc.PLUGIN_PASS_EXECUTION,
my_pass_execution_callback)

The exact arguments passed to your callback vary: consult the documentation for the particular event you are
wiring up to (see below).

You can pass additional arguments when registering the callback - they will be passed to the callback after any
normal arguments. This is denoted in the descriptions of events below by *extraargs.

You can also supply keyword arguments: they will be passed on as keyword arguments to the callback. This is
denoted in the description of events below by **kwargs.

The various events are exposed as constants within the gcc module and directly wrap GCC’s plugin mechanism.

The following GCC events are currently usable from the Python plugin via gcc.register_callback():

77



gcc-python-plugin Documentation, Release 0.16

ID Meaning
gcc.PLUGIN_ATTRIBUTES For creating custom GCC attributes
gcc.PLUGIN_PRE_GENERICIZE For working with the AST in the C and C++ frontends
gcc.PLUGIN_PASS_EXECUTION Called before each pass is executed
gcc.PLUGIN_FINISH_UNIT At the end of working with a translation unit (aka source file)
gcc.PLUGIN_FINISH_TYPE After a type has been parsed
gcc.PLUGIN_FINISH_DECL After a declaration has been parsed (GCC 4.7 or later)
gcc.PLUGIN_FINISH Called before GCC exits

gcc.PLUGIN_ATTRIBUTES
Called when GCC is creating attributes for use with its non-standard __attribute__(()) syntax.

If you want to create custom GCC attributes, you should register a callback on this event and call gcc.
register_attribute() from within that callback, so that they are created at the same time as the GCC’s
built-in attributes.

No arguments are passed to your callback other than those that you supply yourself when registering it:

(*extraargs, **kwargs)

See creating custom GCC attributes for examples and more information.

gcc.PLUGIN_PASS_EXECUTION
Called when GCC is about to run one of its passes.

Arguments passed to the callback are:

(ps, fun, *extraargs, **kwargs)

where ps is a gcc.Pass and fun is a gcc.Function. Your callback will typically be called many times:
there are many passes, and each can be invoked zero or more times per function (in the code being compiled)

More precisely, some passes have a “gate check”: the pass first checks a condition, and only executes if the
condition is true.

Any callback registered with gcc.PLUGIN_PASS_EXECUTION will get called if this condition succeeds.

The actual work of the pass is done after the callbacks return.

In pseudocode:

if pass.has_gate_condition:
if !pass.test_gate_condition():

return
invoke_all_callbacks()
actually_do_the_pass()

For passes working on individual functions, all of the above is done per-function.

To connect to a specific pass, you can simply add a conditional based on the name of the pass:

import gcc

def my_callback(ps, fun):
if ps.name != '*warn_function_return':

# Not the pass we want
return

# Do something here
print(fun.decl.name)

(continues on next page)

78 Chapter 15. Working with callbacks

http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html


gcc-python-plugin Documentation, Release 0.16

(continued from previous page)

gcc.register_callback(gcc.PLUGIN_PASS_EXECUTION,
my_callback)

gcc.PLUGIN_PRE_GENERICIZE
Arguments passed to the callback are:

(fndecl, *extraargs, **kwargs)

where fndecl is a gcc.Tree representing a function declaration within the source code being compiled.

gcc.PLUGIN_FINISH_UNIT
Called when GCC has finished compiling a particular translation unit.

Arguments passed to the callback are:

(*extraargs, **kwargs)

gcc.PLUGIN_FINISH_DECL

Note: Only available in GCC 4.7 onwards.

Called when GCC has finished compiling a declaration (variables, functions, parameters to functions, types, etc)

Arguments passed to the callback are:

(decl, *extraargs, **kwargs)

where decl is a gcc.Declaration.

gcc.PLUGIN_FINISH_TYPE
Called when GCC has finished parsing a type. Arguments to the callback are:

(type, *extraargs, **kwargs)

where type is a gcc.Type.

gcc.PLUGIN_FINISH
Called before GCC exits.

Arguments passed to the callback are:

(*extraargs, **kwargs)

The remaining GCC events aren’t yet usable from the plugin; an attempt to register a callback on them will lead to an
exception being raised. Email the gcc-python-plugin’s mailing list if you’re interested in working with these):

79

https://fedorahosted.org/mailman/listinfo/gcc-python-plugin/


gcc-python-plugin Documentation, Release 0.16

ID Meaning
gcc.PLUGIN_PASS_MANAGER_SETUP To hook into pass manager
gcc.PLUGIN_INFO Information about the plugin
gcc.PLUGIN_GGC_START For interacting with GCC’s garbage collector
gcc.PLUGIN_GGC_MARKING (ditto)
gcc.PLUGIN_GGC_END (ditto)
gcc.PLUGIN_REGISTER_GGC_ROOTS (ditto)
gcc.PLUGIN_REGISTER_GGC_CACHES (ditto)
gcc.PLUGIN_START_UNIT Called before processing a translation unit (aka source file)
gcc.PLUGIN_PRAGMAS For registering pragmas
gcc.PLUGIN_ALL_PASSES_START Called before the first pass of the “all other passes” gcc.Pass

catchall
gcc.PLUGIN_ALL_PASSES_END Called after last pass of the “all other passes” gcc.Pass catchall
gcc.PLUGIN_ALL_IPA_PASSES_START Called before the first IPA pass
gcc.PLUGIN_ALL_IPA_PASSES_END Called after last IPA pass
gcc.PLUGIN_OVERRIDE_GATE Provides a way to disable a built-in pass
gcc.PLUGIN_EARLY_GIMPLE_PASSES_START
gcc.PLUGIN_EARLY_GIMPLE_PASSES_END
gcc.PLUGIN_NEW_PASS

80 Chapter 15. Working with callbacks



CHAPTER 16

Creating custom GCC attributes

GNU C supports a non-standard __attribute__(()) syntax for marking declarations with additional information that
may be of interest to the optimizer, and for checking the correctness of the code.

The GCC Python plugin allows you to create custom attributes, which may be of use to your scripts: you can use
this to annotate C code with additional information. For example, you could create a custom attribute for functions
describing the interaction of a function on mutex objects:

extern void some_function(void)
__attribute__((claims_mutex("io")));

extern void some_other_function(void)
__attribute__((releases_mutex("io")));

and use this in a custom code-checker.

Custom attributes can take string and integer parameters. For example, the above custom attributes take a single string
parameter. A custom attribute can take more than one parameter, or none at all.

To create custom attributes from Python, you need to wire up a callback response to the gcc.PLUGIN_ATTRIBUTES
event:

gcc.register_callback(gcc.PLUGIN_ATTRIBUTES,
register_our_attributes)

This callback should then call gcc.register_attribute() to associate the name of the attribute with a Python
callback to be called when the attribute is encountered in C code.

gcc.register_attribute(name, min_length, max_length, decl_required, type_required, func-
tion_type_required, callable)

Registers a new GCC attribute with the given name , usable in C source code via __attribute__(()).

Parameters

• name (str) – the name of the new attribute

• min_length (int) – the minimum number of arguments expected when the attribute is
used

81

http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html


gcc-python-plugin Documentation, Release 0.16

• max_length (int) – the maximum number of arguments expected when the attribute is
used (-1 for no maximum)

• decl_required –

• type_required –

• function_type_required –

• callable (a callable object, such as a function) – the callback to be
invoked when the attribute is seen

In this example, we can simply print when the attribute is seen, to verify that the callback mechanism is working:

def attribute_callback_for_claims_mutex(*args):
print('attribute_callback_for_claims_mutex called: args: %s' % (args, ))

def attribute_callback_for_releases_mutex(*args):
print('attribute_callback_for_releases_mutex called: args: %s' % (args,

→˓))

def register_our_attributes():
gcc.register_attribute('claims_mutex',

1, 1,
False, False, False,
attribute_callback_for_claims_mutex)

gcc.register_attribute('releases_mutex',
1, 1,
False, False, False,
attribute_callback_for_releases_mutex)

Putting it all together, here is an example Python script for the plugin:

import gcc

# Verify that we can register custom attributes:

def attribute_callback_for_claims_mutex(*args):
print('attribute_callback_for_claims_mutex called: args: %s' % (args, ))

def attribute_callback_for_releases_mutex(*args):
print('attribute_callback_for_releases_mutex called: args: %s' % (args,

→˓))

def register_our_attributes():
gcc.register_attribute('claims_mutex',

1, 1,
False, False, False,
attribute_callback_for_claims_mutex)

gcc.register_attribute('releases_mutex',
1, 1,
False, False, False,
attribute_callback_for_releases_mutex)

# Wire up our callback:
gcc.register_callback(gcc.PLUGIN_ATTRIBUTES,

register_our_attributes)

Compiling this test C source file:

82 Chapter 16. Creating custom GCC attributes



gcc-python-plugin Documentation, Release 0.16

/* Function declarations with custom attributes: */
extern some_function(void) __attribute__((claims_mutex("io")));

extern some_other_function(void) __attribute__((releases_mutex("io")));

extern yet_another_function(void) __attribute__((claims_mutex("db"),
claims_mutex("io"),
releases_mutex("io")));

leads to this output from the script:

attribute_callback_for_claims_mutex called: args: (gcc.FunctionDecl('some_
→˓function'), gcc.StringCst('io'))
attribute_callback_for_releases_mutex called: args: (gcc.FunctionDecl('some_
→˓other_function'), gcc.StringCst('io'))
attribute_callback_for_claims_mutex called: args: (gcc.FunctionDecl('yet_
→˓another_function'), gcc.StringCst('db'))
attribute_callback_for_claims_mutex called: args: (gcc.FunctionDecl('yet_
→˓another_function'), gcc.StringCst('io'))
attribute_callback_for_releases_mutex called: args: (gcc.FunctionDecl('yet_
→˓another_function'), gcc.StringCst('io'))

16.1 Using the preprocessor to guard attribute usage

Unfortunately, the above C code will only work when it is compiled with the Python script that adds the custom
attributes.

You can avoid this by using gcc.define_macro() to pre-define a preprocessor name (e.g.
“WITH_ATTRIBUTE_CLAIMS_MUTEX”) at the same time as when you define the attribute:

import gcc

def attribute_callback_for_claims_mutex(*args):
print('attribute_callback_for_claims_mutex called: args: %s' % (args, ))

def attribute_callback_for_releases_mutex(*args):
print('attribute_callback_for_releases_mutex called: args: %s' % (args,

→˓))

def register_our_attributes():
gcc.register_attribute('claims_mutex',

1, 1,
False, False, False,
attribute_callback_for_claims_mutex)

gcc.define_macro('WITH_ATTRIBUTE_CLAIMS_MUTEX')

gcc.register_attribute('releases_mutex',
1, 1,
False, False, False,
attribute_callback_for_releases_mutex)

gcc.define_macro('WITH_ATTRIBUTE_RELEASES_MUTEX')

# Wire up our callback:
gcc.register_callback(gcc.PLUGIN_ATTRIBUTES,

(continues on next page)

16.1. Using the preprocessor to guard attribute usage 83



gcc-python-plugin Documentation, Release 0.16

(continued from previous page)

register_our_attributes)

This way the user can write this C code instead, and have it work both with and without the Python script:

#if defined(WITH_ATTRIBUTE_CLAIMS_MUTEX)
#define CLAIMS_MUTEX(x) __attribute__((claims_mutex(x)))
#else
#define CLAIMS_MUTEX(x)
#endif

#if defined(WITH_ATTRIBUTE_RELEASES_MUTEX)
#define RELEASES_MUTEX(x) __attribute__((releases_mutex(x)))
#else
#define RELEASES_MUTEX(x)
#endif

/* Function declarations with custom attributes: */
extern void some_function(void)

CLAIMS_MUTEX("io");

extern void some_other_function(void)
RELEASES_MUTEX("io");

extern void yet_another_function(void)
CLAIMS_MUTEX("db")
CLAIMS_MUTEX("io")
RELEASES_MUTEX("io");

giving this output from the script:

attribute_callback_for_claims_mutex called: args: (gcc.FunctionDecl('some_
→˓function'), gcc.StringCst('io'))
attribute_callback_for_releases_mutex called: args: (gcc.FunctionDecl('some_
→˓other_function'), gcc.StringCst('io'))
attribute_callback_for_claims_mutex called: args: (gcc.FunctionDecl('yet_
→˓another_function'), gcc.StringCst('db'))
attribute_callback_for_claims_mutex called: args: (gcc.FunctionDecl('yet_
→˓another_function'), gcc.StringCst('io'))
attribute_callback_for_releases_mutex called: args: (gcc.FunctionDecl('yet_
→˓another_function'), gcc.StringCst('io'))

84 Chapter 16. Creating custom GCC attributes



CHAPTER 17

Usage example: a static analysis tool for CPython extension code

Note: This code is under heavy development, and still contains bugs. It is not unusual to see Python tracebacks when
running the checker. You should verify what the checker reports before acting on it: it could be wrong.

An example of using the plugin is a static analysis tool I’m working on which checks the C source of CPython
extension modules for common coding errors.

This was one of my main motivations for writing the GCC plugin, and I often need to extend the plugin to support this
use case.

For this reason, the checker is embedded within the gcc-python source tree itself for now:

• gcc-with-cpychecker is a harness script, which invokes GCC, adding the arguments necessary to use the Python
plugin, using the libcpychecker Python code

• the libcpychecker subdirectory contains the code that does the actual work

• various test cases (in the source tree, below tests/cpychecker)

17.1 gcc-with-cpychecker

gcc-with-cpychecker is a harness script, which invokes GCC, adding the arguments necessary to use the Python plugin,
using the libcpychecker Python code

You should be able to use the checker on arbitrary CPython extension code by replacing “gcc” with “gcc-with-
cpychecker” in your build with something like:

make CC=/path/to/built/plugin/gcc-with-cpychecker

to override the Makefile variable CC.

You may need to supply an absolute path, especially if the “make” recursively invokes “make” within subdirectories
(thus having a different working directory).

85



gcc-python-plugin Documentation, Release 0.16

Similarly, for projects that use distutils, the code is typically built with an invocation like this:

python setup.py build

This respects the environment variable CC, so typically you can replace the above with something like this in order to
add the additional checks:

CC=/path/to/built/plugin/gcc-with-cpychecker python setup.py build

17.1.1 Additional arguments for gcc-with-cpychecker

--maxtrans <int>
Set the maximum number of transitions to consider within each function before pruning the analysis tree. You
may need to increase this limit for complicated functions.

--dump-json
Dump a JSON representation of any problems. For example, given a function foo.c, if any warnings or errors
are found in function bar, a file foo.c.bar.json will be written out in JSON form.

17.2 Reference-count checking

The checker attempts to analyze all possible paths through each function, tracking the various PyObject* objects
encountered.

For each path through the function and PyObject*, it determines what the reference count ought to be at the end of
the function, issuing warnings for any that are incorrect.

The warnings are in two forms: the classic textual output to GCC’s standard error stream, together with an HTML
report indicating the flow through the function, in graphical form.

For example, given this buggy C code:

PyObject *
test(PyObject *self, PyObject *args)
{

PyObject *list;
PyObject *item;
list = PyList_New(1);
if (!list)

return NULL;
item = PyLong_FromLong(42);
/* This error handling is incorrect: it's missing an

invocation of Py_DECREF(list): */
if (!item)

return NULL;
/* This steals a reference to item; item is not leaked when we get here: */
PyList_SetItem(list, 0, item);
return list;

}

the checker emits these messages to stderr:

input.c: In function 'test':
input.c:38:1: warning: ob_refcnt of '*list' is 1 too high [enabled by default]
input.c:38:1: note: was expecting final ob_refcnt to be N + 0 (for some unknown N)

(continues on next page)

86 Chapter 17. Usage example: a static analysis tool for CPython extension code

http://docs.python.org/library/distutils.html


gcc-python-plugin Documentation, Release 0.16

(continued from previous page)

input.c:38:1: note: but final ob_refcnt is N + 1
input.c:27:10: note: PyListObject allocated at: list = PyList_New(1);
input.c:27:10: note: when PyList_New() succeeds at: list = PyList_New(1);
input.c:27:10: note: ob_refcnt is now refs: 1 + N where N >= 0
input.c:28:8: note: taking False path at: if (!list)
input.c:30:10: note: reaching: item = PyLong_FromLong(42);
input.c:30:10: note: when PyLong_FromLong() fails at: item = PyLong_FromLong(42);
input.c:33:8: note: taking True path at: if (!item)
input.c:34:9: note: reaching: return NULL;
input.c:38:1: note: returning
input.c:24:1: note: graphical error report for function 'test' written out to 'input.
→˓c.test-refcount-errors.html'

along with this HTML report (as referred to by the final line on stderr):

The HTML report is intended to be relatively self-contained, and thus easy to attach to bug tracking systems (it embeds
its own CSS inline, and references the JavaScript it uses via URLs to the web).

Note: The arrow graphics in the HTML form of the report are added by using the JSPlumb JavaScript library to
generate HTML 5 <canvas> elements. You may need a relatively modern browser to see them.

17.2. Reference-count checking 87



gcc-python-plugin Documentation, Release 0.16

Note: The checker tracks reference counts in an abstract way, in two parts: a part of the reference count that it knows
about within the context of the function, along with a second part: all of the other references held by the rest of the
program.

For example, in a call to PyInt_FromLong(0), it is assumed that if the call succeeds, the object has a reference count
of 1 + N, where N is some unknown amount of other references held by the rest of the program. The checker knows
that N >= 0.

If the object is then stored in an opaque container which is known to increment the reference count, the checker can
say that the reference count is then 1 + (N+1).

If the function then decrements the reference count (to finish transferring the reference to the opaque container), the
checker now treats the object as having a reference count of 0 + (N+1): it no longer owns any references on the object,
but the reference count is actually unchanged relative to the original 1 + N amount. It also knows, given that N >= 0
that the actual reference count is >= 1, and thus the object won’t (yet) be deallocated.

17.2.1 Assumptions and configuration

For any function returning a PyObject*, it assumes that the PyObject* should be either a new reference to an
object, or NULL (with an exception set) - the function’s caller should “own” a reference to that object. For all other
PyObject*, it assumes that there should be no references owned by the function when the function terminates.

It will assume this behavior for any function (or call through a function pointer) that returns a PyObject*.

It is possible to override this behavior using custom compiler attributes as follows:

Marking functions that return borrowed references

The checker provides a custom GCC attribute:

__attribute__((cpychecker_returns_borrowed_ref))

which can be used to mark function declarations:

/* The checker automatically defines this preprocessor name when creating
the custom attribute: */

#if defined(WITH_CPYCHECKER_RETURNS_BORROWED_REF_ATTRIBUTE)
#define CPYCHECKER_RETURNS_BORROWED_REF \
__attribute__((cpychecker_returns_borrowed_ref))

#else
#define CPYCHECKER_RETURNS_BORROWED_REF

#endif

PyObject *foo(void)
CPYCHECKER_RETURNS_BORROWED_REF;

Given the above, the checker will assume that invocations of foo() are returning a borrowed reference (or NULL),
rather than a new reference. It will also check that this is that case when verifying the implementation of foo() itself.

Marking functions that steal references to their arguments

The checker provides a custom GCC attribute:

88 Chapter 17. Usage example: a static analysis tool for CPython extension code



gcc-python-plugin Documentation, Release 0.16

__attribute__((cpychecker_steals_reference_to_arg(n)))

which can be used to mark function declarations:

/* The checker automatically defines this preprocessor name when creating
the custom attribute: */

#if defined(WITH_CPYCHECKER_STEALS_REFERENCE_TO_ARG_ATTRIBUTE)
#define CPYCHECKER_STEALS_REFERENCE_TO_ARG(n) \
__attribute__((cpychecker_steals_reference_to_arg(n)))

#else
#define CPYCHECKER_STEALS_REFERENCE_TO_ARG(n)

#endif

extern void foo(PyObject *obj)
CPYCHECKER_STEALS_REFERENCE_TO_ARG(1);

Given the above, the checker will assume that invocations of foo() steal a reference to the first argument (obj). It
will also verify that this is the case when analyzing the implementation of foo() itself.

More then one argument can be marked:

extern void bar(int i, PyObject *obj, int j, PyObject *other)
CPYCHECKER_STEALS_REFERENCE_TO_ARG(2)
CPYCHECKER_STEALS_REFERENCE_TO_ARG(4);

The argument indices are 1-based (the above example is thus referring to obj and to other).

All such arguments to the attribute should be PyObject* (or a pointer to a derived structure type).

It is assumed that such references are stolen for all possible outcomes of the function - if a function can either succeed
or fail, the reference is stolen in both possible worlds.

17.3 Error-handling checking

The checker has knowledge of much of the CPython C API, and will generate a trace tree containing many of the
possible error paths. It will issue warnings for code that appears to not gracefully handle an error.

(TODO: show example)

As noted above, it assumes that any function that returns a PyObject* can return can either NULL (setting an
exception), or a new reference. It knows about much of the other parts of the CPython C API, including many other
functions that can fail.

The checker will emit warnings for various events:

• if it detects a dereferencing of a NULL value

• if a NULL value is erroneously passed to various CPython API entrypoints which are known to implicitly deref-
erence those arguments (which would lead to a segmentation fault if that code path were executed):

input.c: In function 'test':
input.c:38:33: warning: calling PyString_AsString with NULL (gcc.VarDecl('repr_
→˓args')) as argument 1 at input.c:38
input.c:31:15: note: when PyObject_Repr() fails at: repr_args = PyObject_
→˓Repr(args);
input.c:38:33: note: PyString_AsString() invokes Py_TYPE() on the pointer via the
→˓PyString_Check() macro, thus accessing (NULL)->ob_type
input.c:27:1: note: graphical error report for function 'test' written out to
→˓'input.c.test-refcount-errors.html' (continues on next page)

17.3. Error-handling checking 89



gcc-python-plugin Documentation, Release 0.16

(continued from previous page)

• if it detects that an uninitialized local variable has been used

• if it detects access to an object that has been deallocated, or such an object being returned:

input.c: In function 'test':
input.c:43:1: warning: returning pointer to deallocated memory
input.c:29:15: note: when PyLong_FromLong() succeeds at: PyObject *tmp =
→˓PyLong_FromLong(0x1000);
input.c:31:8: note: taking False path at: if (!tmp) {
input.c:39:5: note: reaching: Py_DECREF(tmp);
input.c:39:5: note: when taking False path at: Py_DECREF(tmp);
input.c:39:5: note: reaching: Py_DECREF(tmp);
input.c:39:5: note: calling tp_dealloc on PyLongObject allocated at input.c:29
→˓at: Py_DECREF(tmp);
input.c:42:5: note: reaching: return tmp;
input.c:43:1: note: returning
input.c:39:5: note: memory deallocated here
input.c:27:1: note: graphical error report for function 'returning_dead_object'
→˓written out to 'input.c.test.html'

17.4 Errors in exception-handling

The checker keeps track of the per-thread exception state. It will issue a warning about any paths through functions
returning a PyObject* that return NULL for which the per-thread exception state has not been set:

input.c: In function 'test':
input.c:32:5: warning: returning (PyObject*)NULL without setting an exception

The checker does not emit the warning for cases where it is known that such behavior is acceptable. Currently this
covers functions used as tp_iternext callbacks of a PyTypeObject.

If you have a helper function that always sets an exception, you can mark this property using a custom GCC attribute:

__attribute__((cpychecker_sets_exception))

which can be used to mark function declarations.

/* The checker automatically defines this preprocessor name when creating
the custom attribute: */

#if defined(WITH_CPYCHECKER_SETS_EXCEPTION_ATTRIBUTE)
#define CPYCHECKER_SETS_EXCEPTION \

__attribute__((cpychecker_sets_exception))
#else
#define CPYCHECKER_SETS_EXCEPTION

#endif

extern void raise_error(const char *msg)
CPYCHECKER_SETS_EXCEPTION;

Given the above, the checker will know that an exception is set whenever a call to raise_error() occurs. It will also
verify that raise_error() actually behaves this way when compiling the implementation of raise_error.

There is an analogous attribute for the case where a function returns a negative value to signify an error, where the
exception state is set whenever a negative value is returned:

90 Chapter 17. Usage example: a static analysis tool for CPython extension code

http://docs.python.org/c-api/typeobj.html#tp_iternext


gcc-python-plugin Documentation, Release 0.16

__attribute__((cpychecker_negative_result_sets_exception))

which can be used to mark function declarations.

/* The checker automatically defines this preprocessor name when creating
the custom attribute: */

#if defined(WITH_CPYCHECKER_NEGATIVE_RESULT_SETS_EXCEPTION_ATTRIBUTE)
#define CPYCHECKER_NEGATIVE_RESULT_SETS_EXCEPTION \

__attribute__((cpychecker_negative_result_sets_exception))
#else
#define CPYCHECKER_NEGATIVE_RESULT_SETS_EXCEPTION

#endif

extern int foo(void)
CPYCHECKER_NEGATIVE_RESULT_SETS_EXCEPTION;

Given the above, the checker will know that an exception is raised whenever a call to foo returns a negative value. It
will also verify that foo actually behaves this way when compiling the implementation of foo.

The checker already knows about many of the functions within the CPython API which behave this way.

17.5 Format string checking

The checker will analyze some Python APIs that take format strings and detect mismatches between the number and
types of arguments that are passed in, as compared with those described by the format string.

It currently verifies the arguments to the following API entrypoints:

• PyArg_ParseTuple

• PyArg_ParseTupleAndKeywords

• PyArg_Parse

• Py_BuildValue

• PyObject_CallFunction

• PyObject_CallMethod

along with the variants that occur if you define PY_SSIZE_T_CLEAN before #include <Python.h>.

For example, type mismatches between int vs long can lead to flaws when the code is compiled on big-endian
64-bit architectures, where sizeof(int) != sizeof(long) and the in-memory layout of those types differs
from what you might expect.

The checker will also issue a warning if the list of keyword arguments in a call to PyArg_ParseTupleAndKeywords is
not NULL-terminated.

Note: All of the various “#” codes in these format strings are affected by the presence of the macro
PY_SSIZE_T_CLEAN. If the macro was defined before including Python.h, the various lengths for these format codes
are of C type Py_ssize_t rather than int.

This behavior was clarified in the Python 3 version of the C API documentation, though the Python 2 version of the
API docs leave the matter of which codes are affected somewhat ambiguous.

Nevertheless, the API does work this way in Python 2: all format codes with a “#” do work this way.

Internally, the C preprocessor converts such function calls into invocations of:

17.5. Format string checking 91

http://docs.python.org/c-api/arg.html
http://docs.python.org/c-api/arg.html#PyArg_ParseTuple
http://docs.python.org/c-api/arg.html#PyArg_ParseTupleAndKeywords
http://docs.python.org/c-api/arg.html#PyArg_Parse
http://docs.python.org/c-api/arg.html#Py_BuildValue
http://docs.python.org/c-api/object.html#PyObject_CallFunction
http://docs.python.org/c-api/object.html#PyObject_CallMethod


gcc-python-plugin Documentation, Release 0.16

• _PyArg_ParseTuple_SizeT

• _PyArg_ParseTupleAndKeywords_SizeT

The checker handles this behavior correctly, by checking “#” codes in the regular functions against int and those in the
modified functions against Py_ssize_t.

17.5.1 Associating PyTypeObject instances with compile-time types

The “O!” format code to PyArg_ParseTuple takes a PyTypeObject followed by the address of an object. This
second argument can point to a PyObject*, but it can also point to a pointer to a derived class.

For example, CPython’s own implementation contains code like this:

static PyObject *
unicodedata_decomposition(PyObject *self, PyObject *args)
{

PyUnicodeObject *v;

/* ...snip... */

if (!PyArg_ParseTuple(args, "O!:decomposition",
&PyUnicode_Type, &v))

/* ...etc... */

in which the input argument is written out into the PyUnicodeObject*, provided that it is indeed a unicode
instance.

When the cpychecker verifies the types in this format string it verifies that the run-time type of the PyTypeObject
matches the compile-time type (PyUnicodeObject *). It is able to do this since it contains hard-coded associa-
tions between these worlds for all of Python’s built-in types: for the above case, it “knows” that PyUnicode_Type
is associated with PyUnicodeObject.

If you need to provide a similar association for an extension type, the checker provides a custom GCC attribute:

__attribute__((cpychecker_type_object_for_typedef(typename)))

which can be used to mark PyTypeObject instance, giving the name of the typedef that PyObject instances of that type
can be safely cast to.

/* The checker automatically defines this preprocessor name when creating
the custom attribute: */

#if defined(WITH_CPYCHECKER_TYPE_OBJECT_FOR_TYPEDEF_ATTRIBUTE)
#define CPYCHECKER_TYPE_OBJECT_FOR_TYPEDEF(typename) \

__attribute__((cpychecker_type_object_for_typedef(typename)))
#else

/* This handles the case where we're compiling with a "vanilla"
compiler that doesn't supply this attribute: */

#define CPYCHECKER_TYPE_OBJECT_FOR_TYPEDEF(typename)
#endif

/* Define some PyObject subclass, as both a struct and a typedef */
struct OurObjectStruct {

PyObject_HEAD
/* other fields */

};

(continues on next page)

92 Chapter 17. Usage example: a static analysis tool for CPython extension code



gcc-python-plugin Documentation, Release 0.16

(continued from previous page)

typedef struct OurObjectStruct OurExtensionObject;

/*
Declare the PyTypeObject, using the custom attribute to associate it with
the typedef above:

*/
extern PyTypeObject UserDefinedExtension_Type
CPYCHECKER_TYPE_OBJECT_FOR_TYPEDEF("OurExtensionObject");

Given the above, the checker will associate the given PyTypeObject with the given typedef.

17.6 Verification of PyMethodDef tables

The checker will verify the types within tables of PyMethodDef initializers: the callbacks are typically cast to
PyCFunction, but the exact type needs to correspond to the flags given. For example (METH_VARARGS |
METH_KEYWORDS) implies a different function signature to the default, which the vanilla C compiler has no way of
verifying.

/*
BUG: there's a mismatch between the signature of the callback and
that implied by ml_flags below.

*/
static PyObject *widget_display(PyObject *self, PyObject *args);

static PyMethodDef widget_methods[] = {
{"display",
(PyCFunction)widget_display,
(METH_VARARGS | METH_KEYWORDS), /* ml_flags */
NULL},

{NULL, NULL, 0, NULL} /* terminator */
};

Given the above, the checker will emit an error like this:

input.c:59:6: warning: flags do not match callback signature for 'widget_display'
→˓within PyMethodDef table
input.c:59:6: note: expected ml_meth callback of type "PyObject (fn)(someobject *,
→˓PyObject *args, PyObject *kwargs)" due to METH_KEYWORDS flag (3 arguments)
input.c:59:6: note: actual type of underlying callback: struct PyObject * <Tc53>
→˓(struct PyObject *, struct PyObject *) (2 arguments)
input.c:59:6: note: see http://docs.python.org/c-api/structures.html#PyMethodDef

It will also warn about tables of PyMethodDef initializers that are lacking a NULL sentinel value to terminate the
iteration:

static PyMethodDef widget_methods[] = {
{"display",
(PyCFunction)widget_display,
0, /* ml_flags */
NULL},

/* BUG: this array is missing a NULL value to terminate
the list of methods, leading to a possible segfault

(continues on next page)

17.6. Verification of PyMethodDef tables 93

http://docs.python.org/c-api/structures.html#PyMethodDef


gcc-python-plugin Documentation, Release 0.16

(continued from previous page)

at run-time */
};

Given the above, the checker will emit this warning:

input.c:39:6: warning: missing NULL sentinel value at end of PyMethodDef table

17.7 Additional tests

• the checker will verify the argument lists of invocations of PyObject_CallFunctionObjArgs and PyOb-
ject_CallMethodObjArgs, checking that all of the arguments are of the correct type (PyObject* or subclasses),
and that the list is NULL-terminated:

input.c: In function 'test':
input.c:33:5: warning: argument 2 had type char[12] * but was expecting a
→˓PyObject* (or subclass)
input.c:33:5: warning: arguments to PyObject_CallFunctionObjArgs were not NULL-
→˓terminated

17.8 Limitations and caveats

Compiling with the checker is significantly slower than with “vanilla” gcc. I have been focussing on correctness and
features, rather than optimization. I hope that it will be possible to greatly speed up the checker via ahead-of-time
compilation of the Python code (e.g. using Cython).

The checker does not yet fully implement all of C: expect to see Python tracebacks when it encounters less common
parts of the language. (We’ll fix those bugs as we come to them)

The checker has a rather simplistic way of tracking the flow through a function: it builds a tree of all possible traces
of execution through a function. This brings with it some shortcomings:

• In order to guarantee that the analysis terminates, the checker will only track the first time through any loop, and
stop analysing that trace for subsequent iterations. This appears to be good enough for detecting many kinds of
reference leaks, especially in simple wrapper code, but is clearly suboptimal.

• In order to avoid combinatorial explosion, the checker will stop analyzing a function once the trace tree gets
sufficiently large. When it reaches this cutoff, a warning is issued:

input.c: In function 'add_module_objects':
input.c:31:1: note: this function is too complicated for the reference-count
→˓checker to analyze

To increase this limit, see the --maxtrans option.

• The checker doesn’t yet match up similar traces, and so a single bug that affects multiple traces in the trace tree
can lead to duplicate error reports.

Only a subset of the CPython API has been modelled so far. The functions known to the checker are:

PyArg_Parse and _PyArg_Parse_SizeT, PyArg_ParseTuple and _PyArg_ParseTuple_SizeT,
PyArg_ParseTupleAndKeywords and _PyArg_ParseTupleAndKeywords_SizeT, PyArg_UnpackTuple, Py_AtExit,
PyBool_FromLong, Py_BuildValue and _Py_BuildValue_SizeT, PyCallable_Check, PyCapsule_GetPointer, Py-
CObject_AsVoidPtr, PyCObject_FromVoidPtr, PyCObject_FromVoidPtrAndDesc, PyCode_New, PyDict_GetItem,

94 Chapter 17. Usage example: a static analysis tool for CPython extension code

http://docs.python.org/c-api/object.html#PyObject_CallFunctionObjArgs
http://docs.python.org/c-api/object.html#PyObject_CallMethodObjArgs
http://docs.python.org/c-api/object.html#PyObject_CallMethodObjArgs
http://docs.python.org/c-api/arg.html#PyArg_Parse
http://docs.python.org/c-api/arg.html#PyArg_ParseTuple
http://docs.python.org/c-api/arg.html#PyArg_ParseTupleAndKeywords
http://docs.python.org/c-api/arg.html#PyArg_UnpackTuple
http://docs.python.org/c-api/sys.html#Py_AtExit
http://docs.python.org/c-api/bool.html#PyBool_FromLong
http://docs.python.org/c-api/arg.html#Py_BuildValue
http://docs.python.org/c-api/object.html#PyCallable_Check
http://docs.python.org/c-api/capsule.html#PyCapsule_GetPointer
http://docs.python.org/c-api/cobject.html#PyCObject_AsVoidPtr
http://docs.python.org/c-api/cobject.html#PyCObject_AsVoidPtr
http://docs.python.org/c-api/cobject.html#PyCObject_FromVoidPtr
http://docs.python.org/c-api/cobject.html#PyCObject_FromVoidPtrAndDesc
http://docs.python.org/c-api/code.html#PyCode_New
http://docs.python.org/c-api/dict.html#PyDict_GetItem


gcc-python-plugin Documentation, Release 0.16

PyDict_GetItemString, PyDict_New, PyDict_SetItem, PyDict_SetItemString, PyDict_Size, PyErr_Format, Py-
Err_NewException, PyErr_NoMemory, PyErr_Occurred, PyErr_Print, PyErr_PrintEx, PyErr_SetFromErrno,
PyErr_SetFromErrnoWithFilename, PyErr_SetNone, PyErr_SetObject, PyErr_SetString, PyErr_WarnEx,
PyEval_CallMethod, PyEval_CallObjectWithKeywords, PyEval_InitThreads, PyEval_RestoreThread, PyE-
val_SaveThread, Py_FatalError, PyFile_SoftSpace, PyFile_WriteObject, PyFile_WriteString, Py_Finalize,
PyFrame_New, Py_GetVersion, PyGILState_Ensure, PyGILState_Release, PyImport_AddModule, PyIm-
port_AppendInittab, PyImport_ImportModule, Py_Initialize, Py_InitModule4_64, PyInt_AsLong, PyInt_FromLong,
PyList_Append, PyList_GetItem, PyList_New, PyList_SetItem, PyList_Size, PyLong_FromLong, Py-
Long_FromLongLong, PyLong_FromString, PyLong_FromVoidPtr, PyMapping_Size, PyMem_Free,
PyMem_Malloc, PyModule_AddIntConstant, PyModule_AddObject, PyModule_AddStringConstant,_, Py-
Module_GetDict, PyNumber_Int, PyNumber_Remainer, PyObject_AsFileDescriptor, PyObject_Call, PyOb-
ject_CallFunction and _PyObject_CallFunction_SizeT, PyObject_CallFunctionObjArgs, PyObject_CallMethod
and _PyObject_CallMethod_SizeT, PyObject_CallMethodObjArgs, PyObject_CallObject, PyObject_GetAttr,
PyObject_GetAttrString, PyObject_GetItem, PyObject_GenericGetAttr, PyObject_GenericSetAttr, PyOb-
ject_HasAttrString, PyObject_IsTrue, _PyObject_New, PyObject_Repr, PyObject_SetAttr, PyObject_SetAttrString,
PyObject_Str, PyOS_snprintf, PyRun_SimpleFileExFlags, PyRun_SimpleStringFlags, PySequence_Concat,
PySequence_DelItem, PySequence_GetItem, PySequence_GetSlice, PySequence_SetItem, PySequence_Size,
PyString_AsString, PyString_Concat, PyString_ConcatAndDel, PyString_FromFormat, PyString_FromString,
PyString_FromStringAndSize, PyString_InternFromString, PyString_Size, PyStructSequence_InitType, PyStruct-
Sequence_New, PySys_GetObject, PySys_SetObject, PyTraceBack_Here, PyTuple_GetItem, PyTuple_New, PyTu-
ple_Pack, PyTuple_SetItem, PyTuple_Size, PyType_IsSubtype, PyType_Ready, PyUnicodeUCS4_AsUTF8String,
PyUnicodeUCS4_DecodeUTF8, PyWeakref_GetObject

The checker also has some knowledge about these SWIG-generated functions: SWIG_Python_ErrorType,
SWIG_Python_SetErrorMsg

and of this Cython-generated function: __Pyx_GetStdout

17.9 Ideas for future tests

Here’s a list of some other C coding bugs I intend for the tool to detect:

• tp_traverse errors (which can mess up the garbage collector); missing it altogether, or omitting fields

• errors in GIL-handling

– lock/release mismatches

– missed opportunities to release the GIL (e.g. compute-intensive functions; functions that wait on
IO/syscalls)

Ideas for other tests are most welcome (patches even more so!)

We will probably need various fallbacks and suppression modes for turning off individual tests (perhaps pragmas,
perhaps compile-line flags, etc)

17.10 Reusing this code for other projects

It may be possible to reuse the analysis engine from cpychecker for other kinds of analysis - hopefully the python-
specific parts are relatively self-contained. Email the gcc-python-plugin’s mailing list if you’re interested in adding
verifiers for other kinds of code.

17.9. Ideas for future tests 95

http://docs.python.org/c-api/dict.html#PyDict_GetItemString
http://docs.python.org/c-api/dict.html#PyDict_New
http://docs.python.org/c-api/dict.html#PyDict_SetItem
http://docs.python.org/c-api/dict.html#PyDict_SetItemString
http://docs.python.org/c-api/dict.html#PyDict_Size
http://docs.python.org/c-api/exceptions.html#PyErr_Format
http://docs.python.org/c-api/exceptions.html#PyErr_NewException
http://docs.python.org/c-api/exceptions.html#PyErr_NewException
http://docs.python.org/c-api/exceptions.html#PyErr_NoMemory
http://docs.python.org/c-api/exceptions.html#PyErr_Occurred
http://docs.python.org/c-api/exceptions.html#PyErr_Print
http://docs.python.org/c-api/exceptions.html#PyErr_PrintEx
http://docs.python.org/c-api/exceptions.html#PyErr_SetFromErrno
http://docs.python.org/c-api/exceptions.html#PyErr_SetFromErrnoWithFilename
http://docs.python.org/c-api/exceptions.html#PyErr_SetNone
http://docs.python.org/c-api/exceptions.html#PyErr_SetObject
http://docs.python.org/c-api/exceptions.html#PyErr_SetString
http://docs.python.org/c-api/exceptions.html#PyErr_WarnEx
http://docs.python.org/c-api/init.html#PyEval_InitThreads
http://docs.python.org/c-api/init.html#PyEval_RestoreThread
http://docs.python.org/c-api/init.html#PyEval_SaveThread
http://docs.python.org/c-api/init.html#PyEval_SaveThread
http://docs.python.org/c-api/sys.html#Py_FatalError
http://docs.python.org/c-api/file.html#PyFile_SoftSpace
http://docs.python.org/c-api/file.html#PyFile_WriteObject
http://docs.python.org/c-api/file.html#PyFile_WriteString
http://docs.python.org/c-api/init.html#Py_Finalize
http://docs.python.org/c-api/init.html#Py_GetVersion
http://docs.python.org/c-api/init.html#PyGILState_Ensure
http://docs.python.org/c-api/init.html#PyGILState_Release
http://docs.python.org/c-api/import.html#PyImport_AddModule
http://docs.python.org/c-api/import.html#PyImport_AppendInittab
http://docs.python.org/c-api/import.html#PyImport_AppendInittab
http://docs.python.org/c-api/import.html#PyImport_ImportModule
http://docs.python.org/c-api/init.html#Py_Initialize
http://docs.python.org/c-api/int.html#PyInt_AsLong
http://docs.python.org/c-api/int.html#PyInt_FromLong
http://docs.python.org/c-api/list.html#PyList_Append
http://docs.python.org/c-api/list.html#PyList_GetItem
http://docs.python.org/c-api/list.html#PyList_New
http://docs.python.org/c-api/list.html#PyList_SetItem
http://docs.python.org/c-api/list.html#PyList_Size
http://docs.python.org/c-api/long.html#PyLong_FromLong
http://docs.python.org/c-api/long.html#PyLong_FromLongLong
http://docs.python.org/c-api/long.html#PyLong_FromLongLong
http://docs.python.org/c-api/long.html#PyLong_FromString
http://docs.python.org/c-api/long.html#PyLong_FromVoidPtr
http://docs.python.org/c-api/mapping.html#PyMapping_Size
http://docs.python.org/c-api/memory.html#PyMem_Free
http://docs.python.org/c-api/memory.html#PyMem_Malloc
http://docs.python.org/c-api/module.html#PyModule_AddIntConstant
http://docs.python.org/c-api/module.html#PyModule_AddObject
http://docs.python.org/c-api/module.html#PyModule_AddStringConstant
http://docs.python.org/c-api/module.html#PyModule_GetDict
http://docs.python.org/c-api/module.html#PyModule_GetDict
http://docs.python.org/c-api/number.html#PyNumber_Int
http://docs.python.org/c-api/number.html#PyNumber_Remainder
http://docs.python.org/c-api/object.html#PyObject_AsFileDescriptor
http://docs.python.org/c-api/object.html#PyObject_Call
http://docs.python.org/c-api/object.html#PyObject_CallFunction
http://docs.python.org/c-api/object.html#PyObject_CallFunction
http://docs.python.org/c-api/object.html#PyObject_CallFunctionObjArgs
http://docs.python.org/c-api/object.html#PyObject_CallMethod
http://docs.python.org/c-api/object.html#PyObject_CallMethod
http://docs.python.org/c-api/object.html#PyObject_CallMethodObjArgs
http://docs.python.org/c-api/object.html#PyObject_CallObject
http://docs.python.org/c-api/object.html#PyObject_GetAttr
http://docs.python.org/c-api/object.html#PyObject_GetAttrString
http://docs.python.org/c-api/object.html#PyObject_GetItem
http://docs.python.org/c-api/object.html#PyObject_GenericGetAttr
http://docs.python.org/c-api/object.html#PyObject_GenericSetAttr
http://docs.python.org/c-api/object.html#PyObject_HasAttrString
http://docs.python.org/c-api/object.html#PyObject_HasAttrString
http://docs.python.org/c-api/object.html#PyObject_IsTrue
http://docs.python.org/c-api/object.html#PyObject_Repr
http://docs.python.org/c-api/object.html#PyObject_SetAttr
http://docs.python.org/c-api/object.html#PyObject_SetAttrString
http://docs.python.org/c-api/object.html#PyObject_Str
http://docs.python.org/c-api/conversion.html#PyOS_snprintf
http://docs.python.org/c-api/veryhigh.html#PyRun_SimpleFileExFlags
http://docs.python.org/c-api/veryhigh.html#PyRun_SimpleStringFlags
http://docs.python.org/c-api/sequence.html#PySequence_Concat
http://docs.python.org/c-api/sequence.html#PySequence_DelItem
http://docs.python.org/c-api/sequence.html#PySequence_GetItem
http://docs.python.org/c-api/sequence.html#PySequence_GetSlice
http://docs.python.org/c-api/sequence.html#PySequence_SetItem
http://docs.python.org/c-api/sequence.html#PySequence_Size
http://docs.python.org/c-api/string.html#PyString_AsString
http://docs.python.org/c-api/string.html#PyString_Concat
http://docs.python.org/c-api/string.html#PyString_ConcatAndDel
http://docs.python.org/c-api/string.html#PyString_FromFormat
http://docs.python.org/c-api/string.html#PyString_FromString
http://docs.python.org/c-api/string.html#PyString_FromStringAndSize
http://docs.python.org/c-api/string.html#PyString_InternFromString
http://docs.python.org/c-api/string.html#PyString_Size
http://docs.python.org/c-api/sys.html#PySys_GetObject
http://docs.python.org/c-api/sys.html#PySys_SetObject
http://docs.python.org/c-api/tuple.html#PyTuple_GetItem
http://docs.python.org/c-api/tuple.html#PyTuple_New
http://docs.python.org/c-api/tuple.html#PyTuple_Pack
http://docs.python.org/c-api/tuple.html#PyTuple_Pack
http://docs.python.org/c-api/tuple.html#PyTuple_SetItem
http://docs.python.org/c-api/tuple.html#PyTuple_Size
http://docs.python.org/dev/c-api/type.html#PyType_IsSubtype
http://docs.python.org/dev/c-api/type.html#PyType_Ready
http://docs.python.org/c-api/unicode.html#PyUnicode_AsUTF8String
http://docs.python.org/c-api/unicode.html#PyUnicode_DecodeUTF8
http://docs.python.org/c-api/weakref.html#PyWeakref_GetObject
https://fedorahosted.org/mailman/listinfo/gcc-python-plugin/


gcc-python-plugin Documentation, Release 0.16

17.11 Common mistakes

Here are some common mistakes made using the CPython extension API, along with the fixes.

17.11.1 Missing Py_INCREF() on Py_None

The following is typically incorrect: a method implementation is required to return a new reference, but this code isn’t
incrementing the reference count on Py_None.

PyObject*
some_method(PyObject *self, PyObject *args)
{

[...snip...]

/* BUG: loses a reference to Py_None */
return Py_None;

}

If called enough, this could cause Py_None to be deallocated, crashing the interpreter:

Fatal error: deallocating None

The Py_RETURN_NONE macro takes care of incrementing the reference count for you:

PyObject*
some_method(PyObject *self, PyObject *args)
{

[...snip...]

/* Fixed version of the above: */
Py_RETURN_NONE;

}

17.11.2 Reference leak in Py_BuildValue

Py_BuildValue with “O” adds a new reference on the object for use by the new tuple, hence the following code leaks
the reference already owned on the object:

/* BUG: reference leak: */
return Py_BuildValue("O", some_object_we_own_a_ref_on);

Py_BuildValue with “N” steals the reference (and copes with it being NULL by propagating the exception):

/* Fixed version of the above: */
return Py_BuildValue("N", some_object_we_own_a_ref_on);

96 Chapter 17. Usage example: a static analysis tool for CPython extension code

http://docs.python.org/c-api/none.html#Py_RETURN_NONE
http://docs.python.org/c-api/arg.html#Py_BuildValue
http://docs.python.org/c-api/arg.html#Py_BuildValue


CHAPTER 18

Success Stories

If you use the gcc python plugin to improve your code, we’d love to hear about it.

If you want to share a success story here, please email the plugin’s mailing list.

18.1 The GNU Debugger

Bugs found in gdb by compiling it with the plugin’s gcc-with-cpychecker script:

• http://sourceware.org/bugzilla/show_bug.cgi?id=13308

• http://sourceware.org/bugzilla/show_bug.cgi?id=13309

• http://sourceware.org/bugzilla/show_bug.cgi?id=13310

• http://sourceware.org/bugzilla/show_bug.cgi?id=13316

• http://sourceware.org/ml/gdb-patches/2011-06/msg00376.html

• http://sourceware.org/ml/gdb-patches/2011-10/msg00391.html

• http://sourceware.org/bugzilla/show_bug.cgi?id=13331

Tom Tromey also wrote specialized Python scripts to use the GCC plugin to locate bugs within GDB.

One of his scripts analyzes gdb’s resource-management code, which found some resource leaks and a possible crasher:

• http://sourceware.org/ml/gdb-patches/2011-06/msg00408.html

The other generates a whole-program call-graph, annotated with information on gdb’s own exception-handling mech-
anism. A script then finds places where these exceptions were not properly integrated with gdb’s embedded Python
support:

• http://sourceware.org/ml/gdb/2011-11/msg00002.html

• http://sourceware.org/bugzilla/show_bug.cgi?id=13369

97

https://fedorahosted.org/mailman/listinfo/gcc-python-plugin/
http://sourceware.org/bugzilla/show_bug.cgi?id=13308
http://sourceware.org/bugzilla/show_bug.cgi?id=13309
http://sourceware.org/bugzilla/show_bug.cgi?id=13310
http://sourceware.org/bugzilla/show_bug.cgi?id=13316
http://sourceware.org/ml/gdb-patches/2011-06/msg00376.html
http://sourceware.org/ml/gdb-patches/2011-10/msg00391.html
http://sourceware.org/bugzilla/show_bug.cgi?id=13331
http://sourceware.org/ml/gdb-patches/2011-06/msg00408.html
http://sourceware.org/ml/gdb/2011-11/msg00002.html
http://sourceware.org/bugzilla/show_bug.cgi?id=13369


gcc-python-plugin Documentation, Release 0.16

18.2 LibreOffice

Stephan Bergmann wrote a script to analyze LibreOffice’s source code, detecting a particular usage pattern of C++
method calls:

• https://fedorahosted.org/pipermail/gcc-python-plugin/2011-December/000136.html

• https://bugs.freedesktop.org/show_bug.cgi?id=43460

18.3 psycopg

Daniele Varrazzo used the plugin’s gcc-with-cpychecker script on psycopg, the popular Python interface to Post-
greSQL, and was able to find and fix numerous subtle errors:

• https://fedorahosted.org/pipermail/gcc-python-plugin/2012-March/000229.html

• http://initd.org/psycopg/articles/2012/03/29/psycopg-245-released/

18.4 pycups

Bugs found in the Python bindings for the CUPS API by compiling it with the plugin’s gcc-with-cpychecker script:

• https://fedorahosted.org/pycups/ticket/17

18.5 python-krbV

Bug found in the Python bindings for the Kerberos 5 API by compiling it with the plugin’s gcc-with-cpychecker script:

• https://fedorahosted.org/python-krbV/ticket/1

18.6 Bugs found in itself

Bugs found and fixed in the gcc Python plugin itself, by running the the plugin’s gcc-with-cpychecker script when
compiling another copy:

• various reference counting errors:

– http://git.fedorahosted.org/git/?p=gcc-python-plugin.git;a=commitdiff;h=
a9f48fac24a66c77007d99bf23f2eab188eb909e

– http://git.fedorahosted.org/git/?p=gcc-python-plugin.git;a=commitdiff;h=
2922ad81c8e0ea954d462433ecc83d86d9ebab68

– http://git.fedorahosted.org/git/?p=gcc-python-plugin.git;a=commitdiff;h=
4642a564e03c9e2c8114bca206205ad9c8fbc308>

• bad format string: https://fedorahosted.org/pipermail/gcc-python-plugin/2011-August/000065.html

• minor const-correctness error: http://git.fedorahosted.org/git/?p=gcc-python-plugin.git;a=commitdiff;h=
4fe4a83288e04be35a96d0bfec332197fb32c358

98 Chapter 18. Success Stories

https://fedorahosted.org/pipermail/gcc-python-plugin/2011-December/000136.html
https://bugs.freedesktop.org/show_bug.cgi?id=43460
http://initd.org/psycopg/
http://www.postgresql.org/
http://www.postgresql.org/
https://fedorahosted.org/pipermail/gcc-python-plugin/2012-March/000229.html
http://initd.org/psycopg/articles/2012/03/29/psycopg-245-released/
http://cyberelk.net/tim/software/pycups/
https://fedorahosted.org/pycups/ticket/17
https://fedorahosted.org/python-krbV/
https://fedorahosted.org/python-krbV/ticket/1
http://git.fedorahosted.org/git/?p=gcc-python-plugin.git;a=commitdiff;h=a9f48fac24a66c77007d99bf23f2eab188eb909e
http://git.fedorahosted.org/git/?p=gcc-python-plugin.git;a=commitdiff;h=a9f48fac24a66c77007d99bf23f2eab188eb909e
http://git.fedorahosted.org/git/?p=gcc-python-plugin.git;a=commitdiff;h=2922ad81c8e0ea954d462433ecc83d86d9ebab68
http://git.fedorahosted.org/git/?p=gcc-python-plugin.git;a=commitdiff;h=2922ad81c8e0ea954d462433ecc83d86d9ebab68
http://git.fedorahosted.org/git/?p=gcc-python-plugin.git;a=commitdiff;h=4642a564e03c9e2c8114bca206205ad9c8fbc308
http://git.fedorahosted.org/git/?p=gcc-python-plugin.git;a=commitdiff;h=4642a564e03c9e2c8114bca206205ad9c8fbc308
https://fedorahosted.org/pipermail/gcc-python-plugin/2011-August/000065.html
http://git.fedorahosted.org/git/?p=gcc-python-plugin.git;a=commitdiff;h=4fe4a83288e04be35a96d0bfec332197fb32c358
http://git.fedorahosted.org/git/?p=gcc-python-plugin.git;a=commitdiff;h=4fe4a83288e04be35a96d0bfec332197fb32c358


CHAPTER 19

Getting Involved

The plugin’s web site is this GitHub repository:

https://github.com/davidmalcolm/gcc-python-plugin

The primary place for discussion of the plugin is the mailing list: https://fedorahosted.org/mailman/listinfo/
gcc-python-plugin

A pre-built version of the HTML documentation can be seen at:

http://readthedocs.org/docs/gcc-python-plugin/en/latest/index.html

The project’s mailing list is here: https://fedorahosted.org/mailman/listinfo/gcc-python-plugin

19.1 Ideas for using the plugin

Here are some ideas for possible uses of the plugin. Please email the plugin’s mailing list if you get any of these
working (or if you have other ideas!). Some guesses as to the usefulness and difficulty level are given in parentheses
after some of the ideas. Some of them might require new attributes, methods and/or classes to be added to the plugin
(to expose more of GCC internals), but you can always ask on the mailing list if you need help.

• extend the libcpychecker code to add checking for the standard C library. For example, given this buggy C code:

int foo() {
FILE *src, *dst;
src = fopen("source.txt", "r");
if (!src) return -1;

dst = fopen("dest.txt", "w");
if (!dst) return -1; /* <<<< BUG: this error-handling leaks "src" */

/* etc, copy src to dst (or whatever) */
}

it would be great if the checker could emit a compile-time warning about the buggy error-handling path above
(or indeed any paths through functions that leak FILE*, file descriptors, or other resources). The way to do this

99

https://github.com/davidmalcolm/gcc-python-plugin
https://fedorahosted.org/mailman/listinfo/gcc-python-plugin
https://fedorahosted.org/mailman/listinfo/gcc-python-plugin
http://readthedocs.org/docs/gcc-python-plugin/en/latest/index.html
https://fedorahosted.org/mailman/listinfo/gcc-python-plugin


gcc-python-plugin Documentation, Release 0.16

(I think) is to add a new Facet subclass to libcpychecker, analogous to the CPython facet subclass that already
exists (though the facet handling is probably rather messy right now). (useful but difficult, and a lot of work)

• extend the libcpychecker code to add checking for other libraries. For example:

– reference-count checking within glib and gobject

(useful for commonly-used C libraries but difficult, and a lot of work)

• detection of C++ variables with non-trivial constructors that will need to be run before main - globals and static
locals (useful, ought to be fairly easy)

• finding unused parameters in definitions of non-virtual functions, so that they can be removed - possibly remov-
ing further dead code. Some care would be needed for function pointers. (useful, ought to be fairly easy)

• detection of bad format strings (see e.g. https://lwn.net/Articles/478139/ )

• compile gcc’s own test suite with the cpychecker code, to reuse their coverage of C and thus shake out more
bugs in the checker (useful and easy)

• a new PyPy gc root finder, running inside GCC (useful for PyPy, but difficult)

• reimplement GCC-XML in Python (probably fairly easy, but does anyone still use GCC-XML now that GCC
supports plugins?)

• .gir generation for GObject Introspection (unknown if the GNOME developers are actually interested in this
though)

• create an interface that lets you view the changing internal representation of each function as it’s modified by
the various optimization pases: lets you see which passes change a given function, and what the changes are
(might be useful as a teaching tool, and for understanding GCC)

• add array bounds checking to C (to what extent can GCC already do this?)

• taint mode for GCC! e.g. detect usage of data from network/from disk/etc; identify certain data as untrusted,
and track how it gets used; issue a warning (very useful, but very difficult: how does untainting work? what
about pointers and memory regions? is it just too low-level?)

• implement something akin to PyPy’s pygame-based viewer, for viewing control flow graphs and tree structures:
an OpenGL-based GUI giving a fast, responsive UI for navigating the data - zooming, panning, search, etc.
(very useful, and fairly easy)

• generation of pxd files for Cython (useful for Cython, ought to be fairly easy)

• reverse-engineering a .py or .pyx file from a .c file: turning legacy C Python extension modules back into Python
or Cython sources (useful but difficult)

19.2 Tour of the C code

The plugin’s C code heavily uses Python’s extension API, and so it’s worth knowing this API if you’re going to hack
on this part of the project. A good tutorial for this can be seen here:

http://docs.python.org/extending/index.html

and detailed notes on it are here:

http://docs.python.org/c-api/index.html

Most of the C “glue” for creating classes and registering their methods and attributes is autogenerated. Simple C one-
liners tend to appear in the autogenerated C files, whereas longer implementations are broken out into a hand-written
C file.

100 Chapter 19. Getting Involved

http://developer.gnome.org/glib/
https://lwn.net/Articles/478139/
http://pypy.readthedocs.org/en/latest/config/translation.gcrootfinder.html
http://www.gccxml.org/HTML/Index.html
http://live.gnome.org/GObjectIntrospection
http://perldoc.perl.org/perlsec.html#Taint-mode
http://comments.gmane.org/gmane.comp.python.cython.user/5970
http://docs.python.org/extending/index.html
http://docs.python.org/c-api/index.html


gcc-python-plugin Documentation, Release 0.16

Adding new methods and attributes to the classes requires editing the appropriate generate-*.py script to wire up the
new entrypoint. For very simple attributes you can embed the C code directly there, but anything that’s more than a
one-liner should have its implementation in the relevant C file.

For example, to add new methods to a gcc.Cfg you’d edit:

• generate-cfg-c.py to add the new methods and attributes to the relevant tables of callbacks

• gcc-python-wrappers.h to add declarations of the new C functions

• gcc-python-cfg.c to add the implementations of the new C functions

Please try to make the API “Pythonic”.

My preference with getters is that if the implementation is a simple field lookup, it should be an attribute (the “getter”
is only implicit, existing at the C level):

print(bb.loopcount)

whereas if getting the result involves some work, it should be an explicit method of the class (where the “getter” is
explicit at the Python level):

print(bb.get_loop_count())

19.3 Using the plugin to check itself

Given that the cpychecker code implements new error-checking for Python C code, and that the underlying plugin is
itself an example of such code, it’s possible to build the plugin once, then compile it with itself (using CC=gcc-with-
cpychecker as a Makefile variable:

$ make CC=/path/to/a/clean/build/of/the/plugin/gcc-with-cpychecker

Unfortunately it doesn’t quite compile itself cleanly right now.

19.4 Test suite

There are three test suites:

• testcpybuilder.py: a minimal test suite which is used before the plugin itself is built. This verifies that the
cpybuilder code works.

• make test-suite (aka run-test-suite.py): a test harness and suite which was written for this project. See the notes
below on patches.

• make testcpychecker and testcpychecker.py: a suite based on Python’s unittest module

19.5 Debugging the plugin’s C code

The gcc binary is a harness that launches subprocesses, so it can be fiddly to debug. Exactly what it launches depend
on the inputs and options. Typically, the subprocesses it launches are (in order):

• cc1 or cc1plus: The C or C++ compiler, generating a .s assember file.

• as: The assembler, converting a .s assembler file to a .o object file.

19.3. Using the plugin to check itself 101



gcc-python-plugin Documentation, Release 0.16

• collect2: The linker, turning one or more .o files into an executable (if you’re going all the way to building an
a.out-style executable).

The easiest way to debug the plugin is to add these parameters to the gcc command line (e.g. to the end):

-wrapper gdb,--args

Note the lack of space between the comma and the –args.

e.g.:

./gcc-with-python examples/show-docs.py test.c -wrapper gdb,--args

This will invoke each of the subprocesses in turn under gdb: e.g. cc1, as and collect2; the plugin runs with cc1 (cc1plus
for C++ code).

For example:

$ ./gcc-with-cpychecker -c -I/usr/include/python2.7 demo.c -wrapper gdb,--args

GNU gdb (GDB) Fedora 7.6.50.20130731-19.fc20
[...snip...]
Reading symbols from /usr/libexec/gcc/x86_64-redhat-linux/4.8.2/cc1...Reading symbols
→˓from /usr/lib/debug/usr/libexec/gcc/x86_64-redhat-linux/4.8.2/cc1.debug...done.
done.
(gdb) run
[...etc...]

Another way to do it is to add “-v” to the gcc command line (verbose), so that it outputs the commands that it’s running.
You can then use this to launch:

$ gdb --args ACTUAL PROGRAM WITH ACTUAL ARGS

to debug the subprocess that actually loads the Python plugin.

For example:

$ gcc -v -fplugin=$(pwd)/python.so -fplugin-arg-python-script=test.py test.c

on my machine emits this:

Using built-in specs.
COLLECT_GCC=gcc
COLLECT_LTO_WRAPPER=/usr/libexec/gcc/x86_64-redhat-linux/4.6.1/lto-wrapper
Target: x86_64-redhat-linux
Configured with: ../configure --prefix=/usr --mandir=/usr/share/man --infodir=/usr/
→˓share/info --with-bugurl=http://bugzilla.redhat.com/bugzilla --enable-bootstrap --
→˓enable-shared --enable-threads=posix --enable-checking=release --with-system-zlib --
→˓enable-__cxa_atexit --disable-libunwind-exceptions --enable-gnu-unique-object --
→˓enable-linker-build-id --enable-languages=c,c++,objc,obj-c++,java,fortran,ada,go,
→˓lto --enable-plugin --enable-java-awt=gtk --disable-dssi --with-java-home=/usr/lib/
→˓jvm/java-1.5.0-gcj-1.5.0.0/jre --enable-libgcj-multifile --enable-java-maintainer-
→˓mode --with-ecj-jar=/usr/share/java/eclipse-ecj.jar --disable-libjava-multilib --
→˓with-ppl --with-cloog --with-tune=generic --with-arch_32=i686 --build=x86_64-redhat-
→˓linux
Thread model: posix
gcc version 4.6.1 20110908 (Red Hat 4.6.1-9) (GCC)
COLLECT_GCC_OPTIONS='-v' '-fplugin=/home/david/coding/gcc-python/gcc-python/
→˓contributing/python.so' '-fplugin-arg-python-script=test.py' '-mtune=generic' '-
→˓march=x86-64'

(continues on next page)

102 Chapter 19. Getting Involved



gcc-python-plugin Documentation, Release 0.16

(continued from previous page)

/usr/libexec/gcc/x86_64-redhat-linux/4.6.1/cc1 -quiet -v -iplugindir=/usr/lib/gcc/
→˓x86_64-redhat-linux/4.6.1/plugin test.c -iplugindir=/usr/lib/gcc/x86_64-redhat-
→˓linux/4.6.1/plugin -quiet -dumpbase test.c -mtune=generic -march=x86-64 -auxbase
→˓test -version -fplugin=/home/david/coding/gcc-python/gcc-python/contributing/python.
→˓so -fplugin-arg-python-script=test.py -o /tmp/cc1Z3b95.s
(output of the script follows)

This allows us to see the line in which cc1 is invoked: in the above example, it’s the final line before the output from
the script:

/usr/libexec/gcc/x86_64-redhat-linux/4.6.1/cc1 -quiet -v -iplugindir=/usr/lib/gcc/x86_
→˓64-redhat-linux/4.6.1/plugin test.c -iplugindir=/usr/lib/gcc/x86_64-redhat-linux/4.
→˓6.1/plugin -quiet -dumpbase test.c -mtune=generic -march=x86-64 -auxbase test -
→˓version -fplugin=/home/david/coding/gcc-python/gcc-python/contributing/python.so -
→˓fplugin-arg-python-script=test.py -o /tmp/cc1Z3b95.s

We can then take this line and rerun this subprocess under gdb by adding gdb –args to the front like this:

$ gdb --args /usr/libexec/gcc/x86_64-redhat-linux/4.6.1/cc1 -quiet -v -iplugindir=/
→˓usr/lib/gcc/x86_64-redhat-linux/4.6.1/plugin test.c -iplugindir=/usr/lib/gcc/x86_64-
→˓redhat-linux/4.6.1/plugin -quiet -dumpbase test.c -mtune=generic -march=x86-64 -
→˓auxbase test -version -fplugin=/home/david/coding/gcc-python/gcc-python/
→˓contributing/python.so -fplugin-arg-python-script=test.py -o /tmp/cc1Z3b95.s

This approach to obtaining a debuggable process doesn’t seem to work in the presence of ccache, in that it writes to a
temporary directory with a name that embeds the process ID each time, which then gets deleted. I’ve worked around
this by uninstalling ccache, but apparently setting:

CCACHE_DISABLE=1

before invoking gcc -v ought to also work around this.

I’ve also been running into this error from gdb:

[Thread debugging using libthread_db enabled]
Cannot find new threads: generic error

Apparently this happens when debugging a process that uses dlopen to load a library that pulls in libpthread (as does
gcc when loading in my plugin), and a workaround is to link cc1 with -lpthread

The workaround I’ve been using (to avoid the need to build my own gcc) is to use LD_PRELOAD, either like this:

LD_PRELOAD=libpthread.so.0 gdb --args ARGS GO HERE...

or this:

(gdb) set environment LD_PRELOAD libpthread.so.0

19.5.1 Handy tricks

Given a (PyGccTree*) named “self”:

(gdb) call debug_tree(self->t)

will use GCC’s prettyprinter to dump the embedded (tree*) and its descendants to stderr; it can help to put a breakpoint
on that function too, to explore the insides of that type.

19.5. Debugging the plugin’s C code 103



gcc-python-plugin Documentation, Release 0.16

19.6 Patches

The project doesn’t have any copyright assignment requirement: you get to keep copyright in any contributions you
make, though AIUI there’s an implicit licensing of such contributions under the GPLv3 or later, given that any contri-
bution is a derived work of the plugin, which is itself licensed under the GPLv3 or later. I’m not a lawyer, though.

The Python code within the project is intended to be usable with both Python 2 and Python 3 without running 2to3:
please stick to the common subset of the two languages. For example, please write print statements using parentheses:

print(42)

Under Python 2 this is a print statement with a parenthesized number: (42) whereas under Python 3 this is an invocation
of the print function.

Please try to stick PEP-8 for Python code, and to PEP-7 for C code (rather than the GNU coding conventions).

In C code, I strongly prefer to use multiline blocks throughout, even where single statements are allowed (e.g. in an
“if” statement):

if (foo()) {
bar();

}

as opposed to:

if (foo())
bar();

since this practice prevents introducing bugs when modifying such code, and the resulting “diff” is much cleaner.

A good patch ought to add test cases for the new code that you write, and documentation.

The test cases should be grouped in appropriate subdirectories of “tests”. Each new test case is a directory with an:

• input.c (or input.cc for C++)

• script.py exercising the relevant Python code

• stdout.txt containing the expected output from the script.

For more realistic examples of test code, put them below tests/examples; these can be included by reference from the
docs, so that we have documentation that’s automatically verified by run-test-suite.py, and users can use this to see the
relationship between source-code constructs and the corresponding Python objects.

More information can be seen in run-test-suite.py

By default, run-test-suite.py will invoke all the tests. You can pass it a list of paths and it run all tests found in those
paths and below.

You can generate the “gold” stdout.txt by hacking up this line in run-test-suite.py:

out.check_for_diff(out.actual, err.actual, p, args, 'stdout', 0)

so that the final 0 is a 1 (the “writeback” argument to check_for_diff ). There may need to be a non-empty stdout.txt
file in the directory for this to take effect though.

Unfortunately, this approach over-specifies the selftests, making them rather “brittle”. Improvements to this approach
would be welcome.

To directly see the GCC command line being invoked for each test, and to see the resulting stdout and stderr, add
–show to the arguments of run-test-suite.py.

104 Chapter 19. Getting Involved

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0007/


gcc-python-plugin Documentation, Release 0.16

For example:

$ python run-test-suite.py tests/plugin/diagnostics --show
tests/plugin/diagnostics: gcc -c -o tests/plugin/diagnostics/output.o -fplugin=/home/
→˓david/coding/gcc-python-plugin/python.so -fplugin-arg-python-script=tests/plugin/
→˓diagnostics/script.py -Wno-format tests/plugin/diagnostics/input.c
tests/plugin/diagnostics/input.c: In function 'main':
tests/plugin/diagnostics/input.c:23:1: error: this is an error (with positional args)
tests/plugin/diagnostics/input.c:23:1: error: this is an error (with keyword args)
tests/plugin/diagnostics/input.c:25:1: warning: this is a warning (with positional
→˓args) [-Wdiv-by-zero]
tests/plugin/diagnostics/input.c:25:1: warning: this is a warning (with keyword args)
→˓[-Wdiv-by-zero]
tests/plugin/diagnostics/input.c:23:1: error: a warning with some embedded format
→˓strings %s and %i
tests/plugin/diagnostics/input.c:25:1: warning: this is an unconditional warning
→˓[enabled by default]
tests/plugin/diagnostics/input.c:25:1: warning: this is another unconditional warning
→˓[enabled by default]
expected error was found: option must be either None, or of type gcc.Option
tests/plugin/diagnostics/input.c:23:1: note: This is the start of the function
tests/plugin/diagnostics/input.c:25:1: note: This is the end of the function
OK
1 success; 0 failures; 0 skipped

19.6. Patches 105



gcc-python-plugin Documentation, Release 0.16

106 Chapter 19. Getting Involved



CHAPTER 20

Documentation

We use Sphinx for documentation, which makes it easy to keep the documentation up-to-date. For notes on how to
document Python in the .rst form accepted by Sphinx, see e.g.:

http://sphinx.pocoo.org/domains.html#the-python-domain

107

http://sphinx.pocoo.org/domains.html#the-python-domain


gcc-python-plugin Documentation, Release 0.16

108 Chapter 20. Documentation



CHAPTER 21

Miscellanea

The following odds and ends cover the more esoteric aspects of GCC, and are documented here for completeness.
They may or may not be useful when writing scripts.

21.1 Interprocedural analysis (IPA)

GCC builds a “call graph”, recording which functions call which other functions, and it uses this for various optimiza-
tions.

It is constructed by the “*build_cgraph_edges” pass.

In case it’s of interest, it is available via the following Python API:

gcc.get_callgraph_nodes()
Get a list of all gcc.CallgraphNode instances

gccutils.callgraph_to_dot()
Return the GraphViz source for a rendering of the current callgraph, as a string.

Here’s an example of such a rendering:

class gcc.CallgraphNode

decl
The gcc.FunctionDecl for this node within the callgraph

callees
The function calls made by this function, as a list of gcc.CallgraphEdge instances

callers
The places that call this function, as a list of gcc.CallgraphEdge instances

Internally, this wraps a struct cgraph_node *

class gcc.CallgraphEdge

109



gcc-python-plugin Documentation, Release 0.16

caller
The function that makes this call, as a gcc.CallgraphNode

callee
The function that is called here, as a gcc.CallgraphNode

call_stmt
The gcc.GimpleCall statememt for the function call

Internally, this wraps a struct cgraph_edge *

21.2 Whole-program Analysis via Link-Time Optimization (LTO)

You can enable GCC’s “link time optimization” feature by passing -flto.

When this is enabled, gcc adds extra sections to the compiled .o file containing the SSA-Gimple internal representation
of every function, so that this SSA representation is available at link-time. This allows gcc to inline functions defined
in one source file into functions defined in another source file at link time.

Although the feature is intended for optimization, we can also use it for code analysis, and it’s possible to run the
Python plugin at link time.

This means we can do interprocedural analysis across multiple source files.

Warning: Running a gcc plugin from inside link-time optimization is rather novel, and you’re more likely to run
into bugs. See e.g. http://gcc.gnu.org/bugzilla/show_bug.cgi?id=54962

An invocation might look like this:

gcc \
-flto \

(continues on next page)

110 Chapter 21. Miscellanea

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=54962


gcc-python-plugin Documentation, Release 0.16

(continued from previous page)

-flto-partition=none \
-v \
-fplugin=PATH/TO/python.so \
-fplugin-arg-python-script=PATH/TO/YOUR/SCRIPT.py \
INPUT-1.c \
INPUT-2.c \
...
INPUT-n.c

Looking at the above options in turn:

• -flto enables link-time optimization

• -flto-partition=none : by default, gcc with LTO partitions the code and generates summary information for each
partition, then combines the results of the summaries (known as “WPA” and “LTRANS” respectively). This
appears to be of use for optimization, but to get at the function bodies, for static analysis, you should pass this
option, which instead gathers all the code into one process.

• -v means “verbose” and is useful for seeing all of the subprograms that gcc invokes, along with their command
line options. Given the above options, you should see invocations of cc1 (the C compiler), collect2 (the linker)
and lto1 (the link-time optimizer).

For example,

$ ./gcc-with-python \
examples/show-lto-supergraph.py \
-flto \
-flto-partition=none \
tests/examples/lto/input-*.c

will render a bitmap of the supergraph like this:

gcc.is_lto()

Return type bool

Determine whether or not we’re being invoked during link-time optimization (i.e. from within the lto1 program)

Warning: The underlying boolean is not set up until passes are being invoked: it is always False during the
initial invocation of the Python script.

21.3 Inspecting GCC’s command-line options

GCC’s command-line options are visible from Python scripts as instances of gcc.Option.

class gcc.Option
Wrapper around one of GCC’s command-line options.

You can locate a specific option using its text attribute:

option = gcc.Option('-Wdiv-by-zero')

The plugin will raise a ValueError if the option is not recognized.

It does not appear to be possible to create new options from the plugin.

21.3. Inspecting GCC’s command-line options 111



gcc-python-plugin Documentation, Release 0.16

112 Chapter 21. Miscellanea



gcc-python-plugin Documentation, Release 0.16

text
(string) The text used at the command-line to affect this option e.g. -Werror.

help
(string) The help text for this option (e.g. “Warn about uninitialized automatic variables”)

is_enabled
(bool) Is this option enabled?

Note: Unfortunately, for many options, the internal implementation makes it difficult to extract this. The
plugin will raise a NotImplementedError exception when querying this attribute for such an option.

Calling gcc.warning() with such an option will lead to GCC’s warning machinery treating the option
as enabled and emitting a warning, regardless of whether or not the option was actually enabled.

It appears that this must be fixed on an option-by-option basis within the plugin.

is_driver
(bool) Is this a driver option?

is_optimization
(bool) Does this option control an optimization?

is_target
(bool) Is this a target-specific option?

is_warning
(bool) Does this option control a warning message?

Internally, the class wraps GCC’s enum opt_code (and thus a struct cl_option)

gcc.get_option_list()
Returns a list of all gcc.Option instances.

gcc.get_option_dict()
Returns a dictionary, mapping from the option names to gcc.Option instances

21.4 Working with GCC’s tunable parameters

GCC has numerous tunable parameters, which are integer values, tweakable at the command-line by:

--param <name>=<value>

A detailed description of the current parameters (in GCC 4.6.0) can be seen at http://gcc.gnu.org/onlinedocs/gcc-4.6.0/
gcc/Optimize-Options.html#Optimize-Options (search for “–param” on that page; there doesn’t seem to be an anchor
to the list)

The parameters are visible from Python scripts using the following API:

gcc.get_parameters()
Returns a dictionary, mapping from the option names to gcc.Parameter instances

class gcc.Parameter

option
(string) The name used with the command-line –param switch to set this value

21.4. Working with GCC’s tunable parameters 113

http://gcc.gnu.org/onlinedocs/gcc-4.6.0/gcc/Optimize-Options.html#Optimize-Options
http://gcc.gnu.org/onlinedocs/gcc-4.6.0/gcc/Optimize-Options.html#Optimize-Options


gcc-python-plugin Documentation, Release 0.16

current_value
(int/long)

default_value
(int/long)

min_value
(int/long) The minimum acceptable value

max_value
(int/long) The maximum acceptable value, if greater than min_value

help
(string) A short description of the option.

21.5 Working with the preprocessor

For languages that support a preprocessor, it’s possible to inject new “built-in” macros into the compilation from a
Python script.

The motivation for this is to better support the creation of custom attributes, by creating preprocessor names that can
be tested against.

gcc.define_macro(argument)
Defines a preprocessor macro with the given argument, which may be of use for code that needs to test for the
presence of your script. The argument can either be a simple name, or a name with a definition:

gcc.define_macro("SOMETHING") # define as the empty string
gcc.define_macro("SOMETHING=72")

This function can only be called from within specific event callbacks, since it manipulates the state of the
preprocessor for a given source file.

For now, only call it in a handler for the event gcc.PLUGIN_ATTRIBUTES:

import gcc

def attribute_callback_for_claims_mutex(*args):
print('attribute_callback_for_claims_mutex called: args: %s' % (args, ))

def attribute_callback_for_releases_mutex(*args):
print('attribute_callback_for_releases_mutex called: args: %s' % (args, ))

def register_our_attributes():
gcc.register_attribute('claims_mutex',

1, 1,
False, False, False,
attribute_callback_for_claims_mutex)

gcc.define_macro('WITH_ATTRIBUTE_CLAIMS_MUTEX')

gcc.register_attribute('releases_mutex',
1, 1,
False, False, False,
attribute_callback_for_releases_mutex)

gcc.define_macro('WITH_ATTRIBUTE_RELEASES_MUTEX')

# Wire up our callback:

(continues on next page)

114 Chapter 21. Miscellanea



gcc-python-plugin Documentation, Release 0.16

(continued from previous page)

gcc.register_callback(gcc.PLUGIN_ATTRIBUTES,
register_our_attributes)

21.6 Version handling

gcc.get_gcc_version()
Get the gcc.Version for this version of GCC

gcc.get_plugin_gcc_version()
Get the gcc.Version that this plugin was compiled with

Typically the above will be equal (the plugin-loading mechanism currently checks for this, and won’t load the plugin
otherwise).

On my machine, running this currently gives:

gcc.Version(basever='4.6.0', datestamp='20110321', devphase='Red Hat 4.6.0-0.15',
→˓revision='', ...)

class gcc.Version
Information on the version of GCC being run. The various fields are accessible by name and by index.

basever
(string) On my machine, this has value:

'4.6.0'

datestamp
(string) On my machine, this has value:

'20110321'

devphase
(string) On my machine, this has value:

'Red Hat 4.6.0-0.15'

revision
(string) On my machine, this is the empty string

configuration_arguments
(string) On my machine, this has value:

'../configure --prefix=/usr --mandir=/usr/share/man --infodir=/usr/share/info
→˓--with-bugurl=http://bugzilla.redhat.com/bugzilla --enable-bootstrap --
→˓enable-shared --enable-threads=posix --enable-checking=release --with-
→˓system-zlib --enable-__cxa_atexit --disable-libunwind-exceptions --enable-
→˓gnu-unique-object --enable-linker-build-id --enable-languages=c,c++,objc,
→˓obj-c++,java,fortran,ada,go,lto --enable-plugin --enable-java-awt=gtk --
→˓disable-dssi --with-java-home=/usr/lib/jvm/java-1.5.0-gcj-1.5.0.0/jre --
→˓enable-libgcj-multifile --enable-java-maintainer-mode --with-ecj-jar=/usr/
→˓share/java/eclipse-ecj.jar --disable-libjava-multilib --with-ppl --with-
→˓cloog --with-tune=generic --with-arch_32=i686 --build=x86_64-redhat-linux'

Internally, this is a wrapper around a struct plugin_gcc_version

21.6. Version handling 115



gcc-python-plugin Documentation, Release 0.16

gcc.GCC_VERSION
(int) This corresponds to the value of GCC_VERSION within GCC’s internal code: (MAJOR * 1000) + MI-
NOR:

GCC version Value of gcc.GCC_VERSION
4.6 4006
4.7 4007
4.8 4008
4.9 4009

21.7 Register Transfer Language (RTL)

class gcc.Rtl
A wrapper around GCC’s struct rtx_def type: an expression within GCC’s Register Transfer Language

loc
The gcc.Location of this expression, or None

operands
The operands of this expression, as a tuple. The precise type of the operands will vary by subclass.

There are numerous subclasses. However, this part of the API is much less polished than the rest of the plugin.

116 Chapter 21. Miscellanea



CHAPTER 22

Release Notes

22.1 0.16

This releases adds support for gcc 7 and gcc 8 (along with continued support for gcc 4.6, 4.7, 4.8, 4.9, 5 and 6).

The upstream location for the plugin has moved from fedorahosted.org to https://github.com/davidmalcolm/
gcc-python-plugin

Additionally, this release contains the following improvements:

• add gcc.RichLocation for GCC 6 onwards

• gcc.Location

– add caret, start, finish attributes for GCC 7 onwards

– add gcc.Location.offset_column() method

22.2 0.15

This releases adds support for gcc 6 (along with continued support for gcc 4.6, 4.7, 4.8, 4.9 and 5).

Additionally, this release contains the following improvements (contributed by Tom Tromey; thanks Tom):

• document gcc.PLUGIN_FINISH_TYPE

• document gcc.EnumeralType; add ‘values’ attribute

• add unqualified_equivalent to gcc.Type subclasses

• preserve qualifiers when adding more qualifiers

• fix include for gcc 4.9.2

• handle variadic function types

117

https://github.com/davidmalcolm/gcc-python-plugin
https://github.com/davidmalcolm/gcc-python-plugin


gcc-python-plugin Documentation, Release 0.16

22.3 0.14

This releases adds support for gcc 5 (along with continued support for gcc 4.6, 4.7, 4.8 and 4.9).

22.4 0.13

The major features in this release are:

• gcc 4.9 compatibility

• a major revamping to the HTML output from gcc-with-cpychecker

New dependency: lxml. The new HTML output format uses lxml internally.

22.4.1 Changes to the GCC Python Plugin

GCC 4.9 compatibility

This release of the plugin adds support for gcc 4.9 (along with continued support for gcc 4.6, 4.7 and gcc 4.8).

Building against 4.9 requires a GCC 4.9 with the fix for GCC bug 63410 applied.

Other fixes

• fixed a build-time incompatibility with Python 3.3.0

• various internal bug fixes:

– bug in garbage-collector integration (https://bugzilla.redhat.com/show_bug.cgi?id=864314)

– the test suite is now parallelized (using multiprocessing)

• improvements to Makefile

• improvements to documentation

• add gcc.Location.in_system_header attribute

22.4.2 Improvements to gcc-with-cpychecker

The major improvement to gcc-with-cpychecker is a big revamp of the output.

A new “v2” HTML report is available, written to SOURCE_NAME.v2.html e.g. demo.c.v2.html:

The new HTML report is easier to read in the presence of complicated control flow. It also include links to the API
documentation for calls made to the CPython API.

For both old-style and new-style reports, the wording of the messages has been clarified:

• Reference-count tracking messages now largely eliminate the 0 + N where N >= gobbledegook, since this
was confusing to everyone (including me). Instead, error reports talk about references as owned vs borrowed
references e.g.

– “refs: 1 owned”

– “refs: 0 owned 1 borrowed”

resorting to ranges:

118 Chapter 22. Release Notes

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=63410
https://bugzilla.redhat.com/show_bug.cgi?id=864314


gcc-python-plugin Documentation, Release 0.16

refs: 0 owned + B borrowed where 1 <= B <= 0x80000000

only where necessary.

• Reports now add memory leak: and future use-after-free: prefixes where appropriate, to better
indicate the issue.

• Objects are referred to more in terms the user is likely to understand e.g. *dictA rather than PyDictObject.

The checker also reports better source locations in its messages e.g. in the presence of multiple return statements
(https://fedorahosted.org/gcc-python-plugin/ticket/58).

Other improvements

• Add a new test script: tests/examples/find-global-state, showing examples of finding global state in the code
being compiled.

• handle PySequence_DelItem()

• fix bug in handling of PyRun_SimpleStringFlags()

• fix issue with handling of PyArg_ParseTuple() (https://fedorahosted.org/gcc-python-plugin/ticket/50)

• although we don’t model the internals of C++ exceptions, fix things so we don’t crash with a traceback in the
absense of -fno-exceptions (https://fedorahosted.org/gcc-python-plugin/ticket/51)

22.4.3 Contributors

Thanks to Buck Golemon, Denis Efremov, Philip Herron, and Tom Tromey for their contributions to this release.

22.4. 0.13 119

https://fedorahosted.org/gcc-python-plugin/ticket/58
https://fedorahosted.org/gcc-python-plugin/ticket/50
https://fedorahosted.org/gcc-python-plugin/ticket/51


gcc-python-plugin Documentation, Release 0.16

22.5 0.12

22.5.1 Changes to the GCC Python Plugin

GCC 4.8 compatibility

This release of the plugin adds support for gcc 4.8 (along with continued support for gcc 4.7 and gcc 4.6).

gcc-c-api

The source tree contains a new component: gcc-c-api. This provides a wrapper library libgcc-c-api.so that hides much
of the details of GCC’s internals (such as the binary layout of structures, and the differences between GCC 4.6 through
4.8).

I plan for this to eventually be its own project, aiming at providing a stable API and ABI for working with GCC, once
it has proven itself in the context of the python plugin.

The API provides an XML description of itself, which should greatly simplify the job of generating bindings for
accessing GCC internals from other languages.

Link-Time Optimization support

The plugin can now be used with GCC’s Link-Time Optimization feature (LTO), allowing whole-program visualiza-
tions and analysis.

For example, you can rendering a whole-program “supergraph” of control flow graphs using this invocation:

$ ./gcc-with-python \
examples/show-lto-supergraph.py \
-flto \
-flto-partition=none \
tests/examples/lto/input-*.c

which will render a bitmap of the supergraph like this:

API improvements

Sane repr() implementations have been added to the following classes: gcc.CaseLabelExpr gcc.
GimpleLabel gcc.BasicBlock gcc.SsaName gcc.ArrayRef gcc.ComponentRef gcc.
PointerType gcc.IntegerType gcc.Location

gcc.Location instances can now be compared and sorted. They are ordered alphabetically by file, then by line
number, then by column)

Other fixes

• the Makefile has a “make install” target (at last)

• prevent forkbomb when running with CC=gcc-with-cpychecker

• fixed memory leak within gcc.Gimple.walk_tree()

120 Chapter 22. Release Notes



gcc-python-plugin Documentation, Release 0.16

22.5. 0.12 121



gcc-python-plugin Documentation, Release 0.16

• ensure that the result of gcc.Cfg.basic_blocks can’t contain any None items (which used to sometimes
happen when certain optimizations had occurred).

• run-test-suite.py now has a –show option, giving more verbose information on what the test suite is doing

• fix hashing and equality for gcc.Function and gcc.Gimple

• fix gcc.IntegerCst.__hash__() and ensure it compares sanely against int

• ensure that equivalent gcc.ComponentRef objects have the same hash and are equal

• ensure there is a unique gcc.CallgraphEdge for each underlying edge, and a unique gcc.Cfg for each underlying
control flow graph

• add a “label” attribute to gcc.GimpleLabel

• add gcc.GCC_VERSION

22.5.2 Internal improvements to gcc-with-cpychecker

• fix exception on pointer comparisons

• fix exception on int-to-float casts

• fix traceback when analyzing a callsite that discards the LHS when an Outcome.returns() a value

• fix two different exceptions when casting an integer value to a pointer

• add example of refcounting bugs to “make demo”

• fix a traceback seen on bogus uses of Py_XDECREF()

22.6 0.11

22.6.1 Changes to the GCC Python Plugin

The main change in this release is support for compiling the plugin with a C++ compiler. Recent versions of GCC 4.7
are now built with C++ rather than C, meaning that plugins must also be built with C++ (since all of GCC’s internal
symbols are name-mangled). This release fixes the plugin’s Makefile so that it autodetects whether the plugin needs
to be built with a C or C++ compiler and (I hope) does the right thing automatically. I’ve also made the necessary
changes to the C source code of the plugin so that it is compilable as either language.

This should enable the plugin to now be usable with recent builds of gcc 4.7.* (along with gcc 4.6).

The plugin doesn’t yet support gcc 4.8 prereleases.

Other fixes:

• there is now a unique gcc.Edge wrapper for each underlying edge in GCC’s control flow graphs, rather than
the old erroneous behavior of having multiple identical duplicate wrappers.

• fixed missing documentation for gcc.SsaName, and gcc.Edge’s true_value and false_value flags

22.6.2 Internal improvements to gcc-with-cpychecker

The CPython static analysis code shipped with the plugin contains a detailed description of the behavior of the CPython
API (e.g. which arguments will lead to a segfault if NULL, and why; the possible outcomes of a call and their impact
on reference-counts; etc).

122 Chapter 22. Release Notes

http://docs.python.org/c-api/
http://docs.python.org/c-api/


gcc-python-plugin Documentation, Release 0.16

However, these descriptions were tightly bound to implementation details of the checker.

This release introduces a new internal API to the analyzer for describing the possible behaviors of CPython API
entrypoints, in an attempt to decouple these descriptions from the checker, and ports many of the descriptions to using
it.

These changes shouldn’t be visible to users of the checker, but should make future maintenance much easier.

22.7 0.10

Thanks to Buck Golemon, Daniele Varrazzo, David Narvaez, Eevee, Jason Mueller, Kevin Pyle, Matt Rice and Tom
Tromey for their contributions to this release.

22.7.1 Changes to the GCC Python Plugin

• The plugin can now be used with Python 3.3 (fixing Unicode issues and dict-ordering assumptions).

• The plugin now exposes inline assembler to Python scripts via gcc.GimpleAsm.

• There is a new gccutils.sorted_callgraph() function to get the callgraph in topologically-sorted order.

• The test suite has been reworked to fix issues with checkouts on OS X case-insensitive filesystems.

• C++ support: support for locating the global namespace (aka “::”), for locating declarations and child names-
paces within a namespace, and aliases.

• gcc.Declaration now has an is_builtin attribute

• Numerous improvements to the plugin’s Makefile

22.7.2 Improvements to gcc-with-cpychecker

• By default, the refcount checker is now only run on code that includes <Python.h> (implemented by checking
if the “PyObject” typedef exists).

This greatly speeds up compilation of large projects for which the Python extension modules are only a small
subset of the source tree.

• Added some custom attributes for marking functions that set an exception, either always, or when returning a
negative value:

__attribute__((cpychecker_negative_result_sets_exception))
__attribute__((cpychecker_sets_exception))

• Improve descriptions of ranges: rather than emitting descriptions with the rather vague “value”, such as:

when considering range: 1 <= value <= 0x7fffffff

instead try to embed a descriptive name for the value, such as:

when considering range: 1 <= n <= 0x7fffffff

22.7. 0.10 123



gcc-python-plugin Documentation, Release 0.16

Mass recompile of Fedora 17’s Python extension code

I ran the reference-count checker on all of the C/C++ Python extension modules in Fedora 17 and reported hundreds
of genuine problems, many of which have been fixed.

In the process of doing this I found and fixed many problems in the checker itself. For example:

• the checker now understand’s GCC’s __builtin_expect, fixing various false reports about dereferencing NULL
pointers when running the checker on Cython-generated code in python-lxml-2.3

• added descriptions of part of SWIG and Cython’s internal APIs to suppress some false positives seen with SWIG
and Cython-generated code.

• tweak the refcount rules to fix some false positives where the checker erroneously considered the case of a
deallocation by:

Py_DECREF(obj);

where “obj” provably had other references not owned by the function being analyzed, and thus for the case
where obj->ob_refcnt > 1 the deallocation could not happen.

The plugin also now has a triaging script which can examine all of the errors within a build and provide a report,
showing all of them in prioritized categories.

The source tree now contains helper scripts for conducting such a mass recompile.

Pyscopg support

Daniele Varrazzo used the checker extensively on psycopg, the popular Python interface to PostgreSQL, and was able
to find and fix numerous subtle errors:

• https://fedorahosted.org/pipermail/gcc-python-plugin/2012-March/000229.html

• http://initd.org/psycopg/articles/2012/03/29/psycopg-245-released/

Experimental new error visualization

The checker can now dump its internal representation in JSON form, via a new –dump-json option, and an experimental
new renderer can generate HTML from this. An example can be seen here:

http://fedorapeople.org/~dmalcolm/gcc-python-plugin/2012-03-19/example/example.html

This is still a work-in-progress

C++ support

The checker is now able to run on C++ code: support has been added for methods, references, “this”, destructors, the
gcc.GimpleNop operation.

Coverage of the CPython API

The format code handling for Py_BuildValue was missing support for the following codes:

• ‘u’ and ‘u#’

• ‘f’ and ‘d’

• ‘D’

124 Chapter 22. Release Notes

http://fedoraproject.org/wiki/Features/StaticAnalysisOfPythonRefcounts
http://fedoraproject.org/wiki/Features/StaticAnalysisOfPythonRefcounts
http://initd.org/psycopg/
http://www.postgresql.org/
https://fedorahosted.org/pipermail/gcc-python-plugin/2012-March/000229.html
http://initd.org/psycopg/articles/2012/03/29/psycopg-245-released/
http://fedorapeople.org/~dmalcolm/gcc-python-plugin/2012-03-19/example/example.html


gcc-python-plugin Documentation, Release 0.16

• ‘c’

In addition, the handling for ‘s#’ and ‘z#’ had a bug in which it erroneously expected an int* or Py_ssize_t*, rather
than just a int or Py_ssize_t.

This release fixes these issues, and gives full coverage of all valid format codes for Py_BuildValue in Python 2.

This release adds heuristics for the behavior of the following CPython API entrypoints:

• PyCode_New

• PyCObject_FromVoidPtrAndDesc

• PyDict_Size

• PyErr_Clear

• PyEval_CallMethod

• Py_FatalError

• PyFile_SoftSpace, PyFile_WriteObject, and PyFile_WriteString

• PyFloat_AsDouble and PyFloat_FromDouble

• PyFrame_New

• Py_GetVersion

• PyImport_AddModule

• PyIter_Next

• PyNumber_Int, PyNumber_Remainder

• PyObject_CallObject, PyObject_GetAttr, PyObject_GetAttrString, PyObject_GetItem, PyObject_SetAttr, and
PyObject_SetAttrString

• PyOS_snprintf

• PyString_InternFromString

• PySequence_Concat, PySequence_GetSlice, PySequence_SetItem, PySequence_Size

• PySys_GetObject

• PyTraceBack_Here

• PyTuple_GetItem

• PyUnicodeUCS4_DecodeUTF8

• PyWeakref_GetObject

along with various other bugfixes.

22.8 0.9

22.8.1 Changes to the GCC Python Plugin

The plugin now works with GCC 4.7 prereleases (ticket #21).

The plugin is now integrated with GCC’s garbage collector: Python wrapper objects keep their underlying GCC objects
alive when GCC’s garbage collector runs, preventing segfaults that could occur if the underlying objects were swept
away from under us (ticket #1).

22.8. 0.9 125

https://fedorahosted.org/gcc-python-plugin/ticket/21
https://fedorahosted.org/gcc-python-plugin/ticket/1


gcc-python-plugin Documentation, Release 0.16

It’s now possible to attach Python callbacks to more GCC events: gcc.PLUGIN_FINISH ,
gcc.PLUGIN_GGC_START, gcc.PLUGIN_GGC_MARKING, gcc.PLUGIN_GGC_FINISH, gcc.
PLUGIN_FINISH_DECL (gcc 4.7)

gcc.ArrayType has gained a “range” attribute, allowing scripts to detect out-of-bounds conditions in array-
handling.

A number of memory leaks were fixed: these were found by running the plugin on itself.

Various documentation improvements (ticket #6, ticket #31).

22.8.2 Improvements to gcc-with-cpychecker

The gcc-with-cpychecker tool has received some deep internal improvements in this release.

The logic for analyzing the outcome of comparisons has been rewritten for this release, fixing some significant bugs
that could lead to the analyzer incorrectly deciding whether or not a block of code was reachable.

Similarly, the logic for detecting loops has been rewritten, elimininating a bug in which the checker would prematurely
stop analyzing loops with complicated termination conditions, and not analyze the body of the loop.

Doing so extended the reach of the checker, and enabled it to find the memory leaks referred to above.

In addition, the checker now emits more detailed information on the ranges of possible values it’s considering when a
comparison occurs against an unknown value:

input.c: In function 'test':
input.c:41:5: warning: comparison against uninitialized data (item) at input.c:41
→˓[enabled by default]
input.c:34:12: note: when PyList_New() succeeds at: result = PyList_New(len);
input.c:35:8: note: taking False path at: if (!result) {
input.c:39:12: note: reaching: for (i = 0; i < len; i++) {
input.c:39:5: note: when considering range: 1 <= value <= 0x7fffffff at: for (i =
→˓0; i < len; i++) {
input.c:39:5: note: taking True path at: for (i = 0; i < len; i++) {
input.c:41:5: note: reaching: if (!item) {

The checker should do a better job of identifying PyObject subclasses. Previously it was treating any struct begin-
ning with “ob_refcnt” and “ob_type” as a Python object (with some tweaks for python 3 and debug builds). It now
also covers structs that begin with a field that’s a PyObject (or subclass), since these are likely to also be PyObject
subclasses.

Usage of deallocated memory

Previously, the checker would warn about paths through a function that could return a pointer to deallocated memory,
or which tried to read through such a pointer. With this release, the checker will now also warn about paths through a
function in which a pointer to deallocated memory is passed to a function.

For example, given this buggy code:

extern void some_function(PyObject *);

void
test(PyObject *self, PyObject *args)
{

/* Create an object: */
PyObject *tmp = PyLong_FromLong(0x1000);

(continues on next page)

126 Chapter 22. Release Notes

http://git.fedorahosted.org/git/?p=gcc-python-plugin.git;a=commitdiff;h=4642a564e03c9e2c8114bca206205ad9c8fbc308
https://fedorahosted.org/gcc-python-plugin/ticket/6
https://fedorahosted.org/gcc-python-plugin/ticket/31


gcc-python-plugin Documentation, Release 0.16

(continued from previous page)

if (!tmp) {
return;

}

/*
Now decref the object. Depending on what other references are owned
on the object, it can reach a refcount of zero, and thus be deallocated:

*/
Py_DECREF(tmp);

/* BUG: the object being returned may have been deallocated */
some_function(tmp);

}

the checker will emit this warning:

input.c: In function 'test':
input.c:45: warning: passing pointer to deallocated memory as argument 1 of function
→˓at input.c:45: memory deallocated at input.c:42 [enabled by default]
input.c:32: note: when PyLong_FromLong() succeeds at: PyObject *tmp = PyLong_
→˓FromLong(0x1000);
input.c:34: note: taking False path at: if (!tmp) {
input.c:42: note: reaching: Py_DECREF(tmp);
input.c:42: note: when taking False path at: Py_DECREF(tmp);
input.c:42: note: reaching: Py_DECREF(tmp);
input.c:42: note: calling tp_dealloc on PyLongObject allocated at input.c:32 at:
→˓Py_DECREF(tmp);
input.c:45: note: reaching: foo(tmp);
input.c:30: note: graphical error report for function 'passing_dead_object_to_function
→˓' written out to 'input.c.test-refcount-errors.html'

Coverage of the CPython API

This release adds heuristics for the behavior of the following CPython API entrypoints:

• PyString_Concat

• PyString_ConcatAndDel

along with various other bugfixes and documentation improvements.

22.9 0.8

Thanks to David Narvaez and Tom Tromey for their code contributions to this release.

22.9.1 Changes to the GCC Python Plugin

Initial C++ support

This release adds the beginnings of C++ support: gcc.FunctionDecl instances now have a “fullname” attribute,
along with “is_public”, “is_private”, “is_protected”, “is_static” booleans.

22.9. 0.8 127



gcc-python-plugin Documentation, Release 0.16

For example, given this code:

namespace Example {
struct Coord {

int x;
int y;

};

class Widget {
public:

void set_location(const struct Coord& coord);
};

};

set_location’s fullname is:

'void Example::Widget::set_location(const Example::Coord&)'

This is only present when the plugin is invoked from the C++ frontend (cc1plus), gracefully handling the case when
we’re invoked from other language frontends.

Similarly, gcc.MethodType has gained an “argument_types” attribute.

Unconditional warnings

The gcc.warning() function in previous versions of the plugin required an “option” argument, such as gcc.
Option('-Wformat')

It’s now possible to emit an unconditional warning, by supplying None for this argument, which is now the default
value:

gcc.warning(func.start, 'this is an unconditional warning')

$ ./gcc-with-python script.py input.c
input.c:25:1: warning: this is an unconditional warning [enabled by default]

which will be an error if -Werror is supplied as a command-line argument to gcc:

$ ./gcc-with-python script.py -Werror input.c
input.c:25:1: error: this is an unconditional warning [-Werror]

22.9.2 Improvements to gcc-with-cpychecker

The “libcpychecker” Python code is a large example of using the plugin: it extends GCC with code that tries to detect
various bugs in CPython extension modules.

As of this release, all of the errors emitted by the tool have been converted to warnings. This should make gcc-with-
cpychecker more usable as a drop-in replacement for gcc: the first source file with a refcounting error should no longer
terminate the build (unless the program uses -Werror, of course).

Verification of PyMethodDef tables

This release adds checking of tables of PyMethodDef initialization values, used by Python extension modules for
binding C functions to Python methods.

128 Chapter 22. Release Notes



gcc-python-plugin Documentation, Release 0.16

The checker will verify that the signatures of the callbacks match the flags, and that the such tables are NULL termi-
nated:

input.c:48:22: warning: flags do not match callback signature for 'test' within
→˓PyMethodDef table
input.c:48:22: note: expected ml_meth callback of type "PyObject (fn)(someobject *,
→˓PyObject *)" (2 arguments)
input.c:48:22: note: actual type of underlying callback: struct PyObject * <Tc58>
→˓(struct PyObject *, struct PyObject *, struct PyObject *) (3 arguments)
input.c:48:22: note: see http://docs.python.org/c-api/structures.html#PyMethodDef

Coverage of the CPython API

When the checker warns about code that can erroneously pass NULL to various CPython API entrypoints which
are known to implicitly dereference those arguments, the checker will now add an explanatory note about why it is
complaining.

For example:

input.c: In function 'test':
input.c:38:33: warning: calling PyString_AsString with NULL (gcc.VarDecl('repr_args
→˓')) as argument 1 at input.c:38
input.c:31:15: note: when PyObject_Repr() fails at: repr_args = PyObject_
→˓Repr(args);
input.c:38:33: note: PyString_AsString() invokes Py_TYPE() on the pointer via the
→˓PyString_Check() macro, thus accessing (NULL)->ob_type
input.c:27:1: note: graphical error report for function 'test' written out to 'input.
→˓c.test-refcount-errors.html'

The checker will now verify the argument lists of invocations of PyObject_CallFunctionObjArgs and PyOb-
ject_CallMethodObjArgs, checking that all of the arguments are of the correct type (PyObject* or subclasses), and
that the list is NULL-terminated:

input.c: In function 'test':
input.c:33:5: warning: argument 2 had type char[12] * but was expecting a PyObject*
→˓(or subclass)
input.c:33:5: warning: arguments to PyObject_CallFunctionObjArgs were not NULL-
→˓terminated

This release also adds heuristics for the behavior of the following CPython API entrypoints:

• PyArg_Parse

• PyCObject_{As,From}VoidPtr

• PyCallable_Check

• PyCapsule_GetPointer

• PyErr_{NewException,SetNone,WarnEx}

• PyEval_CallObjectWithKeywords

• PyEval_{Save,Restore}Thread (and thus the Py_{BEGIN,END}_ALLOW_THREADS macros)

• PyList_{GetItem,Size}

• PyLong_FromLongLong

• PyMapping_Size

22.9. 0.8 129

http://docs.python.org/c-api/object.html#PyObject_CallFunctionObjArgs
http://docs.python.org/c-api/object.html#PyObject_CallMethodObjArgs
http://docs.python.org/c-api/object.html#PyObject_CallMethodObjArgs


gcc-python-plugin Documentation, Release 0.16

• PyModule_GetDict

• PyObject_AsFileDescriptor

• PyObject_Call{Function,FunctionObjArgs,MethodObjArgs}

• PyObject_Generic{Get,Set}Attr

• PyString_Size

• PyTuple_Pack

• PyUnicode_AsUTF8String

• Py_AtExit

Bug fixes

• gcc-with-cpychecker will now try harder on functions that are too complicated to fully handle. Previously, when
a function was too complicated for the reference-count tracker to fully analyze, it would give up, performing no
analysis. The checker will now try to obtain at least some subset of the list of all traces through the function,
and analyze those. It will still note that the function was too complicated to fully analyze.

Given that we do a depth-first traversal of the tree, and that “success” transitions are typically visited before
“failure” transitions, this means that it should at least analyze the trace in which all functions calls succeed,
together with traces in which some of the later calls fail.

• the reference-count checker now correctly handles “static” PyObject* local variables: a static PyObject * local
preserves its value from call to call, and can thus permanently own a reference.

Fixes a false-positive seen in psycopg2-2.4.2 (psycopg/psycopgmodule.c:psyco_GetDecimalType) where the re-
fcount checker erroneously reported that a reference was leaked.

• the checker for Py_BuildValue(“O”) (and “S” and “N”) was being too strict, requiring a (PyObject*). Although
it’s not explicitly documented, it’s clear that these can also accept pointers to any PyObject subclass.

Fixes a false positive seen when running gcc-with-cpychecker on coverage-3.5.1b1.tar.gz, in which cover-
age/tracer.c:Tracer_trace passes a PyFrameObject* as an argument to such a call.

• the reference-count checker now correctly suppresses reports about “leaks” for traces that call a function that
never return (such as abort()).

Fixes a false positive seen in rpm-4.9.1.2 in a handler for fatal errors: (in python/rpmts-py.c:die) where the
checker erroneously reported that a reference was leaked.

• tp_iternext callbacks are allowed to return NULL without setting an exception. The reference-count checker
will now notice if a function is used in such a role, and suppress warnings about such behavior.

• fixed various Python tracebacks (tickets #14, #19, #20, #22, #23, #24, #25)

• various other fixes

22.10 0.7

This is a major update to the GCC Python plugin.

The main example script, cpychecker, has seen numerous improvements, and has now detected many reference-
counting bugs in real-world CPython extension code. The usability and signal:noise ratio is greatly improved over
previous releases.

130 Chapter 22. Release Notes

https://fedorahosted.org/gcc-python-plugin/ticket/14
https://fedorahosted.org/gcc-python-plugin/ticket/19
https://fedorahosted.org/gcc-python-plugin/ticket/20
https://fedorahosted.org/gcc-python-plugin/ticket/22
https://fedorahosted.org/gcc-python-plugin/ticket/23
https://fedorahosted.org/gcc-python-plugin/ticket/24
https://fedorahosted.org/gcc-python-plugin/ticket/25


gcc-python-plugin Documentation, Release 0.16

22.10.1 Changes to the GCC Python Plugin

It’s now possible to create custom GCC attributes from Python, allowing you to add custom high-level annotation to
a C API, and to write scripts that will verify these properties. It’s also possible to inject preprocessor macros from
Python. Taken together, this allows code like this:

#if defined(WITH_ATTRIBUTE_CLAIMS_MUTEX)
#define CLAIMS_MUTEX(x) __attribute__((claims_mutex(x)))
#else
#define CLAIMS_MUTEX(x)
#endif

#if defined(WITH_ATTRIBUTE_RELEASES_MUTEX)
#define RELEASES_MUTEX(x) __attribute__((releases_mutex(x)))
#else
#define RELEASES_MUTEX(x)
#endif

/* Function declarations with custom attributes: */
extern void some_function(void)

CLAIMS_MUTEX("io");

extern void some_other_function(void)
RELEASES_MUTEX("io");

extern void yet_another_function(void)
CLAIMS_MUTEX("db")
CLAIMS_MUTEX("io")
RELEASES_MUTEX("io");

Other improvements:

• gcc’s debug dump facilities are now exposed via a Python API

• it’s now possible to run Python commands in GCC (rather than scripts) using -fplugin-arg-python-command

• improvements to the “source location” when reporting on an unhandled Python exception. Amongst other
tweaks, it’s now possible for a script to override this, which the cpychecker uses, so that if it can’t handle
a particular line of C code, the GCC error report gives that location before reporting the Python traceback
(making debugging much easier).

• “switch” statements are now properly wrapped at the Python level (gcc.GimpleSwitch)

• C bitfields are now wrapped at the Python level

• gcc.Type instances now have a “sizeof” attribute, and an “attributes” attribute.

• added a gcc.Gimple.walk_tree method, to make it easy to visit all nodes relating to a statement

• added a new example: spell-checking all string literals in code

22.10.2 Improvements to “cpychecker”

The “libcpychecker” Python code is a large example of using the plugin: it extends GCC with code that tries to detect
various bugs in CPython extension modules.

The cpychecker analyzes the paths that can be followed through a C function, and verifies various properties, including
reference-count handling.

22.10. 0.7 131



gcc-python-plugin Documentation, Release 0.16

As of this release, the pass has found many reference-counting bugs in real-world code. You can see a list of the bugs
that it has detected at:

http://gcc-python-plugin.readthedocs.org/en/latest/success.html

The checker is now almost capable of fully handling the C code within the gcc python plugin itself.

The checker has also been reorganized to (I hope) make it easy to add checking for other libraries and APIs.

Major rewrite of reference-count tracking

I’ve rewritten the internals of how reference counts are tracked: the code now makes a distinction betweeen all of the
reference that can be analysed within a single function, versus all of the other references that may exist in the rest of
the program.

This allows us to know for an object e.g. that the function doesn’t directly own any references, but that the reference
count is still > 0 (a “borrowed reference”), as compared to the case where the function owns a reference, but we don’t
know of any in the rest of the program (this is typical when receiving a “new reference” e.g. from a function call to a
constructor).

Within the reference-count checker, we now look for memory locations that store references to objects. If those
locations not on the stack, then the references they store are now assumed to legally count towards the ob_refcnt that
the function “owns”. This is needed in order to correctly handle e.g. the PyList_SET_ITEM() macro, which directly
writes to the list’s ob_item field, “stealing” a reference: we can detect these references, and count them towards the
ob_refcnt value.

The checker can now detect types that look like PyObject subclasses at the C level (by looking at the top-most fields),
and uses this information in various places.

The checker now exposes custom GCC attributes allowing you to mark APIs that have non-standard reference-handling
behavior:

PyObject *foo(void)
CPYCHECKER_RETURNS_BORROWED_REF;

extern void bar(int i, PyObject *obj, int j, PyObject *other)
CPYCHECKER_STEALS_REFERENCE_TO_ARG(2)
CPYCHECKER_STEALS_REFERENCE_TO_ARG(4);

It also exposes an attribute allowing you to the run-time and compile-time type information for a Python extension
class:

/* Define some PyObject subclass, as both a struct and a typedef */
struct OurObjectStruct {

PyObject_HEAD
/* other fields */

};
typedef struct OurObjectStruct OurExtensionObject;

/*
Declare the PyTypeObject, using the custom attribute to associate it with
the typedef above:

*/
extern PyTypeObject UserDefinedExtension_Type
CPYCHECKER_TYPE_OBJECT_FOR_TYPEDEF("OurExtensionObject");

132 Chapter 22. Release Notes

http://gcc-python-plugin.readthedocs.org/en/latest/success.html


gcc-python-plugin Documentation, Release 0.16

Function calls with NULL-pointer arguments

The checker knows about various CPython API hooks that will crash on NULL pointer arguments, and will emit
warnings when it can determine a path through the code that will lead to a definite call with a NULL value.

Dereferences of uninitialized pointers

The checker will now complain about paths through a function for which it can prove that an uninitialized pointer will
be dereferenced.

Error-reporting improvements

The error-reporting machinery can generate HTML reports: see e.g.: http://readthedocs.org/docs/gcc-python-plugin/
en/latest/cpychecker.html#reference-count-checking and http://dmalcolm.livejournal.com/6560.html

The checker can now annotate its HTML (and textual) reports with information showing how some pertinent aspect of
the program’s state changes during a particular path through a function.

For example, when reporting on reference-counting errors, the HTML report showing the flow through the function
will now display all changes to an object’s ob_refcnt, together with all changes to what the value ought to be (e.g. due
to pointers being stored to persistent memory locations):

22.10. 0.7 133

http://readthedocs.org/docs/gcc-python-plugin/en/latest/cpychecker.html#reference-count-checking
http://readthedocs.org/docs/gcc-python-plugin/en/latest/cpychecker.html#reference-count-checking
http://dmalcolm.livejournal.com/6560.html


gcc-python-plugin Documentation, Release 0.16

Similarly, when reporting on exception-handling errors, it now displays the “history” of changes to the thread-local
exception state.

There’s also a debug mode which dumps _everything_ that changes within the report, which is helpful for debugging
the checker itself.

The error report will attempt to use the most representative name for a leaked object, using a variable name or a C
expression fragment as appropriate.

The checker will attempt to combine duplicate error reports, so that it will only emit one error for all of the various
traces of execution that exhibit a particular reference-counting bug.

Finally, when writing out an HTML report, the path to the HTML is now noted within gcc’s regular stderr messages.

Signal:noise ratio improvements

To suppress various false-positives that I commonly ran into on real code, the checker now makes certain assumptions:

• When encountering an unknown function that returns a PyObject*, the checker assumes that it will either return
a new reference to a sane object (with a sane ob_type), or return NULL and set the thread-local exception state.

• The checker assumes that a PyObject* argument to a function is non-NULL and has a >0 refcount, and has a
sane ob_type (e.g. with a sane refcount and tp_dealloc)

• When dereferencing a pointer that it has no knowledge about (e.g. a pointer field in a structure), the checker now
assumes that it’s non-NULL, unless it knows that NULL is a definite possibility i.e. it optimistically assumes
that you know what you’re doing (this could be turned into a command-line option). Note that for the cases
where we know that the pointer can _definitely_ be NULL, an error will still be reported (e.g. when considering
the various possible return values for a function known to be able to return NULL).

Coverage of the CPython API

I’ve gone through much of the CPython API, “teaching” the checker about the reference-count semantics of each API
call (and which calls will crash if fed a NULL pointer). This involves writing a simple fragment of Python code for
each function, which describes the various different affects that the call can have on the internal state within the callee.

This release adds support for calls to the following:

• _PyObject_New

• Py_{Initialize|Finalize}

• Py_InitModule4

• PyArg_ParseTuple[AndKeywords], and the PY_SSIZE_T_CLEAN variants (only partial coverage so far:
“O”, “O!” should work though)

• PyArg_UnpackTuple

• PyBool_FromLong

• Py_BuildValue and the PY_SSIZE_T_CLEAN variant (only partial coverage so far)

• PyDict_{GetItem,GetItemString,New,SetItem,SetItemString}

• PyErr_{Format,NoMemory,Occurred,Print,PrintEx,SetFromErrno[WithFilename], SetObject,SetString}

• PyEval_InitThreads

• PyGILState_{Ensure,Release}

• PyImport_{AppendInittab,ImportModule}

134 Chapter 22. Release Notes



gcc-python-plugin Documentation, Release 0.16

• PyInt_{AsLong,FromLong}

• PyList_Append

• PyLong_{FromString,FromVoidPtr}

• PyMem_{Malloc,Free}

• PyModule_Add{IntConstant,Object,StringConstant}

• PyObject_{Call,CallMethod,HasAttrString,IsTrue,Repr,Str}

• PyRun_{SimpleFileExFlags,SimpleStringFlags}

• PySequence_GetItem

• PyString_{AsString,FromFormat,FromString,FromStringAndSize}

• PyStructSequence_{InitType,New}

• PySys_SetObject

• PyTuple_{New,SetItem,Size}

• PyType_{IsSubtype,Ready}

I’ve been targetting those API entrypoints that I use myself in the plugin; this is one area which is particularly amenable
to patching, for anyone who wants to get involved. I’ve also added a (disabled) hook that complains about Python API
entrypoints that weren’t explicitly handled, to make it easy to find gaps in our coverage of the CPython API.

Other user-visible improvments

• There’s now a “gcc-with-cpychecker” harness, to make it easier to invoke GCC with the cpychecker code from
e.g. Makefiles

• The checker now respects __attribute((nonnull)) on function arguments when detecting NULL pointers

• Handle functions that don’t return (e.g. “exit”)

• Number the unknown heap regions, to clarify things when there’s more than one

Internal improvements

• The cpychecker now has some protection against combinatorial explosion for functions that have very large
numbers of possible routes through them. For such functions, the checker will emit a note on stderr and not
attempt to find reference-counting bugs in the function.

• The cpychecker is now done as a custom pass (rather than by wiring up a callback associated with every pass)

• I’ve tuned the logging within the checker, eliminating some CPU/memory consumption issues seen when
analysing complicated C code. In particular, the log message arguments are now only expanded when logging
is enabled (previously this was happening all the time).

• Lots of other internal improvements and bug fixes (e.g. handling of arrays vs pointers, static vs auto local
variables, add missing handlers for various kinds of C expression, lots of work on improving the readability of
error messages)

22.10. 0.7 135



gcc-python-plugin Documentation, Release 0.16

136 Chapter 22. Release Notes



CHAPTER 23

Appendices

The following contain tables of reference material that may be useful when writing scripts.

23.1 All of GCC’s passes

This diagram shows the various GCC optimization passes, arranged vertically, showing child passes via indentation.

The lifetime of the various properties that they maintain is shown, giving the pass that initially creates the data (if any),
the pass that destroys it (if any), and each pass that requires a particular property (based on the PROP_* flags).

These tables contain the same information. The diagram and tables were autogenerated, using GCC 4.6.0

23.1.1 The lowering passes

Pass Name Required properties Provided properties Destroyed properties
*warn_unused_result gimple_any
*diagnose_omp_blocks gimple_any
mudflap1 gimple_any
omplower gimple_any gimple_lomp
lower gimple_any gimple_lcf
ehopt gimple_lcf
eh gimple_lcf gimple_leh
cfg gimple_leh cfg
*warn_function_return cfg
*build_cgraph_edges cfg

137



gcc-python-plugin Documentation, Release 0.16

23.1.2 The “small IPA” passes

Pass Name Required properties Provided properties Destroyed properties
*free_lang_data gimple_any, gimple_lcf, gimple_leh, cfg
visibility
early_local_cleanups
> *free_cfg_annotations cfg
> *init_datastructures cfg
> ompexp gimple_any
> *referenced_vars gimple_leh, cfg referenced_vars
> ssa cfg, referenced_vars ssa
> veclower cfg
> *early_warn_uninitialized ssa
> *rebuild_cgraph_edges cfg
> inline_param
> einline
> early_optimizations
> > *remove_cgraph_callee_edges
> > copyrename cfg, ssa
> > ccp cfg, ssa
> > forwprop cfg, ssa
> > ealias cfg, ssa
> > esra cfg, ssa
> > copyprop cfg, ssa
> > mergephi cfg, ssa
> > cddce cfg, ssa
> > eipa_sra
> > tailr cfg, ssa
> > switchconv cfg, ssa
> > ehcleanup gimple_lcf
> > profile cfg
> > local-pure-const
> > fnsplit cfg
> release_ssa ssa
> *rebuild_cgraph_edges cfg
> inline_param
tree_profile_ipa
> feedback_fnsplit cfg
increase_alignment
matrix-reorg
emutls cfg, ssa

23.1.3 The “regular IPA” passes

138 Chapter 23. Appendices



gcc-python-plugin Documentation, Release 0.16

Pass Name Required properties Provided proper-
ties

Destroyed proper-
ties

whole-
program

gimple_any, gimple_lcf, gimple_leh,
cfg

ipa-profile
cp
cdtor
inline
pure-const
static-var
type-escape-
var
pta
ipa_struct_reorg

23.1.4 Passes generating Link-Time Optimization data

Pass Name Required properties Provided proper-
ties

Destroyed proper-
ties

lto_gimple_out gimple_any, gimple_lcf, gimple_leh,
cfg

lto_decls_out

23.1.5 The “all other passes” catch-all

Pass Name Required properties Provided properties Destroyed properties
ehdisp gimple_any, gimple_lcf, gimple_leh, cfg
*all_optimizations
> *remove_cgraph_callee_edges
> *strip_predict_hints cfg
> copyrename cfg, ssa
> cunrolli cfg, ssa
> ccp cfg, ssa
> forwprop cfg, ssa
> cdce cfg, ssa
> alias cfg, ssa
> retslot ssa
> phiprop cfg, ssa
> fre cfg, ssa
> copyprop cfg, ssa
> mergephi cfg, ssa
> vrp ssa
> dce cfg, ssa
> cselim cfg, ssa
> ifcombine cfg, ssa
> phiopt cfg, ssa

Continued on next page

23.1. All of GCC’s passes 139



gcc-python-plugin Documentation, Release 0.16

Table 2 – continued from previous page
Pass Name Required properties Provided properties Destroyed properties
> tailr cfg, ssa
> ch cfg, ssa
> stdarg cfg, ssa
> cplxlower ssa gimple_lcx
> sra cfg, ssa
> copyrename cfg, ssa
> dom cfg, ssa
> phicprop cfg, ssa
> dse cfg, ssa
> reassoc cfg, ssa
> dce cfg, ssa
> forwprop cfg, ssa
> phiopt cfg, ssa
> objsz cfg, ssa
> ccp cfg, ssa
> copyprop cfg, ssa
> sincos ssa
> bswap ssa
> crited cfg no_crit_edges
> pre cfg, ssa, no_crit_edges
> sink cfg, ssa, no_crit_edges
> loop cfg
> > loopinit cfg
> > lim cfg
> > copyprop cfg, ssa
> > dceloop cfg, ssa
> > unswitch cfg
> > sccp cfg, ssa
> > *record_bounds cfg, ssa
> > ckdd cfg, ssa
> > ldist cfg, ssa
> > copyprop cfg, ssa
> > graphite0 cfg, ssa
> > > graphite cfg, ssa
> > > lim cfg
> > > copyprop cfg, ssa
> > > dceloop cfg, ssa
> > ivcanon cfg, ssa
> > ifcvt cfg, ssa
> > vect cfg, ssa
> > > veclower2 cfg
> > > dceloop cfg, ssa
> > pcom cfg
> > cunroll cfg, ssa
> > slp cfg, ssa
> > parloops cfg, ssa
> > aprefetch cfg, ssa
> > ivopts cfg, ssa
> > loopdone cfg

Continued on next page

140 Chapter 23. Appendices



gcc-python-plugin Documentation, Release 0.16

Table 2 – continued from previous page
Pass Name Required properties Provided properties Destroyed properties
> recip ssa
> reassoc cfg, ssa
> vrp ssa
> dom cfg, ssa
> phicprop cfg, ssa
> cddce cfg, ssa
> tracer
> uninit ssa
> dse cfg, ssa
> forwprop cfg, ssa
> phiopt cfg, ssa
> fab cfg, ssa
> widening_mul ssa
> tailc cfg, ssa
> copyrename cfg, ssa
> uncprop cfg, ssa
> local-pure-const
cplxlower0 cfg gimple_lcx
ehcleanup gimple_lcf
resx gimple_lcf
nrv cfg, ssa
mudflap2 gimple_leh, cfg, ssa
optimized cfg
*warn_function_noreturn cfg
expand gimple_leh, cfg, ssa, gimple_lcx rtl gimple_any, gimple_lcf, gimple_leh, ssa, gimple_lomp
*rest_of_compilation rtl
> *init_function
> sibling
> rtl eh
> initvals
> unshare
> vregs
> into_cfglayout cfglayout
> jump
> subreg1
> dfinit
> cse1
> fwprop1
> cprop cfglayout
> rtl pre cfglayout
> hoist cfglayout
> cprop cfglayout
> store_motion cfglayout
> cse_local
> ce1
> reginfo
> loop2
> > loop2_init
> > loop2_invariant

Continued on next page

23.1. All of GCC’s passes 141



gcc-python-plugin Documentation, Release 0.16

Table 2 – continued from previous page
Pass Name Required properties Provided properties Destroyed properties
> > loop2_unswitch
> > loop2_unroll
> > loop2_doloop
> > loop2_done
> web
> cprop cfglayout
> cse2
> dse1
> fwprop2
> auto_inc_dec
> init-regs
> ud dce
> combine cfglayout
> ce2
> bbpart cfglayout
> regmove
> outof_cfglayout cfglayout
> split1
> subreg2
> no-opt dfinit
> *stack_ptr_mod
> mode_sw
> asmcons
> sms
> sched1
> ira
> *all-postreload rtl
> > postreload
> > gcse2
> > split2
> > zee
> > cmpelim
> > btl1
> > pro_and_epilogue
> > dse2
> > csa
> > peephole2
> > ce3
> > rnreg
> > cprop_hardreg
> > rtl dce
> > bbro
> > btl2
> > *leaf_regs
> > split4
> > sched2
> > *stack_regs
> > > split3
> > > stack

Continued on next page

142 Chapter 23. Appendices



gcc-python-plugin Documentation, Release 0.16

Table 2 – continued from previous page
Pass Name Required properties Provided properties Destroyed properties
> > alignments
> > compgotos
> > vartrack
> > *free_cfg cfg
> > mach
> > barriers
> > dbr
> > split5
> > eh_ranges
> > shorten
> > nothrow
> > final
> dfinish
*clean_state rtl

23.2 gcc.Tree operators by symbol

The following shows the symbol used for each expression subclass in debug dumps, as returned by the various
get_symbol() class methods.

There are some duplicates (e.g. - is used for both gcc.MinusExpr as an infix binary operator, and by gcc.
NegateExpr as a prefixed unary operator).

Class get_symbol()
gcc.AddrExpr &
gcc.BitAndExpr &
gcc.BitIorExpr |
gcc.BitNotExpr ~
gcc.BitXorExpr ^
gcc.CeilDivExpr /[cl]
gcc.CeilModExpr %[cl]
gcc.EqExpr ==
gcc.ExactDivExpr /[ex]
gcc.FloorDivExpr /[fl]
gcc.FloorModExpr %[fl]
gcc.GeExpr >=
gcc.GtExpr >
gcc.IndirectRef *
gcc.LeExpr <=
gcc.LrotateExpr r<<
gcc.LshiftExpr <<
gcc.LtExpr <
gcc.LtgtExpr <>
gcc.MaxExpr max
gcc.MinExpr min
gcc.MinusExpr -

Continued on next page

23.2. gcc.Tree operators by symbol 143



gcc-python-plugin Documentation, Release 0.16

Table 3 – continued from previous page
Class get_symbol()
gcc.ModifyExpr =
gcc.MultExpr *
gcc.NeExpr !=
gcc.NegateExpr -
gcc.OrderedExpr ord
gcc.PlusExpr +
gcc.PointerPlusExpr +
gcc.PostdecrementExpr –
gcc.PostincrementExpr ++
gcc.PredecrementExpr –
gcc.PreincrementExpr ++
gcc.RdivExpr /
gcc.ReducPlusExpr r+
gcc.RoundDivExpr /[rd]
gcc.RoundModExpr %[rd]
gcc.RrotateExpr r>>
gcc.RshiftExpr >>
gcc.TruncDivExpr /
gcc.TruncModExpr %
gcc.TruthAndExpr &&
gcc.TruthAndifExpr &&
gcc.TruthNotExpr !
gcc.TruthOrExpr ||
gcc.TruthOrifExpr ||
gcc.TruthXorExpr ^
gcc.UneqExpr u==
gcc.UngeExpr u>=
gcc.UngtExpr u>
gcc.UnleExpr u<=
gcc.UnltExpr u<
gcc.UnorderedExpr unord
gcc.VecLshiftExpr v<<
gcc.VecRshiftExpr v>>
gcc.WidenMultExpr w*
gcc.WidenSumExpr w+

This document describes the Python plugin I’ve written for GCC. In theory the plugin allows you to write Python
scripts that can run inside GCC as it compiles code, exposing GCC’s internal data structures as a collection of Python
classes and functions. The bulk of the document describes the Python API it exposes.

Hopefully this will be of use for writing domain-specific warnings, static analysers, and the like, and for rapid proto-
typing of new GCC features.

I’ve tried to stay close to GCC’s internal representation, but using classes. I hope that the resulting API is pleasant to
work with.

The plugin is a work-in-progress; the API may well change.

Bear in mind that writing this plugin has been the first time I have worked with the insides of GCC. I have only
wrapped the types I have needed, and within them, I’ve only wrapped properties that seemed useful to me. There may
well be plenty of interesting class and properties for instances that can be added (patches most welcome!). I may also

144 Chapter 23. Appendices



gcc-python-plugin Documentation, Release 0.16

have misunderstood how things work.

Most of my development has been against Python 2 (2.7, actually), but I’ve tried to make the source code of the plugin
buildable against both Python 2 and Python 3 (3.2), giving separate python2.so and python3.so plugins. (I suspect
that it’s only possible to use one or the other within a particular invocation of “gcc”, due to awkward dynamic-linker
symbol collisions between the two versions of Python).

The plugin is Free Software, licensed under the GPLv3 (or later).

23.2. gcc.Tree operators by symbol 145



gcc-python-plugin Documentation, Release 0.16

146 Chapter 23. Appendices



CHAPTER 24

Indices and tables

• genindex

• modindex

• search

147



gcc-python-plugin Documentation, Release 0.16

148 Chapter 24. Indices and tables



Index

Symbols
–dump-json

gcc-with-cpychecker command line option, 86
–maxtrans <int>

gcc-with-cpychecker command line option, 86
__init__() (gcc.Location method), 34

A
add_fixit_replace() (gcc.RichLocation method), 34
addr (gcc.Tree attribute), 41
alias_of (gcc.NamespaceDecl attribute), 45
args (gcc.GimpleCall attribute), 68
args (gcc.GimplePhi attribute), 69
argument_types (gcc.FunctionType attribute), 49
argument_types (gcc.MethodType attribute), 49
arguments (gcc.FunctionDecl attribute), 44
array (gcc.ArrayRef attribute), 58
ArrayRangeRef (built-in class), 59
AttrAddrExpr (built-in class), 59
attributes (gcc.Type attribute), 46

B
basever (gcc.Version attribute), 115
basic_blocks (gcc.Cfg attribute), 37
BitFieldRef (built-in class), 59
block (gcc.Gimple attribute), 65
block (gcc.TranslationUnitDecl attribute), 13

C
call_stmt (gcc.CallgraphEdge attribute), 110
callee (gcc.CallgraphEdge attribute), 110
callees (gcc.CallgraphNode attribute), 109
caller (gcc.CallgraphEdge attribute), 109
callers (gcc.CallgraphNode attribute), 109
callgraph_node (gcc.FunctionDecl attribute), 45
caret (gcc.Location attribute), 34
cfg (gcc.Function attribute), 37
column (gcc.Location attribute), 33
complex (gcc.Edge attribute), 39

configuration_arguments (gcc.Version attribute), 115
const, 46
const_equivalent, 46
constant (gcc.Constant attribute), 50
current_value (gcc.Parameter attribute), 113

D
datestamp (gcc.Version attribute), 115
debug() (gcc.Tree method), 41
decl (gcc.CallgraphNode attribute), 109
decl (gcc.Function attribute), 37
decl (gcc.Variable attribute), 13
declarations (gcc.NamespaceDecl attribute), 45
def_stmt (gcc.SsaName attribute), 64
default_value (gcc.Parameter attribute), 114
dereference (gcc.ArrayType attribute), 48
dereference (gcc.PointerType attribute), 48
dereference (gcc.VectorType attribute), 48
dest (gcc.Edge attribute), 39
devphase (gcc.Version attribute), 115
dump_enabled (gcc.Pass attribute), 72

E
end (gcc.Function attribute), 37
entry (gcc.Cfg attribute), 37
execute(), 73
exit (gcc.Cfg attribute), 37
exprcode (gcc.GimpleAssign attribute), 67, 69
exprcode (gcc.GimpleCond attribute), 68
exprtype (gcc.Gimple attribute), 65

F
false_label (gcc.GimpleCond attribute), 68
false_value (gcc.Edge attribute), 39
field (gcc.ComponentRef attribute), 58
fields (gcc.RecordType attribute), 49
file (gcc.Location attribute), 33
finish (gcc.Location attribute), 34
fn (gcc.GimpleCall attribute), 68

149



gcc-python-plugin Documentation, Release 0.16

fndecl (gcc.GimpleCall attribute), 68
fullname (gcc.FunctionDecl attribute), 44
funcdef_no (gcc.Function attribute), 37
function (gcc.FunctionDecl attribute), 44

G
gate(), 73
gcc-with-cpychecker command line option

–dump-json, 86
–maxtrans <int>, 86

gcc.argument_dict (built-in variable), 10
gcc.argument_tuple (built-in variable), 11
gcc.ArrayRef (built-in class), 58
gcc.ArrayType (built-in class), 48
gcc.BasicBlock (built-in class), 38
gcc.Binary (built-in class), 51
gcc.Binary.gcc.BitAndExpr (built-in class), 53
gcc.Binary.gcc.BitIorExpr (built-in class), 53
gcc.Binary.gcc.BitXorExpr (built-in class), 53
gcc.Binary.gcc.CeilDivExpr (built-in class), 52
gcc.Binary.gcc.CeilModExpr (built-in class), 52
gcc.Binary.gcc.CompareExpr (built-in class), 54
gcc.Binary.gcc.CompareGExpr (built-in class), 54
gcc.Binary.gcc.CompareLExpr (built-in class), 54
gcc.Binary.gcc.ComplexExpr (built-in class), 54
gcc.Binary.gcc.ExactDivExpr (built-in class), 52
gcc.Binary.gcc.FloorDivExpr (built-in class), 52
gcc.Binary.gcc.FloorModExpr (built-in class), 52
gcc.Binary.gcc.LrotateExpr (built-in class), 53
gcc.Binary.gcc.LshiftExpr (built-in class), 53
gcc.Binary.gcc.MaxExpr (built-in class), 53
gcc.Binary.gcc.MinExpr (built-in class), 53
gcc.Binary.gcc.MinusExpr (built-in class), 51
gcc.Binary.gcc.MinusNomodExpr (built-in class), 54
gcc.Binary.gcc.MultExpr (built-in class), 51
gcc.Binary.gcc.PlusExpr (built-in class), 51
gcc.Binary.gcc.PlusNomodExpr (built-in class), 54
gcc.Binary.gcc.PointerPlusExpr (built-in class), 52
gcc.Binary.gcc.RangeExpr (built-in class), 54
gcc.Binary.gcc.RdivExpr (built-in class), 52
gcc.Binary.gcc.RoundDivExpr (built-in class), 52
gcc.Binary.gcc.RoundModExpr (built-in class), 52
gcc.Binary.gcc.RrotateExpr (built-in class), 53
gcc.Binary.gcc.RshiftExpr (built-in class), 53
gcc.Binary.gcc.TruncDivExr (built-in class), 52
gcc.Binary.gcc.TruncModExpr (built-in class), 52
gcc.Binary.gcc.UrshiftExpr (built-in class), 54
gcc.Binary.gcc.VecExtractevenExpr (built-in class), 54
gcc.Binary.gcc.VecExtractoddExpr (built-in class), 54
gcc.Binary.gcc.VecInterleavehighExpr (built-in class), 54
gcc.Binary.gcc.VecInterleavelowExpr (built-in class), 54
gcc.Binary.gcc.VecLshiftExpr (built-in class), 54
gcc.Binary.gcc.VecPackFixTruncExpr (built-in class), 54
gcc.Binary.gcc.VecPackSatExpr (built-in class), 54

gcc.Binary.gcc.VecPackTruncExpr (built-in class), 54
gcc.Binary.gcc.VecRshiftExpr (built-in class), 54
gcc.Binary.gcc.WidenMultExpr (built-in class), 54
gcc.Binary.gcc.WidenMultHiExpr (built-in class), 54
gcc.Binary.gcc.WidenMultLoExpr (built-in class), 54
gcc.Binary.gcc.WidenSumExpr (built-in class), 54
gcc.Block (built-in class), 43
gcc.CallgraphEdge (built-in class), 109
gcc.CallgraphNode (built-in class), 109
gcc.CaseLabelExpr (built-in class), 64
gcc.Cfg (built-in class), 37
gcc.Comparison (built-in class), 57
gcc.Comparison.EqExpr (built-in class), 57
gcc.Comparison.GeExpr (built-in class), 57
gcc.Comparison.GtExpr (built-in class), 57
gcc.Comparison.LeExpr (built-in class), 57
gcc.Comparison.LtExpr (built-in class), 57
gcc.Comparison.LtgtExpr (built-in class), 57
gcc.Comparison.NeExpr (built-in class), 57
gcc.Comparison.OrderedExpr (built-in class), 57
gcc.Comparison.UneqExpr (built-in class), 57
gcc.Comparison.UngeExpr (built-in class), 57
gcc.Comparison.UngtExpr (built-in class), 57
gcc.Comparison.UnleExpr (built-in class), 57
gcc.Comparison.UnltExpr (built-in class), 57
gcc.Comparison.UnorderedExpr (built-in class), 57
gcc.ComponentRef (built-in class), 58
gcc.Constant (built-in class), 50
gcc.Constant.ComplexCst (built-in class), 51
gcc.Constant.FixedCst (built-in class), 51
gcc.Constant.IntegerCst (built-in class), 51
gcc.Constant.PtrmemCst (built-in class), 51
gcc.Constant.RealCst (built-in class), 51
gcc.Constant.StringCst (built-in class), 51
gcc.Constant.VectorCst (built-in class), 51
gcc.Declaration (built-in class), 44
gcc.define_macro() (built-in function), 114
gcc.dump() (built-in function), 74
gcc.Edge (built-in class), 38
gcc.EnumeralType (built-in class), 48
gcc.error() (built-in function), 36
gcc.Expression (built-in class), 59
gcc.Expression.gcc.AddrExpr (built-in class), 60
gcc.Expression.gcc.AlignofExpr (built-in class), 60
gcc.Expression.gcc.ArrowExpr (built-in class), 60
gcc.Expression.gcc.AssertExpr (built-in class), 60
gcc.Expression.gcc.AtEncodeExpr (built-in class), 60
gcc.Expression.gcc.BindExpr (built-in class), 60
gcc.Expression.gcc.ClassReferenceExpr (built-in class),

60
gcc.Expression.gcc.CleanupPointExpr (built-in class), 60
gcc.Expression.gcc.CMaybeConstExpr (built-in class),

60
gcc.Expression.gcc.CompoundExpr (built-in class), 60

150 Index



gcc-python-plugin Documentation, Release 0.16

gcc.Expression.gcc.CompoundLiteralExpr (built-in
class), 60

gcc.Expression.gcc.CondExpr (built-in class), 60
gcc.Expression.gcc.CtorInitializer (built-in class), 60
gcc.Expression.gcc.DlExpr (built-in class), 60
gcc.Expression.gcc.DotProdExpr (built-in class), 60
gcc.Expression.gcc.DotstarExpr (built-in class), 60
gcc.Expression.gcc.EmptyClassExpr (built-in class), 60
gcc.Expression.gcc.ExcessPrecisionExpr (built-in class),

61
gcc.Expression.gcc.ExprPackExpansion (built-in class),

61
gcc.Expression.gcc.ExprStmt (built-in class), 61
gcc.Expression.gcc.FdescExpr (built-in class), 61
gcc.Expression.gcc.FmaExpr (built-in class), 61
gcc.Expression.gcc.InitExpr (built-in class), 61
gcc.Expression.gcc.MessageSendExpr (built-in class), 61
gcc.Expression.gcc.ModifyExpr (built-in class), 61
gcc.Expression.gcc.ModopExpr (built-in class), 61
gcc.Expression.gcc.MustNotThrowExpr (built-in class),

61
gcc.Expression.gcc.NonDependentExpr (built-in class),

61
gcc.Expression.gcc.NontypeArgumentPack (built-in

class), 61
gcc.Expression.gcc.NullExpr (built-in class), 61
gcc.Expression.gcc.NwExpr (built-in class), 61
gcc.Expression.gcc.ObjTypeRef (built-in class), 61
gcc.Expression.gcc.OffsetofExpr (built-in class), 61
gcc.Expression.gcc.PolynomialChrec (built-in class), 62
gcc.Expression.gcc.PostdecrementExpr (built-in class),

62
gcc.Expression.gcc.PostincrementExpr (built-in class),

62
gcc.Expression.gcc.PredecrementExpr (built-in class), 62
gcc.Expression.gcc.PredictExpr (built-in class), 62
gcc.Expression.gcc.PreincrementExpr (built-in class), 62
gcc.Expression.gcc.PropertyRef (built-in class), 62
gcc.Expression.gcc.PseudoDtorExpr (built-in class), 62
gcc.Expression.gcc.RealignLoad (built-in class), 62
gcc.Expression.gcc.SaveExpr (built-in class), 62
gcc.Expression.gcc.ScevKnown (built-in class), 62
gcc.Expression.gcc.ScevNotKnown (built-in class), 62
gcc.Expression.gcc.SizeofExpr (built-in class), 62
gcc.Expression.gcc.StmtExpr (built-in class), 62
gcc.Expression.gcc.TagDefn (built-in class), 62
gcc.Expression.gcc.TargetExpr (built-in class), 62
gcc.Expression.gcc.TemplateIdExpr (built-in class), 63
gcc.Expression.gcc.ThrowExpr (built-in class), 63
gcc.Expression.gcc.TruthAndExpr (built-in class), 63
gcc.Expression.gcc.TruthAndifExpr (built-in class), 63
gcc.Expression.gcc.TruthNotExpr (built-in class), 63
gcc.Expression.gcc.TruthOrExpr (built-in class), 63
gcc.Expression.gcc.TruthOrifExpr (built-in class), 63

gcc.Expression.gcc.TruthXorExpr (built-in class), 63
gcc.Expression.gcc.TypeExpr (built-in class), 63
gcc.Expression.gcc.TypeidExpr (built-in class), 63
gcc.Expression.gcc.VaArgExpr (built-in class), 63
gcc.Expression.gcc.VecCondExpr (built-in class), 63
gcc.Expression.gcc.VecDlExpr (built-in class), 63
gcc.Expression.gcc.VecInitExpr (built-in class), 63
gcc.Expression.gcc.VecNwExpr (built-in class), 63
gcc.Expression.gcc.WidenMultMinusExpr (built-in

class), 63
gcc.Expression.gcc.WidenMultPlusExpr (built-in class),

64
gcc.Expression.gcc.WithCleanupExpr (built-in class), 64
gcc.Expression.gcc.WithSizeExpr (built-in class), 64
gcc.FieldDecl (built-in class), 44
gcc.FloatType (built-in class), 48
gcc.Function (built-in class), 37
gcc.FunctionDecl (built-in class), 44
gcc.FunctionType (built-in class), 48
gcc.FunctionType.gccutils.get_nonnull_arguments()

(built-in function), 49
gcc.GCC_VERSION (built-in variable), 116
gcc.get_callgraph_nodes() (built-in function), 109
gcc.get_dump_base_name() (built-in function), 75
gcc.get_dump_file_name() (built-in function), 75
gcc.get_gcc_version() (built-in function), 115
gcc.get_global_namespace() (built-in function), 13
gcc.get_option_dict() (built-in function), 113
gcc.get_option_list() (built-in function), 113
gcc.get_parameters() (built-in function), 113
gcc.get_plugin_gcc_version() (built-in function), 115
gcc.get_translation_units() (built-in function), 13
gcc.get_variables() (built-in function), 13
gcc.Gimple (built-in class), 65
gcc.GimpleAsm (built-in class), 67
gcc.GimpleAssign (built-in class), 67, 69
gcc.GimpleCall (built-in class), 67
gcc.GimpleCond (built-in class), 68
gcc.GimpleLabel (built-in class), 69
gcc.GimpleNop (built-in class), 69
gcc.GimplePass (built-in class), 72
gcc.GimplePhi (built-in class), 68
gcc.GimpleReturn (built-in class), 68
gcc.GimpleSwitch (built-in class), 69
gcc.inform() (built-in function), 36
gcc.IntegerType (built-in class), 47
gcc.IpaPass (built-in class), 73
gcc.is_lto() (built-in function), 111
gcc.Location (built-in class), 33
gcc.maybe_get_identifier() (built-in function), 13
gcc.MemRef (built-in class), 58
gcc.MethodType (built-in class), 49
gcc.NamespaceDecl (built-in class), 45
gcc.Option (built-in class), 111

Index 151



gcc-python-plugin Documentation, Release 0.16

gcc.Parameter (built-in class), 113
gcc.ParmDecl (built-in class), 45
gcc.Pass (built-in class), 71
gcc.permerror() (built-in function), 36
gcc.PLUGIN_ATTRIBUTES (built-in variable), 78
gcc.PLUGIN_FINISH (built-in variable), 79
gcc.PLUGIN_FINISH_DECL (built-in variable), 79
gcc.PLUGIN_FINISH_TYPE (built-in variable), 79
gcc.PLUGIN_FINISH_UNIT (built-in variable), 79
gcc.PLUGIN_PASS_EXECUTION (built-in variable), 78
gcc.PLUGIN_PRE_GENERICIZE (built-in variable), 79
gcc.PointerType (built-in class), 48
gcc.RecordType (built-in class), 49
gcc.Reference (built-in class), 58
gcc.register_attribute() (built-in function), 81
gcc.register_callback() (built-in function), 77
gcc.ResultDecl (built-in class), 45
gcc.RichLocation (built-in class), 34
gcc.Rtl (built-in class), 116
gcc.RtlPass (built-in class), 72
gcc.set_location() (built-in function), 10
gcc.SimpleIpaPass (built-in class), 73
gcc.SsaName (built-in class), 64
gcc.Statement (built-in class), 64
gcc.TranslationUnitDecl (built-in class), 13
gcc.Tree (built-in class), 41
gcc.Type (built-in class), 46
gcc.Unary (built-in class), 55
gcc.Unary.gcc.AbsExpr (built-in class), 56
gcc.Unary.gcc.AddrSpaceConvertExpr (built-in class), 56
gcc.Unary.gcc.BitNotExpr (built-in class), 56
gcc.Unary.gcc.CastExpr (built-in class), 56
gcc.Unary.gcc.ConjExpr (built-in class), 56
gcc.Unary.gcc.ConstCastExpr (built-in class), 56
gcc.Unary.gcc.ConvertExpr (built-in class), 56
gcc.Unary.gcc.DynamicCastExpr (built-in class), 56
gcc.Unary.gcc.FixedConvertExpr (built-in class), 56
gcc.Unary.gcc.FixTruncExpr (built-in class), 56
gcc.Unary.gcc.FloatExpr (built-in class), 56
gcc.Unary.gcc.NegateExpr (built-in class), 56
gcc.Unary.gcc.NoexceptExpr (built-in class), 56
gcc.Unary.gcc.NonLvalueExpr (built-in class), 56
gcc.Unary.gcc.NopExpr (built-in class), 56
gcc.Unary.gcc.ParenExpr (built-in class), 56
gcc.Unary.gcc.ReducMaxExpr (built-in class), 56
gcc.Unary.gcc.ReducMinExpr (built-in class), 56
gcc.Unary.gcc.ReducPlusExpr (built-in class), 56
gcc.Unary.gcc.ReinterpretCastExpr (built-in class), 56
gcc.Unary.gcc.StaticCastExpr (built-in class), 56
gcc.Unary.gcc.UnaryPlusExpr (built-in class), 56
gcc.VarDecl (built-in class), 45
gcc.Variable (built-in class), 13
gcc.VectorType (built-in class), 48
gcc.Version (built-in class), 115

gcc.warning() (built-in function), 35
gccutils.callgraph_to_dot() (built-in function), 109
gccutils.get_field_by_name() (built-in function), 14
gccutils.get_global_typedef() (built-in function), 13
gccutils.get_global_vardecl_by_name() (built-in func-

tion), 13
gccutils.get_src_for_loc() (built-in function), 33
gccutils.get_variables_as_dict() (built-in function), 13
gccutils.pformat() (built-in function), 42
gccutils.pprint() (built-in function), 43
get_block_for_label() (gcc.Cfg method), 38
get_by_name() (gcc.Pass class method), 71
get_roots() (gcc.Pass class method), 71
get_symbol() (gcc.Binary class method), 51
get_symbol() (gcc.Comparison class method), 57
get_symbol() (gcc.Expression class method), 59
get_symbol() (gcc.Reference class method), 58
get_symbol() (gcc.Unary class method), 55
gimple (gcc.BasicBlock attribute), 38

H
help (gcc.Option attribute), 113
help (gcc.Parameter attribute), 114
high (gcc.CaseLabelExpr attribute), 64

I
ImagpartExpr (built-in class), 59
in_system_header (gcc.Location attribute), 33
index (gcc.ArrayRef attribute), 58
index (gcc.BasicBlock attribute), 38
indexvar (gcc.GimpleSwitch attribute), 69
IndirectRef (built-in class), 59
initial (gcc.VarDecl attribute), 45
is_artificial (gcc.Declaration attribute), 44
is_builtin (gcc.Declaration attribute), 44
is_driver (gcc.Option attribute), 113
is_enabled (gcc.Option attribute), 113
is_optimization (gcc.Option attribute), 113
is_private (gcc.FunctionDecl attribute), 45
is_protected (gcc.FunctionDecl attribute), 45
is_public (gcc.FunctionDecl attribute), 45
is_static (gcc.FunctionDecl attribute), 45
is_target (gcc.Option attribute), 113
is_variadic (gcc.FunctionType attribute), 48
is_warning (gcc.Option attribute), 113

L
labels (gcc.GimpleSwitch attribute), 69
language (gcc.TranslationUnitDecl attribute), 13
lhs (gcc.GimpleAssign attribute), 67, 69
lhs (gcc.GimpleCall attribute), 67
lhs (gcc.GimpleCond attribute), 68
lhs (gcc.GimplePhi attribute), 69
line (gcc.Location attribute), 33

152 Index



gcc-python-plugin Documentation, Release 0.16

loc (gcc.Gimple attribute), 65
loc (gcc.Rtl attribute), 116
local_decls (gcc.Function attribute), 37
location (gcc.Binary attribute), 51
location (gcc.Comparison attribute), 57
location (gcc.Declaration attribute), 44
location (gcc.Expression attribute), 59
location (gcc.Reference attribute), 58
location (gcc.Unary attribute), 55
lookup() (gcc.NamespaceDecl method), 46
low (gcc.CaseLabelExpr attribute), 64

M
max_value (gcc.IntegerType attribute), 47
max_value (gcc.Parameter attribute), 114
MemberRef (built-in class), 59
methods (gcc.RecordType attribute), 49
min_value (gcc.IntegerType attribute), 48
min_value (gcc.Parameter attribute), 114

N
name (gcc.Declaration attribute), 44
name (gcc.FieldDecl attribute), 44
name (gcc.Pass attribute), 71
name (gcc.Type attribute), 46
namespaces (gcc.NamespaceDecl attribute), 45
next (gcc.Pass attribute), 72
noreturn (gcc.GimpleCall attribute), 68

O
offset_column() (gcc.Location method), 33
OffsetRef (built-in class), 59
operand (gcc.MemRef attribute), 58
operand (gcc.Unary attribute), 55
operands (gcc.Rtl attribute), 116
option (gcc.Parameter attribute), 113

P
phi_nodes (gcc.BasicBlock attribute), 38
pointer (gcc.Type attribute), 46
precision (gcc.FloatType attribute), 48
precision (gcc.IntegerType attribute), 47
preds (gcc.BasicBlock attribute), 38
properties_destroyed (gcc.Pass attribute), 72
properties_provided (gcc.Pass attribute), 72
properties_required (gcc.Pass attribute), 72

R
range (gcc.ArrayType attribute), 48
RealpartExpr (built-in class), 59
register_after() (gcc.Pass method), 74
register_before() (gcc.Pass method), 74
replace() (gcc.Pass method), 74

restrict, 46
restrict_equivalent, 46
result (gcc.FunctionDecl attribute), 44
retval (gcc.GimpleReturn attribute), 68
revision (gcc.Version attribute), 115
rhs (gcc.GimpleAssign attribute), 67, 69
rhs (gcc.GimpleCall attribute), 68
rhs (gcc.GimpleCond attribute), 68
rtl (gcc.BasicBlock attribute), 38

S
ScopeRef (built-in class), 59
signed_equivalent (gcc.IntegerType attribute), 47
sizeof (gcc.Type attribute), 46
src (gcc.Edge attribute), 38
start (gcc.Function attribute), 37
start (gcc.Location attribute), 34
static (gcc.VarDecl attribute), 45
static_pass_number (gcc.Pass attribute), 72
str_no_uid (gcc.Gimple attribute), 65
str_no_uid (gcc.Tree attribute), 41
string (gcc.GimpleAsm attribute), 67
sub (gcc.Pass attribute), 71
succs (gcc.BasicBlock attribute), 38

T
target (gcc.CaseLabelExpr attribute), 64
target (gcc.ComponentRef attribute), 58
TargetMemRef (built-in class), 59
text (gcc.Option attribute), 111
true_label (gcc.GimpleCond attribute), 68
true_value (gcc.Edge attribute), 39
type (gcc.Tree attribute), 41

U
unalias() (gcc.NamespaceDecl method), 46
UnconstrainedArrayRef (built-in class), 59
unqualified_equivalent, 46
unsigned (gcc.IntegerType attribute), 47
unsigned_equivalent (gcc.IntegerType attribute), 47

V
values (gcc.EnumeralType attribute), 48
var (gcc.SsaName attribute), 64
vars (gcc.Block attribute), 43
version (gcc.SsaName attribute), 64
ViewConvertExpr (built-in class), 59
volatile, 46
volatile_equivalent, 46

W
walk_tree() (gcc.Gimple method), 65

Index 153


	Requirements
	Prebuilt-packages
	Building the plugin from source
	Build-time dependencies
	Building the code

	Basic usage of the plugin
	Debugging your script
	Accessing parameters
	Adding new passes to the compiler
	Wiring up callbacks

	Global data access
	Overview of GCC’s internals
	Example scripts
	show-docs.py
	show-passes.py
	show-gimple.py
	show-ssa.py
	show-callgraph.py

	Working with C code
	“Hello world”
	Spell-checking string constants within source code
	Finding global variables

	Locations
	Generating custom errors and warnings
	Working with functions and control flow graphs
	gcc.Tree and its subclasses
	Blocks
	Declarations
	Types
	Constants
	Binary Expressions
	Unary Expressions
	Comparisons
	References to storage
	Other expression subclasses
	Statements
	SSA Names

	Gimple statements
	Optimization passes
	Working with existing passes
	Creating new optimization passes
	Dumping per-pass information

	Working with callbacks
	Creating custom GCC attributes
	Using the preprocessor to guard attribute usage

	Usage example: a static analysis tool for CPython extension code
	gcc-with-cpychecker
	Reference-count checking
	Error-handling checking
	Errors in exception-handling
	Format string checking
	Verification of PyMethodDef tables
	Additional tests
	Limitations and caveats
	Ideas for future tests
	Reusing this code for other projects
	Common mistakes

	Success Stories
	The GNU Debugger
	LibreOffice
	psycopg
	pycups
	python-krbV
	Bugs found in itself

	Getting Involved
	Ideas for using the plugin
	Tour of the C code
	Using the plugin to check itself
	Test suite
	Debugging the plugin’s C code
	Patches

	Documentation
	Miscellanea
	Interprocedural analysis (IPA)
	Whole-program Analysis via Link-Time Optimization (LTO)
	Inspecting GCC’s command-line options
	Working with GCC’s tunable parameters
	Working with the preprocessor
	Version handling
	Register Transfer Language (RTL)

	Release Notes
	0.16
	0.15
	0.14
	0.13
	0.12
	0.11
	0.10
	0.9
	0.8
	0.7

	Appendices
	All of GCC’s passes
	gcc.Tree operators by symbol

	Indices and tables

