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Garleek (recursive acronym for Garleek is Automated Resources for Layered Energies using External Keyword) allows
you to perform QM/MM calculations by interfacing Gaussian with MM programs via its external keyword. See
Supported software for compatible programs.

Wel loved he garleek, oynons, and eek lekes,
And for to drynken strong wyn, reed as blood.
– Geoffrey Chaucer
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2 User guide



CHAPTER 1

Introduction

Garleek allows you to perform QM/MM calculations by interfacing Gaussian with MM programs via its external
keyword.

1.1 Supported software

Garleek currently supports the following programs. It expects them to be available in $PATH.

1.1.1 QM engines

• Gaussian 16

• Gaussian 09A, 09B, 09C, 09D

1.1.2 MM engines

• Tinker 8.1 (only analyze, testgrad and testhess are needed)

1.2 How does it work

Let’s explain it with an example: doing an ONIOM calculation with Gaussian and Tinker.

When Garleek does an ONIOM calculation with Gaussian & Tinker, Gaussian handles the majority of the calculations:
QM stuff and ONIOM scheme. The MM part is configured with the external keyword, which specifies that the
MM calculations will be performed with an external program. In this mode, Gaussian will write a series of files to
disk and call the requested program.

In this case, it’s garleek-backend, which will take one of the files Gaussian generates in each iteration (the *.
EIn file), transform it and pass it to Tinker binaries to obtain the requested data: potential energy, dipole moment,
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polarizability and/or hessian matrix, depending on the calculation. Gaussian expects these data written back to an
*.EOu file in a very specific format.

In a nutshell, all Garleek does is interfacing Gaussian and Tinker following the external protocol:

1. Parse Gaussian’s EIn files

2. Convert to whatever the MM engine is expecting

3. Calculate the requested data (defined in the EIn header)

4. Convert the obtained MM data to Gaussian units and write it to the EOu file

The main difficulty here is making sure that the atom types are understandable by both parts of the scheme: the
Gaussian input file should contain atom types compatible with the MM engine. Since this is rarely the case, a previous
step is needed: patching the original Gaussian file so it contains adequate atom types. We take advantage of this step
to inject the correct garleek-backend calls in the external keyword so the user does not have to worry about
those details. For further information on the practical usage, please read our Tutorials section. First one: A simple
CH4 molecule.

4 Chapter 1. Introduction

http://gaussian.com/external/


CHAPTER 2

Installation

Garleek is designed to be as simple as possible, using almost no 3rd party dependencies. You only need Python (2.7
or 3.4+) and NumPy. This can be easily achieved with pip:

# Stable version
python -m pip install garleek
# Latest, development version (might be unstable)
python -m pip install -U https://github.com/insilichem/garleek/archive/master.zip

2.1 Testing

Unit-tests are provided in the tests/ directory. Structures included are very small (5-20 atoms), so it should run
reasonably fast locally. Input files are adjusted for 8 CPUs and 8GB RAM. To run them, you must install additional
dependencies:

pip install pytest cclib

Additionally, the interfaced software must be properly initialized (ie, executables should be available in $PATH, any
needed environment variable exported, etc.). To do this, you’d normally use module load or similar utilities. An
example on how to prepare the testing environment is provided in tests/run.sh. Feel free to modify it to your
own needs.
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CHAPTER 3

Usage

Garleek is composed of two small programs:

• garleek-prepare, used to patch the QM-provided input file with correct atom types

• garleek-backend, which interfaces the QM program with the MM engine to make them understand each
other

Usually, garleek-prepare will inject the necessary garleek-backend calls in the QM input file, so you
should only run the following command. Everything else is handled automatically.

garleek-prepare --qm gaussian --mm tinker --ff mm3 --types uff_to_mm3 INPUTFILE

• INPUTFILE: QM input file to be patched and renamed. For example, file.in would be renamed as file.
garleek.in. Currently supported: Gaussian input files (.gjf, .com, .in).

• --qm: QM program handling the QM/MM calculation. Currently supported keywords include: gaussian,
gaussian_09a, gaussian_09b, gaussian_09c, gaussian_09d, gaussian_16.

• --mm: MM engine to be used. Currently supported keywords include: tinker, tinker_qmcharges. Read below
for more details.

• --ff: force field to be used in the MM calculation. Supported files and keywords depend on the value of mm.

• --types: dictionary handling the conversion between the MM atom types provided in the original input file
and those the MM engine actually needs for the chosen force field. Supported files and keywords depend on
the value of mm and qm. Usually is a simple two-column plain-text file that contains Original-MM-type
Converted-MM-type mappings. This file is used to replace the original types in MyInputFile.in.
Matching is case-insensitive, but the file must list them ALWAYS uppercased.

TIP: Updated CLI arguments will be always available if you run garleek-prepare -h.

Note: For more details and specific use-cases, please refer to the tutorials section. Begin with the first one by clicking
here: A simple CH4 molecule.
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3.1 About –qm and –mm tags

These flags (--qm and --mm) are used to guarantee that the two programs involved are compatible. They expect a
value formatted like this:

<program>[_<version>]

Valid values include gaussian, tinker, gaussian_16 and tinker_8. The version can be omitted and will
default to the latest supported (Gaussian 16 and Tinker 8.2, for example). We use the version to customize the behavior
of the garleek-backend executable. For example, Gaussian 09A generates slightly different exchange files than
Gaussian 09B and above, so we use the version tag to enable a different parser.

The version does not need to be a number; in fact, we can use it to provide different behaviors as well. Available
versions are listed garleek/{qm,mm}/<program>.py. Their behavior is documented below:

3.1.1 Gaussian

• gaussian, gaussian_09b, gaussian_09c, gaussian_09d, gaussian_16: Default behavior.

• gaussian_09a: Different EIn parser.

3.1.2 Tinker

• tinker, tinker_8, tinker_8.1: Default behavior.

• tinker_qmcharges: Use charges provided in the QM input file, instead of the one available in the PRM
or KEY files. For this to work, a new KEY garleek.charges.key file is generated on the fly for each
iteration, containing the appropriate CHARGE SERIAL_NUMBER VALUE lines.

8 Chapter 3. Usage



CHAPTER 4

Developers

Note: The following content is autogenerated from the Python docstrings. Don’t expect a well written story!

4.1 The package

4.1.1 Code structure

Garleek code is organized in two layers: the library and the application layers. The former controls the business logic
while the latter exposes this functionality as a command-line interface and, if useful, a high-level Python function.

Library layer

• qm and mm subpackages host low-level QM and MM software interfacing. Both feature a documented, stan-
dardized dictionary representation on the data each are expecting. The communication logic for each qm and mm
modules is performed in the connectorsmodule. Refer to each module documentation for more information.

• atom_types controls atom_type file parsing, and units stores unit conversion factors.

Application layer

• cli module lists the CLI entry-points for users (frontend) and QM softwares handling the ONIOM calculation
(backend)

9
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4.2 Library layer

4.2.1 mm/

The mm subpackage hosts all the code that handles calculations involving MM software.

Each module in this subpackage is expected to perform the following tasks:

1. Take the standardized dictionary (as explained) in the qm module and convert the contained data into the repre-
sentation requested by the interfaced MM software (units included).

2. Calculate the requested data (depending on derivatives value) with the MM software.

3. Organize the obtained data into a standardized representation, as described below.

Standardized object for interfaced data

The QM engine will be expecting a dictionary containing the following keys and values. Unit conversion is not handled
here (that’s responsibility of the connector), so just use those employed by the MM software (but document those in
the docstring!)

energy [float] Potential energy

gradients [np.array with shape (3*n_atom,)] Gradient on each tom

hessian [np.array with shape (9*n_atom,)] Flattened hessian matrix (force constants)

dipole_moment [np.array with shape (3,), optional] Dipole X,Y,Z-Components

polarizability [np.array with shape (6,), optional] Atom polarizability

dipole_derivatives [np.array with shape (9*n_atom)] Dipole derivatives with respect to X,Y,Z compo-
nents for each atom

4.2.2 mm.tinker.py

Garleek - Tinker bridge

garleek.mm.tinker.patch_tinker_output_for_inactive_atoms(results, indices,
n_atoms)

TODO: Patch ‘hessian’ to support FREQ calculations with inactive

garleek.mm.tinker.prepare_tinker_key(forcefield, atoms=None, version=None)
Prepare a file ready for TINKER’s -k option.

Parameters

• forcefield (str) – forcefield should be either a:

– *.prm: proper forcefield file

– *.key, *.par: key file that can call *.prm files and

add more parameters

If a .prm file is provided, a .key file will be written to accommodate the forcefield in a
parameters * call.

• atoms (OrderedDict, optional=None) – Set of atoms to write, following conven-
tion defined in garleek.qm.
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• version (str, optional=None) – Specific behavior flag. Supports: - qmcharges,
which would write charges provided by QM engine.

Needs atoms to be passed.

Returns path – Absolute path to the generated TINKER .key file

Return type str

garleek.mm.tinker.prepare_tinker_xyz(atoms, bonds=None, version=None)
Write a TINKER-style XYZ file. This is similar to a normal XYZ, but with more fields:

atom_index element x y z type bonded_atom_1 bonded_order_1 ...

TINKER expects coordinates in Angstrom.

Parameters

• atoms (OrderedDict) – Set of atoms to write, following convention defined in
garleek.qm.

• bonds (OrderedDict) – Connectivity information, following convention defined in
garleek.qm.

• version (str, optional=None) – Specific behavior flag, if needed. Like ‘qm-
charges’

Returns xyzblock – String with XYZ contents

Return type str

garleek.mm.tinker.run_tinker(xyz_data, n_atoms, key, energy=True, dipole_moment=True, gradi-
ents=True, hessian=True)

4.2.3 qm/

The qm subpackage hosts all the code that handles calculations involving QM software.

All modules listed here are expected to perform the following tasks:

• Patch the INPUT file with proper garleek-backend calls and atom type conversion.

• Parse the intermediate files as provided by the QM software into a standardized object (details below).

• Write the output file expected by the QM software.

• List supported versions and the default ones in two tuples named supported_versions and
default_version, respectively.

Standardized object for interfaced data

The intermediate representation of the parsed data, which will be passed to the MM engine, should be a dict with these
keys and values:

n_atoms [int] Number of atoms in the structure or substructure

derivatives [int] Calculations requested for the MM part:

• 0: energy only

• 1: calculate gradient

• 2: calculate hessian

4.2. Library layer 11
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These values are cumulative, so if 2 is requested, 0 and 1 should be computed as well.

charge [float] Global charge of the structure

spin [int] Multiplicity of the system

atoms [OrderedDict of dicts] Ordered dictionary mapping atom index with another dictionary containing
these values:

• element : str. Chemical element

• type : str. Atom type as expected by the MM part

• xyz : np.array with shape (3,). Cartesian coordinates

• charge : float. Atom point charge for the MM part

bonds [OrderedDict of lists of 2-tuples] Ordered dictionary mapping atom-index to a list of 2-tuples
containing bonded atom index (int) and bond order (float)

4.2.4 qm.gaussian.py

Garleek - Gaussian bridge

class garleek.qm.gaussian.GaussianPatcher(filename, atom_types, mm=’tinker’,
qm=’gaussian’, forcefield=None, ver-
sion=’16’)

Bases: object

patch()

garleek.qm.gaussian.parse_gaussian_EIn(ein_filename, version=’16’)
Parse the *.EIn file produced by Gaussian external keyword.

This file contains the following data (taken from http://gaussian.com/external)

n_atoms derivatives-requested charge spin
atom_name x y z MM-charge [atom_type]
atom_name x y z MM-charge [atom_type]
atom_name x y z MM-charge [atom_type]
...

• derivatives-requested can be 0 (energy only), 1 (first derivatives) or 2 (second derivatives).

• version must be one of garleek.qm.gaussian.supported_versions

garleek.qm.gaussian.patch_gaussian_input(*a, **kw)

garleek.qm.gaussian.prepare_gaussian_EOu(n_atoms, energy, dipole_moment, gradi-
ents=None, hessian=None, polarizability=None,
dipole_polarizability=None)

Generate the *.EOu file Gaussian expects after external launch.

After performing the MM calculations, Gaussian expects a file with the following information (all in atomic
units; taken from http://gaussian.com/external)
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Items Pseudo Code Line Format
energy, dipole-moment (xyz) E, Dip(I), I=1,3 4D20.12
gradient on atom (xyz) FX(J,I), J=1,3; I=1,NAtoms 3D20.12
polarizability Polar(I), I=1,6 3D20.12
dipole derivatives DDip(I), I=1,9*NAtoms 3D20.12
force constants FFX(I), I=1,(3*NAtoms*(3*NAtoms+1))/2 3D20.12

The second section is present only if first derivatives or frequencies were requested, and the final section is
present only if frequencies were requested. In the latter case, the Hessian is given in lower triangular form: 𝛼ij,
i=1 to N, j=1 to i. The dipole moment, polarizability, and dipole derivatives can be zero if none are available.

4.2.5 connectors.py

This module hosts high-level functions that connect different engines together, handling input/output files delivery and
unit conversion.

A CONNECTORS dict is maintained at the end of the file listing the connectors available. It’s a dict of dicts, where the
primary keys are QM engines and secondary keys, MM engines.

garleek.connectors.gaussian_tinker(qmargs, forcefield=’mm3.prm’, write_file=True,
qm_version=’16’, mm_version=None, **kwargs)

Connects QM engine gaussian with MM engine tinker.

When Gaussian does an ONIOM calculation with Garleek, the MM part is configured with the external key-
word, meaning that Gaussian will write a series of files to disk and call the requested program. Gaussian expects
some data written back to an *.EOu file, which should contain potential energy, dipole moment, polarizability
and/or hessian matrix, depending on the calculation. The called program is expected to take those input files,
convert them to the format expected by the MM program, obtaint the needed data and write them to the EOu file
with the adequate syntax. So, that’s what we are doing here:

1. Parse Gaussian EIn file

2. Convert it to TINKER’s XYZ and KEY files

3. Run TINKER to obtain energy, dipole, etc

4. Convert units and write the EOu file

Parameters

• qmargs (tuple) – CLI arguments passed by Gaussian. Depending on the version, its
length can vary, but we only care about qmargs[1], so it’s not usually a problem

• forcefield (str, optional=mm3.prm) – Path to file listing the TINKER force-
field to use. It can be a *.prm file or a *.key file. PRM files are full forcefields with no
modifications. KEY files can import PRM files with parameters and then list custom
parameters below.

• write_file (bool, optional=True) – Wether to write the resulting EOu file to
disk.

• qm_version (string, optional=16) – Gaussian version in use. Needed to cover
the slight differences between Gaussian versions (EIn/EOu syntax, number of args, and so
on).

• mm_version (string, optional=None) – TINKER behavior. If QM-charges must
be considered for the MM part, set it to ‘qmcharges’

Returns eou_data – Contents of the EOu file Gaussian expects back.

4.2. Library layer 13
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Return type str

4.2.6 atom_types.py

Utilities to deal with atom_types mappings.

These files are needed to convert atom types found in the QM engine to those expected by the MM engine. This is
a key part of the whole QM/MM calculation, so those types must be chosen wisely. While we provide a few default
mappings (check BUILTIN_TYPES list), the user is encouraged to define his or her own conversions if needed.

An atom_types file format is very simple: just two columns of plain text, where the first field is the QM type and
the MM type is in the second field. garleek-prepare will just replace the QM types with the corresponding MM
type. If a QM type is not found in the file, it will throw an error.

Comments can be inserted with a preceding # character, in its own line or after any valid content (just like Python).
Blank lines are ignored as well.

This is valid syntax:

# atomic number, mm3 type, description

1 5 # H_norm
2 51 # He
3 163 # Li
4 165 # Be
5 26 # B_sp2
6 1 # C_sp3
7 8 # N_sp3
8 6 # O_sp3

garleek.atom_types.get_file(filename)
Get file from one of the default locations

garleek.atom_types.parse(atom_types_filename)
Parse atom_types file

4.2.7 units.py

Conversion factors are listed here

The convention is to import this module when needed, using u as an alias:

>>> from garleek import units as u

4.3 Application layer

4.3.1 cli.py

This module contains the command-line interfaces for both garleek-prepare (the user-friendly patcher) and
garleek-backend (the program the QM engine calls behind the scenes to handle the MM calculations).

garleek-preare takes a naive QM input file for ONIOM and patches it so the MM part is performed through
garleek-backend, which will be interfacing with the configured MM engine. For this to work, the atom types
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featured in the QM input file should be understandable by the MM engine, so garleek-prepare will replace those
too, using the atom_types file mapping to do so.

In general, the worfklow is the following:

1. Build a standard ONIOM calculation, with layers, link atoms and so on. The garleek-prepare keyword
should be present in the MM layer configuration so the patcher can find it and properly configure it.

2. Patch the QM input file with garleek-prepare:

garleek-prepare --qm <QM_engine> -mm <MM_engine> --ff <MM_forcefield> \
--types <QM/MM_atom_type_dictionary> QM_input_file.in

3. Submit the calculation with the resulting patched file, named QM_input_file.garleek.in with the de-
sired QM software:

QM_engine QM_input_file.garleek.in

4. Profit!

garleek.cli.backend_app(qmargs, qm=’gaussian’, mm=’tinker’, ff=’mm3.prm’, **kw)
garleek-backend Python entry-point

Parameters

• qmargs (tuple) – CLI arguments passed by the QM engine. This can be anything!

• qm (str) – QM engine to use. Must be one of QM_ENGINES, optionally followed by
_version to indicate slight differences in the QM logic. For example, gaussian de-
faults to gaussian_16, but gaussian_09a exports the connectivity differently.

• mm (str) – MM engine to use. Must be one of MM_ENGINES,optionally followed by
_version to indicate slight differences in the MM logic.

• ff (str) – Forcefield to use in the MM part. This can be anything that the MM engine is
able to use as a forcefield (normally a path to a file).

Returns Whatever the QM-MM connector returns

Return type result

garleek.cli.backend_app_main(argv=None)
garleek-backend CLI entry-point

garleek.cli.frontend_app(input_file, types=’uff_to_mm3’, qm=’gaussian’, mm=’tinker’,
ff=’mm3.prm’, **kw)

garleek-prepare Python entry-point

Parameters

• input_file (str) – Path to the QM input file that should be patched so Garleek can
handle the MM part through the desired MM engine.

• types (str, default=uff_to_mm3) – Path to a file listing the mapping between
the QM atom types present in input_file and the MM atom types expected by the
MM engine given the current forcefield. Atom types are case INSENSITIVE. They will be
uppercased upon processing.

• qm (str) – QM engine to use. Must be one of QM_ENGINES, optionally followed by
_version to indicate slight differences in the QM logic. For example, gaussian de-
faults to gaussian_16, but gaussian_09a exports the connectivity differently. This
is only needed so the patched garleek-backend calls include this argument.

4.3. Application layer 15
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• mm (str) – MM engine to use. Must be one of MM_ENGINES,optionally followed by
_version to indicate slight differences in the MM logic. This is only needed so the
patched garleek-backend calls include this argument.

• ff (str) – Path to the forcefield the MM engine will be using to compute values requested
by the QM engine. It should conform to the specified types mapping. This is only needed
so the patched garleek-backend calls include this argument.

Returns outname – Path to patched input file. It will always be a derivative of input_file. If
input_file is input.in, outname will be input.garleek.in.

Return type str

garleek.cli.frontend_app_main(argv=None)
garleek-prepare CLI entry-point
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Citation & Funding

Garleek is scientific software, funded by public research grants: Spanish MINECO (project CTQ2017-87889-P,
CTQ2017-87792R, Severo Ochoa Excellence Accreditation 2014–2018 SEV20130319), Generalitat de Catalunya
(project 2014SGR989, CERCA Programme); J.R.-G.P.: Generalitat de Catalunya (grant 2017FI_B2_00168);
I.F.-A.: Spanish MINECO (Severo Ochoa predoctoral training fellowship SVP2014-068662). If you make use of
Garleek in scientific publications, please link back to this repository (a publication is under preparation). It will help
measure the impact of our research and future funding!
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CHAPTER 6

Help & Support

If you have any question, doubt or suggestion, please submit an issue in our GitHub repository.

6.1 Frequently Asked Questions

6.1.1 Where can I find Gaussian’s documentation for external keyword?

Follow these links: Gaussian v16, v09D, v09B, v03

6.1.2 Why don’t you support more MM software?

Please, follow the ongoing discussion in this issue. PRs are welcome!

6.1.3 Does Garleek support electronic embedding?

Yes, as of v0.3, Garleek supports electronic embedding if you use the EmbedCharge option in the ONIOM keyword
of the Gaussian input file. Differences in the EIn files are handled automatically.

6.1.4 Common Garleek/Gaussian/Tinker errors

Garleek only provides a light wrapper around Gaussian’s external keyword, so it still uses Gaussian’s ONIOM
implementation, which can be a bit picky depending on the requested operations. MM is tricky itself if the parameters
are not available. The list below provides some common errors we have found in our ONIOM journey. It’s not meant
to be exhaustive, but a collection of the results of long debugging sessions.
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Gaussian complains about basis sets not being available

Even though the MM calculation needs no basis sets, Gaussian still runs l301 on the MM part, which is responsible
for preparation tasks like basis sets reading. If your system contains exotic elements (say, Rhenium or Osmium)
and you are already using genecp, it won’t find compatible basis sets. The solution is to provide the basis sets
manually by appending the gen option to the external call and appending two additional basis sets sections (but no
pseudopotentials!) around the original basis set section corresponding to the QM genecp basis sets. Since this task is
repetitive and prone to error, Garleek will do it for you. If gen or genecp options are present in the ONIOM() call,
the external option will be patched with the gen keyword and the basis sets section will be amended as needed.
Similarly, if the basis set is globally specified directly in the ONIOM() call (no genecp nor gen keywords, but a
specific basis set like 6-31G*), it will be added to the external option just in case. When this patch is applied,
you will get an informative message in the output. See tests/data/Os/Os.in for an example input file what
will benefit from this correction.

Gaussian says “MOMM, but no IMMCRS”

opt=nomicro is almost compulsoryin optimization jobs. Garleek will try to add it automatically if it’s not present,
but it might fail in some cases. Please check the option is there in the route section.

Garleek-prepare says “KeyError: 75 not found in line XXXXX”

The atom type XX is not listed in the provided --types file. Due to Garleek fallback strategies, XX can be the
atom type label (ie, C-XX 0.000 1.000 2.000 in the cartesian geometry specification) or the atomic number
corresponding to that element.

This --types file must list atom type correspondences between the originally present atom type labels in the Gaus-
sian input and the atom types Tinker is expecting. This way, garleek-prepare can replace them in the file and
provide the Tinker ones in the patched garleek.in file. If you are using custom residues, you must make sure the
Tinker atom type and its parameters is correctly defined in the PRM or KEY file (specified as the --ff flag).

Tinker says “Unusual number of connected atoms”

The atom type specified for that atom center does not expect covalently bonded species and is missing the bond
parameters. You can either (a) provide those parameters or (b) delete the involved bonds in the connectivity section
(by hand or in GaussView).

The following tutorials assume you have already installed Garleek, Gaussian and Tinker. If that’s not the case, please
refer to Installation.

20 Chapter 6. Help & Support



CHAPTER 7

A simple CH4 molecule

Organic species are easy to model, but with ONIOM there’s always the added difficulty of setting up layers, link atoms
and so on. This simple example will help describe the general workflow for setting up a two-layer QM:MM ONIOM
job in GaussView.

Tip: The tests/data/ directory in the Garleek source contains several toy examples that are easy and fast to
compute. Use them for your own tests and training!

7.1 01 - Build the input file

In GaussView or any similar software build a CH4 molecule and create and B3LYP/UFF ONIOM input file named
tutorial1.in. You should obtain something like this:

%nprocshared=8
%mem=8000MB
%chk=tutorial1
#p opt oniom(B3LYP/6-31G*:UFF) geom=connectivity

ONIOM(QM:MM) OPT FREQ with Garleek

0 1 0 1 0 1
C-C_3 0 0.44534414 -2.95546554 0.00000000 H
H-H_ 0 0.80199857 -3.96427554 0.00000000 H
H-H_ 0 0.80201698 -2.45106735 0.87365150 L H-H_ 1
H-H_ 0 0.80201698 -2.45106735 -0.87365150 H
H-H_ 0 -0.62465586 -2.95545236 0.00000000 H

1 2 1.0 3 1.0 4 1.0 5 1.0
2
3

(continues on next page)
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(continued from previous page)

4
5

Note: In ONIOM calculations, the geometry is specified slightly differently. First, there are more than one charge
multiplicity. These correspond to the QM, MM real and MM model layers. Additionally, each atom line has
more information:

• The first field is usually the element symbol or its atomic number. In ONIOM, the element is extended with a
second subfield for the atom type. In the first atom of the example above (C-C_3), C is the symbol for carbon,
and C_3 its UFF atom type (sp3 carbon). If the force field specified is not UFF, the atom type subfield can (and
most probably will) be different.

• A new column before the cartesian coordinates is present. Its value (0 or -1) determines if the atom is frozen
or not.

• After the cartesian coordinates, at least one additional column is present, listing the ONIOM layer: H (high), M
(middle), or L (low).

• The layer column can be followed by the link atom specifiers, when there’s a covalent bond between atoms
sitting in different layers. It must contain the link atom specifier (element + atom type) and the serial index
of the bonded atom. In the only example above, the link atom is a simple hydrogen atom that will replace the
originally bonded carbon atom.

The connectivity matrix is always needed because the MM program usually requires it. It lists every atom by serial
number, and, if it is bonded to any atom(s), the serial number of those atoms, each followed by its corresponding bond
order. In the example above, the atom 1 (carbon) is bonded to they hydrogens (atoms 2, 3, 4 and 5) with single bonds
(bond order = 1.0).

This file will run just fine in Gaussian, but it will use the simple UFF force field. If you want to use a more accurate
one (other than Amber and Dreiding), Garleek is needed. Let’s try to use the MMFF force field for this molecule.

7.2 02 - Patch the input file with Garleek

The file as created by GaussView needs some modifications to work with Garleek. Don’t worry, garleek-prepare
will do everything for you! For this system to work with MM3, you would use the following command:

garleek-prepare --qm gaussian_09d --mm tinker --ff MMFF --types uff_to_mm3 tutorial1.
→˓in

• --qm lists the QM engine in use. By default it’s gaussian_16, so you don’t have to specify it if that’s the
version you are using. In this case, we are using Gaussian 09D, so that’s why we included it.

• --mm lists the MM engine in use. Only Tinker is supported now, so you can omit it in this example.

• --ff specifies the force field to be used by Tinker. The file will be found following 3 strategies:

1. If the value is the path to a file, use it. This way you can use mycustomforce field.prm or
mycustomparameters.key. Both Tinker PRM and KEY files are supported.

2. If no file is found with that path, try to find it under garleek/data/prm. This allows you to use
mm3.prm even if it’s not present in the working directory.

3. Try again by adding the .prm extension. This allows you to use simply mm3.
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• --types must be a file listing the correspondences between the atom types originally specified in the Gaussian
input file, and those expected by Tinker. Since GaussView (or your favorite software) generated the types for
UFF and we want to use MM3, the dictionary specified is uff_to_mmff, which is included in Garleek and
available in garleek/data/atom_types. This option admits two types of values:

1. A valid path to a file

2. A filename under garleek/data/atom_types.

We will go into further details later. For now, we just need to know that this command would generate a file called
tutorial1.garleek.in with these contents:

! Created with Garleek v0+untagged.68.g6711cac.dirty
%nprocshared=8
%mem=8000MB
%chk=A_1
#p opt=nomicro oniom(B3LYP/6-31G*:external="garleek-backend --qm gaussian_09d --mm
→˓tinker --ff 'mmff'"/6-31G*) geom=connectivity

ONIOM(QM:MM) OPT FREQ with Garleek

0 1 0 1 0 1
C-1 0 0.44534414 -2.95546554 0.00000000 H
H-23 0 0.80199857 -3.96427554 0.00000000 H
H-23 0 0.80201698 -2.45106735 0.87365150 L H-23 1
H-23 0 0.80201698 -2.45106735 -0.87365150 H
H-23 0 -0.62465586 -2.95545236 0.00000000 H

1 2 1.0 3 1.0 4 1.0 5 1.0
2
3
4
5

Let’s see what has changed in this file.

1. A new line beginning with an exclamation mark ! has been added. This is just a comment (ignored by Gaussian)
listing the garleek version used so you can reproduce the calculations later on with the exact same version.

2. The route # section has grown significantly:

• opt=nomicro has been added. This disables microoptimizations, which can lead to known errors when
applying the external keywords.

• external has a long string attached. This is the garleek-backend command that will be called in
every Gaussian ONIOM iteration. It has been added automatically by garleek-prepare so you don’t
need to worry about its details.

• The basis set configured in the QM layer has been included in the MM layer as well. This is a workaround
some errors with the default basis sets in Gaussian. Only applies for exotic elements, but since it doesn’t
hurt to have it specified here, it’s always included for convenience.

3. The atom types (H_, C_) has been replaced by numbers (23, 1). This is a direct replacement as specified in the
--types file and it’s the key step in the whole process.

7.3 03 - Review the atom types

Since this simple molecule only includes one carbon atom with its four hydrogen atoms, the conversion is trivial.
UFF only includes one (or very few) atom type(s) per element, but that’s very uncommon in most force fields: they
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normally list several atom types per element depending on its bonded atoms and other conditions.

As a result, the conversion between UFF and other force fields is not unequivocal. An effort has been made to provide
the best correspondence for most cases, but you should check the types manually! You can define your own atom
types mapping by modifying the ones provided with Garleek (creating a separate copy is recommended) or writing a
new one from scratch. The syntax is very simple: one correspondence per line, listing the original atom type in the
first field, and the Tinker atom type in the second field, separated by one or more spaces. Comments can be inserted
with # in its own line or ending a valid line.

For example, the uff_to_mm3 file lists some correspondences between atomic numbers and default MM3 Tinker
types:

# atomic number, mm3 type, description

1 5 # H_norm
2 51 # He
3 163 # Li
4 165 # Be
5 26 # B_sp2
6 1 # C_sp3
7 8 # N_sp3
8 6 # O_sp3
9 11 # F
10 52 # Ne

7.4 04 - Launch the Gaussian job

The resulting .garleek.in file is a valid Gaussian input file. You can run it with any standard procedures you are
already using, like g09 tutorial2.garleek.in locally, or in a queued cluster system. Gaussian & Garleek
will take care of the rest!
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CHAPTER 8

Organometallic species

QM/MM studies are particularly useful in metal-containing systems. However, some metal elements are rarely present
in MM force fields and custom parameters must be provided (especially if coordination bonds are considered in
the MM part). Fortunately, most of the time you can provide an isolated metal ion (no explicit bonds for the MM
calculation) and get away with providing the van der Waals radius.

Let’s take the following Osmium compound as an example. Go to tests/data/Os and grab a copy of the Os.in and
Os.key files. This file can be fed to garleek-prepare to provided a Garleek-ready Os.garleek.in file:

garleek-prepare --types uff_to_mm3 --ff Os.key Os.in

Several considerations must be done here:

• --types has been set to uff_to_mm3. This file is provided with Garleek, and contains a manual mapping
listing UFF to MM3 correspondences. In most cases, it should work for your needs, but you are encouraged to
review the choices made in that file so they fit your system.

• --ff has been set to Os.key. The ff flag can be set to either PRM or KEY files.

KEY files are important in Tinker and can help you perform a lot of calculations. We use them to load default
parameters from PRM files and include additional parameters on case-by-case basis. In this example, the force field has
been set to qmmm3.prm. This PRM file ships with Garleek. It’s an extension of the original Tinker MM3 parameters
to contain atom type definitions for most elements in the periodic table (transition metals included). However, it does
not contain bond, angle or dihedral parametrization. Only the element masses and VdW radii are included, so you can
only use ISOLATED metal ions. If you want to use bonded MM metals, you will need to provide those parameters.
The KEY file includes this data below the parameters line:

parameters qmmm3.prm

# Define bond parameters
bond 7 165 0.3 1.67
bond 8 5 6.420 1.0150
# Define bond angle parameters
angle 7 165 7 0.5 90.0
angle 6 2 37 0.6 120.0
angle 5 8 5 0.605 106.40

(continues on next page)
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(continued from previous page)

# Define torsion parameters
torsion 2 1 6 2 0.0 0.0 1 0.0 180.0 2 0.403 0.0 3
torsion 6 2 37 37 0.0 0.0 1 12.0 180.0 2 0.0 0.0 3
torsion 1 6 2 37 1.05 0.0 1 7.5 180.0 2 -0.2 0.0 3

Should you need more atom types, you can define those in your KEY file and provide that as the --ff value instead
of a generic PRM file. For example, if you want to use the Amber99 force field with an aluminium atom, you should
include two changes:

• The -ff should be a KEY file with the amber force field loaded with the parameters keyword and a new
atom definition for the aluminium ion with an atom type id of your choice. Let’s say 5000. Van der Waals data
should be added as well for that atom type id.

• The --types file should list a line with 13 5000, where 13 is the Al atomic number and 5000 is the Tinker
atom type. You an use any atom type label in the original Gaussian file (ie, Al-ALX), but since Garleek will try
to use the atomic number if the atom type label (ALX) cannot be found in the --types file, using the atomic
number (13) works just fine as a generic fallback.

8.1 Custom basis sets

When dealing with metals, custom basis sets might be needed. This usually accomplished with the gen or genecp
options in the route section and specifying the basis sets and pseudopotentials after the connectivity matrix. When
using external as the MM part in the ONIOM calls, the basis must be provided for the MM part as well. This
means that the ONIOM call should be like this:

ONIOM(B3LYP/genecp:external="garleek-backend ..."/gen)

Instead of specifying the basis sets and pseudopotentials once, they must be specified separately for each QM and MM
calculation. This means that, instead of having these lines (QM part only):

Os 0
LanL2DZ

****
O 0
6-31G*
****
C H N 0
6-31G

****

Os 0
LanL2DZ

You will need these (MM basis sets, QM basis sets & pseudopotentials, MM basis sets again):

! Lines starting with exclamation marks are comments and can be ignored
! MM basis sets
Os 0
LanL2DZ

****
O 0
6-31G*
****
C H N 0

(continues on next page)
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(continued from previous page)

6-31G

****

! QM basis sets
Os 0
LanL2DZ

****
O 0
6-31G*
****
C H N 0
6-31G

****

! QM pseudopotentials
Os 0
LanL2DZ

! MM basis sets
Os 0
LanL2DZ

****
O 0
6-31G*
****
C H N 0
6-31G

****

garleek-prepare will try to detect the basis sets and pseudopotentials if the ONIOM keyword contains the
genecp or gen options, and fill the MM basis sets automatically, so you don’t worry about these technicalities.
However, if somehow it fails, you will need to review those lines so Gaussian can find the proper basis sets.

8.1. Custom basis sets 27
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CHAPTER 9

Specific details for biomolecules

When biomolecules are involved in a QM/MM calculation, protein-specific force fields are needed. Fortunately, Tinker
provides several force fields that fall in this category:

• AMBER 94, 96, 98, 99, 99SB

• AMOEBABIO & AMOEBAPRO

• CHARMM 19, 22

• MM3PRO

• OPLS-AA

Protein-specific force fields usually parameterize atoms and groups them by residue. In Tinker, each atom in each
residue would be a different atom type (but similar ones are grouped in atom classes). This can lead to some confusion,
because Tinker will be expecting atom types, not atom classes, in its XYZ input file (this is generated automatically
by Garleek). The --types dictionary will have to unequivocally map residue-atom pairs to each unique atom type.
To overcome this limitation, we follow an alternative typing approach for biostructures.

Tip: To prepare a protein structure, using separate software like UCSF Chimera with our Tangram suite is recom-
mended. This will take care of some annoying details that have to do with atom typing, like adding hydrogen atoms
and terminal caps, fixing residue and atom names, and will also generate the properly formatted Gaussian input file
Garleek expects.

When the protein structure is properly formatted, you should obtain a PDB file that can be loaded into GaussView.
Instead of having atom lines like these:

C-C_3 0 0.44534414 -2.95546554 0.00000000 H
H-H_ 0 0.80199857 -3.96427554 0.00000000 H
H-H_ 0 0.80201698 -2.45106735 0.87365150 L H-H_ 1
H-H_ 0 0.80201698 -2.45106735 -0.87365150 H
H-H_ 0 -0.62465586 -2.95545236 0.00000000 H

You will see lines like these:
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N-N3-0.000000(PDBName=N,ResName=NGL,ResNum=1) -1 -0.47100000 20.52700000 -
→˓13.50600000 L
H-H-0.000000(PDBName=H1,ResName=NGL,ResNum=1) -1 -0.31300000 21.51500000 -
→˓13.64700000 L
H-H-0.000000(PDBName=H2,ResName=NGL,ResNum=1) -1 0.26700000 20.00100000 -
→˓13.95200000 L
H-H-0.000000(PDBName=H3,ResName=NGL,ResNum=1) -1 -1.36000000 20.26700000 -
→˓13.90800000 L
C-CX-0.000000(PDBName=CA,ResName=NGL,ResNum=1) -1 -0.48000000 20.22400000 -
→˓12.02500000 L
H-HP-0.000000(PDBName=HA2,ResName=NGL,ResNum=1) -1 -1.50100000 20.04900000 -
→˓11.68700000 L

Notice the first field it’s still an atom identifier whose subfields are separated by - characters:

• 1st subfield: Element symbol. Sometimes, atomic number.

• 2nd subfield: Atom type.

• 3rd subfield: Charge, PDB fields.

PDB fields are important in Garleek because when this type of line is present, the atom type (2nd field) is IGNORED
and a NEW one is computed on the fly, following this template: <ResName>_<PDBName>. For example, the first
line in the block above would generate an atom type named NGL_N. The original N3 will be IGNORED.

As a result, for the --types dictionaries to work with biomolecules, they must include the adequate
<ResName>_<PDBName> combination, and not the 2nd field as seen in the previous tutorials. Obviously, the
originating PDB file must have atoms and residues properly named so the PDB fields are correctly written. Otherwise,
it won’t work.

We provide several mappings obtained automatically from Tinker force fields featuring a biotype section using a
custom script. However, for this to work, the biomolecule must include the correct PDBName and ResName values.

Tip: A script named biotyper.py can be found under garleek/data/prm. This script can parse PRM files
for biotype lines and generate a .types file automatically, which would work as a good starting point towards
configuring your own atom types mapping.

Link atoms

Link atoms are also affected by this special treatment. If PDB fields are present, the link atom type will be composed
out of the main atom ResName and the atom type listed next to the link atom element. For example, in the line:

H-HP-0.000000(PDBName=HA2,ResName=NGL,ResNum=1) -1 -1.50100000 20.04900000 -11.
→˓68700000 L H-HB 5

, the calculated link atom type would be NGL_HB.

You should choose link atoms with type according to its bonded atom to avoid parameter problems (angles and dihe-
drals, particularly). For example, if the main atom is CB the correct H link atom should be HB. Refer to the PRM force
field to locate the proper type (PDBName).

9.1 Custom residues

When custom residues are present in the structure, even in the QM region, they must be included for the MM calcula-
tion anyways. Using them is no harder than normal residues, but parameters must be present either in the PRM file or
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in a custom KEY file. Then, the normal atom type conversion rules will be followed to locate the proper Tinker atom
type from the PDB fields.

Toy example for a NH3 residue in the Amber format:

The PDB file would be something like this:

HETATM 1 N1 NH3 1 0.000 0.000 0.000 1.00 0.00 N
HETATM 2 H1 NH3 1 1.010 0.000 0.000 1.00 0.00 H
HETATM 3 H2 NH3 1 -0.337 0.952 0.000 1.00 0.00 H
HETATM 4 H3 NH3 1 -0.336 -0.476 -0.825 1.00 0.00 H

The Gaussian input file would end up like:

N-N3-0.000000(PDBName=N1,ResName=NH3,ResNum=1) -1 0.000 0.000 0.000 L
H-HN-0.000000(PDBName=H1,ResName=NH3,ResNum=1) -1 1.010 0.000 0.000 L
H-HN-0.000000(PDBName=H2,ResName=NH3,ResNum=1) -1 -0.337 0.952 0.000 L
H-HN-0.000000(PDBName=H3,ResName=NH3,ResNum=1) -1 -0.336 -0.476 -0.825 L

The PRM file should contain:

atom 5000 14 N "Custom Residue NH3 N1" 7 14.010 3
atom 5001 29 H "Custom Residue NH3 H1" 1 1.008 1
atom 5002 29 H "Custom Residue NH3 H2" 1 1.008 1
atom 5003 29 H "Custom Residue NH3 H3" 1 1.008 1

# bonds, dihedrals, vdw and so on should be needed as well
# You would probably use something like Antechamber for these data

The --types dictionary should list:

NH3_N1 5000
NH3_H1 5001
NH3_H2 5002
NH3_H3 5003

9.1. Custom residues 31



Garleek Documentation, Release 0.3.1

32 Chapter 9. Specific details for biomolecules



CHAPTER 10

Indices and tables

• genindex

• modindex

• search
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