
Gaphor Documentation

Arjan Molenaar

May 07, 2024

GETTING STARTED

1 Get Started with Gaphor 3
1.1 Model Browser . 5
1.2 Toolbox . 5
1.3 Diagrams . 5
1.4 Property Editor . 6
1.5 Model Preferences . 6

2 Your First Model 9
2.1 Adding Relations . 10
2.2 Creating New Diagrams . 11

3 Tutorial: Coffee Machine 13
3.1 Introduction . 13
3.2 Abstraction Levels . 14
3.3 Pillars . 15
3.4 Table of Contents . 16

4 Change Log 29

5 Style Sheets 31
5.1 Supported selectors . 33
5.2 Style properties . 34
5.3 CSS model elements . 37
5.4 Ideas . 38
5.5 System Style Sheet . 40

6 Sphinx Extension 49
6.1 Configuration . 50
6.2 Errors . 51

7 Jupyter and Scripting 53
7.1 Getting started . 53
7.2 Query a model . 53
7.3 Draw a diagram . 56
7.4 Create a diagram . 56
7.5 Update a model . 57
7.6 What else . 58
7.7 Examples . 59

8 Stereotypes 63
8.1 Creating a profile . 64

i

9 Resolve Merge Conflicts 67

10 Plugins 69
10.1 Install a plugin . 69
10.2 Create your own plugin . 70
10.3 Example plugin . 70

11 Gaphor on Linux 71
11.1 Development Environment . 71
11.2 Create a Flatpak Package . 73
11.3 Linux Distribution Packages . 73

12 Gaphor on macOS 75
12.1 Development Environment . 75
12.2 Packaging for macOS . 76

13 Gaphor on Windows 77
13.1 Development Environment . 77
13.2 Packaging for Windows . 80

14 Gaphor in a Container 81
14.1 GitHub Codespaces . 81
14.2 Remote access to Gaphor graphic window with Codespaces . 81

15 Contribute to Gaphor 83

16 Modeling Language Core 85
16.1 The Element Class . 86
16.2 The Presentation class . 87
16.3 The Diagram class . 87
16.4 Protocols . 88

17 Unified Modeling Language 91
17.1 01. Common Structure . 92
17.2 02. Values . 96
17.3 03. Classification . 97
17.4 04. Simple Classifiers . 100
17.5 05. Structured Classifiers . 101
17.6 06. Packaging . 104
17.7 07. Common Behaviors . 105
17.8 08. State Machines . 107
17.9 09. Activities . 108
17.10 10. Actions . 113
17.11 11. Interactions . 117
17.12 12. Use Cases . 120
17.13 13. Deployments . 121
17.14 14. Information Flows . 122
17.15 A. Gaphor Specific Constructs . 123
17.16 B. Gaphor Profile . 123

18 Systems Modeling Language 125
18.1 Activities . 126
18.2 Allocations . 127
18.3 Blocks . 128
18.4 ConstraintBlocks . 134

ii

18.5 Libraries . 135
18.6 ModelElements . 135
18.7 PortsAndFlows . 136
18.8 Requirements . 140

19 Risk Analysis and Assessment Modeling Language 141
19.1 Core . 142
19.2 General . 146
19.3 Methods . 162

20 The C4 Model 183

21 Design Principles 185
21.1 Guidance . 186
21.2 Out of your way . 186
21.3 Continuity . 187
21.4 User interaction . 187
21.5 What else? . 187

22 Framework 189
22.1 Overview . 189
22.2 Event driven . 189
22.3 Transactional . 189
22.4 Main Components . 189

23 Service Oriented Architecture 191
23.1 Services . 191
23.2 Example: ElementFactory . 192
23.3 Entry Points . 192
23.4 Interfaces . 192

24 Event System 195

25 Modeling Languages 197
25.1 Modeling language . 198
25.2 Connectors . 198
25.3 Format and parse . 199
25.4 Copy and paste . 199
25.5 Grouping . 200
25.6 Dropping . 200
25.7 Automated model cleanup . 200
25.8 Property Editor pages . 201
25.9 Instant (diagram) editor popups . 201

26 Connection Protocol 203

27 File Format 205

28 Undo Manager 207
28.1 Overview of Transactions . 207
28.2 Start of a Transaction . 207
28.3 Successful Transaction . 207
28.4 Failed Transaction . 208
28.5 Transaction API . 208
28.6 References . 209

iii

Index 211

iv

Gaphor Documentation

Note: The documentation is up to date for Gaphor 2.25.1

Gaphor is a UML and SysML modeling application written in Python. It is designed to be easy to use, while still being
powerful. Gaphor implements a fully-compliant UML 2 data model, so it is much more than a picture drawing tool.

You can use Gaphor to quickly visualize different aspects of a system as well as create complete, highly complex
models.

Gaphor is 100% Open source, available under a friendly Apache 2 license. The code and issue tracker can be found on
GitHub.

What are you waiting for? Let’s get started!

For download instructions, and the blog, please visit the Gaphor Website.

Did you know Gaphor has excellent integration with Sphinx and Jupyter notebooks?

GETTING STARTED 1

https://github.com/gaphor/gaphor/blob/main/LICENSES/Apache-2.0.txt
https://github.com/gaphor/gaphor
https://gaphor.org

Gaphor Documentation

2 GETTING STARTED

CHAPTER

ONE

GET STARTED WITH GAPHOR

Gaphor is more than a diagram editor: it’s a modeling environment. Where simple diagram editors such as Microsoft
Visio and draw.io allow you to create pictures, Gaphor actually keeps track of the elements you add to the model. In
Gaphor you can create diagrams to track and visualize different aspects of the system you’re developing.

Enough talk, let’s get started.

You can find installers for Gaphor on the Gaphor Website. Gaphor can be installed on Linux (Flatpak), Windows, and
macOS.

Once Gaphor is launched, it provides you a welcome screen. It shows you previously opened models and model
templates.

3

https://draw.io
https://gaphor.org/download

Gaphor Documentation

You can select a template to get started.

• Generic: a blank model to start with

• UML: A template for the Unified Modeling Language for modeling a software system

• SysML: A template for the Systems Modeling Language for modeling a wide range of systems and systems-of-
systems

• RAAML: A template for the Risk Analysis and Assessment Modeling language for safety and reliability analysis

• C4 Model: A template for Context, Containers, Components, and Code which is for lean modeling of software
architecture

Once the model interface is loaded you’ll see the modeling interface.

The layout of the Gaphor interface is divided into four sections, namely:

1. Model Browser

2. Diagram Element Toolbox

3. Diagrams

4. Property Editor

Each section has its own specific function.

4 Chapter 1. Get Started with Gaphor

Gaphor Documentation

1.1 Model Browser

The Model Browser section of the interface displays a hierarchical view of your model. Every model element you
create will be inserted into the Model Browser. This view acts as a tree where you can expand and collapse different
elements of your model. This provides an easy way to view the elements of your model from an elided perspective.
That is, you can collapse those model elements that are irrelevant to the task at hand.

In the figure above, you will see that there are two elements in the Model Browser. The root element, New Model is
a package. Notice the small arrow beside New Model that is pointing downward. This indicates that the element is
expanded. You will also notice the two sub-elements are slightly indented in relation to New Model. The main element
is a diagram.

In the Model Browser view, you can also right-click the model elements to get a context menu. This context menu
allows you to find out in which diagram model elements are shown, add new diagrams and packages, and delete an
element.

Double-clicking on a diagram element will show it in the Diagram section. Elements such as classes and packages can
be dragged from the tree view on the diagrams.

1.2 Toolbox

The toolbox is used to add new items to a diagram. Select the element you want to add by clicking on it. When you
click on the diagram, the selected element is created. The arrow is selected again, so the element can be manipulated.

Tools can be selected by simply left-clicking on them. By default, the pointer tool is selected after every item placement.
This can be changed by disabling the “Reset tool” option in the Preferences window. Tools can also be selected by
keyboard shortcuts. The keyboard shortcut can be displayed as a tooltip by hovering over the tool button in the toolbox.
Finally, it is also possible to drag elements on the Diagram from the toolbox.

1.3 Diagrams

The diagram section contains diagrams of the model and takes up the most space in the UI because it is where most of
the modeling is done. Diagrams consist of items placed on the diagram. There are two main types of items:

1. Elements

2. Relationships

Multiple diagrams can be opened at once: they are shown in tabs. Tabs can be closed by pressing Ctrl+w or left-clicking
on the x in the diagram tab.

1.3.1 Elements

Elements are the shapes that you add to a diagram, and together with Relations, allow you to build up a model.

To resize an element on the diagram, left-click on the element to select it and then drag the resize handles that appear
at each corner.

To move an element on the diagram, drag the element where you want to place it by pressing and holding the left mouse
button, and moving the mouse before releasing the button.

1.1. Model Browser 5

Gaphor Documentation

1.3.2 Relations

Relations are line-like items that form relationships between elements in the diagram. Each end of a relation is in one
of two states:

1. Connected to an element and the handle turns red

2. Disconnected from an element and the handle turns green

If both ends of a relation are disconnected, the relation can be moved by left-clicking and dragging it.

A new segment in a relation can be added by left-clicking on the relation to select it and then by hovering your mouse
over it. A green handle will appear in the middle of the line segments that exist. Drag the handle to add another
segment. For example, when you first create a new relation, it will have only one segment. If you drag the segment
handle, then it will now have two segments with the knee of the two segments where the handle was.

1.3.3 Copy and Paste

As stated before, Gaphor is a modeling environment. This means that every item in a diagram is backed by a model
element found in the model browser. This means that you can show the same model element in different diagrams.

• Ctrl+v is used to paste only the presentation element.

• Ctrl+Shift+v is used to paste a new presentation with a new model element.

Important: Ctrl+v does a “shallow” paste. Ctrl+Shift+v does a “deep” paste.

1.3.4 Undo and Redo

Undo a change press Ctrl+z or left-click on the back arrow at the top of the Property Editor. To re-do a change, hit
Ctrl+Shift+z or press the forward arrow at the top of the Property Editor.

1.4 Property Editor

The Property Editor is present on the right side of the diagrams. When no item is selected in the diagram, it shows you
some tips and tricks. When an item is selected on the diagram, it contains the item details like name, attributes and
stereotypes. It can be opened with F9 and the icon in the header bar.

The properties that are shown depend on the item that is selected.

1.5 Model Preferences

The Property Editor also contains model preferences: Click the button.

6 Chapter 1. Get Started with Gaphor

Gaphor Documentation

1.5.1 Reset Tool Automatically

By default, the pointer tool is selected after an element is placed from the toolbox. If this option is turned off, the same
type of element will be placed by clicking in the diagram until another element is selected in the toolbox.

1.5.2 Remove Unused Elements

By default, elements that are not part of any diagram in the model will be removed. If this option is turned off, elements
remain in the model and may be found in the model browser.

1.5.3 Diagram Language

The diagram language modifier is only applicable to the loaded model and how it is shown in the diagram. The diagram
language setting is saved as part of the model and defaults to English.

The UI language of Gaphor is controlled by the operating system.

Note: Gaphor considers the LANG environment variable on Linux, Windows and macOS.

On Windows and macOS it can be set independently of the operating system’s language settings to a different language.

1.5.4 Style Sheet

The style sheet allows to change the visual appearance of diagrams and model elements.

1.5. Model Preferences 7

Gaphor Documentation

8 Chapter 1. Get Started with Gaphor

CHAPTER

TWO

YOUR FIRST MODEL

Note: In this tutorial we refer to the different parts of the gaphor interface: Model Browser, Toolbox, Property Editor.

Although the names should speak for themselves, you can check out the Getting Started page for more information.

Once Gaphor is started, and you can start a new model with the Generic template. The initial diagram is already open
in the Diagram section.

Select an element you want to place, in this case a Class () by clicking on the icon in the Toolbox and click on the
diagram. This will place a new Class item instance on the diagram and add a new Class to the model – it shows up in
the Model Browser. The selected tool will reset itself to the Pointer tool after the element is placed on the diagram.

The Property Editor on the right side will show you details about the newly added class, such as its name (New Class),
attributes and operations (methods). The Note field can contain any text you wish to associate with the element, (this
will not show on a diagram).

9

Gaphor Documentation

It’s simple to add elements to a diagram.

Gaphor does not make any assumptions about which elements should be placed on a diagram. A diagram is a diagram.
UML defines all different kinds of diagrams, such as Class diagrams, Component diagrams, Action diagrams, Sequence
diagrams. But Gaphor does not place any restrictions.

2.1 Adding Relations

Add another Class. Change the names to Shape and Circle. Let’s define that Circle is a sub-type of Shape. You
can do this by selecting one and changing the name in the Property Editor, or by double-clicking the element.

Select Generalization ().

Move the mouse cursor over Shape. Click, hold and drag the line end over Circle. Release the mouse button, and you
should have your relationship between Shape and Circle. You can see both ends of the relation are red, indicating
they are connected to their class.

10 Chapter 2. Your First Model

Gaphor Documentation

Optionally you can run the auto-layout (→ Tools → Auto Layout) to align the elements on the diagram.

2.2 Creating New Diagrams

To create a new diagram, use the Model Browser. Select the element that should contain the new diagram. For now,
select New Model. Click the New Diagram menu () in the header bar.

Select New Generic Diagram and a new diagram is created.

Now drag the elements from the Model Browser onto the new diagram. First the classes Shape and Circle. Add the
generalization last. Drop it somewhere between the two classes. The relation will be created to the diagram.

2.2. Creating New Diagrams 11

Gaphor Documentation

Now change the name of class Circle to Ellipse. Check the other diagram. The name has been changed there as
well.

Important: Elements in a diagram are only a representation of the elements in the underlying model. The model is
what you see in the Model Browser.

Elements in the model are automatically removed when there are no more representations in any of the diagrams.

12 Chapter 2. Your First Model

CHAPTER

THREE

TUTORIAL: COFFEE MACHINE

Note: In this tutorial we refer to the different parts of the gaphor interface: Model Browser, Toolbox, Property Editor.

Although the names should speak for themselves, you can check out the Getting Started page for more information
about those sections.

3.1 Introduction

In the bustling town of Antville, a colony of ants had formed a Systems Engineering consulting company called
AntSource. They value collaboration, transparency, and community-driven engineering, and seeks to empower their
employees and customers through open communication and participation in the systems engineering process.

The engineers at AntSource all have nicknames that reflect the key principles and concepts of their craft: Qual-ant,
Reli-ant, Safe-ant, Usa-ant, and Sust-ant. They were experts in designing and optimizing complex systems, and they
took pride in their work.

One day, a new client approached AntSource with an unusual request. Cappuccino, a cat who owned a popular coffee
shop called Milk & Whiskers Café, needed a custom espresso machine designed specifically for felines. Cats just love
their coffee strong, with a creamy and smooth body and topped with the perfect foamy layer of crema. The ants were
intrigued by the challenge and immediately set to work.

Qual-ant was responsible for ensuring that the machine met all quality standards and specifications, while Reli-ant was
tasked with making sure that the machine was dependable and would work correctly every time it was used. Safe-ant
designed the machine with safety in mind, ensuring that it wouldn’t cause harm to anyone who used it. Usa-ant designed
the machine to be easy and intuitive to use, while Sust-ant ensured that the machine was environmentally friendly and
sustainable. In this tutorial we follow the adventures of AntSource to create the perfect kittie espresso machine.

13

Gaphor Documentation

The first thing the ants did was to open Gaphor to the Greeter window and start a new model with the SysML template.
You can now decide to either:

• recreate their work as part of this tutorial. For this, open the SysML Example model shown at the bottom of the
Greeter window

• inspect the result of their work by opening the coffee-machine model located in the examples folder.

3.2 Abstraction Levels

Abstraction is a way of simplifying complex systems by focusing on only the most important details, while ignoring
the rest. It’s a process of reducing complexity by removing unnecessary details and highlighting the key aspects of a
system in order to focus on the problem to be solved. It is the key to rigorous analysis of a system.

To understand abstraction, think about a painting. When you look at a painting, you see a representation of something -
perhaps a person, a landscape, or an object. The artist has simplified the real world into a set of lines, shapes, and colors
that represent the most important details of the subject. In the same way, systems engineers, like our friends the ants,
use abstraction to represent complex systems by breaking them down into their essential components and highlighting
the most important aspects.

Abstraction levels refer to the different levels of detail at which a system can be represented. These levels are used to
break down complex systems into smaller, more manageable parts that can be analyzed and optimized. Said another
way, abstraction levels group portions of a design where similar types of questions are answered.

14 Chapter 3. Tutorial: Coffee Machine

Gaphor Documentation

There are typically three levels of abstraction in systems engineering and these are the three levels used in the SysML
template:

• Concept Level: Sometimes also called Conceptual Level. Defines the problem being solved. This is the highest
level of abstraction, where the system is described in terms of its overall purpose, goals, and functions. At this
level, the focus is on understanding the system’s requirements and how it will interact with other systems.

• Logical Level: Defines a technology-agnostic solution. This is the middle level of abstraction, where the system
is described in terms of its structure and behavior. At this level, the focus is on how the system components are
organized and how they interact with each other.

• Technology Level: Sometimes also called Physical level. Defines the detailed technical solution. This is the
lowest level of abstraction, where the system is described in terms of its components and their properties. At this
level, the focus is on the details of the system’s implementation.

Each level of abstraction provides a different perspective on the system, and each level is important for different aspects
of system design and analysis. For example, the conceptual level is important for understanding the overall goals and
requirements of the system, while the physical level is important for understanding how the system will be built and
how it will interact with the environment.

There is a fourth abstraction level called the Implementation Level that isn’t modeled, which is the concrete built system.

In the upper left hand corner of Gaphor, the Model Browser shows the three top level packages, dividing up the model
in to these three abstraction levels.

3.3 Pillars

There are four pillars of SysML which help classify the types of diagrams based on what they represent:

• Behavior: The functionality of a system

• Structure: How a system is formed using parts and connections

• Requirements: Written statements that constrain the system

• Parametric: Enforces mathematical rules across values in the system

If you want to learn more about these four pillars, there is a 30-minute video by Rick Steiner called The Four Pillars of
SysML.

Since Parametric Diagrams are one of the least used diagram types in SysML, we are going to only focus on the first
three. The power of SysML comes in being able to make relationships between these three pillars. For example, by
allocating behavior like an activity to an element of the structure like a block.

If you expand the top-level Abstraction Level packages in the Model Browser, each one contains three more packages,
one for each pillar. It is in these packages that we will start to build up the design for the espresso machine.

3.3. Pillars 15

https://youtu.be/998UznK9ogY
https://youtu.be/998UznK9ogY

Gaphor Documentation

3.4 Table of Contents

3.4.1 Coffee Machine: Concept Level

Introduction

The concept level defines the problem we are trying to solve. For the espresso machine, we are going to use diagrams
at this abstraction level to answer questions like:

• Who will use the machine and what are their goals while using it?

• What sequence of events will a person take while operating the machine?

• What are the key features and capabilities required for the machine to perform its intended function?

• What are the design constraints and requirements that must be considered when designing the machine?

• What are the key performance metrics that the machine must meet in order to be considered successful?

16 Chapter 3. Tutorial: Coffee Machine

Gaphor Documentation

• How will the machine fit into the larger context of the café, and how will it interact with other systems and
components within the café?

• What are the needs of others like those marketing, selling, manufacturing, or buying the machine?

At this level, the focus is on understanding the big picture of the espresso machine and its role within the café system.
The answers to these questions will help guide the design and development of the machine at the logical and technology
levels of abstraction.

Use Case Diagram

First the ants work on the behavior of the system. Expand the Behavior package in the Model Browser and double-click
on the diagram named Use Cases.

A use case diagram is a type of visual representation used in systems engineering to describe the functional requirements
of a system, such as an espresso machine. In the context of the espresso machine, a use case diagram would be used
to identify and define the different ways in which the machine will be used by its users, such as the café staff and
customers.

The diagram would typically include different actors or users, such as the barista, the customer, and possibly a manager
or maintenance technician. It would also include different “use cases” or scenarios, which describe the different actions
that the users can take with the machine, such as placing an order, making an espresso, or cleaning the machine.

The use case diagram helps to ensure that all the necessary functional requirements of the espresso machine are iden-
tified and accounted for, and that the system is designed to meet the needs of its users. It can also be used as a com-
munication tool between the different stakeholders involved in the development of the machine, such as the ants and
Cappuccino the cat.

The ants need your help updating the diagrams, so let’s get started:

1. Double-click on the actor to pop up the rename dialog, and replace User with Barista.

2. Update the name of the oval Use Case from Use Case #1 to Brew espresso.

3. Update the name of the rectangle Block from Feature to Espresso Machine

A barista interacts with the espresso machine. The barista is provided a simple interface with a few push buttons.

In this particular use case diagram, we have one actor named Barista and one use case called Brew espresso, which is
allocated to a block called Espresso Machine. The actor, in this case, is a cat barista who interacts with the system (an
espresso machine) to accomplish a particular task, which is brewing espresso.

3.4. Table of Contents 17

Gaphor Documentation

«block»
Espresso Machine

(from Structure)

Brew espresso

Barista

uc Use Cases

The use case Brew espresso represents a specific functionality or action that the system (the Espresso Machine block)
can perform. It describes the steps or interactions necessary to complete the task of brewing espresso, such as selecting
the appropriate settings, starting the brewing process, and stopping the process once it’s complete.

The use case diagram shows the relationship between the actor and the use case. It is represented by an oval shape with
the use case name inside and an association with the actor. The association represents the interaction from the actor to
the use case.

Domain Diagram

A domain diagram is a graphical representation of the concepts, terms, and relationships within a specific domain. In
the case of a coffee shop, a domain diagram could represent the key elements and relationships within the coffee shop
domain.

The following is a domain diagram that builds upon the context diagram with additional blocks:

• Barista

• Coffee Machine

• Roasted Coffee

• Coffee Grinder

• Water Supply

• Customer

Each block in the Block Definition Diagram (bdd) represents a key concept within the coffee shop domain, and the
containment relationship is used between the domain and the blocks to show that they are part of the domain.

18 Chapter 3. Tutorial: Coffee Machine

Gaphor Documentation

«block»
Domain

«block»
Barista

«block»
Espresso
Machine

«block»
Roasted
Coffee

«block»
Coffee
Grinder

«block»
Water
Supply

«block»
Customer

bdd Espresso Domain

The Barista block is responsible for preparing and serving the coffee to the customers. The Roasted Coffee block
contains the types of coffee available for the barista to use. The Coffee Grinder block grinds the roasted coffee beans
to the desired consistency before brewing. The Water Supply block contains the water source for the coffee machine,
and finally the Customer block represents the person who orders and receives the coffee.

The ants need more of your help to rename the Feature Domain diagram and update it so that it matches the one above.
Make sure that “Profile: SysML” is selected in the top-left corner of the Gaphor user interface. The names of the
blocks can be changed directly in the diagram, but the name of the bdd can only be changed in the Model Browser.
In the Structure package, right-click on the Blocks with the B symbol and rename them from the context menu. Also
remember that you can use auto-layout to align and distribute all elements.

The domain diagram provides a high-level view of the coffee shop domain and the key concepts and relationships
involved in it. It can be a useful tool for understanding the relationships between different elements of the domain and
for communicating these relationships to others.

Context Diagram

The context diagram is a high-level view of the system, and it shows its interaction with external entities. In the case
of a coffee machine, a context diagram provides a clear and concise representation of the system and its interactions
with the external environment.

The context diagram for a coffee machine shows the coffee machine as the system at the center, with all its external
entities surrounding it. The external entities include the barista, the power source, the coffee grinder, and the water
source.

3.4. Table of Contents 19

Gaphor Documentation

«block»
Espresso
Machine

«block»
Barista

«block»
Coffee
Grinder

«block»
Water
Supply

On/Off

Ground Coffee

Water

Temp./Pressure

bdd Espresso Context

The ants need more of your help to rename the Feature Context diagram and update it so that it matches the one above.
To create the specific arrows shown, use an Association entity, then toggle Enable Item Flow to on for that association
and fill in the Item Property field.

Overall, the context diagram for a coffee machine provides a high-level view of the system and its interactions with
external entities. It is a useful tool for understanding the system and its role in the broader environment.

Concept Requirements

Concept requirements are typically collected by analyzing the needs of the stakeholders involved in the development
of the coffee machine. This involves identifying and gathering input from various stakeholders, such as the barista, the
other engineers working on the product, manufacturing, and service.

To collect concept requirements, stakeholders may be asked questions about what they want the coffee machine to do,
what features it should have, and what problems it should solve. They may also be asked to provide feedback on existing
coffee machines to identify areas where improvements could be made.

Once the needs of the stakeholders have been gathered, they can be analyzed to identify common themes and require-
ments. This information can then be used to develop the concept requirements for the coffee machine, which serve as
a starting point for the design process.

The following are some concept requirements for a coffee machine that addresses a water tank, heat-up time, and HMI
button:

20 Chapter 3. Tutorial: Coffee Machine

Gaphor Documentation

• Water Tank: The coffee machine shall have a water tank of sufficient size to make multiple cups of coffee before
needing a refill. The water tank should be easy to access and fill.

• Heat-up Time: The coffee machine shall have a heat-up time of no more than 10 minutes from the time the user
turns on the machine until it’s ready to brew coffee.

• 1 Cup Button: The coffee machine shall have an HMI with a 1 cup brew button to make it easy for the user to
select the amount of coffee they want to brew.

«requirement»
Water Tank

Text: The Espresso
Machine shall have a
removable water tank.

«requirement»
Heatup Time

Text: The Espresso
Machine shall heat up to
operating temperature
within 10 minutes of
turning it on.

«requirement»
1 Cup Button

Text: Pressing the one
cup button shall
result in a single shot
of espresso.

req Concept Requirements

Help the ants update the Concept Requirements diagram with these requirements.

Throughout the design process, the concept requirements will be refined and expanded upon as more information
becomes available and the needs of the stakeholders become clearer. This iterative process ensures that the final design
of the coffee machine meets the needs of all stakeholders and delivers a high-quality product.

3.4.2 Coffee Machine: Logical Level

Introduction

At the logical Level, we’ll define a technology-agnostic solution. This is the middle level of abstraction, where the
system is described in terms of its structure and behavior. At this level, the focus is on how the system components are
organized and how they interact with each other.

Functional Boundary Behavior

A Functional Boundary Behavior diagram is a type of SysML Activity diagram used to show the interactions between
different logical blocks. The swim lanes divide the diagram into different areas, each representing a different functional
block or component.

In this case, the diagram includes swimlanes for the HMI, Controller, Water Pump, Water Heater, Group Head, and
Portafilter. The HMI receives the button press from the barista and then sends a command to the Controller. The
Controller then commands the Water Heater to start, and once the water has reached the correct temperature, the
Controller commands the Pump to start. The water would then be pumped through the Group Head and into the
Portafilter, brewing the coffee. The diagram shows the flow of information and actions between the different logical
blocks, and help to ensure that the behavior that each block provides is properly connected and integrated into the
system.

3.4. Table of Contents 21

Gaphor Documentation

hmi: HMI actuator: Controller waterPump: Water
Pump

waterHeater: Water
Heater

grouphead:
Grouphead

portafilter:
Portafilter

Receive
Button
Press

Command
Pump and

Heat

Temp

Pump
Water

Heat
Water

Temp

Direct
Water
Over

Coffee

Retain
Coffee

Grounds

Activity

User Input

Water Coffee

Request Coffee

act Functional Boundary Behavior

From the Logical package, expand the Behavior package in the Model Browser and double-click on the diagram named
Functional Boundary Behavior. Additional swimlanes can be added by clicking on the swimlanes and add additional
partitions in the Property Editor. The name of the partition before the colon can also be changed in the Property Editor.
The names of the Blocks can be changed in the Structure package, as was explained in the Domain Diagram section.

Additional Object Flows, pins (pay attention to inputs vs outputs), and actions can be created using the Toolbox. The
Parameter Nodes which are attached to the Activity on the very left and right of the diagram are created and renamed
created by clicking on the Activity and modifying them in the Property Editor.

Logical State Machine

The logical state machine for the coffee machine is a diagram that shows the different states and transitions that the
machine goes through to make coffee. In this case, there are two main states: On and Off.

When the coffee machine is turned on, it enters the On state. Inside the On state, there are some substates, starting
with the heat water state. The machine will transition from the heat water state to the ready state when the temperature
reaches the set point.

Once the machine is in the ready state, the user can select one or two cup mode. Depending on the mode selected, the
machine will transition to either the one cup mode or two cup mode.

22 Chapter 3. Tutorial: Coffee Machine

Gaphor Documentation

On

Ready

2 Cup
Mode

1 Cup
Mode

Heat
Water

Off

[2 Cup Selected]

[1 Cup Selected]

[Complete]

[Complete]

[Temp == Setpoint ~98C]

[Turn Off]

[Turn On]

stm Logical States

Open the Logical States diagram and add a region to the On state via the Property Editor. Next use the Toolbox to
add the additional substates and transition. Guards for the transitions, shown surrounded by brackets, are added by
selecting the transition and adding the guard in the Property Editor.

The logical state machine diagram for the coffee machine shows these states, and the different conditions that trigger
the transitions. This helps the ants designing the machine to understand how the coffee machine works and ensure that
it functions properly.

Logical Structure

The logical structure shows which logical blocks the espresso machine is made up of. Since we are at the logical level,
these blocks should be agnostic to technical choices.

The following logical blocks are part of the espresso machine:

• Water tank

• Water pump

• Water heater

• Portafilter

• Controller

• Group head

• HMI

Each block represents a key portion of the espresso machine, and the containment relationship is used between the
espresso machine and its logical parts.

3.4. Table of Contents 23

Gaphor Documentation

«block»
Espresso
Machine

«block»
Water Tank

«block»
Water
Pump

«block»
Water
Heater

«block»
Portafilter

«block»
Controller

«block»
Grouphead

«block»
HMI

+ waterTank + waterPump + waterHeater

+ portafilter

+ controller + grouphead + hmi

bdd Logical Structure

• Water tank: The water tank is a container that stores the water used in the espresso machine. It typically has a
specific capacity and is designed for easy filling and cleaning. The water tank supplies water to the water pump
when needed.

• Water pump: The water pump is responsible for drawing water from the water tank and creating the necessary
pressure to force the water through the coffee grounds in the portafilter. It plays a crucial role in the espresso
extraction process by ensuring a consistent flow of water.

• Water heater: The water heater, also known as the boiler or heating element, is responsible for heating the water
to the optimal temperature for brewing espresso. It maintains the water at the desired temperature to ensure
proper extraction and flavor.

• Portafilter: The portafilter is a detachable handle-like device that holds the coffee grounds. It is attached to the
espresso machine and acts as a filter holder. The water from the pump is forced through the coffee grounds in
the portafilter to extract the flavors and create the espresso.

• Controller: The controller, often a microcontroller or a dedicated circuit board, is the brain of the espresso
machine. It manages and coordinates the operation of various components, such as the water pump, water heater,
and HMI, to ensure the correct brewing process. It monitors and controls temperature, pressure, and other
parameters to maintain consistency and deliver the desired results.

• Group head: The group head is a part of the espresso machine where the portafilter attaches. It provides a secure
connection between the portafilter and the machine, allowing the brewed espresso to flow out of the portafilter
and into the cup. The group head also helps to maintain proper temperature and pressure during the brewing
process.

• HMI (Human-Machine Interface): The HMI is the user interface of the espresso machine. It provides a means
for the user to interact with the machine, usually through buttons, switches, or a touchscreen. The HMI allows
the user to select different brewing options, adjust settings, and monitor the status of the machine. It provides
feedback and displays information related to the brewing process, such as brewing time, temperature, and cup
size selection.

We didn’t make any technical choices at this time, for example we didn’t specify which type of controller, the pump
capacity, or the model of the group head. These details will be defined once we get to the Technology level.

The ants need more of your help to update the Logical Structure diagram so that it matches the one above.

24 Chapter 3. Tutorial: Coffee Machine

Gaphor Documentation

Logical Boundary

The Logical Boundary is a type of Internal Block Diagram that represents the internal structure of a system, illustrating
the relationships between its internal components or blocks. It helps to visualize how these blocks interact and exchange
information within the system. The term boundary used here means a clear box view inside the espresso machine at
the logical boundary. It uses part properties of the blocks that were in the Logical Structure diagram above.

waterTank: Water
Tank

waterPump: Water
Pump

waterHeater: Water
Heater

controller: Controller portafilter:
Portafilter

grouphead:
Grouphead

hmi: HMI

Water Pressurized Water

Pump Command
Coffee Water Mixture

Hot Pressurized Water

Heat Command

On/Off, Volume Adjustment Temperature

ibd Logical Boundary

The interactions between the part properties inside the espresso machine are shown as ItemFlows on the Connectors.

• Water: Represents the flow of water from the water tank to the water pump.

• On/Off: Represents the command or signal to turn the espresso machine on or off.

• Volume Adjustment: Represents the user-selected volume adjustment for the coffee output.

• Pressurized Water: Represents the water flow under pressure for extracting coffee.

• Heat Command: Represents the command or signal to activate the water heater and initiate the heating process.

• Temperature: Represents the feedback signal indicating the current temperature of the water.

• Hot Pressurized Water: Represents the pressurized hot water for brewing coffee.

• Coffee Water Mixture: Represents the mixture of hot water and coffee grounds during the brewing process.

Attention: Notice that we aren’t actually showing anything entering or leaving the boundary of the espresso
machine, like the input from the barista or the resulting coffee. Gaphor doesn’t current support adding ports to the
boundary of an internal block diagram, but hopefully we’ll be able to add support soon!

These item flows capture the essential interactions and exchanges within the espresso machine. They represent the flow
of water, control signals, temperature feedback, and the resulting coffee water mixture. The item flows illustrate the
sequence and connections between the various components, allowing for a better understanding of how the machine
functions as a whole.

Once again, help the ants by updating the Logical Boundary diagram so that it matches the one above.

3.4. Table of Contents 25

Gaphor Documentation

Logical Requirements

Logical requirements refer to the high-level specifications and functionalities that describe what a system or product
should accomplish without specifying how it will be implemented. These requirements focus on the desired outcomes
and behavior of the system rather than the specific technical details.

We have also already defined the behavior and the structure of the espresso machine at the logical level, so the main
task now is to translate that information in to words as requirement statements.

Tip: If you need help writing good requirements, the INCOSE Guide to Needs and Requirements and the Easy
Approach to Requirements Syntax are recommended resources.

We use the Derive Requirement relation from the Logical Requirement to the Concept Requirements that we previously
created. The direction of this relationship is in the derived from direction, which might be opposite to what you are
used to where the higher level requirement points to the lower level requirement.

Here we derive two requirements:

• Controller commands heat up

• 900kPa of water pressure

26 Chapter 3. Tutorial: Coffee Machine

https://portal.incose.org/commerce/store?productId=INCOSE-GUIDENEEDSREQ
https://alistairmavin.com/ears/
https://alistairmavin.com/ears/

Gaphor Documentation

«requirement»
Controller Commands

Heatup

Text: When the On
request is received, the
Controller shall
command heatup to the
extraction temperature.

«requirement»
Heatup Time
(from Requirements)

Text: The Espresso
Machine shall heat up to
operating temperature
within 10 minutes of
turning it on.

«requirement»
1 Cup Button
(from Requirements)

Text: Pressing the one
cup button shall result
in a single shot of
espresso.

«requirement»
900kPa of Water

Pressure

Text: During shot
extraction, the water
shall be pressurized to
900 kPa at the
grouphead.

«deriveReqt» «deriveReqt»

req Logical Requirements

Update the Logical Requirements diagram with these requirements. If you want, you can also develop additional
requirements for all the logical behavior and structure that we specified in the other diagrams.

3.4.3 Coffee Machine: Summary

The Technology Level design uses a very similar approach as the Logical Level. Work on the behavior, structure, and
then the requirements. At this level, you will now specify all the design details for how this specific espresso machine
will work. We’ll leave this exercise up to you to do, and we would be glad to have contributions of this design back in
to this tutorial if you are interested in getting involved in Gaphor.

As they worked, the ants encountered numerous challenges. They had to ensure that the machine was safe, efficient,
and easy to use, all while meeting the unique needs of their feline client. But with their deep understanding of systems
engineering and their commitment to key principles and concepts, they were able to overcome these challenges and
design an exceptional espresso machine.

3.4. Table of Contents 27

Gaphor Documentation

In the end, Cappuccino was thrilled with the machine, which worked flawlessly and was a big hit with his customers.
He was so impressed with the ants’ work that he offered them a long-term contract to design all of his café’s systems.
The ants were proud of their success, knowing that it was all thanks to their expertise and deep understanding of systems
engineering principles. They had proven that, with the right tools and approach, anything is possible.

28 Chapter 3. Tutorial: Coffee Machine

CHAPTER

FOUR

CHANGE LOG

Our change log is with the project’s source code on GitHub.

Note: The latest version may not have been released yet.

29

https://github.com/gaphor/gaphor/blob/main/CHANGELOG.md

Gaphor Documentation

30 Chapter 4. Change Log

CHAPTER

FIVE

STYLE SHEETS

Since Gaphor 2.0, diagrams can have a different look by means of style sheets. Style sheets use the Cascading Style
Sheets (CSS) syntax. CSS is used to describe the presentation of a document written in a markup language, and is most
commonly used with HTML for web pages.

On the W3C CSS home page, CSS is described as:

Cascading Style Sheets (CSS) is a simple mechanism for adding style (e.g., fonts, colors, spacing) to Web
documents.

Its application goes well beyond web documents, though. Gaphor uses CSS to provide style elements to items in
diagrams. CSS allows us, users of Gaphor, to change the visual appearance of our diagrams. Color and line styles can
be changed to make it easier to read the diagrams.

Since we’re dealing with a diagram, and not a HTML document, some CSS features have been left out.

The style is part of the model, so everyone working on a model will have the same style. To edit the style press the tools
page button at the top right corner in gaphor:

Here is a simple example of how to change the background color of a class:

class {
background-color: beige;

}

SomeClass

+ field: int

+ callMe(arg: int)

Or change the color of a component, only when it’s nested in a node:

31

https://www.w3.org/Style/CSS/Overview.en.html

Gaphor Documentation

node component {
background-color: skyblue;

}

NewNode

NewComponent

The diagram itself is also expressed as a CSS node. It’s pretty easy to define a “dark” style:

diagram {
background-color: #343131;

}

* {
color: white;
text-color: white;

}

32 Chapter 5. Style Sheets

Gaphor Documentation

SomeClass

+ field: int

+ callMe(arg: int)

NewNode

NewComponent

Here you already see the first custom attribute: text-color. This property allows you to control the color of the text
drawn in an item. color is used for the lines (strokes) that make the layout of a diagram item.

5.1 Supported selectors

Since we are dealing with diagrams and models, we do not need all the features of CSS. Below you’ll find a summary
of all CSS features supported by Gaphor.

5.1. Supported selectors 33

Gaphor Documentation

* All items on the diagram, including the diagram itself.
node component Any component item which is a descendant of a node.
node > component A component item which is a child of a node.
generalization[subject] A generalization item with a subject present.
class[name=Foo] A class with name “Foo”.
diagram[name^=draft] A diagram with a name starting with “draft”.
diagram[name$=draft] A diagram with a name ends with “draft”.
diagram[name*=draft] A diagram with a name containing the text “draft”.
diagram[name~=draft item] A diagram with a name of “draft” or “item”.
diagram[name|=draft] A diagram with a name is “draft” or starts with “draft-“.
:focus The focused item. Other pseudo classes are:

• :active selected items
• :hover for the item under the mouse
• :drop if an item is dragged and can be dropped

on this item
• :disabled if an element is grayed out during

handle movement

:empty A node containing no child nodes in the diagram.
:root Refers to the diagram itself.

This is only applicable for the diagram
:first-child A node is the first element among a group of sibling.
:has() The item contains any of the provided selectors.

E.g. node:has(component): a node containing a com-
ponent item.

:is() Match any of the provided selectors.
E.g. :is(node, subsystem) > component: a node
or subsystem.

:not() Negate the selector.
E.g. :not([subject]): Any item that has no “sub-
ject”.

::after Provide extra content after a text. Only the content
property is supported.

• The official specification of CSS3 attribute selectors.

• Gaphor provides the |= attribute selector for the sake of completeness. It’s probably not very useful in this
context, though.

• Please note that Gaphor CSS does not support IDs for diagram items, so the CSS syntax for IDs (#some-id) is
not used. Also, class syntax (.some-class) is not supported currently.

5.2 Style properties

Gaphor supports a subset of CSS properties and some Gaphor specific properties. The style sheet interpreter is relatively
straight forward. All widths, heights, and sizes are measured in pixels. You can’t use complex style declarations, like
the font property in HTML/CSS which can contain font family, size, weight.

Some properties are inherited from the parent style. The parent often is a diagram. When you set a color`` or a
font-familyondiagram`, it will propagate down to the items contained in the diagram.

34 Chapter 5. Style Sheets

https://www.w3.org/TR/2018/REC-selectors-3-20181106/#attribute-selectors

Gaphor Documentation

5.2.1 Colors

background-colorExamples:
background-color: azure;
background-color: rgb(255, 255, 255);
background-color: hsl(130, 95%, 10%);

color Color used for lines. (inherited)
text-color Color for text. (inherited)

Deprecated since version 2.23.0: Use color if possible.
opacity Color opacity factor (0.0 - 1.0), applied to all colors.

• A color can be any CSS3 color code, as described in the CSS documentation. Gaphor supports all color notations:
rgb(), rgba(), hsl(), hsla(), Hex code (#ffffff) and color names.

5.2.2 Text and fonts

font-family A single font name (e.g. sans, serif, courier). (inherited)
font-size An absolute size (e.g. 14) or a size value (e.g. small). (inherited)
font-style Either normal or italic. (inherited)
font-weight Either normal or bold. (inherited)
text-align Either left, center, right. (inherited)
text-decoration Either none or underline.
vertical-align Vertical alignment for text.

Either top, middle or bottom.
vertical-spacing Set vertical spacing for icon-like items (actors, start state).

Example: vertical-spacing: 4.
white-space Change the line wrapping behavior for text. (inherited)

• font-family can be only one font name, not a list of (fallback) names, as is used for HTML.

• font-size can be a number or CSS absolute-size values. Only the values x-small, small, medium, large
and x-large are supported.

5.2.3 Drawing and spacing

border-radius Radius for rectangles: border-radius: 4.
dash-style Style for dashed lines: dash-style: 7 5.
justify-content Content alignment for boxes.

Either start, end, center or stretch.
line-style Either normal or sloppy [factor].
line-width Set the width for lines: line-width: 2. (inherited)
min-height Set minimal height for an item: min-height: 50.
min-width Set minimal width for an item: min-width: 100.
padding CSS style padding (top, right, bottom, left).

Example: padding: 3 4.

• padding is defined by integers in the range of 1 to 4. No unit (px, pt, em) needs to be used. All values are in
pixel distance.

• dash-style is a list of numbers (line, gap, line, gap, . . .)

5.2. Style properties 35

https://www.w3.org/TR/2018/REC-css-color-3-20180619/
https://drafts.csswg.org/css-fonts-3/#font-size-prop

Gaphor Documentation

• line-style only has an effect when defined on a diagram. A sloppiness factor can be provided in the range of
-2 to 2.

5.2.4 Pseudo elements

Currently, only the ::after pseudo element is supported.

content Extra content to be shown after a text.

5.2.5 Variables

Since Gaphor 2.16.0 you can use CSS variables in your style sheets.

This allows you to define often used values in a more generic way. Think of things like line dash style and colors.

The var() function has some limitations:

• Values can’t have a default value.

• Variables can’t have a variable as their value.

Example:

diagram {
--bg-color: whitesmoke;
background-color: var(--bg-color);

}

diagram[diagramType=sd] {
--bg-color: rgb(200, 200, 255);

}

All diagrams have a white background. Sequence diagrams get a blue-ish background.

5.2.6 Media queries

Gaphor supports dark and light mode since 2.16.0. Dark and light color schemes are exclusively used for on-screen
editing. When exporting images, only the default color scheme is applied. Color schemes can be defined with @media
queries. The official prefers-color-scheme = dark query is supported, as well as a more convenient dark-mode.

/* The background you see in exported diagrams: */
diagram {
background-color: transparent;

}

/* Use a slightly grey background in the editor: */
@media light-mode {
diagram {
background-color: #e1e1e1;

}
}

(continues on next page)

36 Chapter 5. Style Sheets

https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_custom_properties

Gaphor Documentation

(continued from previous page)

/* And anthracite a slightly grey background in the editor: */
@media dark-mode {
diagram {
background-color: #393D47;

}
}

5.2.7 Diagram styles

Only a few properties can be defined on a diagram, namely background-color and line-style. You define the
diagram style separately from the diagram item styles. That way it’s possible to set the background color for diagrams
specifically. The line style can be the normal straight lines, or a more playful “sloppy” style. For the sloppy style an
optional wobliness factor can be provided to set the level of line wobbliness. 0.5 is default, 0.0 is a straight line. The
value should be between -2.0 and 2.0. Values between 0.0 and 0.5 make for a subtle effect.

5.3 CSS model elements

Gaphor has many model elements. How can you find out which item should be styled?

Gaphor only styles the elements that are in the model, so you should be explicit on their names. For example:
Component inherits from Class in the UML model, but changing a color for Class does not change it for Component.

If you hover over a button the toolbox (bottom-left section), a popup will appear with the item’s name and a shortcut.
As a general rule, you can use the component name, glued together as the name in the stylesheet. A Component can
be addressed as component, Use Case as usecase. The name matching is case insensitive. CSS names are written in
lower case by default.

However, since the CSS element names are derived from names used within Gaphor, there are a few exceptions.

Profile Group Element CSS element
* * element name element name without spaces

E.g. class, usecase.
UML Classes all Association’s association
UML Components Device/Node node
UML Actions Decision/Merge Node decisionnode
UML Actions Fork/Join Node forknode
UML Actions Swimlane partition
UML Interactions Reflexive message message
UML States Initial Pseudostate pseudostate
UML States History Pseudostate pseudostate
UML Profiles Metaclass class
C4 Model C4 Model Person c4person
C4 Model C4 Model Software System c4container[type="Software System"]
C4 Model C4 Model Component c4container[type="Component"]
C4 Model C4 Model Container c4container[type="Container"]
C4 Model C4 Model Container: Database c4database
SysML Blocks ValueType datatype
SysML Blocks Primitive datatype
SysML Requirements Derive Requirement derivedreq
RAAML FTA any AND/OR/. . . Gate and, or, etc.

5.3. CSS model elements 37

Gaphor Documentation

5.4 Ideas

Here are some ideas that go just beyond changing a color or a font. With the following examples we dig in to Gaphor’s
model structure to reveal more information to the users.

To create your own expression you may want to use the Console (→ Tools → Console). Drop us a line on Gitter and
we would be happy to help you.

5.4.1 The drafts package

All diagrams in the package “Drafts” should be drawn using sloppy lines:

diagram[owner.name=drafts] {
line-style: sloppy 0.3;

}

diagram[owner.name=drafts] * {
font-family: Purisa; /* Or use some other font that's installed on your system */

}

A

B

5.4.2 Unconnected relationships

All items on a diagram that are not backed by a model element, should be drawn in a dark red color. This can be used to
spot not-so-well connected relationships, such as Generalization, Implementation, and Dependency. These items will
only be backed by a model element once you connect both line ends. This rule will exclude simple elements, like lines
and boxes, which will never have a backing model element.

:not(:is(:root, line, box, ellipse, commentline))[subject=""] {
color: firebrick;

}

38 Chapter 5. Style Sheets

https://gitter.im/gaphor/Lobby

Gaphor Documentation

Base Sub

5.4.3 Navigable associations

An example of how to apply a style to a navigable association is to color an association blue if neither of the ends are
navigable. This color could act as a validation rule for a model where at least one end of each association should be
navigable. This is actually the case for the model file used to create Gaphor’s data model.

association:not([memberEnd.navigability*=true]) {
color: blue;

}

A Bnot navigable

navigable

5.4.4 Solid Control Flow lines

In Gaphor, Control Flow lines follow the SysML styling: dashed. If you want, or need to strictly follow the official
UML specifications, you can simply make those solid lines.

controlflow {
dash-style: 0;

}

From To

5.4. Ideas 39

Gaphor Documentation

5.4.5 Todo note highlight

All comments beginning with the phrase “todo” can be highlighted in a different user-specific colour. This can be used
to make yourself aware that you have to do some additional work to finalize the diagram.

comment[body^="TODO"] {
background-color: skyblue;

}

TODO: Fix
this

Other
Comment

5.4.6 Emphesize abstract classes and operations

It may be that the italic font used is not distinguishable enough to differentiate between concrete and abstract classes
or operations. To make this work we check if the isAbstract attribute is set on the element:

:is(name, operation)[isabstract]::after {
content: " {abstract}"

}

MyClass {abstract}

+ normalOperation()
+ myOperation() {abstract}

5.5 System Style Sheet

/* Gaphor diagram style sheet */

* {
--opaque-background-color: white;
background-color: transparent;

}
(continues on next page)

40 Chapter 5. Style Sheets

Gaphor Documentation

(continued from previous page)

:drop {
color: #1a5fb4;
line-width: 3;

}

:disabled {
opacity: 0.5;

}

@media light-mode {
* {
--opaque-background-color: #fafafa;

}
}

@media dark-mode {
* {
--opaque-background-color: #242424;
color: white;

}

:drop {
color: #62a0ea;

}
}

:root {
color: black;
font-family: sans;
font-size: 14 ;
line-width: 2;
padding: 0;

}

:root > pentagon {
line-width: 1;
background-color: var(--opaque-background-color);

}

:root > pentagon > diagramtype {
font-weight: bold;
padding: 4 0 4 4;

}

:root > pentagon > name {
padding: 4;

}

/* Relationships */

commentline,
(continues on next page)

5.5. System Style Sheet 41

Gaphor Documentation

(continued from previous page)

dependency,
interfacerealization,
include,
extend,
packageimport,
lifetime {

dash-style: 7 5;
}

dependency[on_folded_interface = true],
interfacerealization[on_folded_interface = true] {
dash-style: 0;

}

/* General */

comment {
text-align: left;
vertical-align: top;
padding: 4 16 4 4;

}

comment body {
padding: 0;

}

diagram > icon {
padding: 4;
border-radius: 4;

}

diagram > type {
font-weight: bold;

}

metadata {
justify-content: stretch;
text-align: left;

}

metadata cell {
padding: 4;

}

metadata heading {
font-weight: bold;
font-style: normal;
font-size: small;

}

pentagon {
padding: 4;

(continues on next page)

42 Chapter 5. Style Sheets

Gaphor Documentation

(continued from previous page)

justify-content: start;
}

/* UML */

controlflow {
dash-style: 9 3;

}

objectnode > icon {
padding: 4 12;

}

decisionnode > type {
font-size: small;

}

proxyport > icon,
activityparameternode,
executionspecification {
background-color: var(--opaque-background-color);

}

partition {
padding: 4 12 4 12;
justify-content: stretch;

}

package {
padding: 24 12 4 12;

}

interaction {
justify-content: start;

}

activity {
padding: 4 12;
border-radius: 20;
justify-content: start;

}

activityparameternode {
padding: 4 12;
min-width: 120;
text-align: center;

}

action,
valuespecificationaction {
padding: 4 12;
border-radius: 15;

(continues on next page)

5.5. System Style Sheet 43

Gaphor Documentation

(continued from previous page)

}

callbehavioraction {
padding: 4 24 4 12;
border-radius: 15;

}

sendsignalaction {
padding: 4 24 4 12;

}

accepteventaction {
padding: 4 12 4 24;

}

usecase {
padding: 4;

}

swimlane {
min-width: 150;
padding: 4 12 4 12;
justify-content: start;
white-space: normal;

}

association > end {
font-size: x-small;
padding: 4;

}

/* SysML */

requirement {
justify-content: start;

}

requirement text {
white-space: normal;

}

directedrelationshippropertypath {
dash-style: 7 5;

}

/* Classifiers */

compartment:first-child {
padding: 12 4;

}

compartment + compartment {

(continues on next page)

44 Chapter 5. Style Sheets

Gaphor Documentation

(continued from previous page)

padding: 4;
min-height: 8;
text-align: left;
justify-content: start;
white-space: nowrap;

}

artifact compartment:first-child,
component compartment:first-child {
padding: 12 24 12 4;

}

state compartment:first-child {
padding: 4;

}

:has(compartment + compartment),
:has(regions),
:not([children=""]):has(compartment),
:not([children=""]) > compartment {
justify-content: start;

}

regions {
justify-content: stretch;

}

region {
padding: 4;
min-height: 100;
justify-content: start;
text-align: left;

}

region + region {
dash-style: 7 3;

}

and name,
xor name,
intermediateevent name,
dormantevent name,
basicevent name,
houseevent name,
topevent name,
inhibit name,
conditionalevent name,
zeroevent name,
or name,
not name,
transferin name,
transferout name,

(continues on next page)

5.5. System Style Sheet 45

Gaphor Documentation

(continued from previous page)

undevelopedevent name,
seq name,
majorityvote name,
unsafecontrolaction name,
operationalsituation name,
controlaction name,
interfaceblock name,
block name,
property name,
requirement name,
c4person name,
c4database name,
c4container name,
package name,
enumeration name,
interface name,
class name,
datatype name,
component name,
statemachine name,
usecase name,
actor name,
artifact name,
node name {
font-weight: bold;

}

name[isabstract] {
font-style: italic;

}

from {
font-size: x-small;

}

interaction > pentagon,
activity > :is(name, stereotypes) {
text-align: left;

}

compartment heading {
padding: 0 0 4 0;
font-size: x-small;
font-style: italic;
text-align: center;

}

operation[isabstract] {
font-style: italic;

}

attribute[isstatic],
(continues on next page)

46 Chapter 5. Style Sheets

Gaphor Documentation

(continued from previous page)

operation[isstatic] {
text-decoration: underline;

}

property:not([aggregation="composite"]) {
dash-style: 7 5;

}

/* Attached */

:has(icon)[connected_side] {
text-align: right;
vertical-align: top;

}

:has(icon)[connected_side="left"] {
text-align: left;

}

:has(icon)[connected_side="bottom"] {
vertical-align: bottom;

}

/* C4 model */

c4container, c4person {
padding: 4 4 4 4;

}

c4database {
padding: 20 4 4 4;

}

:is(c4container, c4database, c4person):not([children=""]) {
justify-content: end;

}

:is(c4container, c4database, c4person):not([children=""]) > :is(name, technology) {
text-align: left;

}

:is(c4container, c4database, c4person) technology {
font-size: x-small;

}

:is(c4container, c4database, c4person) description {
padding: 4 4 0 4;

}

5.5. System Style Sheet 47

Gaphor Documentation

48 Chapter 5. Style Sheets

CHAPTER

SIX

SPHINX EXTENSION

What’s more awesome than to use Gaphor diagrams directly in your Sphinx documentation. Whether you write your
docs in reStructured Text or Markdown, we’ve got you covered.

Tip: Here we cover the reStructured Text syntax. If you prefer markdown, we suggest you have a look at the MyST-
parser, as it supports Sphinx directives.

It requires minimal effort to set up. Adding a diagram is as simple as:

.. diagram:: main

Caller Callee

call()

In case you use multiple Gaphor source files, you need to define a :model: attribute and add the model names to the
Sphinx configuration file (conf.py).

.. diagram:: main
:model: example

Diagrams can be referenced by their name, or by their fully qualified name.

.. diagram:: New model.main

49

https://www.sphinx-doc.org
https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html
https://myst-parser.readthedocs.io
https://myst-parser.readthedocs.io/
https://myst-parser.readthedocs.io/
https://myst-parser.readthedocs.io/en/latest/syntax/roles-and-directives.html

Gaphor Documentation

Image properties can also be applied:

.. diagram:: main
:width: 50%
:align: right
:alt: A description suitable for an example

Caller Callee

call()

6.1 Configuration

To add Gaphor diagram support to Sphinx, make sure Gaphor is listed as a dependency.

Important: Gaphor requires at least Python 3.9.

Secondly, add the following to your conf.py file:

Step 1: Add gaphor as extension.

extensions = [
"gaphor.extensions.sphinx",

]

Step 2: Add references to models

A single model
gaphor_models = "../examples/sequence-diagram.gaphor"

Or multiple models
gaphor_models = {

"connect": "connect.gaphor",
"example": "../examples/sequence-diagram.gaphor"

}

Now include diagram directives in your documents.

50 Chapter 6. Sphinx Extension

https://docutils.sourceforge.io/docs/ref/rst/directives.html#image

Gaphor Documentation

6.1.1 Read the Docs

The diagram directive plays nice with Read the docs. To make diagrams render, it’s best to use a .readthedocs.yaml file
in your project. Make sure to include the extra apt_packages as shown below.

This is the .readthedocs.yaml file we use for Gaphor:

version: 2
formats: all
build:
os: ubuntu-22.04
tools:
python: "3.11"

apt_packages:
- libgirepository1.0-dev
- gir1.2-pango-1.0
- graphviz
jobs:
pre_install:
- pip install --constraint=.github/constraints.txt poetry
- poetry config virtualenvs.create false
post_install:
- VIRTUAL_ENV=$READTHEDOCS_VIRTUALENV_PATH poetry install --with docs

sphinx:
configuration: docs/conf.py
fail_on_warning: true

• libgirepository1.0-dev is required to build PyGObject.

• gir1.2-pango-1.0 is required for text rendering.

Note: For Gaphor 2.7.0, gir1.2-gtk-3.0 and gir1.2-gtksource-4 are required apt_packages, although we do
not use the GUI. From Gaphor 2.7.1 onwards all you need is GI-repository and Pango.

6.2 Errors

Errors are shown on the console when the documentation is built and in the document.

An error will appear in the documentation. Something like this:

Error: No diagram ‘Wrong name’ in model ‘example’ (../examples/sequence-diagram.gaphor).

6.2. Errors 51

https://readthedocs.org
https://docs.readthedocs.io/en/stable/config-file/v2.html

Gaphor Documentation

52 Chapter 6. Sphinx Extension

CHAPTER

SEVEN

JUPYTER AND SCRIPTING

One way to work with models is through the GUI. However, you may also be interested in getting more out of your
models by interacting with them through Python scripts and Jupyter notebooks.

You can use scripts to:

• Explore the model, check for (in)valid conditions.

• Generate code, as is done for Gaphor’s data model.

• Update a model from another source, like a CSV file.

Since Gaphor is written in Python, it also functions as a library.

7.1 Getting started

To get started, you’ll need a Python console. You can use the interactive console in Gaphor, use a Jupyter notebook,
although that will require setting up a Python development environment.

7.2 Query a model

The first step is to load a model. For this you’ll need an ElementFactory. The ElementFactory is responsible to
creating and maintaining the model. It acts as a repository for the model while you’re working on it.

from gaphor.core.modeling import ElementFactory

element_factory = ElementFactory()

Settings schema not found and settings won’t be saved. Run `gaphor install-schemas`.

The module gaphor.storage contains everything to load and save models. Gaphor supports multiple modeling lan-
guages. The ModelingLanguageService consolidates those languages and makes it easy for the loader logic to find
the appropriate classes.

Note: In versions before 2.13, an EventManager is required. In later versions, the ModelingLanguageService can
be initialized without event manager.

53

https://jupyter.org/

Gaphor Documentation

from gaphor.core.eventmanager import EventManager
from gaphor.services.modelinglanguage import ModelingLanguageService
from gaphor.storage import storage

event_manager = EventManager()

modeling_language = ModelingLanguageService(event_manager=event_manager)

with open("../models/Core.gaphor", encoding="utf-8") as file_obj:
storage.load(

file_obj,
element_factory,
modeling_language,

)

At this point the model is loaded in the element_factory and can be queried.

Note: A modeling language consists of the model elements, and diagram items. Graphical components are loaded
separately. For the most basic manupilations, GTK (the GUI toolkit we use) is not required, but you may run into
situations where Gaphor tries to load the GTK library.

One trick to avoid this (when generating Sphinx docs at least) is to use autodoc’s mock function to mock out the GTK
and GDK libraries. However, Pango needs to be installed for text rendering.

A simple query only tells you what elements are in the model. The method ElementFactory.select() returns an
iterator. Sometimes it’s easier to obtain a list directly. For those cases you can use ElementFatory.lselect(). Here
we select the last five elements:

for element in element_factory.lselect()[:5]:
print(element)

<gaphor.UML.uml.Package element 3867dda4-7a95-11ea-a112-7f953848cf85>
<gaphor.core.modeling.diagram.Diagram element 3867dda5-7a95-11ea-a112-7f953848cf85>
<gaphor.UML.classes.klass.ClassItem element 4cda498f-7a95-11ea-a112-7f953848cf85>
<gaphor.UML.classes.klass.ClassItem element 5cdae47f-7a95-11ea-a112-7f953848cf85>
<gaphor.UML.classes.klass.ClassItem element 639b48d1-7a95-11ea-a112-7f953848cf85>

Elements can also be queried by type and with a predicate function:

from gaphor import UML
for element in element_factory.select(UML.Class):

print(element.name)

Element
Diagram
Presentation
Comment
StyleSheet
Property
Tagged
ElementChange
ValueChange

(continues on next page)

54 Chapter 7. Jupyter and Scripting

Gaphor Documentation

(continued from previous page)

RefChange
PendingChange
ChangeKind
Picture

for diagram in element_factory.select(
lambda e: isinstance(e, UML.Class) and e.name == "Diagram"

):
print(diagram)

<gaphor.UML.uml.Class element 5cdae47e-7a95-11ea-a112-7f953848cf85>

Now, let’s say we want to do some simple (pseudo-)code generation. We can iterate class attributes and write some
output.

diagram: UML.Class

def qname(element):
return ".".join(element.qualifiedName)

diagram = next(element_factory.select(lambda e: isinstance(e, UML.Class) and e.name ==
→˓"Diagram"))

print(f"class {diagram.name}({', '.join(qname(g) for g in diagram.general)}):")
for attribute in diagram.attribute:

if attribute.typeValue:
Simple attribute
print(f" {attribute.name}: {attribute.typeValue}")

elif attribute.type:
Association
print(f" {attribute.name}: {qname(attribute.type)}")

class Diagram(Core.Element):
diagramType: String
ownedPresentation: Core.Presentation
name: String
qualifiedName: String
element: Core.Element

To find out which relations can be queried, have a look at the modeling language documentation. Gaphor’s data models
have been built using the UML language.

You can find out more about a model property by printing it.

print(UML.Class.ownedAttribute)

<association ownedAttribute: Property[0..*] <>-> class_>

In this case it tells us that the type of UML.Class.ownedAttribute is UML.Property. UML.Property.class_ is
set to the owner class when ownedAttribute is set. It is a bidirectional relation.

7.2. Query a model 55

Gaphor Documentation

7.3 Draw a diagram

Another nice feature is drawing the diagrams. At this moment this requires a function. This behavior is similar to the
diagram directive.

from gaphor.core.modeling import Diagram
from gaphor.extensions.ipython import draw

d = next(element_factory.select(Diagram))
draw(d, format="svg")

<IPython.core.display.SVG object>

7.4 Create a diagram

(Requires Gaphor 2.13)

Now let’s make something a little more fancy. We still have the core model loaded in the element factory. From this
model we can create a custom diagram. With a little help of the auto-layout service, we can make it a readable diagram.

To create the diagram, we drop elements on the diagram. Items on a diagram represent an element in the model. We’ll
also drop all associations on the model. Only if both ends can connect, the association will be added.

from gaphor.diagram.drop import drop
from gaphor.extensions.ipython import auto_layout

temp_diagram = element_factory.create(Diagram)

for name in ["Presentation", "Diagram", "Element"]:
element = next(element_factory.select(

lambda e: isinstance(e, UML.Class) and e.name == name
))
drop(element, temp_diagram, x=0, y=0)

Drop all assocations, see what sticks
for association in element_factory.lselect(UML.Association):

drop(association, temp_diagram, x=0, y=0)

auto_layout(temp_diagram)

draw(temp_diagram, format="svg")

<IPython.core.display.SVG object>

The diagram is not perfect, but you get the picture.

56 Chapter 7. Jupyter and Scripting

Gaphor Documentation

7.5 Update a model

Updating a model always starts with the element factory: that’s where elements are created.

To create a UML Class instance, you can:

my_class = element_factory.create(UML.Class)
my_class.name = "MyClass"

To give it an attribute, create an attribute type (UML.Property) and then assign the attribute values.

my_attr = element_factory.create(UML.Property)
my_attr.name = "my_attr"
my_attr.typeValue = "string"
my_class.ownedAttribute = my_attr

Adding it to the diagram looks like this:

my_diagram = element_factory.create(Diagram)
drop(my_class, my_diagram, x=0, y=0)
draw(my_diagram, format="svg")

<IPython.core.display.SVG object>

If you save the model, your changes are persisted:

with open("../my-model.gaphor", "w") as out:
storage.save(out, element_factory)

7.5.1 Updating elements

If you need to update existing elements, this can be done by keeping track of the element ID. Each element in the model
has a unique internal id. Once again we need some imports from Gaphor:

from pathlib import Path

from gaphor import UML
from gaphor.application import Session # needed to run services
from gaphor.transaction import Transaction # needed to make changes
from gaphor.storage import storage # needed to save to file

Then start up the services we will use:

Create the Gaphor application object.
session = Session()
Get services we need.
element_factory = session.get_service("element_factory")
file_manager = session.get_service("file_manager")
event_manager = session.get_service("event_manager")

and load in the model to the session

7.5. Update a model 57

Gaphor Documentation

The model file to load.
model_filename = "../my-model.gaphor"

Load model from file.
file_manager.load(Path(model_filename))
Now we query the model to get the element we want to change:
the_class = element_factory.select(

lambda e: isinstance(e, UML.Class) and e.name == "My Class"
)
uid = the_class._id
print(f"Original element: {the_class.name} -- {the_class.my_attr}")

Importantly, the changes are made as part of a Transaction. Here we find the element with the same id, and then update
the content. We then save the altered model to a file.

change the name and write back into the model
with Transaction(event_manager) as ctx:

cls = next(
element_factory.select(

lambda e: isinstance(e, UML.Class) and e._id == uid
)

)
cls.name = "Not My Class Anymore"
cls.attr = "updated string"

Write changes to file here
with Transaction(event_manager) as ctx:

with open(model_filename, "w") as out:
storage.save(out, element_factory)

print(f"Updated element: {cls.name} -- {cls.my_attr}")

7.6 What else

What else is there to know. . .

• Gaphor supports derived associations. For example, element.owner points to the owner element. For an
attribute that would be its containing class.

• All data models are described in the Modeling Languages section of the docs.

• If you use Gaphor’s Console, you’ll need to apply all changes in a transaction, or they will result in an error.

• If you want a comprehensive example of a code generator, have a look at Gaphor’s coder module. This module
is used to generate the code for the data models used by Gaphor.

• This page is rendered with MyST-NB. It’s actually a Jupyter Notebook!

58 Chapter 7. Jupyter and Scripting

https://github.com/gaphor/gaphor/blob/main/gaphor/codegen/coder.py
https://myst-nb.readthedocs.io/

Gaphor Documentation

7.7 Examples

Expanding on the information above the following snippetts show how to create requirements and interfaces.

7.7.1 Requirements from text fields

txts = ['req1', 'req2', 'bob the cat']
my_diagram = element_factory.create(Diagram)
my_diagram.name=' my diagram'
reqPackage = element_factory.create(UML.Package)
reqPackage.name = "Requirements"
drop(reqPackage, my_diagram, x=0, y=0)

for req_id,txt in enumerate(txts):
my_class = element_factory.create(SysML.sysml.Requirement)
my_class.name = f"{req_id}-{txt[:3]}"
my_class.text = f"{txt}"
my_class.externalId = f"{req_id}"

drop(my_class, my_diagram, x=0, y=0)

with open(outfile, "w") as out:
storage.save(out, element_factory)

7.7.2 Interfaces from dictionaries

get interface definitions from file into this dictionary format
interfaces = {'Interface1': ['signal1:type1', 'signal2:type1', 'signal3:type1'],

'Interface2': ['signal4:type2', 'signal5:type2', 'signal6:type2']}

my_diagram = element_factory.create(Diagram)
my_diagram.name=' my diagram'
intPackage = element_factory.create(UML.Package)
intPackage.name = "Interfaces"
drop(intPackage, my_diagram, x=0, y=0)

for interface,signals in interfaces.items():
my_class = element_factory.create(UML.uml.Interface)
my_class.name = f"{interface}"
for s in signals:

my_attr = element_factory.create(UML.Property)
name,vtype = s.split(':')
my_attr.name = name
my_attr.typeValue = vtype
my_class.ownedAttribute = my_attr

drop(my_class, my_diagram, x=0, y=0)
(continues on next page)

7.7. Examples 59

Gaphor Documentation

(continued from previous page)

with open(outfile, "w") as out:
storage.save(out, element_factory)

Here is another example:

Example: Gaphor services

In this example we’re doing something a little less trivial. In Gaphor, services are defined as entry points. Each service
is a class, and takes parameters with names that match other services. This allows services to depend on other services.

It looks something like this:

entry point name: my_service
class MyService:

...

entry point name: my_other_service
class MyOtherService:

def __init__(self, my_service):
...

Let’s first load the entry points.

from gaphor.entrypoint import load_entry_points

entry_points = load_entry_points("gaphor.services")

entry_points

Settings schema not found and settings won’t be saved. Run `gaphor install-schemas`.

{'align': gaphor.plugins.align.align.AlignService,
'auto_layout': gaphor.plugins.autolayout.pydot.AutoLayoutService,
'component_registry': gaphor.services.componentregistry.ComponentRegistry,
'console_window': gaphor.plugins.console.consolewindow.ConsoleWindow,
'copy': gaphor.ui.copyservice.CopyService,
'diagram_export': gaphor.plugins.diagramexport.DiagramExport,
'diagrams': gaphor.ui.diagrams.Diagrams,
'element_dispatcher': gaphor.core.modeling.elementdispatcher.ElementDispatcher,
'element_editor': gaphor.ui.elementeditor.ElementEditor,
'element_factory': gaphor.core.modeling.elementfactory.ElementFactory,
'event_manager': gaphor.core.eventmanager.EventManager,
'export_menu': gaphor.ui.menufragment.MenuFragment,
'file_manager': gaphor.ui.filemanager.FileManager,
'main_window': gaphor.ui.mainwindow.MainWindow,
'model_browser': gaphor.ui.modelbrowser.ModelBrowser,
'model_changed': gaphor.ui.modelchanged.ModelChanged,
'modeling_language': gaphor.services.modelinglanguage.ModelingLanguageService,
'properties': gaphor.services.properties.Properties,

(continues on next page)

60 Chapter 7. Jupyter and Scripting

Gaphor Documentation

(continued from previous page)

'recent_files': gaphor.ui.recentfiles.RecentFiles,
'sanitizer': gaphor.UML.sanitizerservice.SanitizerService,
'toolbox': gaphor.ui.toolbox.Toolbox,
'tools_menu': gaphor.ui.menufragment.MenuFragment,
'undo_manager': gaphor.services.undomanager.UndoManager,
'xmi_export': gaphor.plugins.xmiexport.XMIExport}

Now let’s create a component in our model for every service.

from gaphor import UML
from gaphor.core.modeling import ElementFactory

element_factory = ElementFactory()

def create_component(name):
c = element_factory.create(UML.Component)
c.name = name
return c

components = {name: create_component(name) for name in entry_points}
components

{'align': <gaphor.UML.uml.Component element fe211860-0c0b-11ef-9df0-0242ac110002>,
'auto_layout': <gaphor.UML.uml.Component element fe211bee-0c0b-11ef-9df0-0242ac110002>,
'component_registry': <gaphor.UML.uml.Component element fe211d74-0c0b-11ef-9df0-
→˓0242ac110002>,
'console_window': <gaphor.UML.uml.Component element fe211edc-0c0b-11ef-9df0-
→˓0242ac110002>,
'copy': <gaphor.UML.uml.Component element fe21201c-0c0b-11ef-9df0-0242ac110002>,
'diagram_export': <gaphor.UML.uml.Component element fe21213e-0c0b-11ef-9df0-
→˓0242ac110002>,
'diagrams': <gaphor.UML.uml.Component element fe212242-0c0b-11ef-9df0-0242ac110002>,
'element_dispatcher': <gaphor.UML.uml.Component element fe212378-0c0b-11ef-9df0-
→˓0242ac110002>,
'element_editor': <gaphor.UML.uml.Component element fe212594-0c0b-11ef-9df0-
→˓0242ac110002>,
'element_factory': <gaphor.UML.uml.Component element fe2126b6-0c0b-11ef-9df0-
→˓0242ac110002>,
'event_manager': <gaphor.UML.uml.Component element fe2127b0-0c0b-11ef-9df0-0242ac110002>
→˓,
'export_menu': <gaphor.UML.uml.Component element fe2128a0-0c0b-11ef-9df0-0242ac110002>,
'file_manager': <gaphor.UML.uml.Component element fe212990-0c0b-11ef-9df0-0242ac110002>,
'main_window': <gaphor.UML.uml.Component element fe212a76-0c0b-11ef-9df0-0242ac110002>,
'model_browser': <gaphor.UML.uml.Component element fe212b66-0c0b-11ef-9df0-0242ac110002>
→˓,
'model_changed': <gaphor.UML.uml.Component element fe212c42-0c0b-11ef-9df0-0242ac110002>
→˓,
'modeling_language': <gaphor.UML.uml.Component element fe212d1e-0c0b-11ef-9df0-
→˓0242ac110002>,
'properties': <gaphor.UML.uml.Component element fe212e04-0c0b-11ef-9df0-0242ac110002>,
'recent_files': <gaphor.UML.uml.Component element fe212ee0-0c0b-11ef-9df0-0242ac110002>,
'sanitizer': <gaphor.UML.uml.Component element fe212fd0-0c0b-11ef-9df0-0242ac110002>,

(continues on next page)

7.7. Examples 61

Gaphor Documentation

(continued from previous page)

'toolbox': <gaphor.UML.uml.Component element fe2130ac-0c0b-11ef-9df0-0242ac110002>,
'tools_menu': <gaphor.UML.uml.Component element fe213188-0c0b-11ef-9df0-0242ac110002>,
'undo_manager': <gaphor.UML.uml.Component element fe213278-0c0b-11ef-9df0-0242ac110002>,
'xmi_export': <gaphor.UML.uml.Component element fe21335e-0c0b-11ef-9df0-0242ac110002>}

With all components mapped, we can create dependencies between those components, based on the constructor pa-
rameter names.

import inspect

for name, cls in entry_points.items():
for param_name in inspect.signature(cls).parameters:

if param_name not in components:
continue

dep = element_factory.create(UML.Usage)
dep.client = components[name]
dep.supplier = components[param_name]

With all elements in the model, we can create a diagram. Let’s drop the components and dependencies on the diagram
and let auto-layout do its magic.

To make the dependency look good, we have to add a style sheet. If you create a new diagram via the GUI, this element
is automatically added.

from gaphor.core.modeling import Diagram, StyleSheet
from gaphor.diagram.drop import drop

element_factory.create(StyleSheet)
diagram = element_factory.create(Diagram)

for element in element_factory.lselect():
drop(element, diagram, x=0, y=0)

Last step is to layout and draw the diagram.

from gaphor.extensions.ipython import auto_layout, draw

auto_layout(diagram)

draw(diagram, format="svg")

<IPython.core.display.SVG object>

That’s all. As you can see from the diagram, a lot of services rely on EventManager.

62 Chapter 7. Jupyter and Scripting

CHAPTER

EIGHT

STEREOTYPES

In UML, stereotypes are way to extend the application of the UML language to new domains. For example: SysML
started as a profile for UML.

Gaphor supports stereotypes too. They’re the way for you to adapt your models to your specific needs.

The UML, SysML, RAAML and other models used in Gaphor – the code is generated from Gaphor model files – make
use of stereotypes to provide specific information used when generating the data model code.

To create a stereotype, ensure the UML Profile is active and open the Profile section of the toolbox. First add a Metaclass
to your diagram. Next add a Stereotype, and connect both with a Extension. The «metaclass» stereotype will only
show once the Extension is connected both class and stereotype.

Note: The class names in the metaclass should be a class name from the UML model, such as Class, Interface,
Property, Association. Or even Element if you want to use the stereotype on all elements.

Your stereotype declaration may look something like this:

«metaclass»
Class

«stereotype»
Controller

«metaclass»
Property

«stereotype»
Asynchronous

+ priority: str

The Asynchronous stereotype has a property priority. This property can be proved a value once the stereotype is
applied to a Property, such as an association end.

When a stereotype can be applied to a model element, a Stereotype section will appear in the editor.

63

Gaphor Documentation

8.1 Creating a profile

In SysML extending the profile using stereotypes is often required to tailor the model to your needs. For example,
creating Customer vs System requirements.

8.1.1 To add a profile to your model:

• Create a package called profile this can be done by right clicking in the left hand column.

• Switch modelling language to the UML profile (top of left hand menu drop down)

• Within the package create a profile diagram (prf)

• Add a profile element to the diagram

• Add a meta-class element to the diagram, within the profile.

• Add a stereotype element to the diagram, within the profile.

• Connect meta-class and stereotype with an Extension relation. The head should be attached to the class. As soon
as the Extension is connected, the class will get a stereotype metaclass assigned.

With the meta-class and stereotype placed on the diagram, either:

• Double-click the meta-class and name it after the base element you want to create your stereotype from.

• Select the base element from the drop down menu in the Property Editor on the right hand side. In this case only
UML elements can be used as base elements.

64 Chapter 8. Stereotypes

Gaphor Documentation

8.1.2 Styling Stereotypes

You can apply styling to stereotypes. For example here the base element requirement has a stereotype system
requirement

/*Add style to Requirement element*/
requirement{

background-color: #C5E7E7;
text-color: #2A2A2A;

}
/*Update Requirement styling for the System stereotype*/
requirement[appliedStereotype.classifier.name=system]{

background-color: #D5F7E7;
text-color: #2A2A2A;

}

Style Sheets has more detail on how CSS works in Gaphor

8.1. Creating a profile 65

Gaphor Documentation

66 Chapter 8. Stereotypes

CHAPTER

NINE

RESOLVE MERGE CONFLICTS

Suppose you’re working on a model. If you create a change, while someone else has also made changes, there’s a fair
chance you’ll end up with a merge conflict.

Gaphor tries to make the changes to a model as small as possible: all elements are stored in the same order. However,
since a Gaphor model is a persisted graph of objects, merging changes is not as simple as opening a text editor.

From Gaphor 2.18 onwards Gaphor is also capable of merging models. Once a merge conflict has been detected (i.e.,
when the model file contains git conflict-resolution markers <<<<<<<, =======, and >>>>>>>), Gaphor will offer the
option to open the current model, the incoming model or merge changes manually via the Merge Editor.

If you choose Open Merge Editor, both models will be loaded. The current model remains as is. In addition, the
changes made to the incoming model are calculated. Those changes are stored as pending change objects in the model.

67

Gaphor Documentation

Tip: Pending changes are part of the model, you can save the model with changes and resolve those at a later point.

The Merge Editor is shown on the right side, replacing the (normal) Property Editor.

Merge actions are grouped by diagram, where possible. When you apply a change, all changes listed as children are
also applied. Once changes are applied, they can only be reverted by undoing the change (hit Undo).

Note: The Merge Editor replaces the Property Editor, as long as there are pending changes in the model.

It is concidered good practice to resolve the merge conflict before you continue modeling.

When all conflicts have been resolved, press Resolve to finish merge conflict resolution.

68 Chapter 9. Resolve Merge Conflicts

CHAPTER

TEN

PLUGINS

Important: Plugins is an experimental feature! The API may change.

We welcome you to try and provide your feedback.

Plugins allow you to extend the functionality of Gaphor beyond the features provided in the standard distributions. In
particular, plugins can be helpful if you install the binary distributions available on the download page.

Gaphor can be extended via entry points in several ways:

1. Application (global) services (gaphor.appservices)

2. Session specific services (gaphor.services)

3. Modeling languages (gaphor.modelinglanguages)

4. (Sub)command line parsers (gaphor.argparsers)

5. Indirectly loaded modules (gaphor.modules), mainly for UI components

The default location for plugins is $HOME/.local/gaphor/plugins-2 ($USER/.local/gaphor/plugins-2 on
Windows). This location can be changed by setting the environment variable GAPHOR_PLUGIN_PATH and point to a
directory.

10.1 Install a plugin

At this moment Gaphor does not have functionality bundled to install and maintain plugins. To install a plugin, use
pip from a Python installation on your computer. On macOS and Linux, that should be easy, on Windows you may
need to install Python separately from python.org or the Windows Store.

Important:

1. Since plugins are installed with your system Python version, it’s important that plugins are pure Python and do
not contain compiled C code.

2. If you use Gaphor installed as Flatpak, you need to grant Gaphor access to user files (filesystem=home), so
Gaphor can find files in your .local folder. You can use FlatSeal to change permissions of Flatpaks.

For example: to install the Hello World plugin on Linux and macOS, enter:

pip install --target $HOME/.local/gaphor/plugins-2 git+https://github.com/gaphor/gaphor_
→˓plugin_helloworld.git

69

https://gaphor.org/download/
https://python.org
https://flathub.org/apps/com.github.tchx84.Flatseal
https://github.com/gaphor/gaphor_plugin_helloworld

Gaphor Documentation

Then start Gaphor as you normally would. A new Hello World entry has been added to the tools menu (→ Tools →
Hello World).

10.2 Create your own plugin

If you want to write a plugin yourself, you can familiarize yourself with Gaphor’s design principles, service oriented
architecture (includes a plugin example), and event driven framework.

10.3 Example plugin

You can have a look at the Hello World plugin available on GitHub for an example of how to create your own plugin.

The pyproject.toml file contains a plugin:

[tool.poetry.plugins."gaphor.services"]
"helloworld" = "gaphor_helloworld_plugin:HelloWorldPlugin"

This refers to the class HelloWorldPlugin in package/module gaphor_plugins_helloworld.

Here is a stripped version of the hello world plugin:

from gaphor.abc import Service, ActionProvider
from gaphor.core import _, action

class HelloWorldPlugin(Service, ActionProvider): # 1.

def __init__(self, tools_menu): # 2.
self.tools_menu = tools_menu
tools_menu.add_actions(self) # 3.

def shutdown(self): # 4.
self.tools_menu.remove_actions(self)

@action(# 5.
name="helloworld",
label=_("Hello world"),
tooltip=_("Every application..."),

)
def helloworld_action(self):

main_window = self.main_window
... # gtk code left out

1. As stated before, a plugin should implement the Service interface. It also implements ActionProvider, saying
it has some actions to be performed by the user.

2. The menu entry will be part of the “Tools” extension menu. This extension point is created as a service. Other
services can also be passed as dependencies. Services can get references to other services by defining them as
arguments of the constructor.

3. All action defined in this service are registered.

4. Each service has a shutdown() method. This allows the service to perform some cleanup when it’s shut down.

5. The action that can be invoked. The action is defined and will be picked up by add_actions() method (see 3.)

70 Chapter 10. Plugins

https://github.com/gaphor/gaphor_plugin_helloworld
https://github.com/gaphor/gaphor_plugin_helloworld/blob/main/pyproject.toml
https://github.com/gaphor/gaphor_plugin_helloworld/blob/main/gaphor_helloworld_plugin/__init__.py

CHAPTER

ELEVEN

GAPHOR ON LINUX

Gaphor can be installed as Flatpak on Linux, some distributions provide packages. Check out the Gaphor download
page for details.

Older releases are available from GitHub.

CI builds are also available.

11.1 Development Environment

There are two ways to set up a development environment:

1. GNOME Builder, ideal for “drive by” contributions.

2. A local environment.

11.1.1 GNOME Builder

Open GNOME Builder 43 or newer, clone the repository. Check if the Build Profile is set to org.gaphor.Gaphor.
json. If so, hit the Run button to start the application.

11.1.2 A Local Environment

To set up a development environment with Linux, you first need a fairly new Linux distribution version. For example,
the latest Ubuntu LTS or newer, Arch, Debian Testing, SUSE Tumbleweed, or similar. Gaphor depends on newer
versions of GTK, and we don’t test for backwards compatibility. You will also need the latest stable version of Python.
In order to get the latest stable version without interfering with your system-wide Python version, we recommend that
you install pyenv.

Install the pyenv prerequisites first, and then install pyenv:

curl https://pyenv.run | bash

Make sure you follow the instruction at the end of the installation script to install the commands in your shell’s rc file.
Next install the latest version of Python by executing:

pyenv install 3.x.x

Where 3.x.x is replaced by the latest stable version of Python (pyenv should let you tab-complete available versions).

Next install the Gaphor prerequisites by installing the gobject introspection and cairo build dependencies, for example,
in Ubuntu execute:

71

https://gaphor.org/download/#linux
https://gaphor.org/download/#linux
https://github.com/gaphor/gaphor/releases
https://github.com/gaphor/gaphor/actions/workflows/full-build.yml
https://flathub.org/apps/details/org.gnome.Builder
https://help.github.com/en/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://github.com/pyenv/pyenv
https://github.com/pyenv/pyenv/wiki/Common-build-problems

Gaphor Documentation

sudo apt-get install -y python3-dev python3-gi python3-gi-cairo
gir1.2-gtk-4.0 libgirepository1.0-dev libcairo2-dev libgtksourceview-5-dev

Install Poetry using pipx:

pipx install poetry

Next, clone the repository, after which you need to execute the following consecutive commands:

cd gaphor
activate latest python for this project
pyenv local 3.x.x # 3.x.x is the version you installed earlier
poetry env use 3.x # ensures poetry /consistently/ uses latest major release
poetry install
poetry run pre-commit install

Now, you can run gaphor as

poetry run gaphor

NOTE: Gaphor requires GTK 4. It works best with GTK >=4.8 and libadwaita >=1.2.

11.1.3 Debugging using Visual Studio Code

Before you start debugging you’ll need to open Gaphor in vscode (the folder containing pyproject.toml). You’ll
need to have the Python extension installed.

Create a file .vscode/launch.json with the following content:

{
"version": "0.2.0",
"configurations": [

{
"name": "Python: Gaphor UI",
"type": "python",
"request": "launch",
"module": "gaphor",
"justMyCode": false,
"env": {

"GDK_BACKEND": "wayland"
}

}
]

}

GDK_BACKEND is added since VSCode by default uses XWayland (the X11 emulator).

72 Chapter 11. Gaphor on Linux

https://python-poetry.org
https://pypa.github.io/pipx/
https://help.github.com/en/github/creating-cloning-and-archiving-repositories/cloning-a-repository

Gaphor Documentation

11.2 Create a Flatpak Package

The main method that Gaphor is packaged for Linux is with a Flatpak package. Flatpak is a software utility for software
deployment and package management for Linux. It offers a sandbox environment in which users can run application
software in isolation from the rest of the system.

We distribute the official Flatpak using Flathub, and building of the image is done at the Gaphor Flathub repository.

1. Install Flatpak

2. Install flatpak-builder

sudo apt-get install flatpak-builder

3. Install the GNOME SDK

flatpak install flathub org.gnome.Sdk 43

4. Clone the Flathub repository and install the necessary SDK:

git clone https://github.com/flathub/org.gaphor.Gaphor.git
cd org.gaphor.Gaphor
make setup

5. Build Gaphor Flatpak

make

6. Install the Flatpak

make install

11.3 Linux Distribution Packages

Examples of Gaphor and Gaphas RPM spec files can be found in PLD Linux repository:

• https://github.com/pld-linux/python-gaphas

• https://github.com/pld-linux/gaphor

There is also an Arch User Repository (AUR) for Gaphor available for Arch users.

Please, do not hesitate to contact us if you need help to create a Linux package for Gaphor or Gaphas.

11.2. Create a Flatpak Package 73

https://flatpak.org
https://flathub.org
https://github.com/flathub/org.gaphor.Gaphor
https://flatpak.org/setup
https://www.pld-linux.org/
https://github.com/pld-linux/
https://aur.archlinux.org/packages/python-gaphor

Gaphor Documentation

74 Chapter 11. Gaphor on Linux

CHAPTER

TWELVE

GAPHOR ON MACOS

The latest release of Gaphor can be downloaded from the Gaphor download page. Gaphor can also be installed as a
Homebrew cask.

Older releases are available from GitHub.

CI builds are also available.

12.1 Development Environment

To set up a development environment with macOS:

1. Install Homebrew

2. Open a terminal and execute:

brew install python3 gobject-introspection gtk4 gtksourceview5 libadwaita adwaita-icon-
→˓theme graphviz

Install Poetry using pipx:

pipx install poetry

Next, clone the repository, after which you can execute the following consecutive commands to install the poetry
environment:

cd gaphor
poetry install
poetry run pre-commit install

Now, you can run gaphor as

poetry run gaphor

If PyGObject does not compile and complains about a missing ffi.h file, set the following environment variable and
run poetry install again:

export PKG_CONFIG_PATH=/opt/homebrew/opt/libffi/lib/pkgconfig # use /usr/local/ for␣
→˓older Homebrew installs
poetry install

75

https://gaphor.org/download#macos
https://formulae.brew.sh/cask/gaphor
https://github.com/gaphor/gaphor/releases
https://github.com/gaphor/gaphor/actions/workflows/full-build.yml
https://brew.sh
https://python-poetry.org
https://pypa.github.io/pipx/
https://help.github.com/en/github/creating-cloning-and-archiving-repositories/cloning-a-repository

Gaphor Documentation

12.1.1 Debugging using Visual Studio Code

Before you start debugging you’ll need to open Gaphor in VSCode (the folder containing pyproject.toml). You’ll
need to have the Python extension installed.

Create a file .vscode/launch.json with the following content:

{
"version": "0.2.0",
"configurations": [

{
"name": "Python: Gaphor UI",
"type": "python",
"request": "launch",
"module": "gaphor",
"justMyCode": false

}
]

}

12.2 Packaging for macOS

In order to create an exe installation package for macOS, we utilize PyInstaller which analyzes Gaphor to find all the
dependencies and bundle them in to a single folder.

1. Follow the instructions for settings up a development environment above

2. Open a terminal and execute the following from the repository directory:

poetry run python po/build-babel.py
poetry install --with packaging
poetry run poe package

76 Chapter 12. Gaphor on macOS

https://pyinstaller.org

CHAPTER

THIRTEEN

GAPHOR ON WINDOWS

Gaphor can be installed as with our installer. Check out the Gaphor download page for details.

Older releases are available from GitHub.

CI builds are also available.

13.1 Development Environment

13.1.1 Choco

We recommend using Chocolately as a package manager in Windows.

To install it, open PowerShell as an administrator, then execute:

Set-ExecutionPolicy Bypass -Scope Process -Force; iex ((New-Object System.Net.WebClient).
→˓DownloadString('https://community.chocolatey.org/install.ps1'))

To run local scripts in follow-on steps, also execute

Set-ExecutionPolicy RemoteSigned

This allows for local PowerShell scripts to run without signing, but still requires signing for remote scripts.

13.1.2 Git

To set up a development environment in Windows first install Git by executing as an administrator:

choco install git

13.1.3 MSYS2

The development environment in the next step needs MSYS2 installed to provide some Linux command line tools in
Windows.

Keep PowerShell open as administrator and install MSYS2:

choco install msys2

77

https://gaphor.org/download#windows
https://github.com/gaphor/gaphor/releases
https://github.com/gaphor/gaphor/actions/workflows/full-build.yml
https://chocolatey.org/
https://gitforwindows.org
http://www.msys2.org/

Gaphor Documentation

13.1.4 GTK and Python with gvsbuild

gvsbuild provides a Python script helps you build the GTK library stack for Windows using Visual Studio. By compiling
GTK with Visual Studio, we can then use a standard Python development environment in Windows.

First we will install the gvsbuild dependencies:

1. Visual C++ build tools workload for Visual Studio 2022 Build Tools

2. Python

Install Visual Studio 2022

With your admin PowerShell terminal:

choco install visualstudio2022-workload-vctools

Install the Latest Python

In Windows, The full installer contains all the Python components and is the best option for developers using Python
for any kind of project.

For more information on how to use the official installer, please see the full installer instructions. The default installation
options should be fine for use with Gaphor.

1. Install the latest Python version using the official installer.

2. Open a PowerShell terminal as a normal user and check the python version:

py -3.11 --version

Install Graphviz

Graphviz is used by Gaphor for automatic diagram formatting.

1. Install from Chocolately with administrator PowerShell:

choco install graphviz

2. Restart your PowerShell terminal as a normal user and check that the dot command is available:

dot -?

Install pipx

From the regular user PowerShell terminal execute:

py -3.11 -m pip install --user pipx
py -3.11 -m pipx ensurepath

78 Chapter 13. Gaphor on Windows

https://docs.python.org/3/using/windows.html#windows-full
https://www.python.org/downloads/windows/

Gaphor Documentation

Install gvsbuild

From the regular user PowerShell terminal execute:

pipx install gvsbuild

Build GTK

In the same PowerShell terminal, execute:

gvsbuild build --enable-gi --py-wheel gobject-introspection gtk4 libadwaita␣
→˓gtksourceview5 pygobject pycairo adwaita-icon-theme hicolor-icon-theme

Grab a coffee, the build will take a few minutes to complete.

13.1.5 Setup Gaphor

In the same PowerShell terminal, clone the repository:

cd (to the location you want to put Gaphor)
git clone https://github.com/gaphor/gaphor.git
cd gaphor

Install Poetry

pipx install poetry

Add GTK to your environmental variables:

$env:Path = $env:Path + ";C:\gtk-build\gtk\x64\release\bin"
$env:LIB = "C:\gtk-build\gtk\x64\release\lib"
$env:INCLUDE = "C:\gtk-build\gtk\x64\release\include;C:\gtk-build\gtk\x64\release\
→˓include\cairo;C:\gtk-build\gtk\x64\release\include\glib-2.0;C:\gtk-build\gtk\x64\
→˓release\include\gobject-introspection-1.0;C:\gtk-build\gtk\x64\release\lib\glib-2.0\
→˓include;"
$env:XDG_DATA_HOME = "$HOME\.local\share"

You can also edit your account’s Environmental Variables to persist across PowerShell sessions.

Install Gaphor’s dependencies

poetry install

Install the git hook scripts

poetry run pre-commit install

Reinstall PyGObject and pycairo using gvsbuild wheels

poetry run pip install --force-reinstall (Resolve-Path C:\gtk-build\build\x64\release\
→˓pygobject\dist\PyGObject*.whl)
poetry run pip install --force-reinstall (Resolve-Path C:\gtk-build\build\x64\release\
→˓pycairo\dist\pycairo*.whl)

13.1. Development Environment 79

Gaphor Documentation

Launch Gaphor!

poetry run gaphor

13.1.6 Debugging using Visual Studio Code

Start a new PowerShell terminal, and set current directory to the project folder:

cd (to the location you put gaphor)

Ensure that path environment variable is set:

$env:Path = "C:\gtk-build\gtk\x64\release\bin;" + $env:Path

Start Visual Studio Code:

code .

To start the debugger, execute the following steps:

1. Open __main__.py file from gaphor folder

2. Add a breakpoint on line main(sys.argv)

3. In the menu, select Run → Start debugging

4. Choose Select module from the list

5. Enter gaphor as module name

Visual Studio Code will start the application in debug mode, and will stop at main.

13.2 Packaging for Windows

In order to create an exe installation package for Windows, we utilize PyInstaller which analyzes Gaphor to find all the
dependencies and bundle them in to a single folder. We then use a custom bash script that creates a Windows installer
using NSIS and a portable installer using 7-Zip. To install them, open PowerShell as an administrator, then execute:

choco install nsis 7zip

Then build your installer using:

poetry install --only main,packaging,automation
poetry build
poetry run poe package
poetry run poe win-installer

80 Chapter 13. Gaphor on Windows

https://pyinstaller.org
https://nsis.sourceforge.io/Main_Page
https://www.7-zip.org

CHAPTER

FOURTEEN

GAPHOR IN A CONTAINER

Instead of setting up a development environment locally, the easiest way to contribute to the project is using GitHub
Codespaces.

14.1 GitHub Codespaces

Follow these steps to open Gaphor in a Codespace:

1. Navigate to https://github.com/gaphor/gaphor

2. Click the Code drop-down menu and select the Open with Codespaces option.

3. Select + New codespace at the bottom on the pane.

For more info, check out the GitHub documentation.

14.2 Remote access to Gaphor graphic window with Codespaces

When using Codespaces, chances are that you also want to interact with the graphical window of Gaphor.

This is facilitated in Gaphor by use of container feature called desktop-lite. This feature is activated by default in the
Gaphor’s devcontainer.json file.

Notice the webPort/vncPort and password values. These are used in subsequent steps.

"desktop-lite": {
"password": "vscode",
"webPort": "6080",
"vncPort": "5901"

},

There are two options:

81

https://docs.github.com/en/free-pro-team@latest/github/developing-online-with-codespaces/creating-a-codespace#creating-a-codespace
https://github.com/devcontainers/features/tree/main/src/desktop-lite
https://github.com/gaphor/gaphor/blob/main/.devcontainer/devcontainer.json

Gaphor Documentation

14.2.1 Using a local VNC viewer

1. Download and install VNC viewer of your choice (e.g. realvnc)

2. Specify remote hostname as localhost and port as 5901 and connect VNC. The port number should be same as
specified in attribute vncPort

3. Upon debugging/running Gaphor the familiar Graphic window should be displayed in VNC view

14.2.2 Using noVNC viewer on the Browser

1. This is based on noVNC application

2. Open the browser on your local machine and give address as http://127.0.0.1:6080/. The port number should be
same as specified in attribute webPort

3. A noVNC window will open, click on Connect and provide password as vscode. The password should be same
as specified in attribute password

4. Upon debugging/running Gaphor the familiar Graphic window should be displayed in noVNC view on Browser

82 Chapter 14. Gaphor in a Container

https://github.com/gaphor/gaphor/blob/main/.devcontainer/devcontainer.json
https://novnc.com/info.html
https://github.com/gaphor/gaphor/blob/main/.devcontainer/devcontainer.json

CHAPTER

FIFTEEN

CONTRIBUTE TO GAPHOR

Would you like to contribute to the development of Gaphor? If you think this is only something for experienced
developers, please reconsider, there are plenty of ways to contribute to Gaphor, no matter your level of experience or
skill set.

You can help to support Gaphor in your language. You can do that on Weblate, directly from your browser. This service
will periodically create Pull Requests for Gaphor with updated translations.

It is also very nice if you create your own content around Gaphor. Think about blog posts, videos, and conference talks.
When you created something, please drop us a line, so we can add it to the Tutorials page on the website.

If you want to contribute code, a good starting point is this site. It contains a lot of information on how Gaphor is build,
especially in the Concepts section.

Some issues are labeled with first-timers-only. Those issues are a good starting point to make yourself familiar with
the code and code style.

It’s always a good idea to create an issue or start a discussion if you want to build something for which there is no issue
yet. That way you can assure that your idea is implemented in a way consistent with the application, and it increases
the chance your work will be accepted.

You’ll need to fork Gaphor and set up a development environment (macOS, Windows).

Note: In our pipeline we do a couple of quality checks. We strongly recommend that you install pre-commit and its
git hook scripts, so your PR does build on our build environment.

83

https://hosted.weblate.org/engage/gaphor/
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://gaphor.org/tutorials
https://github.com/gaphor/gaphor/issues
https://github.com/gaphor/gaphor/discussions
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo
https://pre-commit.com/

Gaphor Documentation

84 Chapter 15. Contribute to Gaphor

CHAPTER

SIXTEEN

MODELING LANGUAGE CORE

The Core modeling language is the the basis for any other language.

The Element class acts as the root for all gaphor domain classes. Diagram and Presentation form the basis for
everything you see in a diagram.

All data models in Gaphor are generated from actual Gaphor model files. This allows us to provide you nice diagrams
of Gaphor’s internal model.

Element

+ id
+ note: str

+ unlink()
+ handle()
+ watcher()
+ load()
+ postload()
+ save()

Diagram

+ name: String
+ /qualifiedName: String
+ diagramType: String

+ create()
+ lookup()
+ select(()
+ request_update()
+ update()

Presentation

+ request_update()
+ watch()
+ change_parent()

Comment

+ body: String

StyleSheet

+ styleSheet: String
+ naturalLanguage: String

One instance
per model.

Presentation
lifecycle is
bound to the
diagram it's
created on.

Picture

+ content: str

+ subject

0..1

+ presentation

*

+ annotatedElement

*

+ comment

*

+ ownedPresentation

* { subsets = "ownedElement" }

+ diagram

0..1 { subsets = "owner" }

+ parent 0..1+ children *

+ element

0..1 { subsets = "owner" }

+ ownedDiagram

* { subsets = "ownedElement" }

+ /ownedElement *

+ /owner

0..1

The Element base class provides event notification and integrates with the model repository (internally known as
ElementFactory). Bi-directional relationships are also possible, as well as derived relations.

85

Gaphor Documentation

The RepositoryProtocol, and EventWatcherProtocol protocols are important to connect the model to the repos-
itory and event handling mechanisms.

16.1 The Element Class

The class Element is the core of Gaphor’s data model.

class gaphor.core.modeling.Element(id: str | None = None, model: RepositoryProtocol | None = None)
Base class for all model data classes.

property id: str

An id (read-only), unique within the model.

property model: RepositoryProtocol

The owning model, raises TypeError when model is not set.

unlink()→ None
Unlink the element.

All the elements references are destroyed. For composite associations, the associated elements are also
unlinked.

The unlink lock is acquired while unlinking this element’s properties to avoid recursion problems.

16.1.1 Event handling

handle(event)→ None
Propagate incoming events.

This only works if the element has been created by an ElementFactory

watcher(default_handler: Callable[[ElementUpdated], None] | None = None)→ EventWatcherProtocol
Create a new watcher for this element.

Watchers provide a convenient way to get signalled when a property relative to self has been changed.

To use a watcher, the element should be created by a properly wired up ElementFactory`.

This example is purely illustrative:

>>> element = Element()
>>> watcher = element.watcher(default_handler=print)
>>> watcher.watch("note") # Watch for changed on element.note

16.1.2 Loading and saving

load(name, value)→ None
Loads value in name.

Make sure that after all elements are loaded, postload() should be called.

postload()→ None
Fix up the odds and ends.

This is run after all elements are loaded.

86 Chapter 16. Modeling Language Core

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Gaphor Documentation

save(save_func)→ None
Save the state by calling save_func(name, value).

16.1.3 OCL-style methods

isKindOf(class_: type[Element])→ bool
Returns True if the object is an instance of class_.

isTypeOf(other: Element)→ bool
Returns True if the object is of the same type as the other.

16.2 The Presentation class

class gaphor.core.modeling.Presentation(diagram: Diagram, id: Id | None = None)
A special type of Element that can be displayed on a Diagram .

Subtypes of Presentation should implement the gaphas.item.Item protocol.

request_update()→ None
Mark this presentation object for update.

Updates are orchestrated by diagrams.

watch(path: str, handler: Callable[[ElementUpdated], None] | None = None)→ Self
Watch a certain path of elements starting with self.

The handler is optional and will default to a simple request_update.

Watches should be set in the constructor, so they can be registered and unregistered in one shot.

self.watch("subject[NamedElement].name")

This interface is fluent: returns self.

change_parent(new_parent: Presentation | None)→ None
Change the parent and update the item’s matrix so the item visually remains in the same place.

16.3 The Diagram class

class gaphor.core.modeling.Diagram(id: str | None = None, model: RepositoryProtocol | None = None)
Diagrams may contain Presentation elements and can be owned by any element.

create(type_: type[P], parent: Presentation | None = None, subject: Element | None = None)→ P
Create a new diagram item on the diagram.

It is created with a unique ID, and it is attached to the diagram’s root item. The type parameter is the
element class to create. The new element also has an optional parent and subject.

lookup(id: str)→ Presentation | None
Find a presentation item by id.

Returns a presentation in this diagram or return None.

select(expression: Callable[[Presentation], bool])→ Iterator[Presentation]

16.2. The Presentation class 87

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://gaphas.readthedocs.io/en/stable/api/model.html#gaphas.item.Item
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Self
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterator

Gaphor Documentation

select(expression: type[P])→ Iterator[P]
select(expression: None)→ Iterator[Presentation]

Return an iterator of all canvas items that match expression.

request_update(item: Item)→ None
Schedule an item for updating.

No update is done at this point, it’s only added to the set of to-be updated items.

This method is part of the gaphas.model.Model protocol.

update(dirty_items: Collection[Presentation] = ())→ None
Update the diagram.

All items that requested an update via request_update() are now updates. If an item has an
update(context: UpdateContext) method, it’s invoked. Constraints are solved.

16.4 Protocols

class gaphor.core.modeling.element.RepositoryProtocol(*args, **kwargs)

create(type: type[T])→ T
Create a new element in the repository.

select(self , expression: Callable[[Element], bool])→ Iterator[Element]
Select elements from the repository that fulfill expression.

select(self , type_: type[T])→ Iterator[T]
Select all elements from the repository of type type_.

select(self , expression: None)→ Iterator[Element]
Select all elements from the repository.

lookup(id: str)→ Element | None
Get an element by id from the repository.

Returns None if no such element exists.

class gaphor.core.modeling.element.EventWatcherProtocol(*args, **kwargs)

watch(path: str, handler: Callable[[ElementUpdated], None] | None = None)→ EventWatcherProtocol
Add a watch for a specific path. The path is relative to the element that created the watcher object.

Returns self, so watch operations can be chained.

unsubscribe_all()→ None
Should be called before the watcher is disposed, to release all watched paths.

88 Chapter 16. Modeling Language Core

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterator
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterator
https://gaphas.readthedocs.io/en/stable/api/model.html#gaphas.item.Item
https://docs.python.org/3/library/constants.html#None
https://gaphas.readthedocs.io/en/stable/api/model.html#gaphas.model.Model
https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Gaphor Documentation

16.4.1 Change Sets

The core model has support for change sets, which are sets of pending changes. Normally you end up with a change
set when you resolve a merge conflict in your model.

ElementChange

+ element_name: str
+ diagram_id: str

ValueChange

+ property_name: str
+ property_value: str

RefChange

+ property_name: str
+ property_ref: str

Element
(from Core)

PendingChange

+ op: ChangeKind
+ element_id: str
+ applied: int = 0

ChangeKind

+ add
+ remove
+ update

16.4. Protocols 89

Gaphor Documentation

90 Chapter 16. Modeling Language Core

CHAPTER

SEVENTEEN

UNIFIED MODELING LANGUAGE

The UML model is the most extensive model in Gaphor. It is used as a base language for SysML, RAAML, and C4.

Gaphor follows the official UML 2.5.1 data model. Where changes have been made a comment has been added to the
model. In particular where m:n relationships subset 1:n relationships.

04. Simple Classifiers

01. Common Structure 11. Interactions

12. Use Cases02. Values

03. Classification

05. Structured Classifiers

06. Packaging

07. Common Behaviors

08. State Machines

09. Activities

10. Actions

13. Deployments

A. Gaphor Specific Constructs

«profile»
B. Gaphor Profile

14. Information Flows

91

https://www.omg.org/spec/UML/

Gaphor Documentation

17.1 01. Common Structure

17.1.1 1. Root

Element

Relationship

DirectedRelationship

Comment is defined in
the Core model.

Defining
directedRelationship
once is sufficient.
Derived unions do not
have an opposite end.
(implementation detail)

Defined in
Core
model.

+ /relationship

*

+ /relatedElement

1..*

+ /directedRelationship

* { subsets = "relationship" }

+ /target

1..* { subsets = "relatedElement" }

+ /source

1..* { subsets = "relatedElement" }

92 Chapter 17. Unified Modeling Language

Gaphor Documentation

17.1.2 2. Templates

Not implemented.

17.1.3 3. Namespaces

Element

NamedElement

+ /qualifiedName: String[0..1]
+ name: String[0..1]
+ visibility: VisibilityKind[0..1]

VisibilityKind

+ public
+ private
+ package
+ protected

PackageableElementNamespace

DirectedRelationship

ElementImport

+ visibility: VisibilityKind
+ alias: String[0..1]

PackageImport

+ visibility: VisibilityKind

Package
(from 06. Packaging)

Constraint

+ /importedMember

* { subsets = "members" }

+ /member

*

+ /memberNamespace

1

+ /ownedMember

* { subsets = "member, ownedElement" }

+ /namespace

0..1 { subsets = "owner, memberNamespace" }

+ importedElement 1 { subsets = "target" }

+ importedPackage 1 { subsets = "target" }

+ importingNamespace

0..1 { subsets = "source, owner" }

+ elementImport

* { subsets = "ownedElement" }

+ importingNamespace

0..1 { subsets = "source, owner" }

+ packageImport

* { subsets = "ownedElement" }

+ context 0..1 { subsets = "namespace" }

+ ownedRule * { subsets = "ownedMember" }

17.1. 01. Common Structure 93

Gaphor Documentation

17.1.4 4. Types and Multiplicity

Element

MultiplicityElement

+ /lower: Integer[0..1]
+ isUnique: Boolean = true
+ isOrdered: Boolean = true
+ /upper: UnlimitedNatural[0..1]

«simpleAttribute»
ValueSpecification

(from 02. Values)

TypedElement Type

NamedElement PackageableElement

«simpleAttribute»
ValueSpecification

(from 02. Values)

typeValue is added for
Gaphor

+ upperValue

0..1

+ lowerValue

0..1

+ type

0..1

+ typeValue 0..1

94 Chapter 17. Unified Modeling Language

Gaphor Documentation

17.1.5 5. Constraints

PackageableElement

Constraint

Namespace

Element

«simpleAttribute»
ValueSpecification

(from 02. Values)

+ constraint

*

+ constrainedElement

* { ordered = "true" }

+ owningConstraint

0..1 { subsets = "owner" }

+ specification

1 { subsets = "ownedElement" }

+ context

0..1 { subsets = "namespace" }

+ ownedRule

* { subsets = "ownedMember" }

17.1.6 6. Dependencies

NamedElement
Dependency

DirectedRelationship PackageableElement

Abstraction Usage

Realization

«simpleAttribute»
OpaqueExpression

(from 02. Values)

+ supplier

0..1 { subsets = "target" }

+ supplierDependency

* { subsets = "directedRelationship" }
+ client

0..1 { subsets = "owner, target" }

+ clientDependency

* { subsets = "ownedElement, directedRelationship" }

+ mapping

0..1

+ abstraction

0..1

17.1. 01. Common Structure 95

Gaphor Documentation

17.2 02. Values

17.2.1 1. Literals

LiteralNull

LiteralSpecification

+ value: object

LiteralBoolean

+ value: Boolean

LiteralInteger

+ value: Integer

LiteralString

+ value: String

LiteralUnlimitedNatural

+ value: UnlimitedNatural

TypedElement
(from 01. Common Structure)

«simpleAttribute»
ValueSpecification

value is added
specially for
Gaphor

96 Chapter 17. Unified Modeling Language

Gaphor Documentation

17.2.2 2. Expressions

«simpleAttribute»
ValueSpecification

«simpleAttribute»
Expression

+ symbol: String[0..1]

«simpleAttribute»
OpaqueExpression

+ language: String[0..1]
+ body: String[0..1]

+ operand

*

+ expression

0..1

17.3 03. Classification

17.3.1 1. Classifiers

NamedElement
(from 01. Common Structure)

RedefinableElement

+ isLeaf: Boolean = true
+ visibility: VisibilityKind[0..1]

Classifier

+ isAbstract: Boolean = false

Namespace
(from 01. Common Structure)

Generalization

+ isSubstitutable: Boolean

DirectedRelationship
(from 01. Common Structure)

Type
(from 01. Common Structure)

Feature

Property

UseCase
(from 12. Use Cases)

Specialization is
added to improve
navigability.

+ /redefinitionContext

*

+ /redefinedElement

*

+ redefinedClassifier

* { subsets = "redefinedElement" }

+ /general

*

+ /inheritedMember

* { subsets = "member" }

+ general

1 { subsets = "target" }

+ specialization

* { subsets = "directedRelationship" }

+ specific

1 { subsets = "source, owner" } + generalization

* { subsets = "ownedElement" }

+ /featuringClassifier

1..*

+ /feature

*

+ classifier

0..1 { subsets = "redefinitionContext" }

+ /attribute

* { subsets = "feature" }

+ ownedUseCase

* { subsets = "ownedMember" }

+ useCase

*

+ subject

*

17.3. 03. Classification 97

Gaphor Documentation

17.3.2 3. Features

RedefinableElement

Classifier
Feature

+ isStatic: Boolean = false

StructuralFeature

+ isReadOnly: Boolean = false

TypedElement
(from 01. Common Structure)

BehavioralFeature

+ isAbstract: Boolean

Namespace
(from 01. Common Structure)

ParameterDirectionKind

+ inout
+ in
+ out
+ return

Parameter

+ direction: ParameterDirectionKind = in
+ /default: String[0..1]

TypedElement
(from 01. Common Structure)

«simpleAttribute»
ValueSpecification

(from 02. Values)

MultiplicityElement
(from 01. Common Structure)

MultiplicityElement
(from 01. Common Structure)

Type
(from 01. Common Structure)

UML v2.2
with
ParameterSet
from 2.5.1
Fig. 9.9

ParameterSet

Constraint
(from 01. Common Structure)

NamedElement
(from 01. Common Structure)

CallConcurrencyKind

+ sequential
+ guarded
+ concurrent

ParameterEffectKind

+ create
+ read
+ update
+ delete

ConnectableElement
(from 05. Structured Classifiers)

+ /featuringClassifier

1..*

+ /feature

*

+ ownerFormalParam

0..1 { subsets = "namespace" }

+ ownedParameter

* { ordered = "true",
subsets = "ownedMember" }

+ raisedException *

+ defaultValue 0..1 { subsets = "ownedElement" }

+ parameterSet

*

+ parameter 1..*

+ parameterSet 0..1 { subsets = "owner" }

+ condition * { subsets = "ownedElement" }

+ behavioralFeature 0..1 { subsets = "ownedMember" }

+ ownedParameterSet

* { subsets = "namespace" }

17.3.3 4. Properties

Class
(from 05. Structured Classifiers)

Property

+ /default: String[0..1]
+ aggregation: AggregationKind = none
+ isDerivedUnion: Boolean = false
+ isDerived: Boolean = false
+ /isComposite: Boolean
+ isReadOnly: Boolean = false
+ /navigability: Boolean

AggregationKind

+ none
+ shared
+ composite

StructuralFeature

Association
(from 05. Structured Classifiers)

Relationship
(from 01. Common Structure)

Classifier

«simpleAttribute»
ValueSpecification

(from 02. Values)

Type
(from 01. Common Structure)

Interface
(from 04. Simple Classifiers)

DataType
(from 04. Simple Classifiers) fix

associations

+ class_

0..1 { subsets = "classifier, namespace, featuringClassifier" } + ownedAttribute

* { subsets = "attribute, ownedMember" }

+ subsettedProperty *+ redefinedProperty * { subsets = "redefinedElement" }

+ memberEnd

2..* { ordered = "true",
subsets = "member" }

+ association

0..1 { subsets = "memberNamespace" }

+ /endType

1..*

+ ownedEnd

* { subsets = "feature, ownedMember" }
+ owningAssociation

0..1 { subsets = "namespace, featuringClassifier" }

+ defaultValue

0..1 { subsets = "ownedElement" }

+ /opposite

0..1

0..1

+ navigableOwnedEnd

* { subsets = "ownedEnd" }

+ ownedAttribute

* { subsets = "attribute, ownedMember" }

+ interface_

0..1 { subsets = "classifier, namespace" }

+ datatype

0..1 { subsets = "namespace, classifier" }

+ ownedAttribute

* { subsets = "attribute, ownedMember" }

98 Chapter 17. Unified Modeling Language

Gaphor Documentation

17.3.4 5. Operations

BehavioralFeature

Operation

+ /isOrdered: Boolean
+ isQuery: Boolean = false
+ /isUnique: Boolean
+ /upper: UnlimitedNatural[0..1]
+ /lower: Integer[0..1]

Parameter

Constraint
(from 01. Common Structure)

Type
(from 01. Common Structure)

Class
(from 05. Structured Classifiers)

Interface
(from 04. Simple Classifiers)

DataType
(from 04. Simple Classifiers)

+ ownedParameter

* { redefines = "BehavioralFeature.ownedParameter" }

+ operation

0..1 { redefines = "Parameter.ownerFormalParam" }

+ preContext

0..1 { subsets = "context, namespace" }

+ precondition

* { subsets = "ownedMember, ownedRule" }

+ postContext

0..1 { subsets = "context, namespace" }

+ postcondition

* { subsets = "ownedMember" }

+ bodyContext

0..1 { subsets = "context, namespace" }

+ bodyCondition

0..1 { subsets = "ownedMember" }

+ /type

0..1

+ redefinedOperation * { subsets = "redefinedElement" }

+ raisedException

*

+ class_

0..1 { subsets = "namespace, redefinitionContext, featuringClassifier" }

+ ownedOperation

* { ordered = "true",
subsets = "feature, ownedMember" }

+ ownedOperation

* { subsets = "feature, ownedMember" }
+ interface_

0..1 { subsets = "namespace, featuringClassifier" }

+ datatype

0..1 { subsets = "namespace, redefinitionContext, featuringClassifier" }

+ ownedOperation

* { subsets = "feature, ownedMember, redefinableElement" }

17.3.5 7. Instances

PackageableElement
(from 01. Common Structure)

InstanceSpecification
Slot

«simpleAttribute»
ValueSpecification

(from 02. Values)

Classifier

Element
(from 01. Common Structure)

StructuralFeature

Made this
relationship
an aggregate so
Slots
are removed as soon
as
the definingFeature
is
removed.

DeployedArtifact
(from 13. Deployments)

DeploymentTarget
(from 13. Deployments)

Made this
relationship an
aggregare, so
instances are
removed
alongside their
classifier.

+ owningInstance

1 { subsets = "owner" }

+ slot

* { subsets = "ownedElement" }

+ specification

0..1 { subsets = "ownedElement" }

+ classifier *

+ instanceSpecification *

+ slot

*

+ definingFeature

1

+ value
0..1 { ordered = "true",

subsets = "ownedElement" }

17.3. 03. Classification 99

Gaphor Documentation

17.4 04. Simple Classifiers

17.4.1 1. Data Types

Classifier
(from 03. Classification)

DataType

PrimitiveType Enumeration

Property
(from 03. Classification)

Operation
(from 03. Classification)

InstanceSpecification
(from 03. Classification)

EnumerationLiteral

+ datatype

0..1 { subsets = "namespace, classifier" }

+ ownedAttribute

* { subsets = "attribute, ownedMember" }

+ datatype

0..1 { subsets = "namespace, redefinitionContext, featuringClassifier" }

+ ownedOperation

* { subsets = "feature, ownedMember, redefinableElement" }

+ enumeration

0..1 { subsets = "namespace" }
+ ownedLiteral

* { ordered = "true",
subsets = "ownedMember" }

17.4.2 3. Interfaces

Classifier
(from 03. Classification)

InterfaceProperty
(from 03. Classification)

Operation
(from 03. Classification)

InterfaceRealization

Realization
(from 01. Common Structure)

BehavioredClassifier
(from 07. Common Behaviors)

ConnectableElement
(from 05. Structured Classifiers)

!! Is this
generalization
valid?

Redefine,
instead of
subset!

+ ownedAttribute

* { subsets = "attribute, ownedMember" }

+ interface_

0..1 { subsets = "classifier, namespace" }

+ ownedOperation

* { subsets = "feature, ownedMember" }

+ interface_

0..1 { subsets = "namespace, featuringClassifier" }

+ interface

0..1 { subsets = "namespace, redefinitionContext" }

+ nestedClassifier

* { subsets = "ownedMember, redefinableElement" }

+ redefinedInterface

* { subsets = "redefinedElement" }

+ contract * { redefines = "Dependency.supplier" }

+ implementatingClassifier

1 { redefines = "Dependency.client" }

+ interfaceRealization

* { redefines = "NamedElement.clientDependency" }

100 Chapter 17. Unified Modeling Language

Gaphor Documentation

17.5 05. Structured Classifiers

17.5.1 1. Structured Classifiers

Classifier
(from 03. Classification)

StructuredClassifier
ConnectableElement

TypedElement
(from 01. Common Structure)

Property
(from 03. Classification)

ConnectorEnd
Connector

+ kind: ConnectorKind

Feature
(from 03. Classification)

Association Behavior
(from 07. Common Behaviors)

MultiplicityElement
(from 01. Common Structure)

ConnectorKind

+ assembly
+ delegation

*

+ /role

* { union = "true",
subsets = "member" }

0..1 { subsets = "classifier, namespace" }

+ ownedAttribute

* { ordered = "true",
subsets = "role, attribute, ownedMember" }

0..1

+ /part

*

+ ownedConnector

* { subsets = "ownedMember, feature, redefinableElement" }

+ structuredClassifier

0..1 { subsets = "namespace, redefinitionContext" }

+ redefinedConnector

* { subsets = "redefinedElement" }

*

+ end

2..* { ordered = "true",
subsets = "ownedElement" }

+ connector

1 { subsets = "owner" }

+ role

0..1

+ end * { ordered = "true" }

*

+ type
0..1

*

+ contract
*

*

+ /definingEnd

0..1

17.5.2 2. Encapsulated Classifiers

StructuredClassifier

EncapsulatedClassifier

ConnectorEndProperty
(from 03. Classification)

Port

+ isBehavior: Boolean
+ isService: Boolean

0..*

+ partWithPort

0..1

+ encapsulatedClassifier 0..1 { subsets = "classifier, namespace" }

+ ownedPort

* { subsets = "role, attribute, ownedMember" }

17.5. 05. Structured Classifiers 101

Gaphor Documentation

17.5.3 3. Classes

EncapsulatedClassifier

Class

+ isActive: Boolean = false

Classifier
(from 03. Classification)

Property
(from 03. Classification)

Operation
(from 03. Classification)

Extension
(from 06. Packaging)

BehavioredClassifier
(from 07. Common Behaviors)

+ /superClass

* { redefines = "Classifier.general" }

+ nestingClass

0..1 { subsets = "namespace, redefinitionContext" }

+ nestedClassifier

* { subsets = "ownedMember, redefinableElement" }

+ class_

0..1 { subsets = "classifier, namespace, featuringClassifier" }

+ ownedAttribute

* { subsets = "attribute, ownedMember" }

+ class_

0..1 { subsets = "namespace, redefinitionContext, featuringClassifier" }

+ ownedOperation

* { ordered = "true",
subsets = "feature, ownedMember" }

+ /metaclass

1

+ /extension

*

17.5.4 4. Associations

Association

+ isDerived: Boolean = false

Type
(from 01. Common Structure)

Property
(from 03. Classification)

Relationship
(from 01. Common Structure)

Classifier
(from 03. Classification)

+ /endType 1..*

+ memberEnd

2..* { ordered = "true",
subsets = "member" }

+ association

0..1 { subsets = "memberNamespace" }

0..1

+ navigableOwnedEnd

* { subsets = "ownedEnd" }

+ ownedEnd

* { subsets = "feature, ownedMember" }
+ owningAssociation

0..1 { subsets = "namespace, featuringClassifier" }

102 Chapter 17. Unified Modeling Language

Gaphor Documentation

17.5.5 5. Components

Interface
(from 04. Simple Classifiers)

Component

+ isIndirectlyInstantiated: Boolean = True

Class Realization
(from 01. Common Structure)

Classifier
(from 03. Classification)

PackageableElement
(from 01. Common Structure)

ComponentRealization

Redefine instead of
subset, since client
and supplier are not
derived unions.

+ /provided *+ /required *

+ realization

* { redefines = "NamedElement.supplierDependency" }

+ abstraction

0..1 { redefines = "Dependency.supplier" }

+ realizingClassifier 1 { redefines = "Dependency.client" }

+ componentRealization * { redefines = "NamedElement.clientDependency" }

+ packagedElement * { subsets = "ownedMember" }

+ component 0..1 { subsets = "namespace" }

17.5.6 6. Collaborations

StructuredClassifier

Collaboration

BehavioredClassifier
(from 07. Common Behaviors)

ConnectableElement

!! Partly
implemented

+ collaborationRole * { subsets = "role" }

*

17.5. 05. Structured Classifiers 103

Gaphor Documentation

17.6 06. Packaging

17.6.1 1. Packages

Namespace
(from 01. Common Structure)

PackageableElement
(from 01. Common Structure)

Package

DirectedRelationship
(from 01. Common Structure)

PackageMerge

Type
(from 01. Common Structure)

Use "package" instead
of "nestingPackage" to
keep symmetry with
"Type.package"

Should be
called
/ownedType

+ /owningPackage

0..1 { subsets = "namespace" }

+ /packagedElement * { subsets = "ownedMember" }

+ package

0..1 { subsets = "owningPackage" }

+ ownedType

* { subsets = "packagedElement" }

+ mergingPackage

1 { subsets = "source, owner" }

+ packageMerge

* { subsets = "ownedElement,directedRelationship" }

+ mergedPackage

1 { subsets = "target" }

+ nestedPackage

* { subsets = "packagedElement" }

+ package

0..1 { subsets = "owningPackage" }

17.6.2 2. Profiles

Package

PackageImport
(from 01. Common Structure)

Class
(from 05. Structured Classifiers)

Profile

ProfileApplication

Stereotype

Association
(from 05. Structured Classifiers)

Extension

+ isRequired: Boolean

ExtensionEnd

Property
(from 03. Classification)

ElementImport
(from 01. Common Structure)

Can not redefine,
since multiplicity
is different from
parent type.

DirectedRelationship
(from 01. Common Structure)

Image

+ content: String[0..1]
+ format: String[0..1]

Element
(from 01. Common Structure)

+ appliedProfile

* { subsets = "ownedElement" }

+ profileApplication *

+ appliedProfile 1 { subsets = "importedPackage" }

+ /metaclass

1

+ /extension

*

+ extension 1 { subsets = "owningAssociation" }

+ ownedEnd 1

+ extensionEnd

*

+ type

1 { redefines = "Property.type" }

+ /profile

1

+ stereotype

*

+ metaclassReference
* { subsets = "elementImport" }

+ metamodelReference
* { subsets = "packageImport" }

+ icon { subsets = "ownedMember" }

104 Chapter 17. Unified Modeling Language

Gaphor Documentation

17.7 07. Common Behaviors

17.7.1 1. Behaviors

Classifier
(from 03. Classification)

BehavioredClassifier

Class
(from 05. Structured Classifiers)

Behavior

+ isReentrant: Boolean

BehavioralFeature
(from 03. Classification)

+ behavioredClassifier

0..1 { subsets = "namespace" }

+ ownedBehavior

* { subsets = "ownedMember" }

+ redefinedBehavior

* { subsets = "redefinedElement" }

+ specification

0..1

+ method

*

17.7. 07. Common Behaviors 105

Gaphor Documentation

17.7.2 2. Events

NamedElement
(from 01. Common Structure)

PackageableElement
(from 01. Common Structure)

Trigger Event

ChangeEvent

«simpleAttribute»
ValueSpecification

(from 02. Values)

Port
(from 05. Structured Classifiers) *

+ event

1

+ changeEvent 0..1

+ changeExpression 1

+ trigger

*

+ port

*

106 Chapter 17. Unified Modeling Language

Gaphor Documentation

17.8 08. State Machines

17.8.1 1. Behavior State Machines

Behavior
(from 07. Common Behaviors)

StateMachine

TransitionKind

+ internal
+ local
+ external

PseudostateKind

+ initial
+ deepHistory
+ shallowHistory
+ join
+ fork
+ junction
+ choice
+ entryPoint
+ exitPoint
+ terminate

Region

Namespace
(from 01. Common Structure)

Transition

+ kind: TransitionKind

Vertex

NamedElement
(from 01. Common Structure)

Namespace
(from 01. Common Structure)

Pseudostate

+ kind: PseudostateKind

ConnectionPointReference

State

+ /isComposite: Boolean
+ /isOrthogonal: Boolean
+ /isSimple: Boolean
+ /isSubmachineState: Boolean

FinalState

Behavior
(from 07. Common Behaviors)

Constraint
(from 01. Common Structure)

+ region 1..* { subsets = "ownedMember" }

+ stateMachine 0..1 { subsets = "namespace" }

+ container

1 { subsets = "namespace" }

+ transition { subsets = "ownedMember" }+ subvertex * { subsets = "ownedMember" }

+ container

0..1 { subsets = "namespace" }

+ source

1

+ outgoing

*
+ target

1

+ incoming

*

0..1

+ entry *+ exit * 0..1

+ stateMachine

0..1 { subsets = "namespace" }

+ connectionPoint

* { subsets = "ownedMember" }

+ region * { subsets = "ownedMember" }

+ state 0..1 { subsets = "namespace" }

+ connectionPoint

0..* { subsets = "ownedElement" }

+ state

0..1 { subsets = "owner" }

+ connection

* { subsets = "ownedMember" }

+ state

0..1 { subsets = "namespace" }
0..1

+ entry

0..1 { subsets = "ownedElement" }

0..1

+ exit

0..1 { subsets = "ownedElement" }

0..1

+ doActivity

0..1 { subsets = "ownedElement" }

+ effect 0..1 { subsets = "ownedElement" }

0..1

+ statevariant 0..1 { subsets = "ownedElement" }

+ owningState 0..1

+ guard

0..1 { subsets = "ownedElement" }

+ transition

0..1 { subsets = "owner" }

+ submachine

0..1

+ submachineState

*

17.8. 08. State Machines 107

Gaphor Documentation

17.9 09. Activities

17.9.1 1. Activities

ActivityNode

«simpleAttribute»
ValueSpecification

(from 02. Values)

ActivityEdge

RedefinableElement
(from 03. Classification)

Activity

+ body: String
+ language: String

ObjectFlowControlFlow

Behavior
(from 07. Common Behaviors)

RedefinableElement
(from 03. Classification)

+ guard

1 { subsets = "ownedElement" }

+ target

1

+ incoming

*

+ source

1

+ outgoing

*

+ edge
* { subsets = "ownedElement" }

+ activity
0..1 { subsets = "owner" }

+ redefinedElement

* { redefines = "RedefinableElement.redefinedElement" }

+ activity
0..1 { subsets = "owner" }

+ node
* { subsets = "ownedElement" }

+ redefinedElement

* { redefines = "RedefinableElement.redefinedElement" }

108 Chapter 17. Unified Modeling Language

Gaphor Documentation

17.9.2 2. Control Nodes

ControlNode

InitialNode FinalNode MergeNode

DecisionNode

ActivityFinalNode

Behavior
(from 07. Common Behaviors)

FlowFinalNode

JoinNode

+ isCombineDuplicate: Boolean = true

ForkNode

«simpleAttribute»
ValueSpecification

(from 02. Values)

ActivityNode

*

+ decisionInput 0..1

+ joinSpec 1 { subsets = "ownedElement" }

17.9. 09. Activities 109

Gaphor Documentation

17.9.3 3. Object Nodes

ActivityNode

ObjectNode

+ ordering: ObjectOrderingKind = FIFO
+ isControlType: Boolean = false

TypedElement
(from 01. Common Structure)

ActivityParameterNode

Parameter
(from 03. Classification)

ObjectOrderingKind

+ unordered
+ ordered
+ LIFO
+ FIFO

«simpleAttribute»
ValueSpecification

(from 02. Values)

Behavior
(from 07. Common Behaviors)

+ parameter 1 { subsets = "ownedElement" }

+ owningNode 1 { subsets = "owner" }

0..1

+ upperBound

1 { subsets = "ownedElement" }

*

+ selection

0..1

110 Chapter 17. Unified Modeling Language

Gaphor Documentation

17.9.4 4. Executable Nodes

ExecutableNode

ActivityNode

17.9.5 5. Activity Groups

ActivityGroup
Activity ActivityNode

ActivityEdge

ActivityPartition

+ isDimension: Boolean = false
+ isExternal: Boolean = false

ActivityNode

Element
(from 01. Common Structure)

ActivitiyPartition.subpartition
cannot
be composite, so we can
rearrange
swimlanes

NamedElement
(from 01. Common Structure)

+ /superGroup

0..1 { subsets = "owner" }
+ /subgroup

* { subsets = "ownedElement" }

+ group

* { subsets = "ownedElement" }

+ activity

0..1 { subsets = "owner" }

+ inGroup

*

+ edgeContents

*

+ inGroup

*

+ nodeContents

*

+ inPartition * { subsets = "inGroup" }

+ node

* { subsets = "containedNode" }

+ represents 0..1

* + superPartition * { subsets = "superGroup" }

+ subpartition

* { subsets = "subgroup" }

17.9. 09. Activities 111

Gaphor Documentation

112 Chapter 17. Unified Modeling Language

Gaphor Documentation

17.10 10. Actions

17.10.1 1. Actions

Pin

+ isControl: Boolean = false

OutputPinInputPin

ValuePin

«simpleAttribute»
ValueSpecification

(from 02. Values)

Action

+ effect: String
+ body: String

MultiplicityElement
(from 01. Common Structure)

ObjectNode
(from 09. Activities)

ExecutableNode
(from 09. Activities)

Classifier
(from 03. Classification)

OpaqueAction

+ body: String

Associations
have been
moved from
OpaqueAction
to Action.

+ value_ 1

+ /context_

0..1

+ opaqueAction

0..1 { subsets = "owner" }

+ inputValue * { subsets = "ownedElement" }

+ opaqueAction

0..1 { subsets = "owner" }

+ outputValue * { subsets = "ownedElement" }

17.10. 10. Actions 113

Gaphor Documentation

17.10.2 2. Invocation Actions

Action

InvocationAction

SendSignalAction

InputPin

CallAction

+ isSynchronous: Boolean = true
OutputPin

CallBehaviorAction

Behavior
(from 07. Common

Behaviors)

InputPin

+ target { subsets = "input" }

+ callAction

0..1 { subsets = "action" }

+ result

 { subsets = "output",
ordered = "true" }

+ callBehaviourAction *

+ behavior 1

+ invocationAction

0..1 { subsets = "action" }

+ argument

* { ordered = "true",
subsets = "input" }

114 Chapter 17. Unified Modeling Language

Gaphor Documentation

17.10.3 7. Structural Feature Actions

Action

StructuralFeatureAction

WriteStructuralFeatureAction

AddStructuralFeatureValueAction

+ isReplaceAll: Boolean = false

UML v2.5.1
Fig. 16.36
Partly

17.10. 10. Actions 115

Gaphor Documentation

17.10.4 9. Accept Event Actions

Action

AcceptEventAction

+ isUnmarshall: Boolean = false

ReplyAction UnmarshallAction

AcceptCallAction

OutputPin

Classifier
(from 03. Classification)

InputPin

+ result

*

+ result

*

+ returnInformation 1

+ unmarshallType 1

+ object

1

+ replyValue

0..1

+ returnInformation 1

116 Chapter 17. Unified Modeling Language

Gaphor Documentation

17.11 11. Interactions

17.11.1 1. Interactions

Behavior
(from 07. Common Behaviors)

NamedElement
(from 01. Common Structure)

InteractionFragment

Interaction StateInvariant

Constraint
(from 01. Common Structure)

OccurrenceSpecification

Action
(from 10. Actions)

ExecutionSpecification

+ enclosingInteraction 0..1 { subsets = "namespace" }

+ fragment

* { subsets = "ownedMember" }

+ stateInvariant 0..1 { subsets = "owner" }

+ invariant 1 { subsets = "ownedElement" }

+ interaction 0..1 { subsets = "owner" }

+ action * { subsets = "ownedElement" }

17.11. 11. Interactions 117

Gaphor Documentation

17.11.2 2. Lifelines

Interaction

Lifeline

+ parse(s: String)
+ render(): String

InteractionFragment

NamedElement
(from 01. Common Structure)

OccurrenceSpecification StateInvariant

«simpleAttribute»
ValueSpecification

(from 02. Values)

ConnectableElement
(from 05. Structured Classifiers)

+ coveredBy

* { ordered = "true" }

+ covered

1

+ interaction 1 { subsets = "namespace" }

+ lifeline * { subsets = "ownedMember" }

+ stateInvariant * { subsets = "coveredBy" }

+ covered 1 { redefines = "InteractionFragment.covered" }

+ events * { subsets = "coveredBy" }

+ covered 1 { redefines = "InteractionFragment.covered" }

+ lifeline 0..1

+ selector 0..1

+ lifeline *

+ represents 0..1

17.11.3 3. Messages

NamedElement
(from 01. Common Structure)

Message

+ /messageKind: MessageKind
+ messageSort: MessageSort

«simpleAttribute»
ValueSpecification

(from 02. Values)

MessageKind

+ complete
+ lost
+ found
+ unknown

MessageSort

+ synchCall
+ asynchCall
+ asynchSignal
+ createMessage
+ deleteMessage
+ reply

MessageEnd OccurrenceSpecification

Interaction

MessageOccurrenceSpecification

Multiplicity was '*'.
Changed
to accommodate
simpleAttribute

+ argument 0..1 { subsets = "ownedElement" }

+ interaction 1 { subsets = "namespace" }

+ message * { subsets = "ownedMember" }

+ sendMessage

0..1 { subsets = "message" }

+ sendEvent

0..1 { subsets = "messageEnd" }

+ receiveMessage

0..1 { subsets = "message" }

+ receiveEvent

0..1 { subsets = "messageEnd" }

+ signature

0..1

+ /message

0..1

+ /messageEnd

0..2

118 Chapter 17. Unified Modeling Language

Gaphor Documentation

17.11.4 4. Occurrences

OccurrenceSpecification

GeneralOrdering

NamedElement
(from 01. Common Structure)

InteractionFragment

ExecutionSpecification

ExecutionOccurrenceSpecification

ActionExecutionSpecification BehaviorExecutionSpecification

Behavior
(from 07. Common Behaviors)

Action
(from 10. Actions)

Some changes have been
made to the original
model,
to make it fit more to what
we need in Gaphor.

+ before

1

+ toAfter

*

+ after

1

+ toBefore

*

+ generalOrdering

* { subsets = "ownedElement" }

+ interactionFragment 0..1 { subsets = "owner" }

+ /start

1

+ /finish

1

+ executionOccurrenceSpecification

0..2

+ execution

1

+ actionExecutionSpecification *

+ action 1

+ actionExecutionSpecification *

+ behavior 0..1

17.11. 11. Interactions 119

Gaphor Documentation

17.12 12. Use Cases

17.12.1 UseCases

BehavioredClassifier
(from 07. Common Behaviors)

Classifier
(from 03. Classification)

RedefinableElement
(from 03. Classification)

DirectedRelationship
(from 01. Common Structure)

Constraint
(from 01. Common Structure)

Actor

ExtensionPoint
UseCase

Extend Include

NamedElement
(from 01. Common Structure)

+ constraint

0..1 { subsets = "ownedMember" }

+ extension

*

+ extensionLocation 1..* { ordered = "true" }

+ extensionPoint

* { subsets = "ownedMember" }

+ useCase

1 { subsets = "namespace" }

+ extension

1 { subsets = "namespace, source" }

+ extend

* { subsets = "directedRelationship, ownedMember" }

+ extendedCase 1 { subsets = "target" } + addition 1 { subsets = "target" }

+ include

* { subsets = "directedRelationship, ownedMember" }

+ includingCase

1 { subsets = "namespace, source" }

+ ownedUseCase * { subsets = "ownedMember" }

+ useCase

*

+ subject *

120 Chapter 17. Unified Modeling Language

Gaphor Documentation

17.13 13. Deployments

17.13.1 1. Deployments

ArtifactDeployedArtifact

NamedElement
(from 01. Common Structure)

Deployment

Dependency
(from 01. Common Structure)

DeploymentTarget

Node

NamedElement
(from 01. Common Structure)

+ location

1 { subsets = "client, owner" }
+ deployment

* { subsets = "ownedElement, clientDependency" }

+ deployment * { subsets = "client" }

+ deployedArtifact * { subsets = "supplier" }

17.13.2 2. Artifacts

Artifact

+ /fileName: String

Classifier
(from 03. Classification)

Manifestation

Abstraction
(from 01. Common Structure)

DeployedArtifact

Operation
(from 03. Classification)

Property
(from 03. Classification)

+ artifact

1 { subsets = "client, owner" }

+ manifestation

* { subsets = "ownedElement, clientDependency" }

+ nestedArtifact * { subsets = "ownedMember" }

+ artifact

0..1 { subsets = "namespace" }

+ artifact
0..1 { subsets = "classifier, namespace" }

+ ownedAttribute
* { subsets = "attribute, ownedMember" }

+ artifact
0..1 { subsets = "featuringClassifier, namespace, redefinitionContext" }

+ ownedOperation
* { subsets = "feature, ownedMember, redefinableElement" }

17.13. 13. Deployments 121

Gaphor Documentation

17.13.3 3. Nodes

Class
(from 05. Structured Classifiers)

Node

Device ExecutionEnvironment

Association
(from 05. Structured Classifiers)

CommunicationPath

{All ends of CommunicationPath are typed
by Nodes}

DeploymentTarget

+ nestedNode * { subsets = "ownedMember" }

+ node

0..1 { subsets = "namespace" }

17.14 14. Information Flows

Classifier
(from 03. Classification)

InformationItem

InformationFlow

PackageableElement
(from 01. Common Structure)

DirectedRelationship
(from 01. Common Structure)

Relationship
(from 01. Common Structure)

NamedElement
(from 01. Common Structure)

ActivityEdge
(from 09. Activities)

Connector
(from 05. Structured Classifiers)

Message
(from 11. Interactions)

+ represented *

+ representation *

+ conveyed

1..*

+ conveyingFlow *

+ realization *

+ abstraction *

+ informationFlow *

+ realizingMessage *

+ informationFlow *

+ realizingActivityEdge *

+ informationFlow * { subsets = "ownedElement" }

+ realizingConnector 0..1 { subsets = "owner" }

+ informationFlow

* { subsets = "directedRelationship" }

+ informationTarget

1 { subsets = "target" }

+ informationFlow

* { subsets = "directedRelationship" }

+ informationSource

1 { subsets = "source" }

122 Chapter 17. Unified Modeling Language

Gaphor Documentation

17.15 A. Gaphor Specific Constructs

17.15.1 1. Stereotype Applications

Stereotypes are normally
defined at the model's
meta-level. In Gaphor you
can define a stereotype
directly in a model.

Element
(from 01. Common Structure)

InstanceSpecification
(from 03. Classification)

+ appliedStereotype + extended

17.16 B. Gaphor Profile

In order to provide extra information to the diagram elements (mainly association ends), the Gaphor model has been
extended with stereotypes.

«metaclass»
Class

«stereotype»
SimpleAttribute

«stereotype»
Tagged

+ subsets: str
+ ordered: bool
+ redefines: str
+ union: bool

«metaclass»
Property

17.15. A. Gaphor Specific Constructs 123

Gaphor Documentation

124 Chapter 17. Unified Modeling Language

CHAPTER

EIGHTEEN

SYSTEMS MODELING LANGUAGE

Gaphor implements part of the SysML 1.6 specification.

Activities Allocations Blocks

ConstraintBlocks Libraries ModelElements

PortsAndFlows Requirements

125

https://www.omg.org/spec/SysML

Gaphor Documentation

18.1 Activities

«metaclass»
Parameter

(from UML)

«metaclass»
ActivityEdge

(from UML)

«metaclass»
ParameterSet

(from UML)

«stereotype»
Optional

«stereotype»
Rate

+ rate: InstanceSpecification

«stereotype»
Probability

+ probability: str

«stereotype»
Continuous

«stereotype»
Discrete

«metaclass»
Behavior
(from UML)

Operation
(from UML)

«metaclass»
ObjectNode

(from UML)

«stereotype»
ControlOperator

«stereotype»
NoBuffer

«stereotype»
Overwrite

SysML 1.6
Figure 11-8

Inherit only
from
behaviour,
otherwise
MRO can not
be resolved.

126 Chapter 18. Systems Modeling Language

Gaphor Documentation

18.2 Allocations

18.2.1 AllocatedActivityPartition

«metaclass»
ActivityPartition

(from UML)

«stereotype»
AllocateActivityPartition

SysML 1.6
Figure 15-2

18.2.2 Allocation

«stereotype»
DirectedRelationshipPropertyPath

(from Blocks)

«metaclass»
Abstraction

(from UML)

«stereotype»
Allocate

SysML 1.6
Figure 15-1

18.2. Allocations 127

Gaphor Documentation

18.3 Blocks

«stereotype»
Block

+ isEncapsulated: Boolean = false

«metaclass»
Class

(from UML)

SysML 1.6
Figure 8-2

128 Chapter 18. Systems Modeling Language

Gaphor Documentation

18.3.1 Adjunt and Classifier Behavior Properties

«metaclass»
Property
(from UML)

«stereotype»
AdjuntProperty

«metaclass»
Element
(from UML)

SysML 1.6
Figure 8-9

«stereotype»
ClassifierBehaviorProperty

+ principal

1

0..*

18.3. Blocks 129

Gaphor Documentation

18.3.2 Bound References

«stereotype»
EndPathMultiplicity

«stereotype»
BoundReference

+ boundend: ConnectorEnd
+ /bindingPath: Property[1..*]

Add
property
strings

SysML 1.6
Figure 8-8

«metaclass»
Property
(from UML)

18.3.3 Connector Ends

«metaclass»
Connector

(from UML)

«stereotype»
BindingConnector

«metaclass»
ConnectorEnd

(from UML)

«stereotype»
NestedConnectorEnd

SysML 1.6
Figure 8-6«stereotype»

ElementPropertyPath

130 Chapter 18. Systems Modeling Language

Gaphor Documentation

18.3.4 Properties

«stereotype»
ConnectorProperty

+ connector: Connector[1]

«metaclass»
Property
(from UML)

«stereotype»
DistributedProperty

«stereotype»
ParticipantProperty

+ end_: Property[1]

SysML 1.6
Figure 8-3

Property
"end" is
defined in
base class
already.

18.3. Blocks 131

Gaphor Documentation

18.3.5 Property Paths

«metaclass»
Element
(from UML)

«stereotype»
ElementPropertyPath

SysML 1.6
Figure 8-5

«metaclass»
DirectedRelationship

(from UML)

«stereotype»
DirectedRelationshipPropertyPath

«metaclass»
Property
(from UML)

«metaclass»
Classifier
(from UML)

+ propertyPath

1..*

+ targetPropertyPath 0..*

0..*
+ sourceContext

0..1
+ targetContext

0..1 { subsets = "owner" }

+ targetDirectedRelationshipPropertyPath_

 { subsets = "ownedElement" }

+ sourcePropertyPath 0..*

0..*

18.3.6 Property-Specific Types

«metaclass»
Classifier
(from UML)

«stereotype»
PropertySpecificType

SysML
Figure 8-7

132 Chapter 18. Systems Modeling Language

Gaphor Documentation

18.3.7 Property Strings

«metaclass»
Property
(from UML)

«stereotype»
Tagged

+ subsets: str
+ ordered: bool
+ nonunique: bool

18.3. Blocks 133

Gaphor Documentation

18.3.8 Value Types

«stereotype»
ValueType InstanceSpecification

(from UML)

«metaclass»
DataType

(from UML)

SysML 1.6
Figure 8-4

+ quantityKind 0..1

+ valueType

0..*

+ unit 0..1

+ valueType 0..*

18.4 ConstraintBlocks

«stereotype»
Block

(from Blocks)

«stereotype»
ConstraintBlock

SysML 1.6
Figure 10-1

134 Chapter 18. Systems Modeling Language

Gaphor Documentation

18.5 Libraries

PrimitiveValueTypes ControlValues UnitAndQuantityKind

18.6 ModelElements

«metaclass»
Generalization

(from UML)

«stereotype»
Conform

«stereotype»
View

+ /stakeholder: Stakeholder[0..*]
+ /viewpoint: Viewpoint[1]

«stereotype»
Viewpoint

+ /concern: String[0..*]
+ concernList: Comment[0..*]
+ language: String[0..*]
+ /method: Behavior[0..*]
+ presentation: String[0..*]
+ purpose: String[1]
+ stakeholder: Stakeholder[0..*]

«stereotype»
Stakeholder

+ /concern: String[0..*]
+ concernList: Comment[0..*]

«stereotype»
Expose

«stereotype»
Rationale

«stereotype»
Problem

«stereotype»
ElementGroup

+ /criterion: String[1]
+ /member: Element[0..*]
+ name: String[1]
+ orderedMember: Element[0..*]
+ /size: Integer[1]

«metaclass»
Comment

(from UML)

«metaclass»
Dependency

(from UML)

Need
associations
strings
added

SysML 1.6
Figure 7-1

«metaclass»
Class

(from UML)

«metaclass»
Class

(from UML)

«metaclass»
Classifier
(from UML)

18.5. Libraries 135

Gaphor Documentation

18.7 PortsAndFlows

18.7.1 Actions on Nested Ports

«metaclass»
InvocationAction

(from UML)

«metaclass»
Trigger
(from UML)

«metaclass»
Port

(from UML)

«metaclass»
AddStructuralFeatureValueAction

(from UML)

«stereotype»
InvocationOnNestedPortAction

«stereotype»
TriggerOnNestedPort

«stereotype»
AddFlowPropertyValueOnNestedPortAction

SysML 1.6
Figure 9-2

«stereotype»
ElementPropertyPath

(from Blocks)

+ onNestedPort 1..*

0..*

+ onNestedPort 1..*

0..*

136 Chapter 18. Systems Modeling Language

Gaphor Documentation

18.7.2 Port Stereotypes

«metaclass»
Port

(from UML)

«stereotype»
ProxyPort

«stereotype»
FullPort

«stereotype»
FlowProperty

+ direction: FlowDirectionKind[1] = inout

«stereotype»
Block

(from Blocks)

«stereotype»
InterfaceBlock

«stereotype»
~InterfaceBlock

+ original: InterfaceBlock[1]

SysML 1.6
Figure 9-1

«metaclass»
Property
(from UML)

FlowDirectionKind

+ in
+ inout
+ out

18.7.3 Property Value Change Events

«metaclass»
ChangeEvent

(from UML)

«stereotype»
ChangeSructuralFeatureEvent

StructuralFeature
(from UML)

«metaclass»
AcceptEventAction

(from UML)

«stereotype»
AcceptChangeStructuralFeatureEventAction

SysML 1.6
Figure 9-3

+ structuralFeature

1

18.7. PortsAndFlows 137

Gaphor Documentation

18.7.4 Provided and Required Features

«metaclass»
Feature
(from UML)

«stereotype»
DirectedFeature

+ featureDirection: FeatureDirectionKind[1]

SysML 1.6
Figure 9-4

FeatureDirectionKind

+ provided
+ providedRequired
+ required

138 Chapter 18. Systems Modeling Language

Gaphor Documentation

18.7.5 Item Flow

«metaclass»
InformationFlow

(from UML)

«stereotype»
ItemFlow

«metaclass»
Property
(from UML)

+ itemFlow 0..1 { subsets = "owner" }

+ itemProperty 0..1 { subsets = "ownedElement" }

18.7. PortsAndFlows 139

Gaphor Documentation

18.8 Requirements

«stereotype»
Requirement

«stereotype»
AbstractRequirement

+ /derived: AbstractRequirement[0..*]
+ /derivedFrom: AbstractRequirement[0..*]
+ externalId: String[1]
+ /master: AbstractRequirement[0..*]
+ /refinedBy: NamedElement[0..*]
+ /satisfiedBy: NamedElement[0..*]
+ text: String[1]
+ /tracedTo: NamedElement[0..*]
+ /verifiedBy: NamedElement[0..*]

«stereotype»
Trace

«stereotype»
Copy

«stereotype»
Verify

«stereotype»
DeriveReqt

«stereotype»
Satisfy

«stereotype»
TestCase

«stereotype»
DirectedRelationshipPropertyPath

(from Blocks)

Formally,
this is the
Trace
element
from the
Standard
profile.

«metaclass»
NamedElement

(from UML)

«stereotype»
DirectedRelationshipPropertyPath

(from Blocks)

«stereotype»
Refine

SysML 1.6
Figure 16-1

Operation
(from UML)

«metaclass»
Behavior
(from UML)

«metaclass»
Class

(from UML)

Inherit only
from
Behavior,
or MRO
can not be
resolved.

«metaclass»
Dependency

(from UML)

«metaclass»
Dependency

(from UML)

140 Chapter 18. Systems Modeling Language

CHAPTER

NINETEEN

RISK ANALYSIS AND ASSESSMENT MODELING LANGUAGE

Gaphor implements parts of the RAAML 1.0 specification.

Core

General

Methods

141

https://www.omg.org/spec/RAAML

Gaphor Documentation

19.1 Core

19.1.1 Core Library/Any Situation

«situation»
AnySituation

RAAML 1.0
Figure 9.2

«stereotype»
Situation

(from Core Profile)

This shouldn't
have to be
generalized from
Situation,
because it
already has a
situation
stereotype

+ to

0..*

Causality
+ from_

0..*

19.1.2 Core Profile/Controlling Measure

«stereotype»
ControllingMeasure

- affects: Property[0..*]

«metaclass»
Dependency

«stereotype»
DirectedRelationshipPropertyPath

RAAML 1.0
Figure 9.6

142 Chapter 19. Risk Analysis and Assessment Modeling Language

Gaphor Documentation

19.1.3 Core Profile/Relevant To

«stereotype»
RelevantTo

«metaclass»
Dependency

«stereotype»
DirectedRelationshipPropertyPath

RAAML 1.0
Figure 9.5

19.1. Core 143

Gaphor Documentation

19.1.4 Core Profile/Situation

«stereotype»
Situation

«metaclass»
Class

«stereotype»
Block

RAAML 1.0
Figure 9.4

144 Chapter 19. Risk Analysis and Assessment Modeling Language

Gaphor Documentation

19.1.5 Core Profile/Violates

«stereotype»
Violates

«metaclass»
Dependency

RAAML 1.0
Figure 9.7

Core
Library

Core
Profile

19.1. Core 145

Gaphor Documentation

19.2 General

19.2.1 Basic Event

EventDef

RAAML 1.0
Figure 9.46

BasicEventDef

19.2.2 General Concepts Library/Abstract Cause

AbstractCause

AbstractEvent

RAAML 1.0
Figure 9.10

146 Chapter 19. Risk Analysis and Assessment Modeling Language

Gaphor Documentation

19.2.3 General Concepts Library/Abstract Effect

«situation»
DysfunctionalEvent

AbstractEffect

RAAML 1.0
Figure 9.15

19.2. General 147

Gaphor Documentation

19.2.4 General Concepts Library/Abstract Event

AbstractEvent

Need to
add values

RAAML 1.0
Figure 9.9

«situation»
AnySituation
(from Core Library)

148 Chapter 19. Risk Analysis and Assessment Modeling Language

Gaphor Documentation

19.2.5 General Concepts Library/Abstract Failure Mode

«situation»
DysfunctionalEvent

AbstractFailureMode

RAAML 1.0
Figure 9.13

19.2. General 149

Gaphor Documentation

19.2.6 General Concepts Library/Abstract Risk

Scenario

AbstractEventAbstractEffect HarmPotential

AbstractRisk

RAAML 1.0
Figure 9.23

+ harm 0..* + trigger 0..* + harmPotential 0..*

150 Chapter 19. Risk Analysis and Assessment Modeling Language

Gaphor Documentation

19.2.7 General Concepts Library/Activation

AbstractEvent

«situation»
DysfunctionalEvent

RAAML 1.0
Figure 9.17

AbstractCause

«situation»
AnySituation
(from Core Library)

+ to

0..*

Causality
+ from_ 0..*

+ error 0..*

Activation

+ fault 0..*

19.2. General 151

Gaphor Documentation

19.2.8 General Concepts Library/Cause

AbstractCause

RAAML 1.0
Figure 9.10

Cause

152 Chapter 19. Risk Analysis and Assessment Modeling Language

Gaphor Documentation

19.2.9 General Concepts Library/Dysfunctional Event

AbstractEvent

«situation»
DysfunctionalEvent

RAAML 1.0
Figure 9.12

19.2.10 General Concepts Library/Effect

AbstractEffect

Effect

RAAML 1.0
Figure 9.16

19.2. General 153

Gaphor Documentation

19.2.11 General Concepts Library/Error Propagation

RAAML 1.0
Figure 9.18

«situation»
DysfunctionalEvent

+ toError 0..*

ErrorPropagation

+ fromError

0..*

19.2.12 General Concepts Library/Error Realization

«situation»
DysfunctionalEvent

RAAML 1.0
Figure 9.19

+ error 0..*

ErrorRealization

+ failure

0..*

154 Chapter 19. Risk Analysis and Assessment Modeling Language

Gaphor Documentation

19.2.13 General Concepts Library/Harm Potential

RAAML 1.0
Figure 9.20

HarmPotential

«situation»
AnySituation
(from Core Library)

19.2.14 General Concepts Library/Hazard

HarmPotential

Hazard

RAAML 1.0
Figure 9.21

19.2. General 155

Gaphor Documentation

19.2.15 General Concepts Library/Scenario

Scenario

RAAML 1.0
Figure 9.22

«situation»
AnySituation
(from Core Library)

+ scenarioStep 0..*

156 Chapter 19. Risk Analysis and Assessment Modeling Language

Gaphor Documentation

19.2.16 General Concepts Library/Undesired State

«situation»
DysfunctionalEvent

«situation»
UndesiredState

RAAML 1.0
Figure 9.24

19.2. General 157

Gaphor Documentation

19.2.17 General Concepts Profile/Detection

«metaclass»
Dependency

«stereotype»
Detection

RAAML 1.0
Figure 9.28

«stereotype»
ControllingMeasure

(from Core Profile)

- affects: Property[0..*]

19.2.18 General Concepts Profile/Failure State

«metaclass»
State

«stereotype»
FailureState

RAAML 1.0
Figure 9.32

158 Chapter 19. Risk Analysis and Assessment Modeling Language

Gaphor Documentation

19.2.19 General Concepts Profile/Mitigation

«metaclass»
Dependency

«stereotype»
Mitigation

RAAML 1.0
Figure 9.30

«stereotype»
ControllingMeasure

(from Core Profile)

- affects: Property[0..*]

19.2.20 General Concepts Profile/Prevention

«metaclass»
Dependency

«stereotype»
Prevention

RAAML 1.0
Figure 9.29

«stereotype»
ControllingMeasure

(from Core Profile)

- affects: Property[0..*]

19.2. General 159

Gaphor Documentation

19.2.21 General Concepts Profile/Recommendation

«metaclass»
Dependency

«stereotype»
Recommendation

RAAML 1.0
Figure 9.31«stereotype»

ControllingMeasure
(from Core Profile)

- affects: Property[0..*]

160 Chapter 19. Risk Analysis and Assessment Modeling Language

Gaphor Documentation

19.2.22 General Concepts Profile/Undeveloped

«stereotype»
Undeveloped

RAAML 1.0
Section 9.2 (No
Diagram)

«metaclass»
Class

(from Core
Profile)

General Concepts Library General Concepts Profile

19.2. General 161

Gaphor Documentation

19.3 Methods

19.3.1 FTA/FTA Library/Events/Basic Event

EventDef

RAAML 1.0
Figure 9.46

BasicEventDef

19.3.2 FTA/FTA Library/Events/Conditional Event

«stereotype»
ConditionalEvent

«metaclass»
Class

(from Core Profile)

RAAML 1.0
Figure 9.67

162 Chapter 19. Risk Analysis and Assessment Modeling Language

Gaphor Documentation

19.3.3 FTA/FTA Library/Events/Dormant Event

«metaclass»
Class

(from Core Profile)

«stereotype»
DormantEvent

RAAML 1.0
Figure 9.65

19.3.4 FTA/FTA Library/Events/Events

EventDef

BasicEventDef TopEventDef

IntermediateEventDef

ConditionalEventDef UndevelopedEventDef

DormantEventDef

ZeroEventDef

HouseEventDef

RAAML 1.0
Figure 10.7

19.3. Methods 163

Gaphor Documentation

19.3.5 FTA/FTA Library/Events/Event

FTAElement
(from FTA Library)

EventDef

RAAML 1.0
Figure 9.45

GateDef
(from Gates)

+ targetEvent

1 output

+ TargetGate

+ sourceEvent

0..* input

+ sourceGate

19.3.6 FTA/FTA Library/Events/House Event

«metaclass»
Class

(from Core Profile)

«stereotype»
HouseEvent

RAAML 1.0
Figure 9.69

164 Chapter 19. Risk Analysis and Assessment Modeling Language

Gaphor Documentation

19.3.7 FTA/FTA Library/Events/Intermediate Event

«stereotype»
IntermediateEvent

«metaclass»
Class

(from Core Profile)

RAAML 1.0
Figure 9.77

19.3.8 FTA/FTA Library/Events/Top Event

«metaclass»
Class

(from Core Profile)

«stereotype»
TopEvent

RAAML 1.0
Figure 9.79

19.3. Methods 165

Gaphor Documentation

19.3.9 FTA/FTA Library/Events/Undeveloped Event

EventDef

UndevelopedEventDef

RAAML 1.0
Figure 9.51

19.3.10 FTA/FTA Library/Events/Zero Event

«stereotype»
ZeroEvent

«metaclass»
Class

(from Core Profile)

RAAML 1.0
Figure 9.68

166 Chapter 19. Risk Analysis and Assessment Modeling Language

Gaphor Documentation

19.3.11 FTA/FTA Library/FTA Element

«situation»
DysfunctionalEvent

(from General Concepts Library)

FTAElement

RAAML 1.0
Figure 9.43

19.3.12 FTA/FTA Library/FTA Library

Events «situation»
AnySituation
(from Core Library)

Scenario
(from General Concepts Library)

AbstractEvent
(from General Concepts Library)

«situation»
DysfunctionalEvent

(from General Concepts Library)

FTAElement

FTATree

EventDef
(from Events)

RAAML 1.0
Figure 10.8

GateDef
(from Gates)

«OR»
OR_Def

(from Gates)

«XOR»
XOR_Def
(from Gates)

«SEQ»
SEQ_Def
(from Gates)

INHIBIT_Def
(from Gates)

«MAJORITY_VOTE»
MAJORITY_VOTE_Def

(from Gates)

«NOT»
NOT_Def
(from Gates)

+ topEvent

1

+ target Event

1 output

+ target Gate

+ source Event

0..* input

+ source Gate

+ from_

0..* Causality+ to

0..*

19.3. Methods 167

Gaphor Documentation

19.3.13 FTA/FTA Library/FTA Tree

FTAElement Scenario
(from General Concepts Library)

FTATree

RAAML 1.0
Figure 9.44

EventDef
(from Events)

+ topEvent

1

19.3.14 FTA/FTA Library/Gates/AND

«stereotype»
AND

«metaclass»
Class

(from Core Profile)

RAAML 1.0
Figure 9.70

168 Chapter 19. Risk Analysis and Assessment Modeling Language

Gaphor Documentation

19.3.15 FTA/FTA Library/Gates/Gate

«stereotype»
Gate

«metaclass»
Class

(from Core Profile)

RAAML 1.0
Figure 9.63

19.3.16 FTA/FTA Library/Gates/INHIBIT

«metaclass»
Class

(from Core Profile)

«stereotype»
INHIBIT

RAAML 1.0
Figure 9.74

19.3. Methods 169

Gaphor Documentation

19.3.17 FTA/FTA Library/Gates/MAJORITY_VOTE

«metaclass»
Class

(from Core Profile)

«stereotype»
MAJORITY_VOTE

RAAML 1.0
Figure 9.75

19.3.18 FTA/FTA Library/Gates/NOT

«stereotype»
NOT

«metaclass»
Class

(from Core Profile)

RAAML 1.0
Figure 9.76

170 Chapter 19. Risk Analysis and Assessment Modeling Language

Gaphor Documentation

19.3.19 FTA/FTA Library/Gates/OR

«metaclass»
Class

(from Core Profile)

«stereotype»
OR

RAAML 1.0
Figure 9.71

19.3.20 FTA/FTA Library/Gates/SEQ

«metaclass»
Class

(from Core Profile)

«stereotype»
SEQ

RAAML 1.0
Figure 9.72

19.3. Methods 171

Gaphor Documentation

19.3.21 FTA/FTA Library/Gates/XOR

«metaclass»
Class

(from Core Profile)

«stereotype»
XOR

RAAML 1.0
Figure 9.73

19.3.22 FTA/FTA Profile/AND

«stereotype»
AND

«metaclass»
Class

(from Core Profile)

RAAML 1.0
Figure 9.70

172 Chapter 19. Risk Analysis and Assessment Modeling Language

Gaphor Documentation

19.3.23 FTA/FTA Profile/Conditional Event

«stereotype»
ConditionalEvent

«metaclass»
Class

(from Core Profile)

RAAML 1.0
Figure 9.67

19.3.24 FTA/FTA Profile/Dormant Event

«metaclass»
Class

(from Core Profile)

«stereotype»
DormantEvent

RAAML 1.0
Figure 9.65

19.3. Methods 173

Gaphor Documentation

19.3.25 FTA/FTA Profile/Event

FTAElement
(from FTA Library)

EventDef

RAAML 1.0
Figure 9.45

GateDef
(from Gates)

+ targetEvent

1 output

+ TargetGate

+ sourceEvent

0..* input

+ sourceGate

19.3.26 FTA/FTA Profile/Gate

«stereotype»
Gate

«metaclass»
Class

(from Core Profile)

RAAML 1.0
Figure 9.63

174 Chapter 19. Risk Analysis and Assessment Modeling Language

Gaphor Documentation

19.3.27 FTA/FTA Profile/House Event

«metaclass»
Class

(from Core Profile)

«stereotype»
HouseEvent

RAAML 1.0
Figure 9.69

19.3. Methods 175

Gaphor Documentation

19.3.28 FTA/FTA Profile/INHIBIT

«metaclass»
Class

(from Core Profile)

«stereotype»
INHIBIT

RAAML 1.0
Figure 9.74

19.3.29 FTA/FTA Profile/Intermediate Event

«stereotype»
IntermediateEvent

«metaclass»
Class

(from Core Profile)

RAAML 1.0
Figure 9.77

176 Chapter 19. Risk Analysis and Assessment Modeling Language

Gaphor Documentation

19.3.30 FTA/FTA Profile/MAJORITY_VOTE

«metaclass»
Class

(from Core Profile)

«stereotype»
MAJORITY_VOTE

RAAML 1.0
Figure 9.75

19.3.31 FTA/FTA Profile/NOT

«stereotype»
NOT

«metaclass»
Class

(from Core Profile)

RAAML 1.0
Figure 9.76

19.3. Methods 177

Gaphor Documentation

19.3.32 FTA/FTA Profile/OR

«metaclass»
Class

(from Core Profile)

«stereotype»
OR

RAAML 1.0
Figure 9.71

19.3.33 FTA/FTA Profile/SEQ

«metaclass»
Class

(from Core Profile)

«stereotype»
SEQ

RAAML 1.0
Figure 9.72

178 Chapter 19. Risk Analysis and Assessment Modeling Language

Gaphor Documentation

19.3.34 FTA/FTA Profile/Top Event

«metaclass»
Class

(from Core Profile)

«stereotype»
TopEvent

RAAML 1.0
Figure 9.79

19.3.35 FTA/FTA Profile/Transfer In

«metaclass»
Property

(from Core Profile)

«stereotype»
TransferIn

RAAML 1.0
Figure 9.79

19.3. Methods 179

Gaphor Documentation

19.3.36 FTA/FTA Profile/Transfer Out

«metaclass»
Class

(from Core Profile)

«stereotype»
TransferOut

RAAML 1.0
Figure 9.80

19.3.37 FTA/FTA Profile/Tree

«stereotype»
Tree

«metaclass»
Class

(from Core Profile)

RAAML 1.0
Figure 9.62

180 Chapter 19. Risk Analysis and Assessment Modeling Language

Gaphor Documentation

19.3.38 FTA/FTA Profile/XOR

«metaclass»
Class

(from Core Profile)

«stereotype»
XOR

RAAML 1.0
Figure 9.73

19.3.39 FTA/FTA Profile/Zero Event

«stereotype»
ZeroEvent

«metaclass»
Class

(from Core Profile)

RAAML 1.0
Figure 9.68

19.3. Methods 181

Gaphor Documentation

19.3.40 FTA/FTA

FTA
Library

FTA
Profile

FTA

STPA

ISO
26262

182 Chapter 19. Risk Analysis and Assessment Modeling Language

CHAPTER

TWENTY

THE C4 MODEL

The C4 model is a simple visual language to describe the static structure of a software system.

It’s based on the UML language.

«stereotype»
C4Person

+ description: str
+ location: str

«metaclass»
Actor

(from UML)

«metaclass»
Package
(from UML)

«stereotype»
C4Container

+ description: str
+ location: str
+ technology: str
+ type: str

C4Database

+ ownerContainer

0..1 { subsets = "namespace" }

+ owningContainer

* { subsets = "ownedMember" }

183

https://c4model.com/

Gaphor Documentation

184 Chapter 20. The C4 Model

CHAPTER

TWENTYONE

DESIGN PRINCIPLES

Gaphor has been around for quite a few years. In those years we (the Gaphor developers) learned a few things on how
to build it. Gaphor tries to be easily accessible for novice users as well as a useful tool for more experienced users.

Gaphor is not your average editor. It’s a modeling environment. This implies there is a language underpinning the
models. Languages adhere to rules and Gaphor tries to follow those rules.

Usability is very important. When you’re new to Gaphor, it should be easy to find your way around. Minimal knowledge
of UML should at least allow you to create a class diagram.

«requirement»
Design

Principles

«requirement»
Guidence

«requirement»
Out of your way
(from Design Principles)

«requirement»
Continuity

(from Design Principles)

«requirement»
User interaction
(from Design Principles)

«requirement»
Help with relashionships

(from Guidence)

Text: The diagram has a
feature that it grays out all
elements a relationship can
not connect to.

«requirement»
Keep model in sync

(from Guidence)

Text: Diagrams reflect the
actual state of the model.

«requirement»
Avoid dialogs

(from Out of your way)

Text: Allow you to do the
sensible thing and avoid
the use of dialogs as much
as possible.

«requirement»
Notify on changes

(from Out of your way)

Text: Show the user a
discrete notification when
Gaphor is doing something
that is not directly visible.

«requirement»
Balanced

(from Out of your way)

Text: Find a balance
between advanced, but
complicated, aspects of
the language and it being
simple enough for novice
users.

«requirement»
Backwards

compatibility
(from Continuity)

Text: capable of loading
models going back to
Gaphor 1.0

«requirement»
Multi-platform

(from Continuity)

Text: Run on all major
platforms: Windows,
macOS, and Linux.

«requirement»
Adhere to HIG
(from User interaction)

Text: follows the GNOME
Human Interface
Guidelines (HIG)

«requirement»
Handmade components

(from User interaction)

Text: User interface
components are to be
handmade to offer the
best user experience
possible. No generated
components.

req [package] Requirements [Design Principles]

185

Gaphor Documentation

21.1 Guidance

To help users, Gaphor should provide guidance where it can.

21.1.1 Help with relationships

The diagram has a feature that it grays out all elements a relationship can not connect to. This helps you to decide
where a relation can connect to. You can still mix different elements, but we try to make it as simple as possible to
make consistent models.

21.1.2 Keep the model in sync

An important part of modeling is to design a system in abstractions and be able to explain those to others. As systems
become more complicated, it’s important to have the design (model) layed out in diagrams.

Gaphor goes through great lengths to keep the model in sync with the diagrams. In doing so, unused elements can be
automatically removed from the model if they’re no longer shown in any diagram.

21.2 Out of your way

When modeling, you should be busy with your problem or solution domain, not with the tool. Gaphor tries to stay out
of your way as much as possible. It does not try to nag you with error messages, because the model is not “correct”.

21.2.1 Avoid dialogs

In doing the right thing, and staying out of the way of users, Gaphor avoids the use of dialogs as much as possible.

Gaphor should allow you to do the sensible thing (see above) and not get you out of your flow with all sorts of questions.

21.2.2 Notify on changes

When Gaphor is doing something that is not directly visible, you’ll see a notification, for example, an element that’s
indirectly removed from the model. It will not interrupt you with dialogs, but only provide a small in-app notification.
If the change is undesired, hit undo.

21.2.3 Balanced

Although Gaphor implements quite a bit of the UML 2 model, it’s not complete. We try to find the right balance in
features to suite both expert and novice modellers.

186 Chapter 21. Design Principles

Gaphor Documentation

21.3 Continuity

A model that is created should be usable in the future. Gaphor does acknowledge that. We care about compatibility.

21.3.1 Backwards compatibility

Gaphor is capable of loading models going back to Gaphor 1.0. It’s important for a tool to always allow older models
to be loaded.

21.3.2 Multi-platform

We put a lot of effort in making Gaphor run on all major platforms: Windows, macOS, and Linux. Having Gaphor
available on all platforms is essential if the model needs to be shared. It would be awful if you need to run one specific
operating system in order to open a model.

So far, we do not support the fourth major platform (web). Native applications provide a better user experience (once
installed). But this may change.

21.4 User interaction

Gaphor is originally written on Linux. It uses GTK as it’s user interface toolkit. This sort of implies that Gaphor
follows the GNOME Human Interface Guidelines (HIG). Gaphor is also a multi-platform application. We try to stay
close to the GNOME HIG, but try not to introduce concepts that are not available on Windows and macOS.

User interface components are not generated. We found that UI generation (like many enterprise modeling tools do)
provides an awful user experience. We want users to use Gaphor on a regular basis, so we aim for it to be a tool that’s
pleasant to look at and easy to work with.

21.5 What else?

• Idempotency Allow the same operation to be applied multiple times. This should not affect the result.

• Event Driven Gaphor is a user application. It acts to user events. The application uses an internal event dis-
patches (event bus) to distribute events to interested parties. Everyone should be able to listen to events.

21.3. Continuity 187

https://gtk.org
https://developer.gnome.org/hig/

Gaphor Documentation

188 Chapter 21. Design Principles

CHAPTER

TWENTYTWO

FRAMEWORK

22.1 Overview

Gaphor is built in a light, service oriented fashion. The application is split in a series of services, such as a file, event,
and undo managers. Those services are loaded based on entry points defined in the pyproject.toml file. To learn
more about the architecture, please see the description about the Service Oriented Architecture.

22.2 Event driven

Parts of Gaphor communicate with each other through events. Whenever something important happens, for example, an
attribute of a model element changes, an event is sent. When other parts of the application are interested in a change,
they register an event handler for that event type. Events are emitted though a central broker so you do not have to
register on every individual element that can send an event they are interested in. For example, a diagram item could
register an event rule and then check if the element that sent the event is actually the event the item is representing. For
more information see the full description of the event system.

22.3 Transactional

Gaphor is transactional, which means it keeps track of the functions it performs as a series of transactions. The trans-
actions work by sending an event when a transaction starts and sending another when a transaction ends. This allows,
for example, the undo manager to keep a running log of the previous transactions so that a transaction can be reversed
if the undo button is pressed.

22.4 Main Components

The main portion of Gaphor that executes first is called the Application. Gaphor can have multiple models open at
any time. Each model is kept in a Session. Only one Application instance is active. Each session will load its own
services defined as gaphor.services.

The most notable services are:

189

Gaphor Documentation

22.4.1 event_manager

This is the central component used for event dispatching. Every service that does something with events (both sending
and receiving) depends on this component.

22.4.2 file_manager

Loading and saving a model is done through this service.

22.4.3 element_factory

The data model itself is maintained in the element factory (gaphor.core.modeling.elementfactory). This service
is used to create model elements, as well as to lookup elements or query for a set of elements.

22.4.4 undo_manager

One of the most appreciated services. It allows users to make a mistake every now and then!

The undo manager is transactional. Actions performed by a user are only stored if a transaction is active. If a transaction
is completed (committed) a new undo action is stored. Transactions can also be rolled back, in which case all changes
are played back directly. For more information see the full description of the undo manager.

190 Chapter 22. Framework

CHAPTER

TWENTYTHREE

SERVICE ORIENTED ARCHITECTURE

Gaphor has a service oriented architecture. What does this mean? Well, Gaphor is built as a set of small islands
(services). Each island provides a specific piece of functionality. For example, we use separate services to load/save
models, provide the menu structure, and to handle the undo system.

We define services as entry points in the pyproject.toml. With entry points, applications can register functionality
for specific purposes. We also group entry points in to entry point groups. For example, we use the console_scripts
entry point group to start an application from the command line.

23.1 Services

Gaphor is modeled around the concept of services. Each service can be registered with the application and then it can
be used by other services or other objects living within the application.

Each service should implement the Service interface. This interface defines one method:

shutdown(self)

Which is called when a service needs to be cleaned up.

We allow each service to define its own methods, as long as the service is implemented too.

Services should be defined as entry points in the pyproject.toml file.

Typically, a service does some work in the background. Services can also expose actions that can be invoked by users.
For example, the Ctrl-z key combo (undo) is implemented by the UndoManager service.

A service can also depend on another services. Service initialization resolves these dependencies. To define a service
dependency, just add it to the constructor by its name defined in the entry point:

class MyService(Service):

def __init__(self, event_manager, element_factory):
self.event_manager = event_manager
self.element_factory = element_factory
event_manager.subscribe(self._element_changed)

def shutdown(self):
self.event_manager.unsubscribe(self._element_changed)

@event_handler(ElementChanged)
def _element_changed(self, event):

191

Gaphor Documentation

Services that expose actions should also inherit from the ActionProvider interface. This interface does not require any
additional methods to be implemented. Action methods should be annotated with an @action annotation.

23.2 Example: ElementFactory

A nice example of a service in use is the ElementFactory. It is one of the core services.

The UndoManager depends on the events emitted by the ElementFactory. When an important events occurs, like an
element is created or destroyed, that event is emitted. We then use an event handler for ElementFactory that stores the
add/remove signals in the undo system. Another example of events that are emitted are with UML.Elements. Those
classes, or more specifically, the properties, send notifications every time their state changes.

23.3 Entry Points

Gaphor uses a main entry point group called gaphor.services.

Services are used to perform the core functionality of the application while breaking the functions in to individual
components. For example, the element factory and undo manager are both services.

Plugins can also be created to extend Gaphor beyond the core functionality as an add-on. For example, a plugin could
be created to connect model data to other applications. Plugins are also defined as services. For example a new XMI
export plugin would be defined as follows in the pyproject.toml:

[tool.poetry.plugins."gaphor.services"]
"xmi_export" = "gaphor.plugins.xmiexport:XMIExport"

23.4 Interfaces

Each service (and plugin) should implement the gaphor.abc.Service interface:

class gaphor.abc.Service

Base interface for all services in Gaphor.

abstract shutdown()→ None
Shutdown the services, free resources.

Another more specialized service that also inherits from gaphor.abc.Service, is the UI Component service. Ser-
vices that use this interface are used to define windows and user interface functionality. A UI component should
implement the gaphor.ui.abc.UIComponent interface:

class gaphor.ui.abc.UIComponent

A user interface component.

abstract close()

Close the UI component.

The component can decide to hide or destroy the UI components.

abstract open()

Create and display the UI components (windows).

192 Chapter 23. Service Oriented Architecture

https://docs.python.org/3/library/constants.html#None

Gaphor Documentation

shutdown()

Shut down this component.

It’s not supposed to be opened again.

Typically, a service and UI component would like to present some actions to the user, by means of menu entries. Every
service and UI component can advertise actions by implementing the gaphor.abc.ActionProvider interface:

class gaphor.abc.ActionProvider

An action provider is a special service that provides actions via @action decorators on its methods (see
gaphor/action.py).

23.4. Interfaces 193

Gaphor Documentation

194 Chapter 23. Service Oriented Architecture

CHAPTER

TWENTYFOUR

EVENT SYSTEM

The event system in Gaphor provides an API to handle events and to subscribe to events.

In Gaphor we manage event handler subscriptions through the EventManager service. Gaphor is highly event driven:

• Changes in the loaded model are emitted as events

• Changes on diagrams are emitted as events

• Changes in the UI are emitted as events

Although Gaphor depends heavily on GTK for its user interface, Gaphor is using its own event dispatcher. Events
can be structured in hierarchies. For example, an AttributeUpdated event is a subtype of ElementUpdated. If we
are interested in all changes to elements, we can also register ElementUpdated and receive all AttributeUpdated
events as well.

class gaphor.core.eventmanager.EventManager

The Event Manager.

handle(*events: object)→ None
Send event notifications to registered handlers.

priority_subscribe(handler: Callable[[object], None])→ None
Register a handler.

Priority handlers are executed directly. They should not raise other events, cause that can cause a problem
in the exection order.

It’s basically to make sure that all events are recorded by the undo manager.

shutdown()→ None
Shutdown the services, free resources.

subscribe(handler: Callable[[object], None])→ None
Register a handler.

Handlers are triggered (executed) when specific events are emitted through the handle() method.

unsubscribe(handler: Callable[[object], None])→ None
Unregister a previously registered handler.

Under the hood events are handled by the Generics library. For more information about how the Generic library handles
events see the Generic documentation.

195

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://generic.readthedocs.io

Gaphor Documentation

196 Chapter 24. Event System

CHAPTER

TWENTYFIVE

MODELING LANGUAGES

Since version 2.0, Gaphor supports the concept of Modeling languages. This allows for development of separate
modeling languages separate from the Gaphor core application.

The main language was, and will be UML. Gaphor now also supports a subset of SysML, RAAML and the C4 model.

A modeling language in Gaphor is defined by a class implementing the gaphor.abc.ModelingLanguage abstract
base class. The modeling language should be registered as a gaphor.modelinglanguage entry point.

The ModelingLanguage interface is fairly minimal. It allows other services to look up elements and diagram items,
as well as a toolbox, and diagram types. However, the responsibilities of a modeling language do not stop there. Parts
of functionality will be implemented by registering handlers to a set of generic functions.

But let’s not get ahead of ourselves. What is the functionality a modeling language implementation can offer?

Three functionalities are exposed by a ModelingLanguage instance:

• A data model (elements) and diagram items

• Diagram types

• A toolbox definition

Other functionalities can be extended by adding handlers to the respective generic functions:

• Connectors, allow diagram items to connect

• Format/parse model elements to and from a textual representation

• Copy/paste behavior when element copying is not trivial, for example with more than one element is involved

• Grouping, allow elements to be nested in one another

• Dropping, allow elements to be dragged from the tree view onto a diagram

• Automatic cleanup rules to keep the model consistent

Modeling languages can also provide new UI components. Those components are not loaded directly when you import
a modeling language package. Instead, they should be imported via the gaphor.modules entrypoint.

• Editor pages, shown in the collapsible pane on the right side

• Instant (diagram) editor popups

• Special diagram interactions

197

Gaphor Documentation

25.1 Modeling language

class gaphor.abc.ModelingLanguage

A model provider is a special service that provides an entrypoint to a model implementation, such as UML,
SysML, RAAML.

abstract property diagram_types: Iterable[DiagramType]

Iterate diagram types.

abstract property element_types: Iterable[ElementCreateInfo]

Iterate element types.

abstract lookup_element(name: str)→ type[Element] | None
Look up a model element type by (class) name.

abstract property name: str

Human-readable name of the modeling language.

abstract property toolbox_definition: ToolboxDefinition

Get structure for the toolbox.

25.2 Connectors

Connectors are used to connect one element to another.

Connectors should adhere to the ConnectorProtocol. Normally you would inherit from BaseConnector.

class gaphor.diagram.connectors.BaseConnector(element: Presentation[Element], line:
Presentation[Element])

Connection adapter for Gaphor diagram items.

Line item line connects with a handle to a connectable item element.

Parameters

• line – connecting item

• element – connectable item

By convention the adapters are registered by (element, line) – in that order.

allow(handle: Handle, port: Port)→ bool
Determine if items can be connected.

Is the connection allowed at all (during mouse movement for example)?

Returns True if connection is allowed.

connect(handle: Handle, port: Port)→ bool
Connect to an element.

Establish a connection between element and line. Also takes care of disconnects, if required (e.g. 1:1
relationships).

Note that at this point the line may be connected to some other, or the same element. The connection at
model level also still exists.

Returns True if a connection is established.

198 Chapter 25. Modeling Languages

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://gaphas.readthedocs.io/en/stable/api/handles.html#gaphas.connector.Handle
https://gaphas.readthedocs.io/en/stable/api/handles.html#gaphas.connector.Port
https://docs.python.org/3/library/functions.html#bool
https://gaphas.readthedocs.io/en/stable/api/handles.html#gaphas.connector.Handle
https://gaphas.readthedocs.io/en/stable/api/handles.html#gaphas.connector.Port
https://docs.python.org/3/library/functions.html#bool

Gaphor Documentation

disconnect(handle: Handle)→ None
Disconnect model level connections.

Break connection, called when dropping a handle on a point where it can not connect.

get_connected(handle: Handle)→ Presentation[Element] | None
Get item connected to a handle.

25.3 Format and parse

Model elements can be formatted to a simple text representation. For example, This is used in the Model Browser. It
isn’t a full serialization of the model element.

In some cases it’s useful to parse a text back into an object. This is done when you edit attributes and operations on a
class.

Not every format() needs to have an equivalent parse() function.

gaphor.core.format.format(element: Element)→ str
Returns a human readable representation of the model element. In most cases this is just the name, however,
properties (attributes) and operations are formatted more extensively:

+ attr: str
+ format(element: Element): string

gaphor.core.format.parse(element: Element, text: str)→ None
Parse text and populate element. The element is populated with elements from the text. This may mean that
new model elements are created as part of the parse process.

25.4 Copy and paste

Copy and paste works out of the box for simple items: one diagram item with one model element (the subject). It
leverages the load() and save() methods of the elements to ensure all relevant data is copied.

Sometimes items need more than one model element to work. For example an Association: it has two association ends.

In those specific cases you need to implement your own copy and paste functions. To create such a thing you’ll need
to create two functions: one for copying and one for pasting.

gaphor.diagram.copypaste.copy(obj: Element)→ Iterator[tuple[Id, Opaque]]
Create a copy of an element (or list of elements). The returned type should be distinct, so the paste() function
can properly dispatch. A copy function normally copies only the element and mandatory related elements. E.g.
an Association needs two association ends.

gaphor.diagram.copypaste.paste(copy_data: Opaque, diagram: Diagram, lookup: Callable[[str], Element |
None])→ Iterator[Element]

Paste previously copied data. Based on the data type created in the copy() function, try to duplicate the copied
elements. Returns the newly created item or element.

Gaphor provides some convenience functions:

gaphor.diagram.copypaste.copy_full(items: Collection[Element], lookup: Callable[[Id], Element | None] |
None = None)→ CopyData:

Copy items. The lookup function is used to look up owned elements (shown as child nodes in the Model
Browser).

25.3. Format and parse 199

https://gaphas.readthedocs.io/en/stable/api/handles.html#gaphas.connector.Handle
https://docs.python.org/3/library/constants.html#None
https://gaphas.readthedocs.io/en/stable/api/handles.html#gaphas.connector.Handle
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Gaphor Documentation

gaphor.diagram.copypaste.paste_link(copy_data: CopyData, diagram: Diagram)→
set[~gaphor.core.modeling.Presentation]:

Paste a copy of the Presentation element to the diagram, but try to link the underlying model element. A shallow
copy.

gaphor.diagram.copypaste.paste_full(copy_data: CopyData, diagram: Diagram)→
set[~gaphor.core.modeling.Presentation]:

Paste a copy of both Presentation and model element. A deep copy.

25.5 Grouping

Grouping is done by dragging one item on top of another, in a diagram or in the tree view.

gaphor.diagram.group.group(parent: Element, element: Element)→ bool
Group an element in a parent element. The grouping can be based on ownership, but other types of grouping are
also possible.

gaphor.diagram.group.ungroup(parent: Element, element: Element)→ bool
Remove the grouping from an element. The function needs to check if the provided parent node is the right
one.

gaphor.diagram.group.can_group(parent_type: type[Element], element_or_type: type[Element] | Element)→
bool

This function tries to determine if grouping is possible, without actually performing a group operation. This is
not 100% accurate.

25.6 Dropping

Dropping is performed by dragging an element from the tree view and drop it on a diagram. This is an easy way to
extend a diagram with already existing model elements.

Alternatively, a presentation item can be dropped on top of another element.

gaphor.diagram.drop.drop(element: Element | Presentation, diagram: Diagram | Presentation, x: float, y: float)
→ Presentation | None

The drop function creates a new presentation for an element on the diagram, if the element is not a presentation
yet. For relationships, a drop only works if both connected elements are present in the same diagram.

While grouping deals with connecting model elements, dropping deals with creating and placing presentation
elements on the right item in a diagram.

25.7 Automated model cleanup

Gaphor wants to keep the model in sync with the diagrams.

A little dispatch function is used to determine if a model element can be removed.

gaphor.diagram.deletable.deletable(element: Element)→ bool
Determine if a model element can safely be removed.

200 Chapter 25. Modeling Languages

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

Gaphor Documentation

25.8 Property Editor pages

The editor page is constructed from snippets. For example: almost each element has a name, so there is a UI snippet
that allows you to edit a name.

Each property page (snippet) should inherit from PropertyPageBase.

class gaphor.diagram.propertypages.PropertyPageBase

A property page which can display itself in a notebook.

abstract construct()→ Gtk.Widget | None
Create the page (Gtk.Widget) that belongs to the Property page.

Returns the page’s toplevel widget (Gtk.Widget).

25.9 Instant (diagram) editor popups

When you double-click on an item in a diagram, a popup can show up, so you can easily change the name.

By default, this works for any named element. You can register your own inline editor function if you need to.

gaphor.diagram.instanteditors.instant_editor(item: Item, view, event_manager: EventManager, pos:
tuple[int, int] | None = None)→ bool

Show a small editor popup in the diagram. Makes for easy editing without resorting to the Element editor.

In case of a mouse press event, the mouse position (relative to the element) are also provided.

25.8. Property Editor pages 201

https://docs.python.org/3/library/constants.html#None
https://gaphas.readthedocs.io/en/stable/api/model.html#gaphas.item.Item
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

Gaphor Documentation

202 Chapter 25. Modeling Languages

CHAPTER

TWENTYSIX

CONNECTION PROTOCOL

In Gaphor, if a connection is made on a diagram between an element and a relationship, the connection is also made at
semantic level (the model). From a GUI point of view, a button release event is what kicks of the decision whether the
connection is allowed.

203

Gaphor Documentation

Create new model elementUse existing relation

Disconnect

Reconnect

[now allowed]

[relation is allowed]

[not connected]

[opposite end is connected]

[connected end is same]

[No exiting relation][Have existing relation]

The check if a connection is allowed should also check if it is valid to create a relation to/from the same element (like
associations, but not generalizations).

204 Chapter 26. Connection Protocol

CHAPTER

TWENTYSEVEN

FILE FORMAT

The root element of Gaphor models is the Gaphor tag, all other elements are contained in this. The Gaphor element
delimits the beginning and the end of an Gaphor model.

The idea is to keep the file format as simple and extensible as possible: UML elements (including Diagram) are at the
top level with no nesting. A UML element can have two tags: references (ref) and values (val). References are used
to point to other UML elements. Values have a value inside (an integer or a string).

Since many references are bi-directional, you’ll find both ends defined in the file (e.g. Package.ownedType - Actor.
package, and Diagram.ownedPresentation and UseCaseItem.diagram).

<?xml version="1.0" ?>
<Gaphor version="1.0" gaphor_version="0.3">
<Package id="1">
<ownedClassifier>
<reflist>
<ref refid="2"/>
<ref refid="3"/>
<ref refid="4"/>

</reflist>
</ownedClassifier>

</Package>
<Diagram id="2">
<package>
<ref refid="1"/>

</package>
<ownedPresentation>
<reflist>
<ref refid="5"/>
<ref refid="6"/>

</reflist>
</ownedPresentation>

</Diagram>
<ActorItem id="5">
<matrix>
<val>(1.0, 0.0, 0.0, 1.0, 147.0, 132.0)</val>

</matrix>
<width>
<val>38.0</val>

</width>
<height>
<val>60.0</val>

(continues on next page)

205

Gaphor Documentation

(continued from previous page)

</height>
<diagram>
<ref refid="2"/>

</diagram>
<subject>
<ref refid="3"/>

</subject>
</ActorItem>
<UseCaseItem id="6">
<matrix>
<val>(1.0, 0.0, 0.0, 1.0, 341.0, 144.0)</val>

</matrix>
<width>
<val>98.0</val>

</width>
<height>
<val>30.0</val>

</height>
<diagram>
<ref refid="2"/>

</diagram>
<subject>
<ref refid="4"/>

</subject>
</UseCaseItem>
<Actor id="3">
<name>
<val>Actor></val>

</name>
<package>
<ref refid="1"/>

</package>
</Actor>
<UseCase id="4">
<package>
<ref refid="1"/>

</package>
</UseCase>

</Gaphor>

206 Chapter 27. File Format

CHAPTER

TWENTYEIGHT

UNDO MANAGER

Undo is a required feature in modern applications. Gaphor is no exception. Having an undo function in place means
you can change the model and easily revert to an older state.

28.1 Overview of Transactions

The recording and playback of changes in Gaphor is handled by the the Undo Manager. The Undo Manager works
transactionally. A transaction must succeed or fail as a complete unit. If the transaction fails in the middle, it is rolled
back. In Gaphor this is achieved by the transaction module, which provides a context manager Transaction and
a decorator called @transactional.

When transactions take place, they emit events when the top-most transaction begins and is finished. The event notifi-
cations are for the begin of the transaction, and the commit of the transaction if it is successful or the rollback of the
transaction if it fails.

The Undo Manager only allows changes to be made in a transaction. If a change is made outside a transaction, an
exception is raised.

28.2 Start of a Transaction

1. A Transaction object is created.

2. TransactionBegin event is emitted.

3. The UndoManager instantiates a new ActionStack which is the transaction object, and adds the undo action to
the stack.

Nested transactions are supported to allow a transaction to be added inside of another transaction that is already in
progress.

28.3 Successful Transaction

1. A TransactionCommit event is emitted

2. The UndoManager closes and stores the transaction.

207

Gaphor Documentation

28.4 Failed Transaction

1. A TransactionRollback event is emitted.

2. The UndoManager plays back all the recorded actions, but does not store it.

28.5 Transaction API

Note: You only require transactions if the undo manager is active.

class gaphor.transaction.Transaction(event_manager, context=None)
The transaction.

On start and end of a transaction an event is emitted. Transactions can be nested. Events are only emitted when
the outermost transaction begins and finishes.

Note that transactions are a global construct.

>>> import gaphor.core.eventmanager
>>> event_manager = gaphor.core.eventmanager.EventManager()

Transactions can be nested. If the outermost transaction is committed or rolled back, an event is emitted.

It’s most convenient to use Transaction as a context manager:

>>> with Transaction(event_manager) as ctx:
... ... # do actions
... # in case the transaction should be rolled back:
... ctx.rollback()

Events can be handled programmatically, although this is discouraged:

>>> tx = Transaction(event_manager)
>>> tx.commit()

commit()

Commit the transaction.

The transaction is closed. A TransactionCommit event is emitted. If the transaction needs to be rolled
back, a TransactionRollback event is emitted instead.

classmethod in_transaction()→ bool
Are you running inside a transaction?

classmethod mark_rollback()

Mark the transaction for rollback.

This operation itself will not close the transaction, instead it will allow you to elegantly revert changes.

rollback()

Roll-back the transaction.

First, the transaction is closed. A TransactionRollback event is emitted.

208 Chapter 28. Undo Manager

https://docs.python.org/3/library/functions.html#bool

Gaphor Documentation

gaphor.transaction.transactional(func)
The transactional decorator makes a function transactional. Events are emitted through the (global) subscribers
set.

>>> @transactional
... def foo():
... pass

It is preferred to use the Transaction context manager. The context manager emits events in the context of the
session in scope, whereas the @transactional decorator emits a global event which is sent to the active session.

class gaphor.event.TransactionBegin(context)
This event denotes the beginning of a transaction.

Nested (sub-) transactions should not emit this signal.

class gaphor.event.TransactionCommit(context)
This event is emitted when a transaction (toplevel) is successfully committed.

class gaphor.event.TransactionRollback(context)
This event is emitted to tell the operation has failed.

If a set of operations fail (e.i. due to an exception) the transaction should be marked for rollback.

28.6 References

• A Framework for Undoing Actions in Collaborative Systems

• Undoing Actions in Collaborative Work: Framework and Experience

• Implementing a Selective Undo Framework in Python

28.6. References 209

http://web.eecs.umich.edu/~aprakash/papers/undo-tochi94.pdf
https://www.eecs.umich.edu/techreports/cse/94/CSE-TR-196-94.pdf
https://legacy.python.org/workshops/1997-10/proceedings/zukowski.html

Gaphor Documentation

210 Chapter 28. Undo Manager

INDEX

A
ActionProvider (class in gaphor.abc), 193
allow() (gaphor.diagram.connectors.BaseConnector

method), 198

B
BaseConnector (class in gaphor.diagram.connectors),

198
built-in function

gaphor.core.format.format(), 199
gaphor.core.format.parse(), 199
gaphor.diagram.copypaste.copy(), 199
gaphor.diagram.copypaste.copy_full(), 199
gaphor.diagram.copypaste.paste(), 199
gaphor.diagram.copypaste.paste_full(),

200
gaphor.diagram.copypaste.paste_link(),

200
gaphor.diagram.deletable.deletable(), 200
gaphor.diagram.drop.drop(), 200
gaphor.diagram.group.can_group(), 200
gaphor.diagram.group.group(), 200
gaphor.diagram.group.ungroup(), 200
gaphor.diagram.instanteditors.instant_editor(),

201

C
change_parent() (gaphor.core.modeling.Presentation

method), 87
close() (gaphor.ui.abc.UIComponent method), 192
commit() (gaphor.transaction.Transaction method), 208
connect() (gaphor.diagram.connectors.BaseConnector

method), 198
construct() (gaphor.diagram.propertypages.PropertyPageBase

method), 201
create() (gaphor.core.modeling.Diagram method), 87
create() (gaphor.core.modeling.element.RepositoryProtocol

method), 88

D
Diagram (class in gaphor.core.modeling), 87

diagram_types (gaphor.abc.ModelingLanguage prop-
erty), 198

disconnect() (gaphor.diagram.connectors.BaseConnector
method), 198

E
Element (class in gaphor.core.modeling), 86
element_types (gaphor.abc.ModelingLanguage prop-

erty), 198
EventManager (class in gaphor.core.eventmanager), 195
EventWatcherProtocol (class in

gaphor.core.modeling.element), 88

G
gaphor.core.format.format()

built-in function, 199
gaphor.core.format.parse()

built-in function, 199
gaphor.diagram.copypaste.copy()

built-in function, 199
gaphor.diagram.copypaste.copy_full()

built-in function, 199
gaphor.diagram.copypaste.paste()

built-in function, 199
gaphor.diagram.copypaste.paste_full()

built-in function, 200
gaphor.diagram.copypaste.paste_link()

built-in function, 200
gaphor.diagram.deletable.deletable()

built-in function, 200
gaphor.diagram.drop.drop()

built-in function, 200
gaphor.diagram.group.can_group()

built-in function, 200
gaphor.diagram.group.group()

built-in function, 200
gaphor.diagram.group.ungroup()

built-in function, 200
gaphor.diagram.instanteditors.instant_editor()

built-in function, 201
get_connected() (gaphor.diagram.connectors.BaseConnector

method), 199

211

Gaphor Documentation

H
handle() (gaphor.core.eventmanager.EventManager

method), 195
handle() (gaphor.core.modeling.Element method), 86

I
id (gaphor.core.modeling.Element property), 86
in_transaction() (gaphor.transaction.Transaction

class method), 208
isKindOf() (gaphor.core.modeling.Element method), 87
isTypeOf() (gaphor.core.modeling.Element method), 87

L
load() (gaphor.core.modeling.Element method), 86
lookup() (gaphor.core.modeling.Diagram method), 87
lookup() (gaphor.core.modeling.element.RepositoryProtocol

method), 88
lookup_element() (gaphor.abc.ModelingLanguage

method), 198

M
mark_rollback() (gaphor.transaction.Transaction

class method), 208
model (gaphor.core.modeling.Element property), 86
ModelingLanguage (class in gaphor.abc), 198

N
name (gaphor.abc.ModelingLanguage property), 198

O
open() (gaphor.ui.abc.UIComponent method), 192

P
postload() (gaphor.core.modeling.Element method), 86
Presentation (class in gaphor.core.modeling), 87
priority_subscribe()

(gaphor.core.eventmanager.EventManager
method), 195

PropertyPageBase (class in
gaphor.diagram.propertypages), 201

R
RepositoryProtocol (class in

gaphor.core.modeling.element), 88
request_update() (gaphor.core.modeling.Diagram

method), 88
request_update() (gaphor.core.modeling.Presentation

method), 87
rollback() (gaphor.transaction.Transaction method),

208

S
save() (gaphor.core.modeling.Element method), 86

select() (gaphor.core.modeling.Diagram method), 87
select() (gaphor.core.modeling.element.RepositoryProtocol

method), 88
Service (class in gaphor.abc), 192
shutdown() (gaphor.abc.Service method), 192
shutdown() (gaphor.core.eventmanager.EventManager

method), 195
shutdown() (gaphor.ui.abc.UIComponent method), 192
subscribe() (gaphor.core.eventmanager.EventManager

method), 195

T
toolbox_definition (gaphor.abc.ModelingLanguage

property), 198
Transaction (class in gaphor.transaction), 208
transactional() (in module gaphor.transaction), 208
TransactionBegin (class in gaphor.event), 209
TransactionCommit (class in gaphor.event), 209
TransactionRollback (class in gaphor.event), 209

U
UIComponent (class in gaphor.ui.abc), 192
unlink() (gaphor.core.modeling.Element method), 86
unsubscribe() (gaphor.core.eventmanager.EventManager

method), 195
unsubscribe_all() (gaphor.core.modeling.element.EventWatcherProtocol

method), 88
update() (gaphor.core.modeling.Diagram method), 88

W
watch() (gaphor.core.modeling.element.EventWatcherProtocol

method), 88
watch() (gaphor.core.modeling.Presentation method),

87
watcher() (gaphor.core.modeling.Element method), 86

212 Index

	Get Started with Gaphor
	Model Browser
	Toolbox
	Diagrams
	Elements
	Relations
	Copy and Paste
	Undo and Redo

	Property Editor
	Model Preferences
	Reset Tool Automatically
	Remove Unused Elements
	Diagram Language
	Style Sheet

	Your First Model
	Adding Relations
	Creating New Diagrams

	Tutorial: Coffee Machine
	Introduction
	Abstraction Levels
	Pillars
	Table of Contents
	Coffee Machine: Concept Level
	Introduction
	Use Case Diagram
	Domain Diagram
	Context Diagram
	Concept Requirements

	Coffee Machine: Logical Level
	Introduction
	Functional Boundary Behavior
	Logical State Machine
	Logical Structure
	Logical Boundary
	Logical Requirements

	Coffee Machine: Summary

	Change Log
	Style Sheets
	Supported selectors
	Style properties
	Colors
	Text and fonts
	Drawing and spacing
	Pseudo elements
	Variables
	Media queries
	Diagram styles

	CSS model elements
	Ideas
	The drafts package
	Unconnected relationships
	Navigable associations
	Solid Control Flow lines
	Todo note highlight
	Emphesize abstract classes and operations

	System Style Sheet

	Sphinx Extension
	Configuration
	Read the Docs

	Errors

	Jupyter and Scripting
	Getting started
	Query a model
	Draw a diagram
	Create a diagram
	Update a model
	Updating elements

	What else
	Examples
	Requirements from text fields
	Interfaces from dictionaries
	Example: Gaphor services

	Stereotypes
	Creating a profile
	To add a profile to your model:
	Styling Stereotypes

	Resolve Merge Conflicts
	Plugins
	Install a plugin
	Create your own plugin
	Example plugin

	Gaphor on Linux
	Development Environment
	GNOME Builder
	A Local Environment
	Debugging using Visual Studio Code

	Create a Flatpak Package
	Linux Distribution Packages

	Gaphor on macOS
	Development Environment
	Debugging using Visual Studio Code

	Packaging for macOS

	Gaphor on Windows
	Development Environment
	Choco
	Git
	MSYS2
	GTK and Python with gvsbuild
	Install Visual Studio 2022
	Install the Latest Python
	Install Graphviz
	Install pipx
	Install gvsbuild
	Build GTK

	Setup Gaphor
	Debugging using Visual Studio Code

	Packaging for Windows

	Gaphor in a Container
	GitHub Codespaces
	Remote access to Gaphor graphic window with Codespaces
	Using a local VNC viewer
	Using noVNC viewer on the Browser

	Contribute to Gaphor
	Modeling Language Core
	The Element Class
	Event handling
	Loading and saving
	OCL-style methods

	The Presentation class
	The Diagram class
	Protocols
	Change Sets

	Unified Modeling Language
	01. Common Structure
	1. Root
	2. Templates
	3. Namespaces
	4. Types and Multiplicity
	5. Constraints
	6. Dependencies

	02. Values
	1. Literals
	2. Expressions

	03. Classification
	1. Classifiers
	3. Features
	4. Properties
	5. Operations
	7. Instances

	04. Simple Classifiers
	1. Data Types
	3. Interfaces

	05. Structured Classifiers
	1. Structured Classifiers
	2. Encapsulated Classifiers
	3. Classes
	4. Associations
	5. Components
	6. Collaborations

	06. Packaging
	1. Packages
	2. Profiles

	07. Common Behaviors
	1. Behaviors
	2. Events

	08. State Machines
	1. Behavior State Machines

	09. Activities
	1. Activities
	2. Control Nodes
	3. Object Nodes
	4. Executable Nodes
	5. Activity Groups

	10. Actions
	1. Actions
	2. Invocation Actions
	7. Structural Feature Actions
	9. Accept Event Actions

	11. Interactions
	1. Interactions
	2. Lifelines
	3. Messages
	4. Occurrences

	12. Use Cases
	UseCases

	13. Deployments
	1. Deployments
	2. Artifacts
	3. Nodes

	14. Information Flows
	A. Gaphor Specific Constructs
	1. Stereotype Applications

	B. Gaphor Profile

	Systems Modeling Language
	Activities
	Allocations
	AllocatedActivityPartition
	Allocation

	Blocks
	Adjunt and Classifier Behavior Properties
	Bound References
	Connector Ends
	Properties
	Property Paths
	Property-Specific Types
	Property Strings
	Value Types

	ConstraintBlocks
	Libraries
	ModelElements
	PortsAndFlows
	Actions on Nested Ports
	Port Stereotypes
	Property Value Change Events
	Provided and Required Features
	Item Flow

	Requirements

	Risk Analysis and Assessment Modeling Language
	Core
	Core Library/Any Situation
	Core Profile/Controlling Measure
	Core Profile/Relevant To
	Core Profile/Situation
	Core Profile/Violates

	General
	Basic Event
	General Concepts Library/Abstract Cause
	General Concepts Library/Abstract Effect
	General Concepts Library/Abstract Event
	General Concepts Library/Abstract Failure Mode
	General Concepts Library/Abstract Risk
	General Concepts Library/Activation
	General Concepts Library/Cause
	General Concepts Library/Dysfunctional Event
	General Concepts Library/Effect
	General Concepts Library/Error Propagation
	General Concepts Library/Error Realization
	General Concepts Library/Harm Potential
	General Concepts Library/Hazard
	General Concepts Library/Scenario
	General Concepts Library/Undesired State
	General Concepts Profile/Detection
	General Concepts Profile/Failure State
	General Concepts Profile/Mitigation
	General Concepts Profile/Prevention
	General Concepts Profile/Recommendation
	General Concepts Profile/Undeveloped

	Methods
	FTA/FTA Library/Events/Basic Event
	FTA/FTA Library/Events/Conditional Event
	FTA/FTA Library/Events/Dormant Event
	FTA/FTA Library/Events/Events
	FTA/FTA Library/Events/Event
	FTA/FTA Library/Events/House Event
	FTA/FTA Library/Events/Intermediate Event
	FTA/FTA Library/Events/Top Event
	FTA/FTA Library/Events/Undeveloped Event
	FTA/FTA Library/Events/Zero Event
	FTA/FTA Library/FTA Element
	FTA/FTA Library/FTA Library
	FTA/FTA Library/FTA Tree
	FTA/FTA Library/Gates/AND
	FTA/FTA Library/Gates/Gate
	FTA/FTA Library/Gates/INHIBIT
	FTA/FTA Library/Gates/MAJORITY_VOTE
	FTA/FTA Library/Gates/NOT
	FTA/FTA Library/Gates/OR
	FTA/FTA Library/Gates/SEQ
	FTA/FTA Library/Gates/XOR
	FTA/FTA Profile/AND
	FTA/FTA Profile/Conditional Event
	FTA/FTA Profile/Dormant Event
	FTA/FTA Profile/Event
	FTA/FTA Profile/Gate
	FTA/FTA Profile/House Event
	FTA/FTA Profile/INHIBIT
	FTA/FTA Profile/Intermediate Event
	FTA/FTA Profile/MAJORITY_VOTE
	FTA/FTA Profile/NOT
	FTA/FTA Profile/OR
	FTA/FTA Profile/SEQ
	FTA/FTA Profile/Top Event
	FTA/FTA Profile/Transfer In
	FTA/FTA Profile/Transfer Out
	FTA/FTA Profile/Tree
	FTA/FTA Profile/XOR
	FTA/FTA Profile/Zero Event
	FTA/FTA

	The C4 Model
	Design Principles
	Guidance
	Help with relationships
	Keep the model in sync

	Out of your way
	Avoid dialogs
	Notify on changes
	Balanced

	Continuity
	Backwards compatibility
	Multi-platform

	User interaction
	What else?

	Framework
	Overview
	Event driven
	Transactional
	Main Components
	event_manager
	file_manager
	element_factory
	undo_manager

	Service Oriented Architecture
	Services
	Example: ElementFactory
	Entry Points
	Interfaces

	Event System
	Modeling Languages
	Modeling language
	Connectors
	Format and parse
	Copy and paste
	Grouping
	Dropping
	Automated model cleanup
	Property Editor pages
	Instant (diagram) editor popups

	Connection Protocol
	File Format
	Undo Manager
	Overview of Transactions
	Start of a Transaction
	Successful Transaction
	Failed Transaction
	Transaction API
	References

	Index

