

[image: Chadwick]
Gambit: Software Tools for Game Theory

Welcome

Gambit is a library of game theory software and tools for the
construction and analysis of finite extensive and strategic games.
Gambit is fully-cross platform, and is supported on Linux, Mac OS X,
and Microsoft Windows.

Key features of Gambit include:

	A graphical user interface, which uses
wxWidgets [http://www.wxwidgets.org] to provide a common
interface with native look-and-feel across platforms.

	All equilibrium-computing algorithms are available as
command-line tools, callable from scripts and
other programs.

	A Python API for developing scripting applications.

Using and citing Gambit

Gambit is Free/Open Source software, released under the terms of the
GNU General Public License [http://www.gnu.org/copyleft/gpl.html‎],
Version 2.

We hope you will find Gambit useful for both teaching and research
applications. If you do use Gambit in a class, or in a paper, we would
like to hear about it. We are especially interested in finding out
what you like about Gambit, and where you think improvements could be
made.

If you are citing Gambit in a paper, we suggest a citation of the form:

McKelvey, Richard D., McLennan, Andrew M., and
Turocy, Theodore L. [http://www.gambit-project.org/turocy]
(2014).
Gambit: Software Tools for Game Theory, Version 16.0.1.
http://www.gambit-project.org.

Replace the version number and year as appropriate if you use a
different release.

Table of Contents

	An overview of Gambit

	The graphical interface

	Command-line tools

	Python interface to Gambit library

	Sample games

	For contributors: Ideas and suggestions for Gambit-related projects

	For developers: Building Gambit from source

	Game representation formats

	Bibliography

Or, see a more detailed table of contents.

[image: Chadwick]
Gambit: Software Tools for Game Theory

An overview of Gambit

What is Gambit?

Gambit is a set of software tools for doing computation on finite,
noncooperative games. These comprise a graphical interface for
interactively building and analyzing general games in extensive or
strategy form; a number of command-line tools for computing Nash
equilibria and other solution concepts in games; and, a set of file
formats for storing and communicating games to external tools.

A brief history of Gambit

The Gambit Project was founded in the mid-1980s by Richard McKelvey at
the California Institute of Technology. The original implementation
was written in BASIC, with a simple graphical interface. This code was
ported to C around 1990 with the help of Bruce Bell, and was
distributed publicly as version 0.13 in 1991 and 1992.

A major step in the evolution of Gambit took place with the awarding
of the NSF grants in 1994, with McKelvey and Andrew McLennan as
principal investigators, and Theodore Turocy [http://www.gambit-project.org/turocy] as the head programmer.
The grants sponsored a complete rewrite of Gambit in C++. The
graphical interface was made portable across platforms through the use
of the wxWidgets library (http://www.wxwidgets.org). Version 0.94 of Gambit was released in
the late summer of 1994, version 0.96 followed in 1999, and version
0.97 in 2002. During this time, many students at Caltech and Minnesota
contributed to the effort by programming, testing, and/or documenting.
These include, alphabetically, Bruce Bell, Anand Chelian, Matthew
Derer, Nelson Escobar, Ben Freeman, Eugene Grayver, Todd Kaplan, Geoff
Matters, Brian Trotter, Michael Vanier, Roberto Weber, and Gary Wu.

Over the same period, Bernhard von Stengel, of the London School of
Economics, made significant contributions in the implementation of the
sequence form methods for two-player extensive games, and for
contributing his “clique” code for identification of equilibrium
components in two-player strategic games, as well as other advice
regarding Gambit’s implementation and architecture.

Development since the mid-2000s has focused on two objectives. First,
the graphical interface was reimplemented and modernized, with the
goal of following good interaction design principles, especially in
regards to easing the learning curve for users new to Gambit and new
to game theory. Second, the internal architecture of Gambit was
refactored to increase interoperability between the tools provided by
Gambit and those written independently.

Gambit is proud to have participated in the Google Summer of Code
program in the summers of 2011 and 2012 as a mentoring organization.
The Python API, which became part of Gambit from Gambit 13, was
developed during these summers, thanks in particular to the work
of Stephen Kunath and Alessandro Andrioni.

Key features of Gambit

Gambit has a number of features useful both for the researcher and the
instructor:

Interactive, cross-platform graphical interface. All Gambit
features are available through the use of a graphical interface, which
runs under multiple operating systems: Windows, various flavors of
Un*x (including Linux), and Mac OS X. The interface offers flexible
methods for creating extensive and strategic games. It offers an
interface for running algorithms to compute Nash equilibria, and for
visualizing the resulting profiles on the game tree or table, as well
as an interactive tool for analyzing the dominance structure of
actions or strategies in the game. The interface is useful for the
advanced researcher, but is intended to be accessible for students
taking a first course in game theory as well.

Command-line tools for computing equilibria. More advanced
applications often require extensive computing time and/or the ability
to script computations. All algorithms in Gambit are packaged as
individual, command-line programs, whose operation and output are
configurable.

Extensibility and interoperability. The Gambit tools read and
write file formats which are textual and documented, making them
portable across systems and able to interact with external tools. It
is therefore straightforward to extend the capabilities of Gambit by,
for example, implementing a new method for computing equilibria,
reimplementing an existing one more efficiently, or creating tools to
programmatically create, manipulate, and transform games, or for
econometric analysis on games.

Limitations of Gambit

Gambit has a few limitations that may be important in some
applications. We outline them here.

Gambit is for finite games only. Because of the mathematical
structure of finite games, it is possible to write many general-
purpose routines for analyzing these games. Thus, Gambit can be used
in a wide variety of applications of game theory. However, games that
are not finite, that is, games in which players may choose from a
continuum of actions, or in which players may have a continuum of
types, do not admit the same general-purpose methods.

Gambit is for noncooperative game theory only. Gambit focuses on
the branch of game theory in which the rules of the game are written
down explicitly, and in which players choose their actions
independently. Gambit’s analytical tools center primarily around Nash
equilibrium, and related concepts of bounded rationality such as
quantal response equilibrium. Gambit does not at this time provide any
representations of, or methods for, analyzing games written in
cooperative form. (It should be noted that some problems in
cooperative game theory do not suffer from the computational
complexity that the Nash equilibrium problem does, and thus
cooperative concepts could be an interesting future direction of
development.)

Analyzing large games may become infeasible surprisingly quickly.
While the specific formal complexity classes of computing Nash
equilibria and related concepts are still an area of active research,
it is clear that, in the typical case, the amount of time required to
compute equilibria increases rapidly in the size of the game. In other
words, it is quite easy to write down games which will take Gambit an
unacceptably long amount time to compute the equilibria of. There are
two ways to deal with this problem in practice. One way is to better
identify good heuristic approaches for guiding the equilibrium
computation process. Another way is to take advantage of known
features of the game to guide the process. Both of these approaches
are now becoming areas of active interest. While it will certainly not
be possible to analyze every game that one would like to, it is hoped
that Gambit will both contribute to these two areas of research, as
well as make the resulting methods available to both students and
practitioners.

Developers

The principal developers of Gambit are:

	Theodore Turocy [http://www.gambit-project.org/turocy],
University of East Anglia: director.

	Richard D. McKelvey, California Institute of Technology:
project founder.

	Andrew McLennan, University of Queensland: co-PI during main
development, developer and maintainer of polynomial-based algorithms
for equilibrium computation.

Much of the development of the main Gambit codebase took place in
1994-1996, under a grant from the National Science Foundation to the
California Institute of Technology and the University of Minnesota
(McKelvey and McLennan, principal investigators).

Others contributing to the development and distribution of Gambit
include:

	Bernhard von Stengel provided advice on implementation of
sequence form code, and contributed clique code

	Eugene Grayver developed the first version of the
graphical user interface.

	Gary Wu implemented an early scripting language interface for
Gambit (since superseded by the Python API).

	Stephen Kunath and Alessandro Andrioni did extensive work to create
the first release of the Python API.

	From Gambit 14, Gambit contains support for Action Graph Games
[Jiang11]. This has been contributed by Navin Bhat, Albert Jiang,
Kevin Leyton-Brown, and David Thompson, with funding support
provided by a University Graduate Fellowship of the University
of British Columbia, the NSERC Canada Graduate Scholarship, and a
Google Research Award to Leyton-Brown.

Downloading Gambit

Gambit operates on an annual release cycle roughly mirroring the
(northern hemisphere) academic year. A new version is promoted to
stable/teaching each August; the major version number is equal to the
last two digits of the year in which the version becomes stable.

This document covers Gambit 16.0.1.
You can download it from
Sourceforge [http://sourceforge.net/projects/gambit/files/gambit16/16.0.1].
Full source code is available, as are precompiled binaries for
Microsoft Windows and Mac OS X 10.8.

Older versions of Gambit can be downloaded from
http://sourceforge.net/projects/gambit/files. Support for older
versions is limited.

Community

The following mailing lists are available for those interested in the
use and further development of Gambit:

	gambit-announce@lists.sourceforge.net [http://lists.sourceforge.net/lists/listinfo/gambit-announce]

	Announcement-only mailing list for notifications of new releases of
Gambit.

	gambit-users@lists.sourceforge.net [http://lists.sourceforge.net/lists/listinfo/gambit-users]

	General discussion forum for teaching and research users of Gambit.

	gambit-devel@lists.sourceforge.net [http://lists.sourceforge.net/lists/listinfo/gambit-devel]

	Discussion for those interested in devleoping or extending Gambit,
or using Gambit source code in other applications.

Bug reports

In the first instance, bug reports or feature requests should be
posted to the Gambit issue tracker, located at
http://github.com/gambitproject/gambit/issues.

When reporting a bug, please be sure to include the following:

	The version(s) of Gambit you are using. (If possible, it is helpful
to know whether a bug exists in both the current stable/teaching and
the current development/research versions.)

	The operating system(s) on which you encountered the bug.

	A detailed list of steps to reproduce the bug. Be sure to include a
sample game file or files if appropriate; it is often helpful to
simplify the game if possible.

[image: Chadwick]
Gambit: Software Tools for Game Theory

The graphical interface

Gambit’s graphical user interface provides an
“integrated development environment” to help visually construct
games and to investigate their main strategic features.

The graphical interface is largely intended for the interactive
construction and analysis of small to medium games. Repeating the
caution from the introduction of this manual, the computation time
required for the equilibrium analysis of games increases rapidly in
the size of the game. The graphical interface is ideal for students
learning about the fundamentals of game theory, or for practitioners
prototyping games of interest.

In graduating to larger applications,
users are encouraged to make use of the underlying Gambit libraries
and programs directly. For greater control over computing Nash and
quantal response equilibria of a game, see the section on
the command-line tools.
To build larger games or to explore parameter spaces of a game
systematically, it is recommended to use
the Python API.

General concepts

General layout of the main window

[image: the default extensive game at launch]
The frame presenting a game consists of two principal panels. The main
panel, to the right, displays the game graphically; in this case,
showing the game tree of a simple one-card poker game. To the left is
the player panel, which lists the players in the game; here, Fred and
Alice are the players. Note that where applicable, information is
color-coded to match the colors assigned to the players: Fred’s moves
and payoffs are all presented in red, and Alice’s in blue. The color
assigned to a player can be changed by clicking on the color icon
located to the left of the player’s name on the player panel. Player
names are edited by clicking on the player’s name, and editing the
name in the text control that appears.

Two additional panels are available. Selecting
Tools ‣ Dominance toggles
the display of an additional toolbar across the top of the window.
This toolbar controls the indication and elimination of actions or
strategies that are dominated. The use of this toolbar is discussed in
Investigating dominated strategies and actions.

Selecting View ‣ Profiles,
or clicking the show profiles icon on the
toolbar, toggles the display of the list of computed strategy profiles
on the game. More on the way the interface handles the computation of
Nash equilibria and other kinds of strategy profiles is presented
in Computing Nash equilibria.

Payoffs and probabilities in Gambit

Gambit stores all payoffs in games in an arbitrary-precision format.
Payoffs may be entered as decimal numbers with arbitrarily many
decimal places. In addition, Gambit supports representing payoffs
using rational numbers. So, for example, in any place in which a
payoff may appear, either an outcome of an extensive game or a payoff
entry in a strategic game, the payoff one-tenth may be entered either
as .1 or 1/10.

The advantage of this format is that, in certain circumstances, Gambit
may be able to compute equilibria exactly. In addition, some methods
for computing equilibria construct good numerical approximations to
equilibrium points. For these methods, the computed equilibria are
stored in floating-point format. To increase the number of decimal
places shown for these profiles, click the increase decimals icon . To
decrease the number of decimal places shown, click the decrease
decimals icon .

Increasing or decreasing the number of decimals displayed in
computed strategy profiles will not have any effect on the display of
outcome payoffs in the game itself, since those are stored in
arbitrary precision.

A word about file formats

The graphical interface manipulates several different file formats for
representing games. This section gives a quick overview of those
formats.

Gambit has for many years supported two file formats for representing
games, one for extensive games (typically using the filename extension
.efg) and one for strategic games (typically using the filename
extension .nfg). These file formats are recognized by all Gambit
versions dating back to release 0.94 in 1995. (Users interested in the
details of these file formats can consult Game representation formats
for more information.)

Beginning with release 2005.12.xx, the graphical interface now reads
and writes a new file format, which is referred to as a”Gambit
workbook.” This extended file format stores not only the
representation of the game, but also additional information, including
parameters for laying out the game tree, the colors assigned to
players, any equilibria or other analysis done on the game, and so
forth. So, for example, the workbook file can be used to store the
analysis of a game and then return to it. These files by convention
end in the extension .gbt.

The graphical interface will read files in all three formats: .gbt,
.efg, and .nfg. The “Save” and “Save as” commands, however, always
save in the Gambit workbook (.gbt) format. To save the game itself as
an extensive (.efg) or strategic (.nfg) game, use the items on the
“Export” submenu of the “File” menu. This is useful in interfacing
with older versions of Gambit, with other tools which read and write
those formats, and in using the underlying Gambit analysis command-
line tools directly, as those programs accept .efg or .nfg game files.
Users primarily interested in using Gambit solely via the graphical
interface are encouraged to use the workbook (.gbt) format.

As it is a new format, the Gambit workbook format is still under
development and may change in details. It is intended that newer
versions of the graphical interface will still be able to read
workbook files written in older formats.

Extensive games

The graphical interface provides a flexible set of operations for
constructing and editing general extensive games. These are outlined
below.

Creating a new extensive game

To create a new extensive game, select
File ‣ New ‣ Extensive game, or
click on the new extensive game icon . The extensive game created is a
trivial game with two players, named by default
Player 1 and Player 2,
with one node, which is both the root and terminal node of the game.
In addition, extensive games have a special player labeled
Chance,
which is used to represent random events not controlled by any of the
strategic players in the game.

Adding moves

There are two options for adding moves to a tree: drag-and-drop
and the Insert move dialog.

	Moves can be added to the
tree using a drag-and-drop idiom. From the player list window, drag
the player icon located to the left of the player who will have the
move to any terminal node in the game tree. The tree will be extended
with a new move for that player, with two actions at the new move.
Adding a move for the chance player is done the same way, except the
dice icon appearing to the left of the chance player in the player
list window is used instead of the player icon. For the chance player,
the two actions created will each be given a probability weight of
one-half. If the desired move has more than two actions, additional
actions can be added by dragging the same player’s icon to the move
node; this will add one action to the move each time this is done.

[image: insert move dialog]

	Click on any terminal node in
the tree, and select Edit ‣ Insert move
to display the insert move dialog.
The dialog is intended to read like a sentence:
	The first control specifies the player who will make the move. The
move can be assigned to a new player by specifying
Insert move for a new player here.

	The second control selects the information set to which to add the
move. To create the move in a new information set, select
at a new information set for this control.

	The third control sets the number of actions. This control is
disabled unless the second control is set to
at a new information set.
Otherwise, it is set automatically to the number of actions at
the selected information set.

The two methods can be useful in different contexts.
The drag-and-drop approach
is a bit quicker to use, especially when creating trees that have few
actions at each move. The dialog approach is a bit more flexible, in
that a move can be added for a new, as-yet-undefined player, a move
can be added directly into an existing information set, and a move can
be immediately given more than two actions.

Copying and moving subtrees

Many extensive games have structures that appear in multiple parts of
the tree. It is often efficient to create the structure once, and then
copy it as needed elsewhere.

Gambit provides a convenient idiom for this. Clicking on any
nonterminal node and dragging to any terminal node implements a move
operation, which moves the entire subtree rooted at the original,
nonterminal node to the terminal node.

To turn the operation into a copy operation:

	On Windows and Linux systems, hold down the Ctrl key during
the operation.

	On OS X, hold down the Cmd key when starting the
drag operation, then release prior to dropping.

The entire subtree rooted at the original node is copied,
starting at the terminal node. In this copy operation, each node in
the copied image is placed in the same information set as the
corresponding node in the original subtree.

Copying a subtree to a terminal node in that subtree is also
supported. In this case, the copying operation is halted when reaching
the terminal node, to avoid an infinite loop. Thus, this feature
can also be helpful in constructing multiple-stage games.

Removing parts of a game tree

Two deletion operations are supported on extensive games. To delete
the entire subtree rooted at a node, click on that node and select
Edit ‣ Delete subtree.

To delete an individual move from the game, click on one of the direct
children of that node, and select
Edit ‣ Delete parent. This operation
deletes the parent node, as well as all the children of the parent
other than the selected node. The selected child node now takes the
place of the parent node in the tree.

Managing information sets

Gambit provides several methods to help manage the information
structure in an extensive game.

When building a tree, new moves can be placed in a given information
set using the Insert move dialog.
Additionally, new moves can be
created using the drag-and-drop idiom by holding down the Shift
key and dragging a node in the tree. During the drag operation, the
cursor changes to the move icon . Dropping the move icon on another
node places the target node in the same information set as the node
where the drag operation began.

[image: node properties dialog]
The information set to which a node belongs can also be set by
selecting Edit ‣ Node. This displays the
node properties dialog.
The Information set dropdown defaults
to the current information set to which the node belongs, and contains
a list of all other information sets in the game which are compatible
with the node, that is, which have the same number of
actions. Additionally, the node can be moved to a new, singleton
information set by setting this dropdown to the New
information set entry.

When building out a game tree using the drag-and-drop approach to copying portions of the tree,
the nodes created in
the copy of the subtree remain in the same information set as the
corresponding nodes in the original subtree. In many cases, though,
these trees differ in the information available to some or all of the
players. To help speed the process of adjusting information sets in
bulk, Gambit offers a “reveal” operation, which breaks information
sets based on the action taken at a particular node. Click on a node
at which the action taken is to be made known subsequently to other
players, and select Edit ‣ Reveal. This displays a
dialog listing the players in the game. Check the boxes next to the
players who observe the outcome of the move at the node, and click
OK. The information sets at nodes below the selected one
are adjusted based on the action selected at this node.

This is an operation that is easier to see than the explain. See the
poker tutorial
(flash version [http://www.gambit-project.org/doc/tutorials/poker.swf];
PDF version [http://www.gambit-project.org/doc/tutorials/poker.pdf])
for an application of the
revelation operation in conjunction with the tree-copy operation.

Note

The reveal operation only has an effect at the time it is done. In
particular, it does not enforce the separation of information sets
based on this information during subsequent editing of the game.

Outcomes and payoffs

Gambit supports the specification of payoffs at any node in a game
tree, whether terminal or not. Each node is created with
no outcome attached; in this case, the payoff at each node is zero to
all players. These are indicated in the game tree by the presence of
a (u) in light grey to the right of a node.

To set the payoffs at a node, double-click on the
(u) to the right
of the node. This creates a new outcome at the node, with payoffs of
zero for all players, and displays an editor to set the payoff of the
first player.

The payoff to a player for an outcome can be edited by double-clicking
on the payoff entry. This action creates a text edit control in which
the payoff to that player can be modified. Edits to the payoff can be
accepted by pressing the Enter key. In addition, accepting the
payoff by pressing the Tab key both stores the changes to the
player’s payoff, and advances the editor to the payoff for the next
player at that outcome.

Outcomes may also be moved or copied using a drag-and-drop idiom.
Left-clicking and dragging an outcome to another node moves the
outcome from the original node to the target node. Copying an outcome
may be accomplished by doing this same action while holding down the
Control (Ctrl) key on the keyboard.

When using the copy idiom described above, the action assigns the same
outcome to both the involved nodes. Therefore, if subsequently the
payoffs of the outcome are edited, the payoffs at both nodes will be
modified. To copy the outcome in such a way that the outcome at the
target node is a different outcome from the one at the source, but
with the same payoffs, hold down the Shift key instead of the
Control key while dragging.

To remove an outcome from a node, click on the node, and
select Edit ‣ Remove outcome.

Formatting and labeling the tree

Gambit offers some options for customizing the display of game trees.

Labels on nodes and branches

The information displayed at the nodes and on the branches of the tree
can be configured by selecting Format ‣ Labels,
which displays the tree labels dialog.

[image: tree labels dialog]
Above and below each node, the following information can be displayed:

	No label

	The space is left blank.

	The node’s label

	The text label assigned to the node. (This is the
default labeling above each node.)

	The player’s name

	The name of the player making the move at the node.

	The information set’s label

	The name of the information set to
which the node belongs.

	The information set’s number

	A unique identifier of the information
set, in the form player number:information set number. (This is the
default labeling below each node.)

	The realization probability

	The probability the node is reached.
(Only displayed when a behavior strategy is selected to be displayed
on the tree.)

	The belief probability

	The probability a player assigns to being at
the node, conditional on reaching the information set. (Only displayed
when a behavior strategy is selected to be displayed on the tree.)

	The payoff of reaching the node

	The expected payoff to the player
making the choice at the node, conditional on reaching the node. (Only
displayed when a behavior strategy is selected to be displayed on the
tree.)

Above and below each branch, the following information can be
displayed:

	No label

	The space is left blank.

	The name of the action

	The name of the action taken on the branch.
(This it the default labeling above the branch.)

	The probability the action is played

	For chance actions, the
probability the branch is taken; this is always displayed. For player
actions, the probability the action is taken in the selected profile
(only displayed when a behavior strategy is selected to be displayed
on the tree). In some cases, behavior strategies do not fully specify
behavior sufficiently far off the equilibrium path; in such cases, an
asterisk is shown for such action probabilities. (This is the default
labeling below each branch.)

	The value of the action

	The expected payoff to the player of taking
the action, conditional on reaching the information set. (Only
displayed when a behavior strategy is selected to be displayed on the
tree.)

Controlling the layout of the tree

Gambit implements an automatic system for layout out game trees, which
provides generally good results for most games. These can be adjusted
by selecting Format ‣ Layout.
The layout parameters are organized on three tabs.

[image: layout options dialog, nodes tab]
The first tab,
labeled Nodes, controls the size, location, and
rendering of nodes in the tree.
Nodes can be indicated using one
of five tokens: a horizontal line (the “traditional” Gambit style from
previous versions), a box, a diamond, an unfilled circle, and a filled
circle). These can be set independently to distinguish chance and
terminal nodes from player nodes.

The sizing of nodes can be configured for best results. Gambit styling
from previous versions used the horizontal line tokens with relatively
long lines; when using the other tokens, smaller node sizes often look
better.

[image: layout options dialog, branches tab]
The layout algorithm is based upon identifying the location of
terminal nodes. The vertical spacing between these nodes can be set;
making this value larger will tend to give the tree a larger vertical
extent.

The second tab,
labeled Branches, controls the display of the branches
of the tree.
The traditional Gambit way of drawing branches is a “fork-tine”
approach, in which there is a flat part at the end of each branch at
which labels are displayed. Alternatively, branches can be drawn
directly between nodes by setting Draw branches
to using straight
lines between nodes. With this setting, labels are now displayed at
points along the (usually) diagonal branches. Labels are usually shown
horizontally; however, they can be drawn rotated parallel to the
branches by setting Draw labels to rotated.

The rotated label drawing is experimental, and does not always look
good on screen.

[image: layout options dialog, information sets tab]
The length used for branches and their tines, if drawn, can be
configured. Longer branch and tine lengths give more space for longer
labels to be drawn, at the cost of giving the tree a larger horizontal
extent.

Finally, display of the information sets in the game is configured
under the tab labeled Information sets.
Members of information sets are
by default connected using a “bubble” similar to that drawn in
textbook diagrams of games. The can be modified to use a single line
to connect nodes in the same information set. In conjunction with
using lines for nodes, this can sometimes lead to a more compact
representation of a tree where there are many information sets at the
same horizontal location.

The layout of the tree may be such that members of the same
information set appear at different horizontal locations in the tree.
In such a case, by default, Gambit draws a horizontal arrow pointing
rightward or leftward to indicate the continuation of the information
set, as illustrated in the diagram nearby.

[image: information sets spanning multiple levels]
These connections can be disabled by setting
Connect members of information
sets to only when on the same level.
In addition, drawing information
set indicators can be disabled entirely by setting this to invisibly
(don’t draw indicators).

Selecting fonts and colors

To select the font used to draw the labels in the tree, select
Format ‣ Font.
The standard font selection dialog for the operating
system is displayed, showing the fonts available on the system. Since
available fonts vary across systems, when opening a workbook on a
system different from the system on which it was saved, Gambit tries
to match the font style as closely as possible when the original font
is not available.

The color-coding for each player can be changed by clicking on the
color icon to the left of the corresponding player.

Strategic games

Gambit has full support for constructing and manipulating arbitrary
N-player strategic (also known as normal form) games.

For extensive games, Gambit automatically computes the corresponding
reduced strategic game. To view the reduced strategic game
corresponding to an extensive game, select
View ‣ Strategic game or
click the strategic game table icon on the toolbar.

The strategic games computed by Gambit as the reduced strategic game
of an extensive game cannot be modified directly. Instead, edit the
original extensive game; Gambit automatically recomputes the strategic
game after any changes to the extensive game.

Strategic games may also be input directly. To create a new strategic
game, select File ‣ New ‣ Strategic game,
or click the new strategic game icon on the toolbar.

Navigating a strategic game

Gambit displays a strategic game in table form. All players are
assigned to be either row players or column players, and the payoffs
for each entry in the strategic game table correspond to the payoffs
corresponding to the situation in which all the row players play the
strategy specified on that row for them, and all the column players
play the strategy specified on that column for them.

[image: a prisoner's dilemma game]
For games with two players, this presentation is by default configured
to be similar to the standard presenation of strategic games as
tables, in which one player is assigned to be the “row” player and the
other the “column” player. However, Gambit permits a more flexible
assignment, in which multiple players can be assigned to the rows and
multiple players to the columns. This is of particular use for games
with more than two players. In print, a three-player strategic game is
usually presented as a collection of tables, with one player choosing
the row, the second the column, and the third the table. Gambit
presents such games by hierarchially listing the strategies of one or
more players on both rows and columns.

The hierarchical presentation of the table is similar to that of a
contingency table in a spreadsheet application.
Here, Alice,
shown in red, has her strategies listed on the rows of the table, and
Bob, shown in blue, has his strategies listed on the columns of the
table.

The assignment of players to row and column roles is fully
customizable. To change the assignment of a player, drag the person
icon appearing to the left of the player’s name on the player toolbar
to either of the areas in the payoff table displaying the strategy
labels.

[image: a prisoner's dilemma game, with contingencies in list style]
For example, dragging the player icon from the left of Bob’s name in
the list of players and dropping it on the right side of Alice’s
strategy label column changes the display of the game as in
Here, the strategies are shown in a
hierarchical format, enumerating the outcomes of the game first by
Alice’s (red) strategy choice, then by Bob’s (blue) strategy choice.

Alternatively, the game can be displayed by listing the outcomes with
Bob’s strategy choice first, then Alice’s. Drag Bob’s player icon and
drop it on the left side of Alice’s strategy choices, and the game
display changes to organize the outcomes first by Bob’s action, then
by Alice’s.

The same dragging operation can be used to assign players to the
columns. Assigning multiple players to the columns gives the same
hierarchical presentation of those players’ strategies. Dropping a
player above another player’s strategy labels assigns him to a higher
level of the column player hierarchy; dropping a player below another
player’s strategy labels assigns him to a lower level of the column
player hierarchy.

[image: another view of the same prisoner's dilemma game.]
As the assignment of players in the row and column
hierarchies changes, the ordering of the payoffs in each cell of the
table also changes. In all cases, the color-coding of the entries
identifies the player to whom each payoff corresponds. The ordering
convention is chosen so that for a two player game in which one player
is a row player and the other a column player, the row player’s payoff
is shown first, followed by the column player, which is the most
common convention in print.

Adding players and strategies

To add an additional player to the game, use the menu item
Edit ‣ Add player,
or the corresponding toolbar icon . The newly created player
has one strategy, by default labeled with the number 1.

Gambit supports arbitrary numbers of strategies for each player. To
add a new strategy for a player, click the new strategy icon located
to the left of that player’s name.

To edit the names of strategies, click on any cell in the strategic
game table where the strategy label appears, and edit the label using
the edit control.

Editing payoffs

Payoffs for each player are specified individually for each
contingency, or collection of strategies, in the game. To edit any
payoff in the table, click that cell in the table and edit the payoff.
Pressing the Escape key (Esc) cancels any editing of the payoff
and restores the previous value.

To speed entry of many payoffs, as is typical when creating a new
game, accepting a payoff entry via the Tab key automatically moves
the edit control to the next cell to the right. If the payoff is the
last payoff listed in a row of the table, the edit control wraps
around to the first payoff in the next row; if the payoff is in the
last row, the edit control wraps around to the first payoff in the
first row. So a strategic game payoff table can be quickly entered by
clicking on the first payoff in the upper-left cell of the table,
inputting the payoff for the first (row) player, pressing the Tab
key, inputting the payoff for the second (column) player, pressing the
Tab key, and so forth, until all the payoff entries in the table
have been filled.

Investigating dominated strategies and actions

Selecting Tools ‣ Dominance
toggles the appearance of a toolbar which
can be used to investigate the structure of dominated strategies and
actions.

Dominated actions in extensive game

In extensive games, the dominance toolbar controls the elimination of actions which are conditionally dominated.

[image: the poker game, with the dominance toolbar shown]
Actions may be eliminated based on two criteria:

	Strict dominance

	The action is always worse than another,
regardless of beliefs at the information set;

	Strict or weak dominance

	There is another action at the information
set that is always at least as good as the action, and strictly better
in some cases.

[image: the poker game, with the dominated action eliminated]
For example, in the poker game, it is strictly dominated for Fred to
choose Fold after Red. Clicking the next level icon
removes the dominated action from the game display.

The tree layout remains unchanged, including nodes which can only be
reached using actions which have been eliminated. To compress the tree
to remove the unreachable nodes, check the box labeled
Show only
reachable nodes.

For this game, no further actions can be eliminated. In general,
further steps of elimination can be done by again clicking the next
level icon. The toolbar keeps track of the number of levels of
elimination currently shown; the previous level icon moves up one
level of elimination.

[image: the poker game, with only reachable actions shown]
The elimination of multiple levels can be automated using the fast
forward icon , which iteratively eliminates dominated actions until no
further actions can be eliminated. The rewind icon restores the
display to the full game.

Dominated strategies in strategic games

The dominance toolbar operates in strategic games in the same way as
the in the extensive game. Strategies can be eliminated iteratively
based on whether they are strictly or weakly dominated.

[image: the prisoner's dilemma example, with dominated strategies indicated]
When the dominance toolbar is shown, the strategic game table contains
indicators of strategies that are dominated.
In the prisoner’s dilemma, the Cooperate strategy is strictly
dominated for both players. This strict dominance is indicated by the
solid “X” drawn across the corresponding strategy labels for both
players. In addition, the payoffs corresponding to the dominated
strategies are also drawn with a solid “X” across them. Thus, any
contingency in the table containing at least one “X” is a contingency
that can only be reached by at least one player playing a strategy
that is dominated.

Strategies that are weakly dominated are similarly indicated, except
the “X” shape is drawn using a thinner, dashed line instead of the
thick, solid line.

[image: the prisoner's dilemma example, with dominated strategies removed]
Clicking the next level icon removes the strictly dominated strategies
from the display.

Computing Nash equilibria

Gambit offers broad support for computing Nash equilibria in both
extensive and strategic games. To access the provided algorithms for
computing equilibria, select Tools ‣ Equilibrium,
or click on the
calculate icon on the toolbar.

Selecting the method of computing equilibria

The process of computing Nash equilibria in extensive and strategic
games is similar. This section focuses on the case of extensive games;
the process for strategic games is analogous, except the extensive
game-specific features, such as displaying the profiles on the game
tree, are not applicable.

Gambit provides guidance on the options for computing Nash equilibria
in a dialog.
The methods applicable to a particular game depend on three criteria:
the number of equilibria to compute, whether the computation is to be
done on the extensive or strategic games, and on details of the game,
such as whether the game has two players or more, and whether the game
is constant-sum.

[image: dialog for computing Nash equilibria]
The first step in finding equilibria is to specify how many equilibria
are to be found. Some algorithms for computing equilibria are adapted
to finding a single equilibrium, while others attempt to compute the
whole equilibrium set. The first drop-down in the dialog specifies how
many equilibria to compute. In this drop-down there are options for
as many equilibria as possible and, for two-player games,
all equilibria. For some games, there exist algorithms which will
compute many equilibria (relatively) efficiently, but are not
guaranteed to find all equilibria.

To simplify this process of choosing the method to compute equilibria
in the second drop-down, Gambit provides for any game “recommended”
methods for computing one, some, and all Nash equilibria,
respectively. These methods are selected based on experience as to the
efficiency and reliability of the methods, and should generally work
well on most games. For more control over the process, the user can
select from the second drop-down in the dialog one of the appropriate
methods for computing equilibria. This list only shows the methods
which are appropriate for the game, given the selection of how many
equilibria to compute. More details on these methods are contained
in Command-line tools.

[image: dialog for monitoring computation of equilibria]
Finally, for extensive games, there is an option of whether to use the
extensive or strategic game for computation. In general, computation
using the extensive game is preferred, since it is often a
significantly more compact representation of the strategic
characeteristics of the game than the reduced strategic game is.

For even moderate sized games, computation of equilibrium can be a
time-intensive process. Gambit runs all computations in the
background, and displays a dialog
showing all equilibria computed so
far. The computation can be cancelled at any time by clicking on the
cancel icon , which terminates the computation but keeps any
equilibria computed.

Viewing computed profiles in the game

After computing equilibria, a panel showing the list of equilibria
computed is displayed automatically. The display of this panel can be
toggled by selecting View ‣ Profiles,
or clicking on the playing card
icon on the toolbar.

[image: poker game with the unique equilibrium displayed]
This game has a unique equilibrium in which Fred raises after Red with
probability one, and raises with probability one-third after Black.
Alice, at her only information set, plays meet with probability two-
thirds and raise with probability one-third.

This equilibrium is displayed in a table in the profiles panel. If
more than one equilibrium is found, this panel lists all equilibria
found. Equilibria computed are grouped by separate computational runs;
computing equilibria using a different method (or different settings)
will add a second list of profiles. The list of profiles displayed is
selected using the drop-down at the top left of the profiles panel; in
the screenshot, it is set to
Profiles 1. A
brief description of the method used to compute the equilibria is
listed across the top of the profiles panel.

The currently selected equilibrium is shown in bold in the profiles
listing, and information about this equilibrium is displayed in the
extensive game. In the figure, the probabilities of selecting each
action are displayed below each branch of the tree. (This is the
default Gambit setting; see Controlling the layout of the tree
for configuring the labeling of trees.)
Each branch of the tree also shows a black line, the length of which
is proportional to the probability with which the action is played.

[image: poker game with the beliefs at Alice's top node]
Clicking on any node in the tree displays additional information about
the profile at that node.
The player panel displays
information relevant to the selected node, including the payoff to all players
conditional on reaching the node, as well as information about Alice’s
beliefs at the node.

The computed profiles can also be viewed in the reduced strategic
game. Clicking on the strategic game icon changes the view to the
reduced strategic form of the game, and shows the equilibrium profiles
converted to mixed strategies in the strategic game.

Computing quantal response equilibria

Gambit provides methods for computing the logit quantal response
equilibrium correspondence for extensive games [McKPal98]
and strategic games [McKPal95],
using the tracing method of [Tur05].

[image: quantal response equilibria]
To compute the correspondence, select Tools ‣ Qre.
If viewing an
extensive game, the agent quantal response equilibrium correspondence
is computed; if viewing a strategic game (including the reduced
strategic game derived from an extensive game), the correspondence is
computed in mixed strategies.

The computed correspondence values can be saved to a CSV (comma-
separated values) file by clicking the button labeled
Save correspondence to .csv file.
This format is suitable for reading by a
spreadsheet or graphing application.

Quantal response equilibria in strategic games (experimental)

There is an experimental graphing interface for quantal response
equilibria in strategic games.
The graph by default plots the probabilities of all strategies, color-
coded by player, as a function of the lambda parameter. The lambda
values on the horizontal axis are plotted using a sigmoid
transformation; the Graph scaling value controls the shape of this
transformation. Lower values of the scaling give more graph space to
lower values of lambda; higher values of the scaling give more space
to higher values of lambda.

[image: quantal response equilibria graphing]
The strategies graphed are indicated in the panel at the left of the
window. Clicking on the checkbox next to a strategy toggles whether it
is displayed in the graph.

The data points computed in the correspondence can be viewed (as in
the extensive game example above) by clicking on the show data icon on
the toolbar. The data points can be saved to a CSV file by clicking on
the .

To zoom in on a portion of the graph of interest, hold down the left
mouse button and drag a rectangle on the graph. The plot window zooms
in on the portion of the graph selected by that rectangle. To restore
the graph view to the full graph, click on the zoom to fit icon .

To print the graph as shown, click on the print icon . Note that this
is very experimental, and the output may not be very satisfactory yet.

Printing and exporting games

Gambit supports (almost) WYSIWYG (what you see is what you get) output
of both extensive and strategic games, both to a printer and to
several graphical formats. For all of these operations, the game is
drawn exactly as currently displayed on the screen, including whether
the extensive or strategic representation is used, the layout, colors
for players, dominance and probability indicators, and so forth.

Printing a game

To print the game, press Ctrl-P, select
File ‣ Print, or click
the printer icon on the toolbar. The game is scaled so that the
printout fits on one page, while maintaining the same ratio of
horizontal to vertical size; that is, the scaling factor is the same
in both horizontal and vertical dimensions.

Note that especially for extensive games, one dimension of the tree is
much larger than the other. Typically, the extent of the tree
vertically is much greater than its horizontal extent. Because the
printout is scaled to fit on one page, printing such a tree will
generally result in what appears to be a thin line running vertically
down the center of the page. This is in fact the tree, shrunk so the
large vertical dimension fits on the page, meaning that the horizontal
dimension, scaled at the same ratio, becomes very tiny.

Saving to a graphics file

Gambit supports export to five graphical file formats:

	Windows bitmaps (.bmp)

	JPEG, a lossy compressed format (.jpg , .jpeg)

	PNG, a lossless compressed format (.png); these are similar to
GIFs

	Encapsulated PostScript (.ps)

	Scalable vector graphics (.svg)

To export a game to one of these formats, select
File ‣ Export, and
select the corresponding menu entry.

The Windows bitmap and PNG formats are generally recommended for
export, as they both are lossless formats, which will reproduce the
game image exactly as in Gambit. PNG files use a lossless compression
algorithm, so they are typically much smaller than the Windows bitmap
for the same game. Not all image viewing and manipulation tools handle
PNG files; in those cases, use the Windows bitmap output instead. JPEG
files use a compression algorithm that only approximates the original
version, which often makes it ill-suited for use in saving game
images, since it often leads to “blocking” in the image file.

For all three of these formats, the dimensions of the exported graphic
are determined by the dimensions of the game as drawn on screen. Image
export is only supported for games which are less than about 65000
pixels in either the horizontal or vertical dimensions. This is
unlikely to be a practical problem, since such games are so large they
usually cannot be drawn in such a way that a human can make sense of
them.

Encapsulated PostScript output is generally useful for inclusion in
LaTeX and other scientific document preparation systems. This is a
vector-based output, and thus can be rescaled much more effectively
than the other output formats.

[image: Chadwick]
Gambit: Software Tools for Game Theory

Command-line tools

Gambit provides command-line interfaces for each method for computing
Nash equilibria. These are suitable for scripting or calling from
other programs. This chapter describes the use of these programs.
For a general overview of methods for computing equilibria,
see the survey of [McKMcL96].

The graphical interface also provides a frontend for calling these
programs and evaluating their output. Direct use of the command-line
programs is intended for advanced users and applications.

These programs take an extensive or strategic game file, which can be
specified on the command line or piped via standard input, and output
a list of equilibria computed. The default output format is to present
equilibria computed as a list of comma-separated probabilities,
preceded by the tag NE. For mixed strategy profiles, the
probabilities are sorted lexicographically by player, then by
strategy. For behavior strategy profiles, the probabilites are sorted
by player, then information set, then action number, where the
information sets for a player are sorted by the order in which they
are encountered in a depth-first traversal of the game tree.
Many programs take an option -D, which, if specified, instead prints
a more verbose, human-friendly description of each strategy profile
computed.

Many of the programs optionally output additional information
about the operation of the algorithm. These outputs have other,
program-specific tags, described in the individual program
documentation.

gambit-enumpure: Enumerate pure-strategy equilibria of a game

gambit-enumpure reads a game on standard input and searches for
pure-strategy Nash equilibria.

Changed in version 14.0.2: The effect of the -S switch is now purely cosmetic, determining
how the equilibria computed are represented in the
output. Previously, -S computed using the strategic game; if this
was not specified for an extensive game, the agent form equilibria
were returned.

	
-S

	Report equilibria in reduced strategic form strategies, even if the
game is an extensive game. By default, if passed an extensive
game, the output will be in behavior strategies. Specifying this switch
does not imply any change in operation internally, as pure-strategy
equilibria are defined in terms of reduced strategic form
strategies.

	
-D

	
New in version 14.0.2.

The default output format for computed equilibria is a
comma-separated list of strategy or action probabilities, suitable
for postprocessing by automated tools. Specifying -D instead
causes the program to output greater detail on each equilbrium
profile computed.

	
-A

	
New in version 14.0.2.

Report agent form equilibria, that is, equilibria which consider
only deviations at one information set. Only has an effect for
extensive games, as strategic games have only one information set
per player.

	
-P

	By default, the program computes all pure-strategy Nash
equilibria in an extensive game. This switch instructs the program to
find only pure-strategy Nash equilibria which are subgame perfect.
(This has no effect for strategic games, since there are no proper
subgames of a strategic game.)

	
-h

	Prints a help message listing the available options.

	
-q

	Suppresses printing of the banner at program launch.

Computing the pure-strategy equilibria of extensive game e02.efg, the example in Figure 2 of Selten
(International Journal of Game Theory, 1975):

$ gambit-enumpure e02.efg
Search for Nash equilibria in pure strategies
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

NE,1,0,0,0,1,0

With the -S switch, the set of equilibria returned is the same,
except expressed in strategic game strategies rather than behavior
strategies:

$ gambit-enumpure -S e02.efg
Search for Nash equilibria in pure strategies
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

NE,1,0,0,1,0

The -A switch considers only behavior strategy profiles where there
is no way for a player to improve his payoff by changing action at
only one information set; therefore the set of solutions is larger:

$ gambit-enumpure -A e02.efg
Search for Nash equilibria in pure strategies
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

NE,1,0,1,0,1,0
NE,1,0,1,0,0,1
NE,1,0,0,1,1,0

gambit-enumpoly: Compute equilibria of a game using polynomial systems of equations

gambit-enumpoly reads a game on standard input and
computes Nash equilibria by solving systems of polynomial equations
and inequalities.

This program searches for all Nash equilibria in a strategic game
using a support enumeration approach. This approach computes all the
supports which could, in principle, be the support of a Nash
equilibrium, and then searches for a totally mixed equilibrium on that
support by solving a system of polynomial equalities and inequalities
formed by the Nash equilibrium conditions. The ordering of the
supports is done in such a way as to maximize use of previously
computed information, making it suited to the computation of all Nash
equilibria.

When the verbose switch -v is used, the program outputs each support
as it is considered. The supports are presented as a comma-separated
list of binary strings, where each entry represents one player. The
digit 1 represents a strategy which is present in the support, and the
digit 0 represents a strategy which is not present. Each candidate
support is printed with the label “candidate,”.

Note that the subroutine to compute a solution to the system of
polynomial equations and inequalities will fail in degenerate cases.
When the verbose switch -v is used, these supports are identified on
standard output with the label “singular,”. It is possible that there
exist equilibria, often a connected component of equilibria, on these
singular supports.

	
-d

	Express all output using decimal representations with the specified
number of digits.

	
-h

	Prints a help message listing the available options.

	
-H

	By default, the program uses an enumeration method designed to
visit as few supports as possible in searching for all equilibria.
With this switch, the program uses a heuristic search method based on
Porter, Nudelman, and Shoham [PNS04], which is designed to minimize the
time until the first equilibrium is found. This switch only has an
effect when solving strategic games.

	
-S

	By default, the program uses behavior strategies for extensive
games; this switch instructs the program to use reduced strategic game
strategies for extensive games. (This has no effect for strategic
games, since a strategic game is its own reduced strategic game.)

	
-q

	Suppresses printing of the banner at program launch.

	
-v

	Sets verbose mode. In verbose mode, supports are printed on
standard output with the label “candidate” as they are considered, and
singular supports are identified with the label “singular.” By
default, no information about supports is printed.

Computing equilbria of the extensive game e01.efg, the example in Figure 1 of Selten
(International Journal of Game Theory, 1975) sometimes called
“Selten’s horse”:

$ gambit-enumpoly e01.efg
Compute Nash equilibria by solving polynomial systems
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
Heuristic search implementation Copyright (C) 2006, Litao Wei
This is free software, distributed under the GNU GPL

NE,0.000000,1.000000,0.333333,0.666667,1.000000,0.000000
NE,1.000000,0.000000,1.000000,0.000000,0.250000,0.750000
NE,1.000000,0.000000,1.000000,0.000000,0.000000,0.000000
NE,0.000000,1.000000,0.000000,0.000000,1.000000,0.000000

gambit-enummixed: Enumerate equilibria in a two-player game

gambit-enummixed reads a two-player game on standard input and
computes Nash equilibria using extreme point enumeration.

In a two-player strategic game, the set of Nash equilibria can be expressed
as the union of convex sets. This program generates all the extreme
points of those convex sets. (Mangasarian [Man64])
This is a superset of the points generated by the path-following
procedure of Lemke and Howson (see gambit-lcp: Compute equilibria in a two-player game via linear complementarity). It was
shown by Shapley [Sha74] that there are equilibria not accessible via
the method in gambit-lcp: Compute equilibria in a two-player game via linear complementarity, whereas the output of
gambit-enummixed is guaranteed to return all the extreme
points.

	
-d

	By default, this program computes using exact
rational arithmetic. Since the extreme points computed by this method
are guaranteed to be rational when the payoffs in the game are
rational, this permits exact computation of the equilibrium set.
Computation using rational arithmetic is in general slow, however. For
most games, acceptable results can be obtained by computing using the
computer’s native floating-point arithmetic. Using this flag enables
computation in floating-point, and expresses all output using decimal
representations with the specified number of digits.

	
-D

	Since all Nash equilibria involve only strategies which survive
iterative elimination of strictly dominated strategies, the program
carries out the elimination automatically prior to computation.
This is recommended, since it almost always results in superior
performance.
Specifying -D skips the elimination step and performs the
enumeration on the full game.

	
-c

	The program outputs the extreme equilibria as it finds them,
prefixed by the tag NE . If this option is specified, once all extreme
equilbria are identified, the program computes the convex sets which
make up the set of equilibria. The program then additionally outputs
each convex set, prefixed by convex-N , where N indexes the set. The
set of all equilibria, then, is the union of these convex sets.

	
-h

	Prints a help message listing the available options.

	
-q

	Suppresses printing of the banner at program launch.

	
-L

	Use lrslib [http://cgm.cs.mcgill.ca/~avis/C/lrs.html] by David Avis
to carry out the enumeration process. This is an experimental
feature that has not been widely tested.

Computing the equilibria, in mixed strategies, of e02.nfg, the reduced strategic form of the example
in Figure 2 of Selten (International Journal of Game Theory,
1975):

$ gambit-enummixed e02.nfg
Compute Nash equilibria by enumerating extreme points
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
Enumeration code based on lrslib 4.2b,
Copyright (C) 1995-2005 by David Avis (avis@cs.mcgill.ca)
This is free software, distributed under the GNU GPL

NE,1,0,0,1,0
NE,1,0,0,1/2,1/2

In fact, the game e02.nfg has a one-dimensional continuum of
equilibria. This fact can be observed by examining the connectedness
information using the -c switch:

$ gambit-enummixed -c e02.nfg
Compute Nash equilibria by enumerating extreme points
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
Enumeration code based on lrslib 4.2b,
Copyright (C) 1995-2005 by David Avis (avis@cs.mcgill.ca)
This is free software, distributed under the GNU GPL

NE,1,0,0,1,0
NE,1,0,0,1/2,1/2
convex-1,1,0,0,1/2,1/2
convex-1,1,0,0,1,0

gambit-gnm: Compute Nash equilibria in a strategic game using a global Newton method

gambit-gnm reads a game on standard input and computes Nash
equilibria using a global Newton method approach developed by Govindan
and Wilson [GovWil03]. This program is a wrapper around the
Gametracer 0.2 [http://dags.stanford.edu/Games/gametracer.html]
implementation by Ben Blum and Christian Shelton.

	
-d

	Express all output using decimal representations
with the specified number of digits.

	
-h

	Prints a help message listing the available options.

	
-n

	Randomly generate the specified number of perturbation vectors.

	
-q

	Suppresses printing of the banner at program launch.

	
-s

	Specifies a file containing a list of starting points
for the algorithm. The format of the file is comma-separated values,
one mixed strategy profile per line, in the same format used for
output of equilibria (excluding the initial NE tag).

	
-v

	Show intermediate output of the algorithm. If this option is
not specified, only the equilibria found are reported.

Computing an equilibrium of e02.nfg,
the reduced strategic form of the example in Figure 2 of Selten
(International Journal of Game Theory, 1975):

$ gambit-gnm e02.nfg
Compute Nash equilibria using a global Newton method
Gametracer version 0.2, Copyright (C) 2002, Ben Blum and Christian Shelton
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

NE,1,0,2.99905e-12,0.5,0.5

Note

This is an experimental program and has not been extensively tested.

See also

gambit-ipa: Compute Nash equilibria in a strategic game using iterated polymatrix approximation.

gambit-ipa: Compute Nash equilibria in a strategic game using iterated polymatrix approximation

gambit-ipa reads a game on standard input and computes Nash
equilibria using an iterated polymatrix approximation approach
developed by Govindan and Wilson [GovWil04].
This program is a wrapper around the
Gametracer 0.2 [http://dags.stanford.edu/Games/gametracer.html]
implementation by Ben Blum and Christian Shelton.

	
-d

	Express all output using decimal representations
with the specified number of digits.

	
-h

	Prints a help message listing the available options.

	
-q

	Suppresses printing of the banner at program launch.

Computing an equilibrium of e02.nfg,
the reduced strategic form of the example in Figure 2 of Selten
(International Journal of Game Theory, 1975):

$ gambit-ipa e02.nfg
Compute Nash equilibria using iterated polymatrix approximation
Gametracer version 0.2, Copyright (C) 2002, Ben Blum and Christian Shelton
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

NE,1.000000,0.000000,0.000000,1.000000,0.000000

Note

This is an experimental program and has not been extensively tested.

See also

gambit-gnm: Compute Nash equilibria in a strategic game using a global Newton method.

gambit-lcp: Compute equilibria in a two-player game via linear complementarity

gambit-lcp reads a two-player game on standard input and
computes Nash equilibria by finding solutions to a linear
complementarity problem. For extensive games, the program uses the
sequence form representation of the extensive game, as defined by
Koller, Megiddo, and von Stengel [KolMegSte94], and applies the
algorithm developed by Lemke. For strategic games, the program using
the method of Lemke and Howson [LemHow64]. There exist strategic
games for which some equilibria cannot be located by this method; see
Shapley [Sha74].

In a two-player strategic game, the set of Nash equilibria can be expressed
as the union of convex sets. This program will find extreme points
of those convex sets. See gambit-enummixed: Enumerate equilibria in a two-player game for a method
which is guaranteed to find all the extreme points for a strategic
game.

	
-d

	By default, this program computes using exact
rational arithmetic. Since the extreme points computed by this method
are guaranteed to be rational when the payoffs in the game are
rational, this permits exact computation of the equilibrium set.
Computation using rational arithmetic is in general slow, however. For
most games, acceptable results can be obtained by computing using the
computer’s native floating-point arithmetic. Using this flag enables
computation in floating-point, and expresses all output using decimal
representations with the specified number of digits.

	
-S

	By default, the program uses behavior strategies for extensive
games; this switch instructs the program to use reduced strategic game
strategies for extensive games. (This has no effect for strategic
games, since a strategic game is its own reduced strategic game.)

	
-D

	
New in version 14.0.2.

The default output format for computed equilibria is a
comma-separated list of strategy or action probabilities, suitable
for postprocessing by automated tools. Specifying -D instead
causes the program to output greater detail on each equilbrium
profile computed.

	
-P

	By default, the program computes Nash equilibria in an extensive
game. This switch instructs the program to find only equilibria
which are subgame perfect. (This has no effect for strategic
games, since there are no proper subgames of a strategic game.)

	
-h

	Prints a help message listing the available options.

	
-q

	Suppresses printing of the banner at program launch.

Computing an equilibrium of extensive game e02.efg, the example in Figure 2 of Selten
(International Journal of Game Theory, 1975):

$ gambit-lcp e02.efg
Compute Nash equilibria by solving a linear complementarity program
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

NE,1,0,1/2,1/2,1/2,1/2

gambit-lp: Compute equilibria in a two-player constant-sum game via linear programming

gambit-lp reads a two-player constant-sum game on standard input
and computes a Nash equilibrium by solving a linear program. The
program uses the sequence form formulation of Koller, Megiddo, and von
Stengel [KolMegSte94] for extensive games.

While the set of equilibria in a two-player constant-sum strategic
game is convex, this method will only identify one of the extreme
points of that set.

	
-d

	By default, this program computes using exact
rational arithmetic. Since the extreme points computed by this method
are guaranteed to be rational when the payoffs in the game are
rational, this permits exact computation of an equilibrium.
Computation using rational arithmetic is in general slow, however. For
most games, acceptable results can be obtained by computing using the
computer’s native floating-point arithmetic. Using this flag enables
computation in floating-point, and expresses all output using decimal
representations with the specified number of digits.

	
-S

	By default, the program uses behavior strategies for extensive
games; this switch instructs the program to use reduced strategic game
strategies for extensive games. (This has no effect for strategic
games, since a strategic game is its own reduced strategic game.)

	
-D

	
New in version 14.0.3.

The default output format for computed equilibria is a
comma-separated list of strategy or action probabilities, suitable
for postprocessing by automated tools. Specifying -D instead
causes the program to output greater detail on each equilbrium
profile computed.

	
-P

	By default, the program computes Nash equilibria in an extensive
game. This switch instructs the program to find only equilibria
which are subgame perfect. (This has no effect for strategic
games, since there are no proper subgames of a strategic game.)

	
-h

	Prints a help message listing the available options.

	
-q

	Suppresses printing of the banner at program launch.

Computing an equilibrium of the game 2x2const.nfg, a game with two players with two
strategies each, with a unique equilibrium in mixed strategies:

$ gambit-lp 2x2const.nfg
Compute Nash equilibria by solving a linear program
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

NE,1/3,2/3,1/3,2/3

gambit-liap: Compute Nash equilibria using function minimization

gambit-liap reads a game on standard input and computes
approximate Nash equilibria using a function minimization approach.

This procedure searches for equilibria by generating random starting
points and using conjugate gradient descent to minimize the Lyapunov
function of the game. This function is a nonnegative function which is
zero exactly at strategy profiles which are Nash equilibria.

Note that this procedure is not globally convergent. That is, it is
not guaranteed to find all, or even any, Nash equilibria.

	
-d

	Express all output using decimal representations with the
specified number of digits.

	
-n

	Specify the number of starting points to randomly generate.

	
-h

	Prints a help message listing the available options.

	
-q

	Suppresses printing of the banner at program launch.

	
-s

	Specifies a file containing a list of starting points
for the algorithm. The format of the file is comma-separated values,
one mixed strategy profile per line, in the same format used for
output of equilibria (excluding the initial NE tag).

	
-S

	By default, the program uses behavior strategies for extensive
games; this switch instructs the program to use reduced strategic game
strategies for extensive games. (This has no effect for strategic
games, since a strategic game is its own reduced strategic game.)

	
-v

	Sets verbose mode. In verbose mode, initial points, as well as
points at which the minimization fails at a constrained local minimum
that is not a Nash equilibrium, are all output, in addition to any
equilibria found.

Computing an equilibrium in mixed strategies of e02.efg, the example in Figure 2 of Selten
(International Journal of Game Theory, 1975):

$ gambit-liap e02.nfg
Compute Nash equilibria by minimizing the Lyapunov function
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

NE, 0.998701, 0.000229, 0.001070, 0.618833, 0.381167

gambit-simpdiv: Compute equilibria via simplicial subdivision

gambit-simpdiv reads a game on standard input and computes
approximations to Nash equilibria using a simplicial subdivision
approach.

This program implements the algorithm of van der Laan, Talman, and van
Der Heyden [VTH87]. The algorithm proceeds by constructing a triangulated grid
over the space of mixed strategy profiles, and uses a path-following
method to compute an approximate fixed point. This approximate fixed
point can then be used as a starting point on a refinement of the
grid. The program continues this process with finer and finer grids
until locating a mixed strategy profile at which the maximum regret is
small.

The algorithm begins with any mixed strategy profile consisting of
rational numbers as probabilities. Without any options, the algorithm
begins with the centroid, and computes one Nash equilibrium. To
attempt to compute other equilibria that may exist, use the
gambit-simpdiv -r or gambit-simpdiv -s
options to specify additional starting points for the algorithm.

	
-g

	Sets the granularity of the grid refinement. By
default, when the grid is refined, the stepsize is cut in half, which
corresponds to specifying -g 2. If this parameter is specified, the
grid is refined at each step by a multiple of MULT .

	
-h

	Prints a help message listing the available options.

	
-n

	Randomly generate COUNT starting points. Only
applicable if option gambit-simpdiv -r is also specified.

	
-q

	Suppresses printing of the banner at program launch.

	
-r

	Generate random starting points with denominator DENOM.
Since this algorithm operates on a grid, by its nature the
probabilities it works with are always rational numbers. If this
parameter is specified, starting points for the procedure are
generated randomly using the uniform distribution over strategy
profiles with probabilities having denominator DENOM.

	
-s

	Specifies a file containing a list of starting points
for the algorithm. The format of the file is comma-separated values,
one mixed strategy profile per line, in the same format used for
output of equilibria (excluding the initial NE tag).

	
-v

	Sets verbose mode. In verbose mode, initial points, as well as
the approximations computed at each grid refinement, are all output,
in addition to the approximate equilibrium profile found.

Computing an equilibrium in mixed strategies of e02.efg, the example in Figure 2 of Selten
(International Journal of Game Theory, 1975):

$ gambit-simpdiv e02.nfg
Compute Nash equilibria using simplicial subdivision
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

NE,1,0,0,1,0

gambit-logit: Compute quantal response equilbria

gambit-logit reads a game on standard input and computes the
principal branch of the (logit) quantal response correspondence.

The method is based on the procedure described in Turocy [Tur05] for
strategic games and Turocy [Tur10] for extensive games.
It uses standard path-following methods (as
described in Allgower and Georg’s “Numerical Continuation Methods”) to
adaptively trace the principal branch of the correspondence
efficiently and securely.

The method used is a predictor-corrector method, which first generates
a prediction using the differential equations describing the branch of
the correspondence, followed by a corrector step which refines the
prediction using Newton’s method for finding a zero of a function. Two
parameters control the operation of this tracing. The option -s sets
the initial step size for the predictor phase of the tracing. This
step size is then dynamically adjusted based on the rate of
convergence of Newton’s method in the corrector step. If the
convergence is fast, the step size is adjusted upward (accelerated);
if it is slow, the step size is decreased (decelerated). The option
-a sets the maximum acceleration (or deceleration). As described in
Turocy [Tur05], this acceleration helps to
efficiently trace the correspondence when it reaches its asymptotic
phase for large values of the precision parameter lambda.

	
-d

	Express all output using decimal representations with the specified
number of digits. The default is -d 6.

	
-s

	Sets the initial step size for the predictor phase of
the tracing procedure. The default value is .03. The step size is
specified in terms of the arclength along the branch of the
correspondence, and not the size of the step measured in terms of
lambda. So, for example, if the step size is currently .03, but the
position of the strategy profile on the branch is changing rapidly
with lambda, then lambda will change by much less then .03 between
points reported by the program.

	
-a

	Sets the maximum acceleration of the step size during
the tracing procedure. This is interpreted as a multiplier. The
default is 1.1, which means the step size is increased or decreased by
no more than ten percent of its current value at every step. A value
close to one would keep the step size (almost) constant at every step.

	
-m

	Stop when reaching the specified value of the
parameter lambda. By default, the tracing stops when lambda reaches
1,000,000, which is usually suitable for computing a good
approximation to a Nash equilibrium. For applications, such as to
laboratory experiments, where the behavior of the correspondence for
small values of lambda is of interest and the asymptotic behavior is
not relevant, setting MAXLAMBDA to a much smaller value may be
indicated.

	
-l

	While tracing, compute the logit equilibrium points
with parameter LAMBDA accurately.

	
-S

	By default, the program uses behavior strategies for extensive
games; this switch instructs the program to use reduced strategic game
strategies for extensive games. (This has no effect for strategic
games, since a strategic game is its own reduced strategic game.)

	
-h

	Prints a help message listing the available options.

	
-e

	By default, all points computed are output by the program. If
this switch is specified, only the approximation to the Nash
equilibrium at the end of the branch is output.

Computing the principal branch, in mixed strategies, of e02.nfg, the reduced strategic form of the example
in Figure 2 of Selten (International Journal of Game Theory,
1975):

$ gambit-logit e02.nfg
Compute a branch of the logit equilibrium correspondence
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

0.000000,0.333333,0.333333,0.333333,0.5,0.5
0.022853,0.335873,0.328284,0.335843,0.501962,0.498038
0.047978,0.338668,0.322803,0.33853,0.504249,0.495751
0.075600,0.341747,0.316863,0.34139,0.506915,0.493085
0.105965,0.345145,0.310443,0.344413,0.510023,0.489977
0.139346,0.348902,0.303519,0.347578,0.51364,0.48636

...

735614.794714,1,0,4.40659e-11,0.500016,0.499984
809176.283787,1,0,3.66976e-11,0.500015,0.499985
890093.921767,1,0,3.05596e-11,0.500014,0.499986
979103.323545,1,0,2.54469e-11,0.500012,0.499988
1077013.665501,1,0,2.11883e-11,0.500011,0.499989

gambit-convert: Convert games among various representations

gambit-convert reads a game on standard input in any supported format
and converts it to another text representation. Currently, this tool supports
outputting the strategic form of the game in one of these formats:

	A standard HTML table.

	A LaTeX fragment in the format of Martin Osborne’s sgame macros
(see http://www.economics.utoronto.ca/osborne/latex/index.html).

	
-O FORMAT

	Required. Specifies the output format. Supported options for
FORMAT are html or sgame.

	
-r PLAYER

	Specifies the player number to place on the rows of the tables.
The default if not specified is to place player 1 on the rows.

	
-c PLAYER

	Specifies the player number to place on the columns of the tables.
The default if not specified is to place player 2 on the columns.

	
-h

	Prints a help message listing the available options.

	
-q

	Suppresses printing of the banner at program launch.

Example invocation for HTML output:

$ gambit-convert -O html 2x2.nfg
Convert games among various file formats
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

<center><h1>Two person 2 x 2 game with unique mixed equilibrium</h1></center>
<table><tr><td></td><td align=center>1</td><td
align=center>2</td></tr><tr><td align=center>1</td><td
align=center>2,0</td><td align=center>0,1</td></tr><tr><td
align=center>2</td><td align=center>0,1</td><td
align=center>1,0</td></tr></table>

Example invocation for LaTeX output:

$ gambit-convert -O sgame 2x2.nfg
Convert games among various file formats
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

\begin{game}{2}{2}[Player 1][Player 2]
&1 & 2\\
1 & $2,0$ & $0,1$ \\
2 & $0,1$ & $1,0$
\end{game}

[image: Chadwick]
Gambit: Software Tools for Game Theory

Python interface to Gambit library

Gambit provides a Python interface for programmatic manipulation of
games. This section documents this interface, which is under active
development. Refer to the instructions for building the Python
interface to compile and install the Python extension.

A tutorial introduction

Building an extensive game

The function Game.new_tree() creates a new, trivial
extensive game, with no players, and only a root node:

In [1]: import gambit

In [2]: g = gambit.Game.new_tree()

In [3]: len(g.players)
Out[3]: 0

The game also has no title. The title attribute provides
access to a game’s title:

In [4]: str(g)
Out[4]: "<Game ''>"

In [5]: g.title = "A simple poker example"

In [6]: g.title
Out[6]: 'A simple poker example'

In [7]: str(g)
Out[7]: "<Game 'A simple poker example'>"

The players attribute of a game is a collection of
the players. As seen above, calling len() on the set of
players gives the number of players in the game. Adding a
Player to the game is done with the add() member
of players:

In [8]: p = g.players.add("Alice")

In [9]: p
Out[9]: <Player [0] 'Alice' in game 'A simple poker example'>

Each Player has a text string stored in the
label attribute, which is useful for human
identification of players:

In [10]: p.label
Out[10]: 'Alice'

Game.players can be accessed like a Python list:

In [11]: len(g.players)
Out[11]: 1

In [12]: g.players[0]
Out[12]: <Player [0] 'Alice' in game 'A simple poker example'>

In [13]: g.players
Out[13]: [<Player [0] 'Alice' in game 'A simple poker example'>]

Building a strategic game

Games in strategic form are created using Game.new_table(), which
takes a list of integers specifying the number of strategies for
each player:

In [1]: g = gambit.Game.new_table([2,2])

In [2]: g.title = "A prisoner's dilemma game"

In [3]: g.players[0].label = "Alphonse"

In [4]: g.players[1].label = "Gaston"

In [5]: g
Out[5]:
NFG 1 R "A prisoner's dilemma game" { "Alphonse" "Gaston" }

{ { "1" "2" }
{ "1" "2" }
}
""

{
}
0 0 0 0

The strategies collection for a Player lists all the
strategies available for that player:

In [6]: g.players[0].strategies
Out[6]: [<Strategy [0] '1' for player 'Alphonse' in game 'A
prisoner's dilemma game'>,
 <Strategy [1] '2' for player 'Alphonse' in game 'A prisoner's dilemma game'>]

In [7]: len(g.players[0].strategies)
Out[7]: 2

In [8]: g.players[0].strategies[0].label = "Cooperate"

In [9]: g.players[0].strategies[1].label = "Defect"

In [10]: g.players[0].strategies
Out[10]: [<Strategy [0] 'Cooperate' for player 'Alphonse' in game 'A
prisoner's dilemma game'>,
 <Strategy [1] 'Defect' for player 'Alphonse' in game 'A prisoner's dilemma game'>]

The outcome associated with a particular combination of strategies is
accessed by treating the game like an array. For a game g,
g[i,j] is the outcome where the first player plays his
i th strategy, and the second player plays his
j th strategy. Payoffs associated with an outcome are set
or obtained by indexing the outcome by the player number. For a
prisoner’s dilemma game where the cooperative payoff is 8, the
betrayal payoff is 10, the sucker payoff is 2, and the noncooperative
(equilibrium) payoff is 5:

In [11]: g[0,0][0] = 8

In [12]: g[0,0][1] = 8

In [13]: g[0,1][0] = 2

In [14]: g[0,1][1] = 10

In [15]: g[1,0][0] = 10

In [16]: g[1,1][1] = 2

In [17]: g[1,0][1] = 2

In [18]: g[1,1][0] = 5

In [19]: g[1,1][1] = 5

Alternatively, one can use Game.from_arrays() in conjunction
with numpy arrays to construct a game with desired payoff matrices
more directly, as in:

In [20]: m = numpy.array([[8, 2], [10, 5]], dtype=gambit.Rational)

In [21]: g = gambit.Game.from_arrays(m, numpy.transpose(m))

Reading a game from a file

Games stored in existing Gambit savefiles in either the .efg or .nfg
formats can be loaded using Game.read_game():

In [1]: g = gambit.Game.read_game("e02.nfg")

In [2]: g
Out[2]:
NFG 1 R "Selten (IJGT, 75), Figure 2, normal form" { "Player 1" "Player 2" }

{ { "1" "2" "3" }
{ "1" "2" }
}
""

{
{ "" 1, 1 }
{ "" 0, 2 }
{ "" 0, 2 }
{ "" 1, 1 }
{ "" 0, 3 }
{ "" 2, 0 }
}
1 2 3 4 5 6

Iterating the pure strategy profiles in a game

Each entry in a strategic game corresponds to the outcome arising from
a particular combination fo pure strategies played by the players.
The property Game.contingencies is the collection of
all such combinations. Iterating over the contingencies collection
visits each pure strategy profile possible in the game:

In [1]: g = gambit.Game.read_game("e02.nfg")

In [2]: list(g.contingencies)
Out[2]: [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1]]

Each pure strategy profile can then be used to access individual
outcomes and payoffs in the game:

In [3]: for profile in g.contingencies:
 ...: print profile, g[profile][0], g[profile][1]
 ...:
[0, 0] 1 1
[0, 1] 1 1
[1, 0] 0 2
[1, 1] 0 3
[2, 0] 0 2
[2, 1] 2 0

Mixed strategy and behavior profiles

A MixedStrategyProfile object, which represents a probability
distribution over the pure strategies of each player, is constructed
using Game.mixed_strategy_profile(). Mixed strategy
profiles are initialized to uniform randomization over all strategies
for all players.

Mixed strategy profiles can be indexed in three ways.

	Specifying a strategy returns the probability of that strategy
being played in the profile.

	Specifying a player returns a list of probabilities, one for each
strategy available to the player.

	Profiles can be treated as a list indexed from 0 up to the number
of total strategies in the game minus one.

This sample illustrates the three methods:

In [1]: g = gambit.Game.read_game("e02.nfg")

In [2]: p = g.mixed_strategy_profile()

In [3]: list(p)
Out[3]: [0.33333333333333331, 0.33333333333333331, 0.33333333333333331, 0.5, 0.5]

In [4]: p[g.players[0]]
Out[4]: [0.33333333333333331, 0.33333333333333331, 0.33333333333333331]

In [5]: p[g.players[1].strategies[0]]
Out[5]: 0.5

The expected payoff to a player is obtained using
MixedStrategyProfile.payoff():

In [6]: p.payoff(g.players[0])
Out[6]: 0.66666666666666663

The standalone expected payoff to playing a given strategy, assuming
all other players play according to the profile, is obtained using
MixedStrategyProfile.strategy_value():

In [7]: p.strategy_value(g.players[0].strategies[2])
Out[7]: 1.0

A MixedBehaviorProfile object, which represents a probability
distribution over the actions at each information set, is constructed
using Game.mixed_behavior_profile(). Behavior profiles are
initialized to uniform randomization over all actions at each
information set.

Mixed behavior profiles are indexed similarly to mixed strategy
profiles, except that indexing by a player returns a list of lists of
probabilities, containing one list for each information set controlled
by that player:

In [1]: g = gambit.Game.read_game("e02.efg")

In [2]: p = g.mixed_behavior_profile()

In [3]: list(p)
Out[3]: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5]

In [5]: p[g.players[0]]
Out[5]: [[0.5, 0.5], [0.5, 0.5]]

In [6]: p[g.players[0].infosets[0]]
Out[6]: [0.5, 0.5]

In [7]: p[g.players[0].infosets[0].actions[0]]
Out[7]: 0.5

For games with a tree representation, a
MixedStrategyProfile can be converted to its equivalent
MixedBehaviorProfile by calling
MixedStrategyProfile.as_behavior(). Equally, a
MixedBehaviorProfile can be converted to an equivalent
MixedStrategyProfile using MixedBehaviorProfile.as_strategy().

Computing Nash equilibria

Interfaces to algorithms for computing Nash equilibria are collected
in the module gambit.nash. There are two choices for
calling these algorithms: directly within Python, or via the
corresponding Gambit command-line tool.

Calling an algorithm directly within Python has less overhead, which
makes this approach well-suited to the analysis of smaller games,
where the expected running time is small. In addition, these
interfaces may offer more fine-grained control of the behavior
of some algorithms.

Calling the Gambit command-line tool launches the algorithm as a
separate process. This makes it easier to abort during the run of the
algorithm (preserving where possible the equilibria which have already
been found), and also makes the program more robust to any internal
errors which may arise in the calculation.

Calling command-line tools

The interface to each command-line tool is encapsulated in a class
with the word “External” in the name. These operate by
creating a subprocess, which calls the corresponding Gambit
command-line tool. Therefore, a working
Gambit installation needs to be in place, with the command-line tools
located in the executable search path.

	Method
	Python class

	gambit-enumpure
	ExternalEnumPureSolver

	gambit-enummixed
	ExternalEnumMixedSolver

	gambit-lp
	ExternalLPSolver

	gambit-lcp
	ExternalLCPSolver

	gambit-simpdiv
	ExternalSimpdivSolver

	gambit-gnm
	ExternalGlobalNewtonSolver

	gambit-enumpoly
	ExternalEnumPolySolver

	gambit-liap
	ExternalLyapunovSolver

	gambit-ipa
	ExternalIteratedPolymatrixSolver

	gambit-logit
	ExternalLogitSolver

For example, consider the game e02.nfg from the set of standard
Gambit examples. This game has a continuum of equilibria, in which
the first player plays his first strategty with probability one,
and the second player plays a mixed strategy, placing at least
probability one-half on her first strategy:

In [1]: g = gambit.Game.read_game("e02.nfg")

In [2]: solver = gambit.nash.ExternalEnumPureSolver()

In [3]: solver.solve(g)
Out[3]: [[1.0, 0.0, 0.0, 1.0, 0.0]]

In [4]: solver = gambit.nash.ExternalEnumMixedSolver()

In [5]: solver.solve(g)
Out[5]: [[1.0, 0.0, 0.0, 1.0, 0.0], [1.0, 0.0, 0.0, 0.5, 0.5]]

In [6]: solver = gambit.nash.ExternalLogitSolver()

In [7]: solver.solve(g)
Out[7]: [[0.99999999997881173, 0.0, 2.1188267679986399e-11, 0.50001141005647654, 0.49998858994352352]]

In this example, the pure strategy solver returns the unique
equilibrium in pure strategies. Solving using
gambit-enummixed gives two equilibria, which are the
extreme points of the set of equilibria. Solving by tracing the
quantal response equilibrium correspondence produces a close numerical
approximation to one equilibrium; in fact, the equilibrium which is
the limit of the principal branch is the one in which the second
player randomizes with equal probability on both strategies.

When a game’s representation is in extensive form, these solvers
default to using the version of the algorithm which operates on the
extensive game, where available, and returns a list of
gambit.MixedBehaviorProfile objects. This can be overridden when
calling solve() via the use_strategic parameter:

In [1]: g = gambit.Game.read_game("e02.efg")

In [2]: solver = gambit.nash.ExternalLCPSolver()

In [3]: solver.solve(g)
Out[3]: [<NashProfile for 'Selten (IJGT, 75), Figure 2': [1.0, 0.0, 0.5, 0.5, 0.5, 0.5]>]

In [4]: solver.solve(g, use_strategic=True)
Out[4]: [<NashProfile for 'Selten (IJGT, 75), Figure 2': [1.0, 0.0, 0.0, 1.0, 0.0]>]

As this game is in extensive form, in the first call, the returned
profile is a MixedBehaviorProfile, while in the second, it
is a MixedStrategyProfile. While the set of equilibria is
not affected by whether behavior or mixed strategies are used, the
equilibria returned by specific solution methods may differ, when
using a call which does not necessarily return all equilibria.

Calling internally-linked libraries

Where available, versions of algorithms which have been linked
internally into the Python library are generally called via
convenience functions. The following table lists the algorithms
available via this approach.

	Method
	Python function

	gambit-enumpure
	gambit.nash.enumpure_solve()

	gambit-lp
	gambit.nash.lp_solve()

	gambit-lcp
	gambit.nash.lcp_solve()

Parameters are available to modify the operation of the algorithm.
The most common ones are use_strategic, to indicate the use of a
strategic form version of an algorithm where both extensive and
strategic versions are available, and rational, to indicate
computation using rational arithmetic, where this is an option to the
algorithm.

For example, taking again the game e02.efg as an example:

In [1]: g = gambit.Game.read_game("e02.efg")

In [2]: gambit.nash.lcp_solve(g)
Out[2]: [[1.0, 0.0, 0.5, 0.5, 0.5, 0.5]]

In [3]: gambit.nash.lcp_solve(g, rational=True)
Out[3]: [[Fraction(1, 1), Fraction(0, 1), Fraction(1, 2), Fraction(1, 2), Fraction(1, 2), Fraction(1, 2)]]

In [4]: gambit.nash.lcp_solve(g, use_strategic=True)
Out[4]: [[1.0, 0.0, 0.0, 1.0, 0.0]]

In [5]: gambit.nash.lcp_solve(g, use_strategic=True, rational=True)
Out[5]: [[Fraction(1, 1), Fraction(0, 1), Fraction(0, 1), Fraction(1, 1), Fraction(0, 1)]]

API documentation

Game representations

	
class gambit.Game

	An object representing a game, in extensive or strategic form.

	
classmethod new_tree()

	Creates a new Game
consisting of a trivial game tree, with one
node, which is both root and terminal, and no players.

	
classmethod new_table(dim)

	Creates a new Game with a strategic
representation.

	Parameters:	dim – A list specifying the number of strategies for each player.

	
classmethod from_arrays(*arrays)

	Creates a new Game with a strategic representation.
Each entry in arrays is a numpy array giving the payoff matrix for the
corresponding player. The arrays must all have the same shape,
and have the same number of dimensions as the total number of players.

	
classmethod read_game(fn)

	Constructs a game from its serialized representation in a file.
See Game representation formats for details on recognized formats.

	Parameters:	fn (file) – The path to the file to open

	Raises:	IOError – if the file cannot be opened, or does not contain
a valid game representation

	
classmethod parse_game(s)

	Constructs a game from its seralized representation in a string.
See Game representation formats for details on recognized formats.

	Parameters:	s (str) – The string containing the serialized representation

	Raises:	IOError – if the string does not contain a valid game
representation

	
is_tree

	Returns True if the game has a tree representation.

	
title

	Accesses the text string of the game’s title.

	
comment

	Accesses the text string of the game’s comment.

	
actions

	Returns a list-like object representing the actions defined in the game.

	Raises:	gambit.UndefinedOperationError – if the game does not have a tree representation.

	
infosets

	Returns a list-like object representing the information sets defined in the game.

	Raises:	gambit.UndefinedOperationError – if the game does not have a tree representation.

	
players

	Returns a Players collection object
representing the players defined in the game.

	
strategies

	Returns a list-like object representing the strategies defined in the game.

	
contingencies

	Returns a collection object representing the collection of all
possible pure strategy profiles in the game.

	
root

	Returns the Node representing the root
node of the game.

	Raises:	UndefinedOperationError if the game does not have a tree representation.

	
is_const_sum

	Returns True if the game is constant sum.

	
is_perfect_recall

	Returns True if the game is of perfect recall.

	
min_payoff

	Returns the smallest payoff in any outcome of the game.

	
max_payoff

	Returns the largest payoff in any outcome of the game.

	
__getitem__(profile)

	Returns the Outcome associated with a
profile of pure strategies.

	Parameters:	profile – A list of integers specifying the strategy
number each player plays in the profile.

	
mixed_strategy_profile(rational=False)

	Returns a mixed strategy profile MixedStrategyProfile
over the game, initialized to uniform randomization for each
player over his strategies. If the game has a tree
representation, the mixed strategy profile is defined over the
reduced strategic form representation.

	Parameters:	rational – If True, probabilities are
represented using rational numbers; otherwise
double-precision floating point numbers are
used.

	
mixed_behavior_profile(rational=False)

	Returns a behavior strategy profile
MixedBehaviorProfile over the game, initialized to
uniform randomization for each player over his actions at each
information set.

	Parameters:	rational – If True, probabilities are
represented using rational numbers; otherwise
double-precision floating point numbers are
used.

	Raises:	UndefinedOperationError – if the game
does not have a tree representation.

	
write(format='native')

	Returns a serialization of the game. Several output formats are
supported, depending on the representation of the game.

	efg: A representation of the game in
the .efg extensive game file format.
Not available for games in strategic representation.

	nfg: A representation of the game in
the .nfg strategic game file format.
For an extensive game, this uses the reduced strategic form
representation.

	gte: The XML representation used by the Game Theory Explorer
tool. Only available for extensive games.

	native: The format most appropriate to the
underlying representation of the game, i.e., efg or nfg.

This method also supports exporting to other output formats
(which cannot be used directly to re-load the game later, but
are suitable for human consumption, inclusion in papers, and so
on):

	html: A rendering of the strategic form of the game as a
collection of HTML tables. The first player is the row
chooser; the second player the column chooser. For games with
more than two players, a collection of tables is generated,
one for each possible strategy combination of players 3 and higher.

	sgame: A rendering of the strategic form of the game in
LaTeX, suitable for use with Martin Osborne’s sgame style [https://www.economics.utoronto.ca/osborne/latex/].
The first player is the row
chooser; the second player the column chooser. For games with
more than two players, a collection of tables is generated,
one for each possible strategy combination of players 3 and higher.

	
class gambit.StrategicRestriction

	A read-only view on a Game, defined by a subset
of the strategies on the original game.

In addition to the members described here, a StrategicRestriction
implements the interface of a Game, although
operations which change the content of the game will raise an
exception.

	
unrestrict()

	Returns the Game object on which the
restriction was based.

Representations of play of games

The main responsibility of these classes is to capture information
about a plan of play of a game, by one or more players.

	
class gambit.StrategySupportProfile

	A set-like object representing a subset of the strategies in a
game. It incorporates the restriction that each player must have
at least one strategy.

	
game

	Returns the Game on which the support
profile is defined.

	
issubset(other)

	Returns True if this profile is a subset of
other.

	Parameters:	other (StrategySupportProfile) – another support profile

	
issuperset(other)

	Returns True if this profile is a superset of
other.

	Parameters:	other (StrategySupportProfile) – another support profile

	
restrict()

	Creates a StrategicRestriction object,
which defines a restriction of the game in which only the
strategies in this profile are present.

	
remove(strategy)

	Modifies the support profile by removing the specified strategy.

	Parameters:	strategy (Strategy) – the strategy to remove

	Raises:	UndefinedOperationError – if attempting to remove the
last strategy for a player

	
difference(other)

	Returns a new support profile containing all the strategies
which are present in this profile, but not in other.

	Parameters:	other (StrategySupportProfile) – another support profile

	
intersection(other)

	Returns a new support profile containing all the strategies
present in both this profile and in other.

	Parameters:	other (StrategySupportProfile) – another support profile

	
union(other)

	Returns a new support profile containing all the strategies
present in this profile, in other, or in both.

	Parameters:	other (StrategySupportProfile) – another support profile

	
class gambit.MixedStrategyProfile

	Represents a mixed strategy profile over a Game.

	
__getitem__(index)

	Returns a slice of the profile based on the parameter
index.

	If index is a Strategy, returns the
probability with which that strategy is played in the profile.

	If index is a Player, returns a list of
probabilities, one for each strategy belonging to that player.

	If index is an integer, returns the index th entry in
the profile, treating the profile as a flat list of probabilities.

	
__setitem__(strategy, prob)

	Sets the probability strategy is played in the profile to prob.

	
as_behavior()

	Returns a behavior strategy profile BehavProfile associated
to the profile.

	Raises:	gambit.UndefinedOperationError – if the game does not
have a tree representation.

	
copy()

	Creates a copy of the mixed strategy profile.

	
payoff(player)

	Returns the expected payoff to a player if all players play
according to the profile.

	
strategy_value(strategy)

	Returns the expected payoff to choosing the strategy, if all
other players play according to the profile.

	
strategy_values(player)

	Returns the expected payoffs for a player’s set of strategies
if all other players play according to the profile.

	
liap_value()

	Returns the Lyapunov value (see [McK91]) of the strategy profile. The
Lyapunov value is a non-negative number which is zero exactly at
Nash equilibria.

	
normalize()

	Each player’s component of the profile is not enforced to sum to
one, so that, for example, counts rather than probabilities can
be expressed. Calling this on a profile normalizes the
distribution over each player’s strategies to sum to one.

	
randomize(denom)

	Randomizes the probabilities in the profile. These are
generated as uniform distributions over each mixed strategy. If
denom is specified, all probabilities are divisible by
denom, that is, the distribution is uniform over a discrete
grid of mixed strategies. denom is required for profiles
in which the probabilities are rational numbers.

	Raises:	TypeError – if denom is not specified for a profile
with rational probabilities.

	
class gambit.MixedBehaviorProfile

	Represents a behavior strategy profile over a Game.

	
__getitem__(index)

	Returns a slice of the profile based on the parameter
index.

	If index is a Action,
returns the probability with which that action is played in
the profile.

	If index is an Infoset,
returns a list of probabilities, one for each action belonging
to that information set.

	If index is a Player,
returns a list of lists of probabilities, one list for each
information set controlled by the player.

	If index is an integer, returns the
index th entry in the profile, treating the profile as a
flat list of probabilities.

	
__setitem__(action, prob)

	Sets the probability action is played in the profile to prob.

	
as_strategy()

	Returns a MixedStrategyProfile which is equivalent
to the profile.

	
belief(node)

	Returns the probability node is reached, given its information
set was reached.

	
belief(infoset)

	Returns a list of belief probabilities of each node in infoset.

	
copy()

	Creates a copy of the behavior strategy profile.

	
payoff(player)

	Returns the expected payoff to player if all players play
according to the profile.

	
payoff(action)

	Returns the expected payoff to choosing action, conditional
on having reached the information set, if all
other players play according to the profile.

	
payoff(infoset)

	Returns the expected payoff to the player who has the move at
infoset, conditional on the information set being reached,
if all players play according to the profile.

	
regret(action)

	Returns the regret associated to action.

	
realiz_prob(infoset)

	Returns the probability with which information set infoset
is reached, if all players play according to the profile.

	
liap_value()

	Returns the Lyapunov value (see [McK91]) of the strategy profile. The
Lyapunov value is a non-negative number which is zero exactly at
Nash equilibria.

	
normalize()

	Each information set’s component of the profile is not enforced to sum to
one, so that, for example, counts rather than probabilities can
be expressed. Calling this on a profile normalizes the
distribution over each information set’s actions to sum to one.

	
randomize(denom)

	Randomizes the probabilities in the profile. These are
generated as uniform distributions over the actions at each
information set. If
denom is specified, all probabilities are divisible by
denom, that is, the distribution is uniform over a discrete
grid of mixed strategies. denom is required for profiles
in which the probabilities are rational numbers.

	Raises:	TypeError – if denom is not specified for a profile
with rational probabilities.

Elements of games

These classes represent elements which exist inside of the definition
of game.

	
class gambit.Rational

	
New in version 15.0.0.

Represents a rational number in specifying numerical data for a
game, or in a computed strategy profile. This is implemented as a
subclass of the Python standard library
fractions.Fraction, with additional instrumentation for
rendering in IPython notebooks.

	
class gambit.Players

	A collection object representing the players in a game.

	
len()

	Returns the number of players in the game.

	
__getitem__(i)

	Returns player number i in the game. Players are numbered
starting with 0.

	
chance

	Returns the player representing all chance moves in the game.

	
add([label=""])

	Add a Player to the game. If label
is specified, sets the text label for the player. In the case
of extensive games this will create a new player with no
moves. In the case of strategic form games it creates a player
with one strategy. If the provided player label is shared by
another player a warning will be returned.

	
class gambit.Player

	Represents a player in a Game.

	
game

	Returns the Game in which the player is.

	
label

	A text label useful for identification of the player.

	
number

	Returns the number of the player in the Game.
Players are numbered starting with 0.

	
is_chance

	Returns True if the player object represents the chance player.

	
infosets

	Returns a list-like object representing the information sets of the player.

	
strategies

	Returns a gambit.Strategies collection object
representing the strategies of the player.

	
min_payoff

	Returns the smallest payoff for the player in any outcome of the game.

	
max_payoff

	Returns the largest payoff for the player in any outcome of the game.

	
class gambit.Infoset

	An information set for an extensive form game.

	
precedes(node)

	Returns True or False depending on whether the specified node
precedes the information set in the extensive game.

	
reveal(player)

	Reveals the information set to a player.

	
actions

	Returns a gambit.Actions collection object representing
the actions defined in this information set.

	
label

	A text label used to identify the information set.

	
is_chance

	Returns True or False depending on whether this information set is
associated to the chance player.

	
members

	Returns the set of nodes associated with this information set.

	
player

	Returns the player object associated with this information set.

	
class gambit.Actions

	A collection object representing the actions available at an
information set in a game.

	
len()

	Returns the number of actions for the player.

	
__getitem__(i)

	Returns action number i. Actions are numbered
starting with 0.

	
add([action=None])

	Add a Action to the list of actions of an
information set.

	
class gambit.Action

	An action associated with an information set.

	
delete()

	Deletes this action from the game.

	Raises:	gambit.UndefinedOperationError – when the action is the
last one of its infoset.

	
precedes(node)

	Returns True if node precedes this action in the
extensive game.

	
label

	A text label used to identify the action.

	
infoset

	Returns the information to which this action is associated.

	
prob

	A settable property that represents the probability associated
with the action. It can be a value stored as an int,
gambit.Rational, or gambit.Decimal.

	
class gambit.Strategies

	A collection object representing the strategies available to a
player in a game.

	
len()

	Returns the number of strategies for the player.

	
__getitem__(i)

	Returns strategy number i. Strategies are numbered
starting with 0.

	
add([label=""])

	Add a Strategy to the player’s list of strategies.

	Raises:	TypeError – if called on a game which has an extensive representation.

	
class gambit.Strategy

	Represents a strategy available to a Player.

	
label

	A text label useful for identification of the strategy.

	
class gambit.Node

	Represents a node in a Game.

	
is_successor_of(node)

	Returns True if the node is a successor of node.

	
is_subgame_root(node)

	Returns True if the current node is a root of a proper subgame.

	
label

	A text label useful for identification of the node.

	
is_terminal

	Returns True if the node is a terminal node in the game tree.

	
children

	Returns a collection of the node’s children.

	
game

	Returns the Game to which the node belongs.

	
infoset

	Returns the Infoset associated with the node.

	
player

	Returns the Player associated with the node.

	
parent

	Returns the Node that is the parent of this node.

	
prior_action

	Returns the action immediately prior to the node.

	
prior_sibling

	Returns the Node that is prior to the
node at the same level of the game tree.

	
next_sibling

	Returns the Node that is the next node at the same
level of the game tree.

	
outcome

	Returns the Outcome that is associated
with the node.

	
append_move(infoset[, actions])

	Add a move to a terminal node, at the gambit.Infoset
infoset. Alternatively, a gambit.Player can be
passed as the information set, in which case the move is placed
in a new information set for that player; in this instance, the
number of actions at the new information set must be specified.

	Raises:	
	gambit.UndefinedOperationError – when called on a non-terminal node.

	gambit.UndefinedOperationError – when called with a Player object and no actions, or actions < 1.

	gambit.UndefinedOperationError – when called with a Infoset object and with actions.

	gambit.MismatchError – when called with objects from different games.

	
insert_move(infoset[, actions])

	Insert a move at a node, at the Infoset
infoset. Alternatively, a Player can be
passed as the information set, in which case the move is placed
in a new information set for that player; in this instance, the
number of actions at the new information set must be specified.
The newly-inserted node takes the place of the node in the game
tree, and the existing node becomes the first child of the new node.

	Raises:	
	gambit.UndefinedOperationError – when called with a Player object and no actions, or actions < 1.

	gambit.UndefinedOperationError – when called with a Infoset object and with actions.

	gambit.MismatchError – when called with objects from different games.

	
leave_infoset()

	Removes this node from its information set. If this node is the last
of its information set, this method does nothing.

	
delete_parent()

	Deletes the parent node and its subtrees other than the one
which contains this node and moves this node into its former
parent’s place.

	
delete_tree()

	Deletes the whole subtree which has this node as a root, except
the actual node.

	
copy_tree(node)

	Copies the subtree rooted at this node to node.

	Raises:	gambit.MismatchError – if both objects aren’t in the same game.

	
move_tree(node)

	Move the subtree rooted at this node to node.

	Raises:	gambit.MismatchError – if both objects aren’t in the same game.

	
class gambit.Outcomes

	A collection object representing the outcomes of a game.

	
len()

	Returns the number of outcomes in the game.

	
__getitem__(i)

	Returns outcome i in the game. Outcomes are numbered
starting with 0.

	
add([label=""])

	Add a Outcome to the game. If label
is specified, sets the text label for the outcome. If the
provided outcome label is shared by another outcome a warning
will be returned.

	
class gambit.Outcome

	Represents an outcome in a Game.

	
delete()

	Deletes the outcome from the game.

	
label

	A text label useful for identification of the outcome.

	
__getitem__(player)

	Returns the payoff to player at the outcome. player
may be a Player, a string, or an integer.
If a string, returns the payoff to the player with that string
as its label. If an integer, returns the payoff to player
number player.

	
__setitem__(player, payoff)

	Sets the payoff to the pl th player at the outcome to the
specified payoff. Payoffs may be specified as integers
or instances of gambit.Decimal or gambit.Rational.
Players may be specified as in __getitem__().

Representation of errors and exceptions

	
exception gambit.MismatchError

	A subclass of ValueError which is raised when
attempting an operation among objects from different games.

	
exception gambit.UndefinedOperationError

	A subclass of ValueError which is raised when an
operation which is not well-defined is attempted.

Computation of Nash equilibria

	
gambit.nash.enumpure_solve(game, use_strategic=True, external=False)

	Compute pure-strategy Nash equilibria of a
game.

	Parameters:	
	use_strategic (bool) – Use the strategic form. If
False, computes agent-form
pure-strategy equilibria, which treat
only unilateral deviations at an
individual information set

	external (bool) – Call the external command-line solver instead
of the internally-linked implementation

	
gambit.nash.enummixed_solve(game, rational=True, external=False, use_lrs=False)

	Compute all mixed-strategy Nash equilibria of a two-player strategic game.

	Parameters:	
	rational (bool) – Compute using rational precision (more
precise, often much slower)

	external (bool) – Call the external command-line solver instead
of the internally-linked implementation

	use_lrs (bool) – Use the lrslib-based implementation. This is
experimental but preliminary results suggest it is
significantly faster.

	Raises:	RuntimeError – if game has more than two players.

	
gambit.nash.lcp_solve(game, rational=True, use_strategic=False, external=False, stop_after=None, max_depth=None)

	Compute Nash equilibria of a two-player game using linear
complementarity programming.

	Parameters:	
	rational (bool) – Compute using rational precision (more
precise, often much slower)

	use_strategic (bool) – Use the strategic form version even for
extensive games

	external (bool) – Call the external command-line solver instead
of the internally-linked implementation

	stop_after (int) – Number of equilibria to contribute (default
is to compute until all reachable equilbria
are found)

	max_depth (int) – Maximum recursion depth (default is no limit)

	Raises:	RuntimeError – if game has more than two players.

	
gambit.nash.lp_solve(game, rational=True, use_strategic=False, external=False)

	Compute Nash equilibria of a two-player constant-sum game using linear
programming.

	Parameters:	
	rational (bool) – Compute using rational precision (more
precise, often much slower)

	use_strategic (bool) – Use the strategic form version even for
extensive games

	external (bool) – Call the external command-line solver instead
of the internally-linked implementation

	Raises:	RuntimeError – if game has more than two players.

	
gambit.nash.simpdiv_solve(game, external=False)

	Compute Nash equilibria of a game using simplicial
subdivision.

	Parameters:	external (bool) – Call the external command-line solver instead
of the internally-linked implementation

	
gambit.nash.ipa_solve(game, external=False)

	Compute Nash equilibria of a game using iterated polymatrix
approximation.

	Parameters:	external (bool) – Call the external command-line solver instead
of the internally-linked implementation

	
gambit.nash.gnm_solve(game, external=False)

	Compute Nash equilibria of a game using the global Newton
method.

	Parameters:	external (bool) – Call the external command-line solver instead
of the internally-linked implementation

[image: Chadwick]
Gambit: Software Tools for Game Theory

Sample games

	2x2x2.nfg

	A three-player normal form game with two strategies per player.
This game has nine Nash equilibria,
which is the maximal number of regular Nash equilibria possible
for a game of this size. See
McKelvey, Richard D. and McLennan, Andrew (1997).
The maximal number of regular totally mixed Nash equilibria.
Journal of Economic Theory 72(2): 411-425. [http://dx.doi.org/10.1006/jeth.1996.2214]

	2x2x2-nau.nfg

	A three-player normal form game with two strategies per player.
This game has three pure strategy equilibria, two
equilibria which are incompletely mixed, and a continuum of
completely mixed equilibria. This game appears as an example in
Nau, Robert, Gomez Canovas, Sabrina, and Hansen, Pierre (2004).
On the geometry of Nash equilibria and correlated equilibria.
International Journal of Game Theory 32(4): 443-453. [http://dx.doi.org/10.1007/s001820300162]

	bagwell.efg

	Stackelberg leader game with imperfectly observed commitment,
from Bagwell, Kyle (1993) Commitment and observability in games.
Games and Economic Behavior 8: 271-280. [http://dx.doi.org/10.1016/S0899-8256(05)80001-6]

	bayes2a.efg

	A twice-repeated Bayesian game, with two players, each having two
types and two actions. This game also illustrates the use of payoffs
at nonterminal nodes in Gambit, which can substantially simplify the
representation of multi-stage games such as this.

	cent3.efg

	A three-stage centipede game, featuring an exogenous probability
that one player is an altruistic type, who always passes.
See, for example,
McKelvey, Richard D. and Palfrey, Thomas R. (1992) An
experimental study of the centipede game. Econometrica 60(4):
803-836. [http://www.jstor.org/stable/2951567]

	condjury.efg

	A three-person Condorcet jury game, after the analysis of
Feddersen, Timothy and Pesendorfer, Wolfgang (1998)
Convicting the innocent: The inferiority of unanimous jury verdicts
under strategic voting. American Political Science Review 92(1):
23-35. [http://www.jstor.org/stable/2585926].

	loopback.nfg

	A game due to McKelvey which illustrates that the logit quantal
response equilibrium correspondence can have a “backward-bending”
segment on the principal branch.

	montyhal.efg

	The famous
Monty Hall problem [http://en.wikipedia.org/wiki/Monty_Hall_problem]: if Monty offers
to let you switch doors, should you?

	nim.efg

	The classic game of
Nim [http://en.wikipedia.org/wiki/Nim], which is a useful example
of the value of backward induction. This version starts with five
stones. An interesting experimental study of this class of games is
McKinney, C. Nicholas and Van Huyck, John B. (2013) Eureka
learning: Heuristics and response time in perfect information
games. Games and Economic Behavior 79:
223-232. [http:dx.doi.org/10.1016/j.geb.2013.02.003]

	pbride.efg

	A signaling game from
Joel Watson’s Strategy textbook [http://books.wwnorton.com/books/detail.aspx?ID=4294969499],
modeling the confrontation in The Princess Bride between Humperdinck
and Roberts in the bedchamber.

	poker.efg

	A simple game of one-card poker introduced in
Myerson, Roger (1991) Game Theory: Analysis of Conflict. [http://www.hup.harvard.edu/catalog.php?isbn=9780674341166].
A bit unusually for poker, the “fold” action by a player with a
strong hand counts for a win for that player, so folding is only
weakly rather than strictly dominated in this case.

	4cards.efg

	A slightly more complex poker example, contributed by Alix Martin.

	spence.efg

	A version of Spence’s classic job-market signaling game. This version
comes from Joel Watson’s Strategy textbook [http://books.wwnorton.com/books/detail.aspx?ID=4294969499].

These games, and others, ship in the standard Gambit source
distribution in the directory contrib/games.

[image: Chadwick]
Gambit: Software Tools for Game Theory

For contributors: Ideas and suggestions for Gambit-related projects

Research on doing computation on finite games, and using numerical and
algorithmic methods to analyze games, are areas of quite active
research. There are a number of opportunities for programmers of all
skill levels and backgrounds to contribute to improving and extending
Gambit.

A number of such ideas are outlined in this section.
Each project includes the required implementation environment,
and a summary of the background prerequisites
someone should have in order to take on the project successfully, in
terms of mathematics, game theory, and software engineering.

Students who are interested in applying to participate in the
Google Summer of Code program should also first read our
introductory document and application template at
http://www.gambit-project.org/application.txt.

For beginning contibutors - especially those who are interested
in potentially applying to work on Gambit projects in future
Google Summer of Code editions - there are a number of
issues in the Gambit issue tracker tagged as “easy” [https://github.com/gambitproject/gambit/issues?labels=easy&sort=created&direction=desc&state=open&page=1].
These are excellent ways to get familiar with the Gambit codebase.
Contributors who have completed one or more such easy tasks will have
a significantly greater chance of being considered for possible
GSoC work.

The Gambit source tree [http://gambit.git.sourceforge.net/git/gitweb-index.cgi] is managed
using git [http://www.git-scm.com]. It is recommended to have some
familiarity with how git works, or to be willing to learn. (It’s not
that hard, and once you do learn it, you’ll wonder how you ever lived
without it.)

This section lists project ideas pertaining to the Gambit library
and desktop interface. There are additional project opportunities
in the Game Theory Explorer web/cloud interface. These are
listed separately here [http://gte.csc.liv.ac.uk/index/index.html#document-ideas].

Refactor and update game representation library

The basic library (in src/libgambit) for representing games was
written in the mid-1990s. As such, it predates many modern C++
features (including templates, STL, exceptions, Boost, and so on).
There are a number of projects for taking existing functionality,
refactoring it into separate components, and then enhancing what
those components can do.

File formats for serializing games

Gambit supports a number of file formats for reading and writing
games. There are traditional formats for extensive and strategic
games. The graphical interface wraps these formats into an XML
document which can store additional metadata about the game. The Game
Theory Explorer also defines an XML format for storing games. And,
from Gambit 14, there is a special file format for representing
games in action graph format.

Separately, Gambit has a command-line tool for outputting games in
HTML and LaTeX formats.

This project would refactor these features into a unified framework
for reading and writing games in various formats. It would include:

	Migrating the XML manipulation code from the graphical interface
into the basic game representation library.

	Implementing in C++ the reader/writer for Game Theory Explorer files
(a first version of this is available in Python in the gambit.gte
module).

	Unifying the gambit-nfg2tex and
gambit-nfg2html command line tools into a
gambit-convert tool, which would convert from and to many
file formats.

	Extend all the Gambit command-line tools to read files of any
accepted format, and not just .efg and .nfg files.

	Languages: C++; Python/Cython optional; XML experience helpful

	Prerequisites: Introductory game theory for familiarity with
terminology of the objects in a game; undergraduate-level software
engineering experience.

Structure equilibrium calculations using the strategy pattern

Gambit’s architecture packages methods for finding Nash equilibria as
standalone command-line tools. Owing to different histories in
implementing these methods, internally the interfaces to these methods
at the C++ level are quite heterogeneous. In some cases, something
like the “strategy pattern” has been used to encapsulate these
algorithms. In others, the interface is simply a global-scope
function call with little or no structured interface.

This project would involve organizing all these interfaces in a
consistent and unified way using the “strategy pattern.” One can see
an emerging structure in the gambit-enumpure
implementation at src/tools/enumpure/enumpure.cc in the master
branch of the git repository. The idea would be to develop a unified
framework for being able to interchange methods to compute Nash
equilibria (or other concepts) on games. If the project were to go
well, as an extension these interfaces could then be wrapped in the
Python API for direct access to the solvers (which are currently
called via the command-line tools).

	Languages: C++.

	Prerequisites: Introductory game theory for familiarity with
terminology of the objects in a game; undergraduate-level software
engineering experience.

Implement Strategic Restriction of a game in C++

Gambit has a concept of a StrategySupport (defined in
src/libgambit/stratspt.h and src/libgambit/stratspt.cc),
which is used, among other things, to represent a game where strictly
dominated strategies have been eliminated (which can be useful in
improving the efficiency of equilibrium computations). The
implementation of this has historically been awkward. Proper OO
design would suggest that a StrategySupport should be
able to be used anywhere a Game could be used, but this
is not the case. In practice, a StrategySupport has just
been a subset of the strategies of a game, which has to be passed
along as a sidecar to the game in order to get anything done.

Recently, in the Python API, the model for dealing with this has been
improved. In Python, there is a StrategicRestriction
of a game, which in fact can be used seamlessly anyplace a game can be
used. Separately, there is a StrategySupportProfile,
which is basically just a subset of strategies of a game. This
separation of concepts has proven to be clean and useful.

The project would be to develop the concept of a strategic restriction
in C++, using the Python API as a model, with the idea of ultimately
replacing the StrategySupport.

	Languages: C++; Python/Cython useful for understanding the
current implementation in Python.

	Prerequisites: Introductory game theory for familiarity with
terminology of the objects in a game; undergraduate-level software
engineering experience.

Implement Behavior Restriction of a game in Python

The Python API has a concept of a StrategicRestriction of
a game, which is the restriction of a game to a subset of strategies
for each player. This restriction can be used seamlessly anywhere a
game can be used.

This project would develop a parallel concept of a
BehaviorRestriction. Logically this is similar to a
StrategicRestriction, except that instead of operating on
the set of reduced strategic game strategies, it would operate on
behavior strategies (actions at information sets) in a game tree.

This is a bit more challenging than the
StrategicRestriction because of the need to be able to
traverse the resulting game tree. Removing actions from a game can
result in entire subtrees of the game being removed, which can then
include the removal of information sets from the game so restricted.

The idea of this project is to carry out the implementation in
Python/Cython first, as the experience from the strategic restriction
project was that the more rapid prototyping possible in Python was a
big help. However, as the ultimate goal will be to provide this at
the C++ level, there is also the possibility of attacking the problem
directly in C++ as well.

	Langauges: Python/Cython; C++.

	Prerequisites: Introductory game theory for familiarity with
terminology of the objects in a game; undergraduate-level software
engineering experience.

Implementing algorithms for finding equilibria in games

Each of the following are separate ideas for open projects on
computing equilibria and other interesting quantities on games.
Each of these is a single project For GSoC applications, you should
select exactly one of these, as each is easily a full summer’s worth
of work (no matter how easy some of them may seem at first read!)

Enumerating all equilibria of a two-player bimatrix game using the EEE algorithm

The task is to implement the EEE algorithm, which is a published algorithm to
enumerate all extreme equilibria of a bimatrix game.

	Languages: C, Java

	Prerequisites: Background in game theory, basic linear
algebra and linear programming. Experience with programs of at least
medium complexity so that existing code can be expanded.

Fuller details:

The task is to implement the EEE algorithm, which is a published algorithm to
enumerate all extreme equilibria of a bimatrix game.

The most up-to-date version can be found in Sections 7 and 8
of

D. Avis, G. Rosenberg, R. Savani, and B. von Stengel (2010),
Enumeration of Nash equilibria for two-player games.
Economic Theory 42, 9-37.

http://www.maths.lse.ac.uk/Personal/stengel/ETissue/ARSvS.pdf

Extra information, including some code,
is provided in the following report:

G. Rosenberg (2004),
Enumeration of All Extreme Equilibria of Bimatrix Games with Integer Pivoting and Improved Degeneracy Check.
CDAM Research Report LSE-CDAM-2004-18.

http://www.cdam.lse.ac.uk/Reports/Files/cdam-2005-18.pdf

The original algorithm was described in the following paper:

C. Audet, P. Hansen, B. Jaumard, and G. Savard (2001),
Enumeration of all extreme equilibria of bimatrix games.
SIAM Journal on Scientific Computing 23, 323–338.

The implementation should include a feature to compare the
algorithm’s output (a list of extreme equilibria) with the
ouput of other algorithms for the same task (e.g.
lrsnash).

In addition a framework that compares running times (and the
number of recursive calls, calls to pivoting methods, and
other crucial operations) should be provided.
The output should record and document the computational
experiments so that they can be reproduced, in a general
setup - sufficiently documented - that can be used for
similar comparisons.

Improve integration and testing of Gametracer

Gambit incorporates the
Gametracer [http://dags.stanford.edu/Games/gametracer.html] package
to provide
implementations of two methods for computing equilibria,
gambit-gnm and gambit-ipa.
The integration
is rather crude, as internally the program converts the game
from native Gambit representation into Gametracer’s
representation, and the converts the output back. Using
Gametracer’s implementations as a starting point, refactor
the implementation to use Gambit’s native classes directly,
and carry out experiments on the reliability and performance
of the algorithms.

	Languages: C++

	Prerequisites: Some level of comfort with linear algebra;
enjoyment of refactoring code.

Interface with lrslib

Gambit’s gambit-enummixed tool computes all
extreme Nash equilibria of a two-player game. There is another
package, lrslib by David Avis [http://cgm.cs.mcgill.ca/~avis/C/lrs.html], which implements the
same algorithm more efficiently and robustly. There is a partial
interface with an older version of lrslib in the Gambit source tree,
which has proven not to be very reliable. The project is to complete
the integration and testing of the lrslib integration.

	Languages: C/C++

	Prerequisites: Some level of comfort with linear algebra.

Finding equilibria reachable by Lemke’s algorithm with varying “covering vectors”

Related to the Lemke-Howson method above, but with a
slightly different algorithm that has an extra parameter,
called the “covering vector”. That parameter can serve a
randomly selected starting point of the computation and
potentially reach many more equilibria.

	Prerequisites: Theoretical understanding of the Lemke-Howson
method or of the Simplex algorithm for Linear Programming.
Literature exists that is accessible for students with at
least senior-level background in computer science,
mathematics or operations research. An existing
implementation of a Lemke-Howson style pivoting algorithm
should be adapted with suitable alterations.

Computing the index of an equilibrium component

The task is to implement a published algorithm to compute
the so-called index of an equilibrium component in a
bimatrix game. This component is the output to an existing
enumeration algorithm.

	Languages: C

	Prerequisites: Senior-level mathematics, interest in game theory
and some basic topology.

Fuller details:

The aim of this project is to implement an existing
algorithm that finds the index of an equilibrium component.
The relevant description of this is chapter 2 of

Anne Balthasar, Geometry and Equilibria in Bimatrix Games,
PhD Thesis, London School of Economics, 2009.

http://www.maths.lse.ac.uk/Personal/stengel/phds/#anne

	which are pages 21-41 of

	http://www.maths.lse.ac.uk/Personal/stengel/phds/anne-final.pdf

The mathematics in this chapter are pretty scary (in
particular section 2.2, which is however not needed) but the
final page 41 which describes the algorithm is less scary.

Nevertheless, this is rather advanced material because it
builds on several different existing algorithms (for finding
extreme equilibria in bimatrix games, and “cliques” that
define convex sets of equilibria, and their non-disjoint
unions that define “components”). It requires the
understanding of what equilibria in bimatrix games are
about. These algorithms are described in

D. Avis, G. Rosenberg, R. Savani, and B. von Stengel (2010),
Enumeration of Nash equilibria for two-player games.
Economic Theory 42, 9-37.

http://www.maths.lse.ac.uk/Personal/stengel/ETissue/ARSvS.pdf

and students who do not eventually understand that text
should not work on this project. For this reason, at least
senior-level (= third year) mathematics is required in terms of
mathematical maturity. In the Avis et al. (2010) paper,
pages 19-21 describe the lexicographic method for pivoting
as it is used in the simplex method for linear programming.
A variant of this lexicographic method is used in the
chapter by Anne Balthasar. Understanding this is a
requirement to work on this project (and a good test of how
accessible all this is).

We give here two brief examples that supplement the above
literature. Consider the following bimatrix game. It is
very simple, and students of game theory may find it useful
to first find out on their own what the equilibria of this
game are:

2 x 2 Payoff matrix A:

1 1
0 1

2 x 2 Payoff matrix B:

1 1
0 1

EE = Extreme Equilibrium, EP = Expected Payoff

EE 1 P1: (1) 1 0 EP= 1 P2: (1) 1 0 EP= 1
EE 2 P1: (1) 1 0 EP= 1 P2: (2) 0 1 EP= 1
EE 3 P1: (2) 0 1 EP= 1 P2: (2) 0 1 EP= 1

Connected component 1:
{1, 2} x {2}
{1} x {1, 2}

This shows the following: there are 3 Nash equilibria,
which partly use the same strategies of the two players,
which are numbered (1), (2) for each player. It will take
a bit of time to understand the above output. For our
purposes, the bottom “component” is most relevant:
It has two lines, and {1, 2} x {2} means
that equilibrium (1),(2) - which is according to the
previous list the strategy pair (1,0), (1,0) as well as
(2),(2), which is (0,1), (1,0) are “extreme
equilibria”, and moreover any convex combination of (1) and
(2) of player 1 - this is the first {1, 2} - can be
combined with strategy (2) of player 2.
This is part of the “clique” output of Algorithm 2 on page
19 of Avis et al. (2010).
There is a second such convex set of equilibria in the
second line, indicated by {1} x {1, 2}.
Moreover, these two convex sets intersect (in the
equilibrium (1),(2)) and form therefore a “component” of
equilibria. For such a component, the index has to be
found, which happens to be the integer 1 in this case.

The following bimatrix game has also two convex sets of Nash
equilibria, but they are disjoint and therefore listed as
separate components on their own:

3 x 2 Payoff matrix A:

1 1
0 1
1 0

3 x 2 Payoff matrix B:

2 1
0 1
0 1

EE = Extreme Equilibrium, EP = Expected Payoff

Rational Output

EE 1 P1: (1) 1 0 0 EP= 1 P2: (1) 1 0 EP= 2
EE 2 P1: (2) 1/2 1/2 0 EP= 1 P2: (2) 0 1 EP= 1
EE 3 P1: (3) 1/2 0 1/2 EP= 1 P2: (1) 1 0 EP= 1
EE 4 P1: (4) 0 1 0 EP= 1 P2: (2) 0 1 EP= 1

Connected component 1:
{1, 3} x {1}

Connected component 2:
{2, 4} x {2}

Here the first component has index 1 and the second has
index 0. One reason for the latter is that if the game is
slightly perturbed, for example by giving a slightly lower
payoff than 1 in row 2 of the game, then the second strategy
of player 1 is strictly dominated and the equilibria (2) and
(4) of player 1, and thus the entire component 2, disappear
altogether. This can only happen if the index is zero, so
the index gives some useful information as to whether an
equilibrium component is “robust” or “stable” when payoffs
are slightly perturbed.

Enumerating all equilibria of a two-player game tree

Extension of an existing algorithm for enumerating all
equilibria of a bimatrix game to game trees with imperfect
information using the so-called “sequence form”. The method
is described in abstract form but not implemented.

	Langauges: C++

	Prerequisites: Background in game theory and basic linear
algebra. Experience with programs of at least
medium complexity so that existing code can be expanded.

Solving for equilibria using polynomial systems of equations

The set of Nash equilibrium conditions can be expressed as a
system of polynomial equations and inequalities. The field
of algebraic geometry has been developing packages to
compute all solutions to a system of polynomial equations.
Two such packages are
PHCpack [http://www.math.uic.edu/~jan/download.html”] and
Bertini [http://www.nd.edu/~sommese/bertini/].
Gambit has an
experimental interface, written in Python, to build the
required systems of equations, call out to the solvers, and
identify solutions corresponding to Nash equilibria.
Refactor the implementation to be more flexible and
Pythonic, and carry out experiments on the reliability and
performance of the algorithms.

	Languages: Python

	Prerequisites: Experience with text processing to pass data to
and from the external solvers.

Implement Herings-Peeters homotopy algorithm to compute Nash equilibria

Herings and Peeters
(Economic Theory, 18(1), 159-185, 2001 [http://dx.doi.org/10.1007/PL00004129]) have proposed a
homotopy algorithm to compute Nash equilibria. They have
created a
first implementation of the method in Fortran [http://www.personeel.unimaas.nl/r.peeters/software.htm],
using hompack [http://www.netlib.org/hompack/].
Create a Gambit implementation of this method, and carry out
experiments on the reliability and performance of the
algorithms.

	Languages: C/C++, ability to at least read Fortran

	Prerequisites: Basic game theory and knowledge of pivoting
algorithms like the Simplex method for Linear Programming or
the Lemke-Howson method for games. Senior-level
mathematics, mathematical economics, or operations research.

[image: Chadwick]
Gambit: Software Tools for Game Theory

For developers: Building Gambit from source

This section covers instructions for building Gambit from source.
This is for those who are interested in developing Gambit, or who
want to play around with the latest features before they make it
into a pre-compiled binary version.

This section requires at least some familiarity with programming.
Most users will want to stick with binary distributions; see
Downloading Gambit for how to get the current version for
your operating system.

General information

Gambit uses the standard autotools mechanism for configuring and building.
This should be familiar to most users of Un*ces and MacOS X.

If you are building from a source tarball,
you just need to unpack the sources, change directory to the top level
of the sources (typically of the form gambit-xx.y.z), and do the
usual

./configure
make
sudo make install

Command-line options are available to modify the configuration process;
do ./configure –help for information. Of these, the option which
may be most useful is to disable the build of the graphical interface

By default Gambit will be installed in /usr/local. You can change this
by replacing configure step with one of the form

./configure --prefix=/your/path/here

Note

The graphical interface relies on external calls to other
programs built in this process, especially for the computation of
equilibria. It is strongly recommended that you install the Gambit
executables to a directory in your path!

Building from git repository

If you want to live on the bleeding edge, you can get the latest
version of the Gambit sources from the Gambit repository on
github.com, via

git clone git://github.com/gambitproject/gambit.git
cd gambit

After this, you will need to set up the build scripts by executing

aclocal
libtoolize
automake --add-missing
autoconf

For this, you will need to have automake, autoconf, and libtool2
installed on your system.

At this point, you can then continue with the configuration and build
stages as in the previous section.

In the git repository, the branch master always points to the
latest development version. New development should in general always
be based off this branch. Branches labeled maintVV, where VV
is the version number, point to the latest commit on a stable
version; so, for example, maint13 refers to the latest commit for
Gambit version 13.x.x. Bug fixes should typically be based off of
this branch.

Supported compilers

Currently, gcc is the only compiler supported. The version of gcc needs
to be new enough to handle templates correctly. The oldest versions
of gcc known to compile Gambit are 3.4.6 (Linux, Ubuntu) and 3.4.2 (MinGW for Windows, Debian stable).

If you wish to use another compiler, the most likely stumbling block is
that Gambit uses templated member functions for classes, so the compiler
must support these. (Version of gcc prior to 3.4 do not, for example.)

For Windows users

For Windows users wanting to compile Gambit on their own, you’ll need
to use either the Cygwin or MinGW environments. We do compilation and
testing of Gambit on Windows using MinGW, which can be gotten from
http://www.mingw.org.
We prefer MinGW over Cygwin because MinGW will create native Windows
applications, whereas Cygwin requires an extra compatibility layer.

For OS X users

For building the command-line tools only, one should follow the
instructions for Un*x/Linux platforms above. make install will
install the command-line tools into /usr/local/bin (or the path
specified in the configure step).

To build the graphical interface, wxWidgets 2.9.5 or higher is
recommended, although 2.8.12 should also be suitable.
(The interface will build with wxWidgets 2.9.4, but there is a bug
in wxWidgets involving drag-and-drop which renders the graphical interface
essentially unusable.)

Snow Leopard (OS X 10.8) users will have to take some extra steps to
build wxWidgets if 2.8.12 is used.
wxWidgets 2.8.12 requires the 10.6 SDK to build the
using Cocoa; this has been removed by Apple in recent editions of
XCode. Download and unpack the 10.6 SDK from an earlier XCode version
into
/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.6.sdk.
With that in place, unpack the wxWidgets sources, and from the root
directory of the wxWidgets sources, do:

mkdir build-debug
cd build-debug
arch_flags="-arch i386" CFLAGS="$arch_flags" CXXFLAGS="$arch_flags" \
 CPPFLAGS="$arch_flags" LDFLAGS="$arch_flags" OBJCFLAGS="$arch_flags" \
 OBJCXXFLAGS="$arch_flags" \
 ../configure \
 --with-macosx-version-min=10.6 \
 --with-macosx-sdk=/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.6.sdk \
 --prefix="$(pwd)" --disable-shared --enable-debug --enable-unicode
make

Then, when configuring Gambit, use:

arch_flags="-arch i386" CFLAGS="$arch_flags" CXXFLAGS="$arch_flags" \
 CPPFLAGS="$arch_flags" LDFLAGS="$arch_flags" OBJCFLAGS="$arch_flags" \
 OBJCXXFLAGS="$arch_flags" \
 ./configure --with-wxdir=WXPATH/build-debug
make osx-bundle

where WXPATH is the path at which you have the wxWidgets sources
unpacked. These steps are not required for wxWidgets 2.9.5 or higher.

This produces an application Gambit.app in the current directory,
which can be run from its current location, or copied elsewhere in the
disk (such as /Applications). The application bundle includes the
command-line executables.

The graphical interface and wxWidgets

Gambit requires wxWidgets version 2.8.0 or higher for the
graphical interface, although 2.9.5 or higher is recommended.
See the wxWidgets website at
http://www.wxwidgets.org
to download this if you need it. Packages of this should be available
for most Un*x users through their package managers (apt or rpm). Note
that you’ll need the appropriate -dev package for wxWidgets to get the
header files needed to build Gambit.

Un*x users, please note that Gambit at this time only supports the
GTK port of wxWidgets.

If wxWidgets it isn’t installed in a standard place (e.g., /usr or
/usr/local), you’ll need to tell configure where to find it with the
–with-wx-prefix=PREFIX option, for example:

./configure --with-wx-prefix=/home/mylogin/wx

Finally, if you don’t want to build the graphical interface, you
can either (a) simply not install wxWidgets, or (b) pass the argument
–disable-gui to the configure step, for example,

./configure --disable-gui

This will just build the command-line tools, and will not require
a wxWidgets installation.

Building the Python extension

The Python extension for Gambit is in src/python
in the Gambit source tree. Prerequisite packages include setuptools,
Cython, IPython, and scipy.

Building the extension follows the standard approach:

cd src/python
python setup.py build
sudo python setup.py install

There is a set of test cases in src/python/gambit/tests. These can
be exercised via nosetests (requires Python package nose):

cd src/python/gambit/tests
nosetests

Once installed, simply import gambit in your Python shell or
script to get started.

[image: Chadwick]
Gambit: Software Tools for Game Theory

Game representation formats

This section documents the file formats recognized by Gambit. These
file formats are text-based and designed to be readable and editable
by hand by humans to the extent possible, although programmatic tools
to generate and manipulate these files are almost certainly needed for
all but the most trivial of games.

These formats can be viewed as being low-level. They define games
explicitly in terms of their structure, and do not support any sort of
parameterization, macros, and the like. Thus, they are adapted largely
to the type of input required by the numerical methods for computing
Nash equilibria, which only apply to a particular realization of a
game’s parameters. Higher-level tools, whether the graphical interface
or scripting applications, are indicated for doing parametric analysis
and the like.

Conventions common to all file formats

Several conventions are common to the interpretation of the file
formats listed below.

Whitespace is not significant. In general, whitespace (carriage
returns, horizontal and vertical tabs, and spaces) do not have an
effect on the meaning of the file. The only exception is inside
explicit double-quotes, where all characters are significant. The
formatting shown here is the same as generated by the Gambit code and
has been chosen for its readability; other formattings are possible
(and legal).

Text labels. Most objects in an extensive game may be given
textual labels. These are prominently used in the graphical interface,
for example, and it is encouraged for users to assign nonempty text
labels to objects if the game is going to be viewed in the graphical
interface. In all cases, these labels are surrounded by the quotation
character (”). The use of an explicit ” character within a text label
can be accomplished by preceding the embedded ” characters with a
backwards slash ().
Example 5-1. Escaping quotes in a text label

This is an alternate version of the first line of the example file, in
which the title of the game contains the term Bayesian game in
quotation marks.

EFG 2 R "An example of a \"Bayesian game\"" { "Player 1" "Player 2" }

Numerical data. yNumerical data, namely, the payoffs at outcomes,
and the action probabilities for chance nodes, may be expressed in
integer, decimal, or rational formats. In all cases, numbers are
understood by Gambit to be exact, and represented as such internally.
For example, the numerical entries 0.1 and 1/10 represent the same
quantity.

In versions 0.97 and prior, Gambit distinguished between floating
point and rational data. In these versions, the quantity 0.1 was
represented interally as a floating-point number. In this case, since
0.1 does not have an exact representation in binary floating point,
the values 0.1 and 1/10 were not identical, and some methods for
computing equilibria could give (slightly) different results for games
using one versus the other. In particular, using rational-precision
methods on games with the floating point numbers could give unexpected
output, since the conversion of 0.1 first to floating-point then to
rational would involve roundoff error. This is largely of technical
concern, and the current Gambit implementation now behaves in such a
way as to give the “expected” result when decimal numbers appear in
the file format.

The extensive game (.efg) file format

The extensive game (.efg) file format has been used by Gambit, with
minor variations, to represent extensive games since circa 1994. It
replaced an earlier format, which had no particular name but which had
the conventional extension .dt1. It is intended that some new formats
will be introduced in the future; however, this format will be
supported by Gambit, possibly through the use of converter programs to
those putative future formats, for the foreseeable future.

A sample file

This is a sample file illustrating the general format of the file.
This file is similar to the one distributed in the Gambit distribution
under the name bayes1a.efg .

EFG 2 R "General Bayes game, one stage" { "Player 1" "Player 2" }
c "ROOT" 1 "(0,1)" { "1G" 0.500000 "1B" 0.500000 } 0
c "" 2 "(0,2)" { "2g" 0.500000 "2b" 0.500000 } 0
p "" 1 1 "(1,1)" { "H" "L" } 0
p "" 2 1 "(2,1)" { "h" "l" } 0
t "" 1 "Outcome 1" { 10.000000 2.000000 }
t "" 2 "Outcome 2" { 0.000000 10.000000 }
p "" 2 1 "(2,1)" { "h" "l" } 0
t "" 3 "Outcome 3" { 2.000000 4.000000 }
t "" 4 "Outcome 4" { 4.000000 0.000000 }
p "" 1 1 "(1,1)" { "H" "L" } 0
p "" 2 2 "(2,2)" { "h" "l" } 0
t "" 5 "Outcome 5" { 10.000000 2.000000 }
t "" 6 "Outcome 6" { 0.000000 10.000000 }
p "" 2 2 "(2,2)" { "h" "l" } 0
t "" 7 "Outcome 7" { 2.000000 4.000000 }
t "" 8 "Outcome 8" { 4.000000 0.000000 }
c "" 3 "(0,3)" { "2g" 0.500000 "2b" 0.500000 } 0
p "" 1 2 "(1,2)" { "H" "L" } 0
p "" 2 1 "(2,1)" { "h" "l" } 0
t "" 9 "Outcome 9" { 4.000000 2.000000 }
t "" 10 "Outcome 10" { 2.000000 10.000000 }
p "" 2 1 "(2,1)" { "h" "l" } 0
t "" 11 "Outcome 11" { 0.000000 4.000000 }
t "" 12 "Outcome 12" { 10.000000 2.000000 }
p "" 1 2 "(1,2)" { "H" "L" } 0
p "" 2 2 "(2,2)" { "h" "l" } 0
t "" 13 "Outcome 13" { 4.000000 2.000000 }
t "" 14 "Outcome 14" { 2.000000 10.000000 }
p "" 2 2 "(2,2)" { "h" "l" } 0
t "" 15 "Outcome 15" { 0.000000 4.000000 }
t "" 16 "Outcome 16" { 10.000000 0.000000 }

Structure of the prologue

The extensive gamefile consists of two parts: the prologue, or header,
and the list of nodes, or body. In the example file, the prologue is
the first line. (Again, this is just a consequence of the formatting
we have chosen and is not a requirement of the file structure itself.)

The prologue is constructed as follows. The file begins with the token
EFG , identifying it as an extensive gamefile. Next is the digit 2 ;
this digit is a version number. Since only version 2 files have been
supported for more than a decade, all files have a 2 in this position.
Next comes the letter R . The letter R used to distinguish files which
had rational numbers for numerical data; this distinction is obsolete,
so all new files should have R in this position.

The prologue continues with the title of the game. Following the title
is a list of the names of the players defined in the game. This list
follows the convention found elsewhere in the file of being surrounded
by curly braces and delimited by whitespace (but not commas,
semicolons, or any other character). The order of the players is
significant; the first entry in the list will be numbered as player 1,
the second entry as player 2, and so forth. At the end of the prologue
is an optional text comment field.

Structure of the body (list of nodes)

The body of the file lists the nodes which comprise the game tree.
These nodes are listed in the prefix traversal of the tree. The prefix
traversal for a subtree is defined as being the root node of the
subtree, followed by the prefix traversal of the subtree rooted by
each child, in order from first to last. Thus, for the whole tree, the
root node appears first, followed by the prefix traversals of its
child subtrees. For convenience, the game above follows the convention
of one line per node.

Each node entry begins with an unquoted character indicating the type
of the node. There are three node types:

	c for a chance node

	p for a personal player node

	t for a terminal node

Each node type will be discussed individually below. There are three
numbering conventions which are used to identify the information
structure of the tree. Wherever a player number is called for, the
integer specified corresponds to the index of the player in the player
list from the prologue. The first player in the list is numbered 1,
the second 2, and so on. Information sets are identified by an
arbitrary positive integer which is unique within the player. Gambit
generates these numbers as 1, 2, etc. as they appear first in the
file, but there are no requirements other than uniqueness. The same
integer may be used to specify information sets for different players;
this is not ambiguous since the player number appears as well.
Finally, outcomes are also arbitrarily numbered in the file format in
the same way in which information sets are, except for the special
number 0 which indicates the null outcome.

Information sets and outcomes may (and frequently will) appear
multiple times within a game. By convention, the second and subsequent
times an information set or outcome appears, the file may omit the
descriptive information for that information set or outcome.
Alternatively, the file may specify the descriptive information again;
however, it must precisely match the original declaration of the
information set or outcome. If any part of the description is omitted,
the whole description must be omitted.

Outcomes may appear at nonterminal nodes. In these cases, payoffs are
interepreted as incremental payoffs; the payoff to a player for a
given path through the tree is interpreted as the sum of the payoffs
at the outcomes encountered on that path (including at the terminal
node). This is ideal for the representation of games with well-
defined”stages”; see, for example, the file bayes2a.efg in the Gambit
distribution for a two-stage example of the Bayesian game represented
previously.

In the following lists, fields which are omittable according to the
above rules are indicated by the label (optional).

Format of chance (nature) nodes. Entries for chance nodes begin
with the character c . Following this, in order, are

	a text string, giving the name of the node

	a positive integer specifying the information set number

	(optional) the name of the information set

	(optional) a list of actions at the information set with their
corresponding probabilities

	a nonnegative integer specifying the outcome

	(optional)the payoffs to each player for the outcome

Format of personal (player) nodes. Entries for personal player
decision nodes begin with the character p . Following this, in order,
are:

	a text string, giving the name of the node

	a positive integer specifying the player who owns the node

	a positive integer specifying the information set

	(optional) the name of the information set

	(optional) a list of action names for the information set

	a nonnegative integer specifying the outcome

	(optional) the name of the outcome

	the payoffs to each player for the outcome

Format of terminal nodes. Entries for terminal nodes begin with
the character t . Following this, in order, are:

	a text string, giving the name of the node

	a nonnegative integer specifying the outcome

	(optional) the name of the outcome

	the payoffs to each player for the outcome

There is no explicit end-of-file delimiter for the file.

The strategic game (.nfg) file format, payoff version

This file format defines a strategic N-player game. In this version,
the payoffs are listed in a tabular format. See the next section for a
version of this format in which outcomes can be used to identify an
equivalence among multiple strategy profiles.

A sample file

This is a sample file illustrating the general format of the file.
This file is distributed in the Gambit distribution under the name
e02.nfg .

NFG 1 R "Selten (IJGT, 75), Figure 2, normal form"
{ "Player 1" "Player 2" } { 3 2 }

1 1 0 2 0 2 1 1 0 3 2 0

Structure of the prologue

The prologue is constructed as follows. The file begins with the token
NFG , identifying it as a strategic gamefile. Next is the digit 1 ;
this digit is a version number. Since only version 1 files have been
supported for more than a decade, all files have a 1 in this position.
Next comes the letter R . The letter R used to distinguish files which
had rational numbers for numerical data; this distinction is obsolete,
so all new files should have R in this position.

The prologue continues with the title of the game. Following the title
is a list of the names of the players defined in the game. This list
follows the convention found elsewhere in the file of being surrounded
by curly braces and delimited by whitespace (but not commas,
semicolons, or any other character). The order of the players is
significant; the first entry in the list will be numbered as player 1,
the second entry as player 2, and so forth.

Following the list of players is a list of positive integers. This
list specifies the number of strategies available to each player,
given in the same order as the players are listed in the list of
players.

The prologue concludes with an optional text comment field.

Structure of the body (list of payoffs)

The body of the format lists the payoffs in the game. This is a “flat”
list, not surrounded by braces or other punctuation.

The assignment of the numeric data in this list to the entries in the
strategic game table proceeds as follows. The list begins with the
strategy profile in which each player plays their first strategy. The
payoffs to all players in this contingency are listed in the same
order as the players are given in the prologus. This, in the example
file, the first two payoff entries are 1 1 , which means, when both
players play their first strategy, player 1 receives a payoff of 1,
and player 2 receives a payoff of 1.

Next, the strategy of the first player is incremented. Thus, player
1’s strategy is incremented to his second strategy. In this case, when
player 1 plays his second strategy and player 2 his first strategy,
the payoffs are 0 2 : a payoff of 0 to player 1 and a payoff of 2 to
player 2.

Now the strategy of the first player is again incremented. Thus, the
first player is playing his third strategy, and the second player his
first strategy; the payoffs are again 0 2 .

Now, the strategy of the first player is incremented yet again. But,
the first player was already playing strategy number 3 of 3. Thus, his
strategy now “rolls over” to 1, and the strategy of the second player
increments to 2. Then, the next entries 1 1 correspond to the payoffs
of player 1 and player 2, respectively, in the case where player 1
plays his second strategy, and player 2 his first strategy.

In general, the ordering of contingencies is done in the same way that
we count: incrementing the least-significant digit place in the number
first, and then incrementing more significant digit places in the
number as the lower ones “roll over.” The only differences are that
the counting starts with the digit 1, instead of 0, and that the
“base” used for each digit is not 10, but instead is the number of
strategies that player has in the game.

The strategic game (.nfg) file format, outcome version

This file format defines a strategic N-player game. In this version,
the payoffs are defined by means of outcomes, which may appear more
than one place in the game table. This may give a more compact means
of representing a game where many different strategy combinations map
to the same consequences for the players. For a version of this format
in which payoffs are listed explicitly, without identification by
outcomes, see the previous section.

A sample file

This is a sample file illustrating the general format of the file.
This file defines the same game as the example in the previous
section.

NFG 1 R "Selten (IJGT, 75), Figure 2, normal form" { "Player 1" "Player 2" }

{
{ "1" "2" "3" }
{ "1" "2" }
}

{
{ "" 1, 1 }
{ "" 0, 2 }
{ "" 0, 2 }
{ "" 1, 1 }
{ "" 0, 3 }
{ "" 2, 0 }
}
1 2 3 4 5 6

Structure of the prologue

The prologue is constructed as follows. The file begins with the token
NFG , identifying it as a strategic gamefile. Next is the digit 1 ;
this digit is a version number. Since only version 1 files have been
supported for more than a decade, all files have a 1 in this position.
Next comes the letter R . The letter R used to distinguish files which
had rational numbers for numerical data; this distinction is obsolete,
so all new files should have R in this position.

The prologue continues with the title of the game. Following the title
is a list of the names of the players defined in the game. This list
follows the convention found elsewhere in the file of being surrounded
by curly braces and delimited by whitespace (but not commas,
semicolons, or any other character). The order of the players is
significant; the first entry in the list will be numbered as player 1,
the second entry as player 2, and so forth.

Following the list of players is a list of strategies. This is a
nested list; each player’s strategies are given as a list of text
labels, surrounded by curly braces.

The nested strategy list is followed by an optional text comment
field.

The prologue closes with a list of outcomes. This is also a nested
list. Each outcome is specified by a text string, followed by a list
of numerical payoffs, one for each player defined. The payoffs may
optionally be separated by commas, as in the example file. The
outcomes are implicitly numbered in the order they appear; the first
outcome is given the number 1, the second 2, and so forth.

Structure of the body (list of outcomes)

The body of the file is a list of outcome indices. These are presented
in the same lexicographic order as the payoffs in the payoff file
format; please see the documentation of that format for the
description of the ordering. For each entry in the table, a
nonnegative integer is given, corresponding to the outcome number
assigned as described in the prologue section. The special outcome
number 0 is reserved for the “null” outcome, which is defined as a
payoff of zero to all players. The number of entries in this list,
then, should be the same as the product of the number of strategies
for all players in the game.

The action graph game (.agg) file format

Action graph games (AGGs) are a compact representation of simultaneous-move games with structured utility functions.
For more information on AGGs, the following paper gives a comprehensive discussion.

A.X. Jiang, K. Leyton-Brown and N. Bhat, Action-Graph Games [http://www.cs.ubc.ca/~jiang/papers/AGG.pdf], Games and Economic Behavior, Volume 71, Issue 1, January 2011, Pages 141-173.

Each file in this format describes an action graph game.
In order for the file to be recognized as AGG by GAMBIT, the initial line of the file should be:

#AGG

The rest of the file consists of 8 sections, separated by whitespaces. Lines with starting ‘#’ are treated as comments and are allowed between sections.

	The number of players, n.

	The number of action nodes, |S|.

	The number of function nodes, |P|.

	Size of action set for each player. This is a row of n integers:

|S1| |S2| |Sn|

	Each Player’s action set. We have N rows; row i has |Si| integers in ascending order,
which are indices of Action nodes. Action nodes are indexed from 0 to |S|-1.

	The Action Graph. We have |S|+|P| nodes, indexed from 0 to |S|+|P|-1.
The function nodes are indexed after the action nodes. The graph
is represented as (|S|+|P|) neighbor lists, one list per row.
Rows 0 to |S|-1 are for action nodes; rows |S| to |S|+|P|-1 are for
function nodes. In each row, the first number |v| specifies the
number of neighbors of the node. Then follows |v| numbers,
corresponding to the indices of the neighbors.

We require that each function node has at least one neighbor, and
the neighbors of function nodes are action nodes. The action graph
restricted to the function nodes has to be a directed acyclic graph (DAG).

	Signatures of functions. This is |P| rows, each specifying the mapping
f_p that maps from the configuration of the function node p’s neighbors to
an integer for p’s “action count”. Each function is specified by its “signature”
consisting of an integer type, possibly followed by further parameters. Several types of mapping are
implemented:

	Types 0-3 require no further input.

	Type 0: Sum. i.e. The action count of a function node p is the sum of
the action counts of p’s neighbors.

	Type 1: Existence: boolean for whether the sum of the counts of
neighbors are positive.

	Type 2: The index of the neighbor with the highest index that has
non-zero counts, or |S|+|P| if none applies.

	Type 3: The index of the neighbor with the lowest index that has
non-zero counts, or |S|+|P| if none applies.

	Types 10-13 are extended versions of type 0-3, each requiring
further parameters of an integer default value and a list of weights,
|S| integers enclosed in square brackets. Each action node is thus associated with an integer weight.

	Type 10: Extended Sum. Each instance of an action in p’s neighborhood being chosen contributes the
weight of that action to the sum. These are added to the default value.

	Type 11: Extended Existence: boolean for whether the extended sum is positive. The input default value
and weights are required to be nonnegative.

	Type 12: The weight of the neighbor with the highest index that has
non-zero counts, or the default value if none applies.

	Type 13: The weight of the neighbor with the lowest index that has
non-zero counts, or the default value if none applies.

The following is an example of the signatures for an AGG with three action nodes and two function nodes:

2
10 0 [2 3 4]

	The payoff function for each action node. So we have
|S| subblocks of numbers. Payoff function for action s is a mapping
from configurations to real numbers. Configurations are
represented as a tuple of integers; the size of the tuple is the size
of the neighborhood of s. Each configuration specifies the action counts
for the neighbors of s, in the same order as the neighbor list of s.

The first number of each subblock specifies
the type of the payoff function. There are multiple ways of representing
payoff functions; we (or other people) can extend the file format by
defining new types of payoff functions. We define two basic types:

	Type 0

	The complete representation. The set of possible
configurations can be derived from the action graph. This set of
configurations can also be sorted in lexicographical order. So we can
just specify the payoffs without explicitly giving the configurations.
So we just need to give one row of real numbers, which correspond to
payoffs for the ordered set of configurations.

If action s is in multiple players’ action sets (say players
i, j),
then it is possible that the set of possible configurations
given si
is different from the set of possible configurations given
sj.
In such cases, we need to specify payoffs for the union of the
sets of configurations (sorted in lexicographical order).

	Type 1

	The mapping representation, in which we specify the configurations
and the corresponding payoffs. For the payoff function of action s,
first give Delta_s, the number of elements in the mapping.
Then follows Delta_s rows. In each row, first specify the configuration,
which is a tuple of integers, enclosed by a pair of brackets “[” and “]”, then the payoff.
For example, the following specifies a payoff function of type 1, with two configurations:

1 2
[1 0] 2.5
[1 1] -1.2

The Bayesian action graph game (.bagg) format

Bayesian action graph games (BAGGs) are a compact representation of Bayesian (i.e., incomplete-information) games.
For more information on BAGGs, the following paper gives a detailed discussion.

A.X. Jiang and K. Leyton-Brown, Bayesian Action-Graph Games [http://www.cs.ubc.ca/~jiang/papers/BAGG.pdf]. NIPS, 2010.

Each file in this format describes a BAGG.
In order for the file to be recognized as BAGG by GAMBIT, the initial line of the file should be:

#BAGG

The rest of the file consists of the following sections,
separated by whitespaces. Lines with starting ‘#’ are treated as comments and are allowed between sections.

	The number of Players, n.

	The number of action nodes, |S|.

	The number of function nodes, |P|.

	The number of types for each player, as a row of n integers.

	Type distribution for each player. The distributions are assumed to be independent.
Each distribution is represented as a row of real numbers.
The following example block gives the type distributions for a BAGG with two players and two types for each player:

0.5 0.5
0.2 0.8

	Size of type-action set for each player’s each type.

	Type-action set for each player’s each type.
Each type-action set is represented as a row of integers in ascending order,
which are indices of action nodes. Action nodes are indexed from 0 to |S|-1.

	The action graph: same as in the AGG format.

	types of functions: same as in the AGG format.

	utility function for each action node: same as in the AGG format.

[image: Chadwick]
Gambit: Software Tools for Game Theory

Bibliography

Articles on computation of Nash equilibria

	[Eav71]	B. C. Eaves, “The linear complementarity problem”, 612-634,
Management Science , 17, 1971.

	[GovWil03]	Govindan, Srihari and Robert Wilson. (2003)
“A Global Newton Method to Compute Nash Equilibria.”
Journal of Economic Theory 110(1): 65-86.

	[GovWil04]	Govindan, Srihari and Robert Wilson. (2004)
“Computing Nash Equilibria by Iterated Polymatrix Approximation.”
Journal of Economic Dynamics and Control 28: 1229-1241.

	[Jiang11]	A. X. Jiang, K. Leyton-Brown, and N. Bhat. (2011)
“Action-Graph Games.” Games and Economic Behavior 71(1): 141-173.

	[KolMegSte94]	Daphne Koller, Nimrod Megiddo, and Bernhard von
Stengel (1996).
“Efficient computation of equilibria for extensive two-person games.”
Games and Economic Behavior 14: 247-259.

	[LemHow64]	C. E. Lemke and J. T. Howson, “Equilibrium points of
bimatrix games”, 413-423, Journal of the Society of Industrial and
Applied Mathematics , 12, 1964.

	[Man64]	O. Mangasarian, “Equilibrium points in bimatrix games”,
778-780, Journal of the Society for Industrial and Applied
Mathematics, 12, 1964.

	[McK91]	Richard McKelvey, A Liapunov function for Nash equilibria,
1991, California Institute of Technology.

	[McKMcL96]	Richard McKelvey and Andrew McLennan, “Computation of
equilibria in finite games”, 87-142, Handbook of Computational
Economics , Edited by H. Amman, D. Kendrick, J. Rust, Elsevier, 1996.

	[PNS04]	Ryan Porter, Eugene Nudelman, and Yoav Shoham.
“Simple search methods for finding a Nash equilibrium.”
Games and Economic Behavior 664-669, 2004.

	[Ros71]	J. Rosenmuller, “On a generalization of the Lemke-Howson
Algorithm to noncooperative n-person games”, 73-79, SIAM Journal of
Applied Mathematics, 21, 1971.

	[Sha74]	Lloyd Shapley, “A note on the Lemke-Howson algorithm”, 175-189,
Mathematical Programming Study , 1, 1974.

	[Tur05]	Theodore L. Turocy, “A dynamic homotopy interpretation of the
logistic quantal response equilibrium correspondence”, 243-263, Games
and Economic Behavior, 51, 2005.

	[Tur10]	Theodore L. Turocy, “Using Quantal Response to Compute
Nash and Sequential Equilibria.” Economic Theory 42(1): 255-269, 2010.

	[VTH87]	G. van der Laan, A. J. J. Talman, and L. van Der Heyden,
“Simplicial variable dimension algorithms for solving the nonlinear
complementarity problem on a product of unit simplices using a general
labelling”, 377-397, Mathematics of Operations Research , 1987.

	[Wil71]	Robert Wilson, “Computing equilibria of n-person games”, 80-87,
SIAM Applied Math, 21, 1971.

	[Yam93]	Y. Yamamoto, 1993, “A Path-Following Procedure to Find a Proper
Equilibrium of Finite Games ”, International Journal of Game Theory .

General game theory articles and texts

	[Harsanyi1967a]	John Harsanyi, “Games of Incomplete Information Played
By Bayesian Players I”, 159-182, Management Science , 14, 1967.

	[Harsanyi1967b]	John Harsanyi, “Games of Incomplete Information Played
By Bayesian Players II”, 320-334, Management Science , 14, 1967.

	[Harsanyi1968]	John Harsanyi, “Games of Incomplete Information Played
By Bayesian Players III”, 486-502, Management Science , 14, 1968.

	[KreWil82]	David Kreps and Robert Wilson, “Sequential Equilibria”,
863-894, Econometrica , 50, 1982.

	[McKPal95]	Richard McKelvey and Tom Palfrey, “Quantal response
equilibria for normal form games”, 6-38, Games and Economic Behavior ,
10, 1995.

	[McKPal98]	Richard McKelvey and Tom Palfrey, “Quantal response
equilibria for extensive form games”, 9-41, Experimental Economics ,
1, 1998.

	[Mye78]	Roger Myerson, “Refinements of the Nash equilibrium concept”,
73-80, International Journal of Game Theory , 7, 1978.

	[Nas50]	John Nash, “Equilibrium points in n-person games”, 48-49,
Proceedings of the National Academy of Sciences , 36, 1950.

	[Sel75]	Reinhard Selten, Reexamination of the perfectness concept for
equilibrium points in extensive games , 25-55, International Journal
of Game Theory , 4, 1975.

	[vanD83]	Eric van Damme, 1983, Stability and Perfection of Nash
Equilibria , Springer-Verlag, Berlin.

Textbooks and general reference

	[Mye91]	Roger Myerson, 1991, Game Theory : Analysis of Conflict ,
Harvard University Press.

[image: Chadwick]
Gambit: Software Tools for Game Theory

Detailed table of contents

	An overview of Gambit
	What is Gambit?

	A brief history of Gambit

	Key features of Gambit

	Limitations of Gambit

	Developers

	Downloading Gambit

	Community

	Bug reports

	The graphical interface
	General concepts
	General layout of the main window

	Payoffs and probabilities in Gambit

	A word about file formats

	Extensive games
	Creating a new extensive game

	Adding moves

	Copying and moving subtrees

	Removing parts of a game tree

	Managing information sets

	Outcomes and payoffs

	Formatting and labeling the tree

	Labels on nodes and branches

	Controlling the layout of the tree

	Selecting fonts and colors

	Strategic games
	Navigating a strategic game

	Adding players and strategies

	Editing payoffs

	Investigating dominated strategies and actions
	Dominated actions in extensive game

	Dominated strategies in strategic games

	Computing Nash equilibria
	Selecting the method of computing equilibria

	Viewing computed profiles in the game

	Computing quantal response equilibria
	Quantal response equilibria in strategic games (experimental)

	Printing and exporting games
	Printing a game

	Saving to a graphics file

	Command-line tools
	gambit-enumpure: Enumerate pure-strategy equilibria of a game

	gambit-enumpoly: Compute equilibria of a game using polynomial systems of equations

	gambit-enummixed: Enumerate equilibria in a two-player game

	gambit-gnm: Compute Nash equilibria in a strategic game using a global Newton method

	gambit-ipa: Compute Nash equilibria in a strategic game using iterated polymatrix approximation

	gambit-lcp: Compute equilibria in a two-player game via linear complementarity

	gambit-lp: Compute equilibria in a two-player constant-sum game via linear programming

	gambit-liap: Compute Nash equilibria using function minimization

	gambit-simpdiv: Compute equilibria via simplicial subdivision

	gambit-logit: Compute quantal response equilbria

	gambit-convert: Convert games among various representations

	Python interface to Gambit library
	A tutorial introduction
	Building an extensive game

	Building a strategic game

	Reading a game from a file

	Iterating the pure strategy profiles in a game

	Mixed strategy and behavior profiles

	Computing Nash equilibria

	API documentation
	Game representations

	Representations of play of games

	Elements of games

	Representation of errors and exceptions

	Computation of Nash equilibria

	Sample games

	For contributors: Ideas and suggestions for Gambit-related projects
	Refactor and update game representation library
	File formats for serializing games

	Structure equilibrium calculations using the strategy pattern

	Implement Strategic Restriction of a game in C++

	Implement Behavior Restriction of a game in Python

	Implementing algorithms for finding equilibria in games
	Enumerating all equilibria of a two-player bimatrix game using the EEE algorithm

	Improve integration and testing of Gametracer

	Interface with lrslib

	Finding equilibria reachable by Lemke’s algorithm with varying “covering vectors”

	Computing the index of an equilibrium component

	Enumerating all equilibria of a two-player game tree

	Solving for equilibria using polynomial systems of equations

	Implement Herings-Peeters homotopy algorithm to compute Nash equilibria

	For developers: Building Gambit from source
	General information

	Building from git repository

	Supported compilers

	For Windows users

	For OS X users

	The graphical interface and wxWidgets

	Building the Python extension

	Game representation formats
	Conventions common to all file formats

	The extensive game (.efg) file format
	A sample file

	Structure of the prologue

	Structure of the body (list of nodes)

	The strategic game (.nfg) file format, payoff version
	A sample file

	Structure of the prologue

	Structure of the body (list of payoffs)

	The strategic game (.nfg) file format, outcome version
	A sample file

	Structure of the prologue

	Structure of the body (list of outcomes)

	The action graph game (.agg) file format

	The Bayesian action graph game (.bagg) format

	Bibliography
	Articles on computation of Nash equilibria

	General game theory articles and texts

	Textbooks and general reference

[image: Chadwick]
Gambit: Software Tools for Game Theory

An overview of Gambit

What is Gambit?

Gambit is a set of software tools for doing computation on finite,
noncooperative games. These comprise a graphical interface for
interactively building and analyzing general games in extensive or
strategy form; a number of command-line tools for computing Nash
equilibria and other solution concepts in games; and, a set of file
formats for storing and communicating games to external tools.

A brief history of Gambit

The Gambit Project was founded in the mid-1980s by Richard McKelvey at
the California Institute of Technology. The original implementation
was written in BASIC, with a simple graphical interface. This code was
ported to C around 1990 with the help of Bruce Bell, and was
distributed publicly as version 0.13 in 1991 and 1992.

A major step in the evolution of Gambit took place with the awarding
of the NSF grants in 1994, with McKelvey and Andrew McLennan as
principal investigators, and Theodore Turocy [http://www.gambit-project.org/turocy] as the head programmer.
The grants sponsored a complete rewrite of Gambit in C++. The
graphical interface was made portable across platforms through the use
of the wxWidgets library (http://www.wxwidgets.org). Version 0.94 of Gambit was released in
the late summer of 1994, version 0.96 followed in 1999, and version
0.97 in 2002. During this time, many students at Caltech and Minnesota
contributed to the effort by programming, testing, and/or documenting.
These include, alphabetically, Bruce Bell, Anand Chelian, Matthew
Derer, Nelson Escobar, Ben Freeman, Eugene Grayver, Todd Kaplan, Geoff
Matters, Brian Trotter, Michael Vanier, Roberto Weber, and Gary Wu.

Over the same period, Bernhard von Stengel, of the London School of
Economics, made significant contributions in the implementation of the
sequence form methods for two-player extensive games, and for
contributing his “clique” code for identification of equilibrium
components in two-player strategic games, as well as other advice
regarding Gambit’s implementation and architecture.

Development since the mid-2000s has focused on two objectives. First,
the graphical interface was reimplemented and modernized, with the
goal of following good interaction design principles, especially in
regards to easing the learning curve for users new to Gambit and new
to game theory. Second, the internal architecture of Gambit was
refactored to increase interoperability between the tools provided by
Gambit and those written independently.

Gambit is proud to have participated in the Google Summer of Code
program in the summers of 2011 and 2012 as a mentoring organization.
The Python API, which became part of Gambit from Gambit 13, was
developed during these summers, thanks in particular to the work
of Stephen Kunath and Alessandro Andrioni.

Key features of Gambit

Gambit has a number of features useful both for the researcher and the
instructor:

Interactive, cross-platform graphical interface. All Gambit
features are available through the use of a graphical interface, which
runs under multiple operating systems: Windows, various flavors of
Un*x (including Linux), and Mac OS X. The interface offers flexible
methods for creating extensive and strategic games. It offers an
interface for running algorithms to compute Nash equilibria, and for
visualizing the resulting profiles on the game tree or table, as well
as an interactive tool for analyzing the dominance structure of
actions or strategies in the game. The interface is useful for the
advanced researcher, but is intended to be accessible for students
taking a first course in game theory as well.

Command-line tools for computing equilibria. More advanced
applications often require extensive computing time and/or the ability
to script computations. All algorithms in Gambit are packaged as
individual, command-line programs, whose operation and output are
configurable.

Extensibility and interoperability. The Gambit tools read and
write file formats which are textual and documented, making them
portable across systems and able to interact with external tools. It
is therefore straightforward to extend the capabilities of Gambit by,
for example, implementing a new method for computing equilibria,
reimplementing an existing one more efficiently, or creating tools to
programmatically create, manipulate, and transform games, or for
econometric analysis on games.

Limitations of Gambit

Gambit has a few limitations that may be important in some
applications. We outline them here.

Gambit is for finite games only. Because of the mathematical
structure of finite games, it is possible to write many general-
purpose routines for analyzing these games. Thus, Gambit can be used
in a wide variety of applications of game theory. However, games that
are not finite, that is, games in which players may choose from a
continuum of actions, or in which players may have a continuum of
types, do not admit the same general-purpose methods.

Gambit is for noncooperative game theory only. Gambit focuses on
the branch of game theory in which the rules of the game are written
down explicitly, and in which players choose their actions
independently. Gambit’s analytical tools center primarily around Nash
equilibrium, and related concepts of bounded rationality such as
quantal response equilibrium. Gambit does not at this time provide any
representations of, or methods for, analyzing games written in
cooperative form. (It should be noted that some problems in
cooperative game theory do not suffer from the computational
complexity that the Nash equilibrium problem does, and thus
cooperative concepts could be an interesting future direction of
development.)

Analyzing large games may become infeasible surprisingly quickly.
While the specific formal complexity classes of computing Nash
equilibria and related concepts are still an area of active research,
it is clear that, in the typical case, the amount of time required to
compute equilibria increases rapidly in the size of the game. In other
words, it is quite easy to write down games which will take Gambit an
unacceptably long amount time to compute the equilibria of. There are
two ways to deal with this problem in practice. One way is to better
identify good heuristic approaches for guiding the equilibrium
computation process. Another way is to take advantage of known
features of the game to guide the process. Both of these approaches
are now becoming areas of active interest. While it will certainly not
be possible to analyze every game that one would like to, it is hoped
that Gambit will both contribute to these two areas of research, as
well as make the resulting methods available to both students and
practitioners.

Developers

The principal developers of Gambit are:

	Theodore Turocy [http://www.gambit-project.org/turocy],
University of East Anglia: director.

	Richard D. McKelvey, California Institute of Technology:
project founder.

	Andrew McLennan, University of Queensland: co-PI during main
development, developer and maintainer of polynomial-based algorithms
for equilibrium computation.

Much of the development of the main Gambit codebase took place in
1994-1996, under a grant from the National Science Foundation to the
California Institute of Technology and the University of Minnesota
(McKelvey and McLennan, principal investigators).

Others contributing to the development and distribution of Gambit
include:

	Bernhard von Stengel provided advice on implementation of
sequence form code, and contributed clique code

	Eugene Grayver developed the first version of the
graphical user interface.

	Gary Wu implemented an early scripting language interface for
Gambit (since superseded by the Python API).

	Stephen Kunath and Alessandro Andrioni did extensive work to create
the first release of the Python API.

	From Gambit 14, Gambit contains support for Action Graph Games
[Jiang11]. This has been contributed by Navin Bhat, Albert Jiang,
Kevin Leyton-Brown, and David Thompson, with funding support
provided by a University Graduate Fellowship of the University
of British Columbia, the NSERC Canada Graduate Scholarship, and a
Google Research Award to Leyton-Brown.

Downloading Gambit

Gambit operates on an annual release cycle roughly mirroring the
(northern hemisphere) academic year. A new version is promoted to
stable/teaching each August; the major version number is equal to the
last two digits of the year in which the version becomes stable.

This document covers Gambit 16.0.1.
You can download it from
Sourceforge [http://sourceforge.net/projects/gambit/files/gambit16/16.0.1].
Full source code is available, as are precompiled binaries for
Microsoft Windows and Mac OS X 10.8.

Older versions of Gambit can be downloaded from
http://sourceforge.net/projects/gambit/files. Support for older
versions is limited.

Community

The following mailing lists are available for those interested in the
use and further development of Gambit:

	gambit-announce@lists.sourceforge.net [http://lists.sourceforge.net/lists/listinfo/gambit-announce]

	Announcement-only mailing list for notifications of new releases of
Gambit.

	gambit-users@lists.sourceforge.net [http://lists.sourceforge.net/lists/listinfo/gambit-users]

	General discussion forum for teaching and research users of Gambit.

	gambit-devel@lists.sourceforge.net [http://lists.sourceforge.net/lists/listinfo/gambit-devel]

	Discussion for those interested in devleoping or extending Gambit,
or using Gambit source code in other applications.

Bug reports

In the first instance, bug reports or feature requests should be
posted to the Gambit issue tracker, located at
http://github.com/gambitproject/gambit/issues.

When reporting a bug, please be sure to include the following:

	The version(s) of Gambit you are using. (If possible, it is helpful
to know whether a bug exists in both the current stable/teaching and
the current development/research versions.)

	The operating system(s) on which you encountered the bug.

	A detailed list of steps to reproduce the bug. Be sure to include a
sample game file or files if appropriate; it is often helpful to
simplify the game if possible.

[image: Chadwick]
Gambit: Software Tools for Game Theory

The graphical interface

Gambit’s graphical user interface provides an
“integrated development environment” to help visually construct
games and to investigate their main strategic features.

The graphical interface is largely intended for the interactive
construction and analysis of small to medium games. Repeating the
caution from the introduction of this manual, the computation time
required for the equilibrium analysis of games increases rapidly in
the size of the game. The graphical interface is ideal for students
learning about the fundamentals of game theory, or for practitioners
prototyping games of interest.

In graduating to larger applications,
users are encouraged to make use of the underlying Gambit libraries
and programs directly. For greater control over computing Nash and
quantal response equilibria of a game, see the section on
the command-line tools.
To build larger games or to explore parameter spaces of a game
systematically, it is recommended to use
the Python API.

General concepts

General layout of the main window

[image: the default extensive game at launch]
The frame presenting a game consists of two principal panels. The main
panel, to the right, displays the game graphically; in this case,
showing the game tree of a simple one-card poker game. To the left is
the player panel, which lists the players in the game; here, Fred and
Alice are the players. Note that where applicable, information is
color-coded to match the colors assigned to the players: Fred’s moves
and payoffs are all presented in red, and Alice’s in blue. The color
assigned to a player can be changed by clicking on the color icon
located to the left of the player’s name on the player panel. Player
names are edited by clicking on the player’s name, and editing the
name in the text control that appears.

Two additional panels are available. Selecting
Tools ‣ Dominance toggles
the display of an additional toolbar across the top of the window.
This toolbar controls the indication and elimination of actions or
strategies that are dominated. The use of this toolbar is discussed in
Investigating dominated strategies and actions.

Selecting View ‣ Profiles,
or clicking the show profiles icon on the
toolbar, toggles the display of the list of computed strategy profiles
on the game. More on the way the interface handles the computation of
Nash equilibria and other kinds of strategy profiles is presented
in Computing Nash equilibria.

Payoffs and probabilities in Gambit

Gambit stores all payoffs in games in an arbitrary-precision format.
Payoffs may be entered as decimal numbers with arbitrarily many
decimal places. In addition, Gambit supports representing payoffs
using rational numbers. So, for example, in any place in which a
payoff may appear, either an outcome of an extensive game or a payoff
entry in a strategic game, the payoff one-tenth may be entered either
as .1 or 1/10.

The advantage of this format is that, in certain circumstances, Gambit
may be able to compute equilibria exactly. In addition, some methods
for computing equilibria construct good numerical approximations to
equilibrium points. For these methods, the computed equilibria are
stored in floating-point format. To increase the number of decimal
places shown for these profiles, click the increase decimals icon . To
decrease the number of decimal places shown, click the decrease
decimals icon .

Increasing or decreasing the number of decimals displayed in
computed strategy profiles will not have any effect on the display of
outcome payoffs in the game itself, since those are stored in
arbitrary precision.

A word about file formats

The graphical interface manipulates several different file formats for
representing games. This section gives a quick overview of those
formats.

Gambit has for many years supported two file formats for representing
games, one for extensive games (typically using the filename extension
.efg) and one for strategic games (typically using the filename
extension .nfg). These file formats are recognized by all Gambit
versions dating back to release 0.94 in 1995. (Users interested in the
details of these file formats can consult Game representation formats
for more information.)

Beginning with release 2005.12.xx, the graphical interface now reads
and writes a new file format, which is referred to as a”Gambit
workbook.” This extended file format stores not only the
representation of the game, but also additional information, including
parameters for laying out the game tree, the colors assigned to
players, any equilibria or other analysis done on the game, and so
forth. So, for example, the workbook file can be used to store the
analysis of a game and then return to it. These files by convention
end in the extension .gbt.

The graphical interface will read files in all three formats: .gbt,
.efg, and .nfg. The “Save” and “Save as” commands, however, always
save in the Gambit workbook (.gbt) format. To save the game itself as
an extensive (.efg) or strategic (.nfg) game, use the items on the
“Export” submenu of the “File” menu. This is useful in interfacing
with older versions of Gambit, with other tools which read and write
those formats, and in using the underlying Gambit analysis command-
line tools directly, as those programs accept .efg or .nfg game files.
Users primarily interested in using Gambit solely via the graphical
interface are encouraged to use the workbook (.gbt) format.

As it is a new format, the Gambit workbook format is still under
development and may change in details. It is intended that newer
versions of the graphical interface will still be able to read
workbook files written in older formats.

Extensive games

The graphical interface provides a flexible set of operations for
constructing and editing general extensive games. These are outlined
below.

Creating a new extensive game

To create a new extensive game, select
File ‣ New ‣ Extensive game, or
click on the new extensive game icon . The extensive game created is a
trivial game with two players, named by default
Player 1 and Player 2,
with one node, which is both the root and terminal node of the game.
In addition, extensive games have a special player labeled
Chance,
which is used to represent random events not controlled by any of the
strategic players in the game.

Adding moves

There are two options for adding moves to a tree: drag-and-drop
and the Insert move dialog.

	Moves can be added to the
tree using a drag-and-drop idiom. From the player list window, drag
the player icon located to the left of the player who will have the
move to any terminal node in the game tree. The tree will be extended
with a new move for that player, with two actions at the new move.
Adding a move for the chance player is done the same way, except the
dice icon appearing to the left of the chance player in the player
list window is used instead of the player icon. For the chance player,
the two actions created will each be given a probability weight of
one-half. If the desired move has more than two actions, additional
actions can be added by dragging the same player’s icon to the move
node; this will add one action to the move each time this is done.

[image: insert move dialog]

	Click on any terminal node in
the tree, and select Edit ‣ Insert move
to display the insert move dialog.
The dialog is intended to read like a sentence:
	The first control specifies the player who will make the move. The
move can be assigned to a new player by specifying
Insert move for a new player here.

	The second control selects the information set to which to add the
move. To create the move in a new information set, select
at a new information set for this control.

	The third control sets the number of actions. This control is
disabled unless the second control is set to
at a new information set.
Otherwise, it is set automatically to the number of actions at
the selected information set.

The two methods can be useful in different contexts.
The drag-and-drop approach
is a bit quicker to use, especially when creating trees that have few
actions at each move. The dialog approach is a bit more flexible, in
that a move can be added for a new, as-yet-undefined player, a move
can be added directly into an existing information set, and a move can
be immediately given more than two actions.

Copying and moving subtrees

Many extensive games have structures that appear in multiple parts of
the tree. It is often efficient to create the structure once, and then
copy it as needed elsewhere.

Gambit provides a convenient idiom for this. Clicking on any
nonterminal node and dragging to any terminal node implements a move
operation, which moves the entire subtree rooted at the original,
nonterminal node to the terminal node.

To turn the operation into a copy operation:

	On Windows and Linux systems, hold down the Ctrl key during
the operation.

	On OS X, hold down the Cmd key when starting the
drag operation, then release prior to dropping.

The entire subtree rooted at the original node is copied,
starting at the terminal node. In this copy operation, each node in
the copied image is placed in the same information set as the
corresponding node in the original subtree.

Copying a subtree to a terminal node in that subtree is also
supported. In this case, the copying operation is halted when reaching
the terminal node, to avoid an infinite loop. Thus, this feature
can also be helpful in constructing multiple-stage games.

Removing parts of a game tree

Two deletion operations are supported on extensive games. To delete
the entire subtree rooted at a node, click on that node and select
Edit ‣ Delete subtree.

To delete an individual move from the game, click on one of the direct
children of that node, and select
Edit ‣ Delete parent. This operation
deletes the parent node, as well as all the children of the parent
other than the selected node. The selected child node now takes the
place of the parent node in the tree.

Managing information sets

Gambit provides several methods to help manage the information
structure in an extensive game.

When building a tree, new moves can be placed in a given information
set using the Insert move dialog.
Additionally, new moves can be
created using the drag-and-drop idiom by holding down the Shift
key and dragging a node in the tree. During the drag operation, the
cursor changes to the move icon . Dropping the move icon on another
node places the target node in the same information set as the node
where the drag operation began.

[image: node properties dialog]
The information set to which a node belongs can also be set by
selecting Edit ‣ Node. This displays the
node properties dialog.
The Information set dropdown defaults
to the current information set to which the node belongs, and contains
a list of all other information sets in the game which are compatible
with the node, that is, which have the same number of
actions. Additionally, the node can be moved to a new, singleton
information set by setting this dropdown to the New
information set entry.

When building out a game tree using the drag-and-drop approach to copying portions of the tree,
the nodes created in
the copy of the subtree remain in the same information set as the
corresponding nodes in the original subtree. In many cases, though,
these trees differ in the information available to some or all of the
players. To help speed the process of adjusting information sets in
bulk, Gambit offers a “reveal” operation, which breaks information
sets based on the action taken at a particular node. Click on a node
at which the action taken is to be made known subsequently to other
players, and select Edit ‣ Reveal. This displays a
dialog listing the players in the game. Check the boxes next to the
players who observe the outcome of the move at the node, and click
OK. The information sets at nodes below the selected one
are adjusted based on the action selected at this node.

This is an operation that is easier to see than the explain. See the
poker tutorial
(flash version [http://www.gambit-project.org/doc/tutorials/poker.swf];
PDF version [http://www.gambit-project.org/doc/tutorials/poker.pdf])
for an application of the
revelation operation in conjunction with the tree-copy operation.

Note

The reveal operation only has an effect at the time it is done. In
particular, it does not enforce the separation of information sets
based on this information during subsequent editing of the game.

Outcomes and payoffs

Gambit supports the specification of payoffs at any node in a game
tree, whether terminal or not. Each node is created with
no outcome attached; in this case, the payoff at each node is zero to
all players. These are indicated in the game tree by the presence of
a (u) in light grey to the right of a node.

To set the payoffs at a node, double-click on the
(u) to the right
of the node. This creates a new outcome at the node, with payoffs of
zero for all players, and displays an editor to set the payoff of the
first player.

The payoff to a player for an outcome can be edited by double-clicking
on the payoff entry. This action creates a text edit control in which
the payoff to that player can be modified. Edits to the payoff can be
accepted by pressing the Enter key. In addition, accepting the
payoff by pressing the Tab key both stores the changes to the
player’s payoff, and advances the editor to the payoff for the next
player at that outcome.

Outcomes may also be moved or copied using a drag-and-drop idiom.
Left-clicking and dragging an outcome to another node moves the
outcome from the original node to the target node. Copying an outcome
may be accomplished by doing this same action while holding down the
Control (Ctrl) key on the keyboard.

When using the copy idiom described above, the action assigns the same
outcome to both the involved nodes. Therefore, if subsequently the
payoffs of the outcome are edited, the payoffs at both nodes will be
modified. To copy the outcome in such a way that the outcome at the
target node is a different outcome from the one at the source, but
with the same payoffs, hold down the Shift key instead of the
Control key while dragging.

To remove an outcome from a node, click on the node, and
select Edit ‣ Remove outcome.

Formatting and labeling the tree

Gambit offers some options for customizing the display of game trees.

Labels on nodes and branches

The information displayed at the nodes and on the branches of the tree
can be configured by selecting Format ‣ Labels,
which displays the tree labels dialog.

[image: tree labels dialog]
Above and below each node, the following information can be displayed:

	No label

	The space is left blank.

	The node’s label

	The text label assigned to the node. (This is the
default labeling above each node.)

	The player’s name

	The name of the player making the move at the node.

	The information set’s label

	The name of the information set to
which the node belongs.

	The information set’s number

	A unique identifier of the information
set, in the form player number:information set number. (This is the
default labeling below each node.)

	The realization probability

	The probability the node is reached.
(Only displayed when a behavior strategy is selected to be displayed
on the tree.)

	The belief probability

	The probability a player assigns to being at
the node, conditional on reaching the information set. (Only displayed
when a behavior strategy is selected to be displayed on the tree.)

	The payoff of reaching the node

	The expected payoff to the player
making the choice at the node, conditional on reaching the node. (Only
displayed when a behavior strategy is selected to be displayed on the
tree.)

Above and below each branch, the following information can be
displayed:

	No label

	The space is left blank.

	The name of the action

	The name of the action taken on the branch.
(This it the default labeling above the branch.)

	The probability the action is played

	For chance actions, the
probability the branch is taken; this is always displayed. For player
actions, the probability the action is taken in the selected profile
(only displayed when a behavior strategy is selected to be displayed
on the tree). In some cases, behavior strategies do not fully specify
behavior sufficiently far off the equilibrium path; in such cases, an
asterisk is shown for such action probabilities. (This is the default
labeling below each branch.)

	The value of the action

	The expected payoff to the player of taking
the action, conditional on reaching the information set. (Only
displayed when a behavior strategy is selected to be displayed on the
tree.)

Controlling the layout of the tree

Gambit implements an automatic system for layout out game trees, which
provides generally good results for most games. These can be adjusted
by selecting Format ‣ Layout.
The layout parameters are organized on three tabs.

[image: layout options dialog, nodes tab]
The first tab,
labeled Nodes, controls the size, location, and
rendering of nodes in the tree.
Nodes can be indicated using one
of five tokens: a horizontal line (the “traditional” Gambit style from
previous versions), a box, a diamond, an unfilled circle, and a filled
circle). These can be set independently to distinguish chance and
terminal nodes from player nodes.

The sizing of nodes can be configured for best results. Gambit styling
from previous versions used the horizontal line tokens with relatively
long lines; when using the other tokens, smaller node sizes often look
better.

[image: layout options dialog, branches tab]
The layout algorithm is based upon identifying the location of
terminal nodes. The vertical spacing between these nodes can be set;
making this value larger will tend to give the tree a larger vertical
extent.

The second tab,
labeled Branches, controls the display of the branches
of the tree.
The traditional Gambit way of drawing branches is a “fork-tine”
approach, in which there is a flat part at the end of each branch at
which labels are displayed. Alternatively, branches can be drawn
directly between nodes by setting Draw branches
to using straight
lines between nodes. With this setting, labels are now displayed at
points along the (usually) diagonal branches. Labels are usually shown
horizontally; however, they can be drawn rotated parallel to the
branches by setting Draw labels to rotated.

The rotated label drawing is experimental, and does not always look
good on screen.

[image: layout options dialog, information sets tab]
The length used for branches and their tines, if drawn, can be
configured. Longer branch and tine lengths give more space for longer
labels to be drawn, at the cost of giving the tree a larger horizontal
extent.

Finally, display of the information sets in the game is configured
under the tab labeled Information sets.
Members of information sets are
by default connected using a “bubble” similar to that drawn in
textbook diagrams of games. The can be modified to use a single line
to connect nodes in the same information set. In conjunction with
using lines for nodes, this can sometimes lead to a more compact
representation of a tree where there are many information sets at the
same horizontal location.

The layout of the tree may be such that members of the same
information set appear at different horizontal locations in the tree.
In such a case, by default, Gambit draws a horizontal arrow pointing
rightward or leftward to indicate the continuation of the information
set, as illustrated in the diagram nearby.

[image: information sets spanning multiple levels]
These connections can be disabled by setting
Connect members of information
sets to only when on the same level.
In addition, drawing information
set indicators can be disabled entirely by setting this to invisibly
(don’t draw indicators).

Selecting fonts and colors

To select the font used to draw the labels in the tree, select
Format ‣ Font.
The standard font selection dialog for the operating
system is displayed, showing the fonts available on the system. Since
available fonts vary across systems, when opening a workbook on a
system different from the system on which it was saved, Gambit tries
to match the font style as closely as possible when the original font
is not available.

The color-coding for each player can be changed by clicking on the
color icon to the left of the corresponding player.

Strategic games

Gambit has full support for constructing and manipulating arbitrary
N-player strategic (also known as normal form) games.

For extensive games, Gambit automatically computes the corresponding
reduced strategic game. To view the reduced strategic game
corresponding to an extensive game, select
View ‣ Strategic game or
click the strategic game table icon on the toolbar.

The strategic games computed by Gambit as the reduced strategic game
of an extensive game cannot be modified directly. Instead, edit the
original extensive game; Gambit automatically recomputes the strategic
game after any changes to the extensive game.

Strategic games may also be input directly. To create a new strategic
game, select File ‣ New ‣ Strategic game,
or click the new strategic game icon on the toolbar.

Navigating a strategic game

Gambit displays a strategic game in table form. All players are
assigned to be either row players or column players, and the payoffs
for each entry in the strategic game table correspond to the payoffs
corresponding to the situation in which all the row players play the
strategy specified on that row for them, and all the column players
play the strategy specified on that column for them.

[image: a prisoner's dilemma game]
For games with two players, this presentation is by default configured
to be similar to the standard presenation of strategic games as
tables, in which one player is assigned to be the “row” player and the
other the “column” player. However, Gambit permits a more flexible
assignment, in which multiple players can be assigned to the rows and
multiple players to the columns. This is of particular use for games
with more than two players. In print, a three-player strategic game is
usually presented as a collection of tables, with one player choosing
the row, the second the column, and the third the table. Gambit
presents such games by hierarchially listing the strategies of one or
more players on both rows and columns.

The hierarchical presentation of the table is similar to that of a
contingency table in a spreadsheet application.
Here, Alice,
shown in red, has her strategies listed on the rows of the table, and
Bob, shown in blue, has his strategies listed on the columns of the
table.

The assignment of players to row and column roles is fully
customizable. To change the assignment of a player, drag the person
icon appearing to the left of the player’s name on the player toolbar
to either of the areas in the payoff table displaying the strategy
labels.

[image: a prisoner's dilemma game, with contingencies in list style]
For example, dragging the player icon from the left of Bob’s name in
the list of players and dropping it on the right side of Alice’s
strategy label column changes the display of the game as in
Here, the strategies are shown in a
hierarchical format, enumerating the outcomes of the game first by
Alice’s (red) strategy choice, then by Bob’s (blue) strategy choice.

Alternatively, the game can be displayed by listing the outcomes with
Bob’s strategy choice first, then Alice’s. Drag Bob’s player icon and
drop it on the left side of Alice’s strategy choices, and the game
display changes to organize the outcomes first by Bob’s action, then
by Alice’s.

The same dragging operation can be used to assign players to the
columns. Assigning multiple players to the columns gives the same
hierarchical presentation of those players’ strategies. Dropping a
player above another player’s strategy labels assigns him to a higher
level of the column player hierarchy; dropping a player below another
player’s strategy labels assigns him to a lower level of the column
player hierarchy.

[image: another view of the same prisoner's dilemma game.]
As the assignment of players in the row and column
hierarchies changes, the ordering of the payoffs in each cell of the
table also changes. In all cases, the color-coding of the entries
identifies the player to whom each payoff corresponds. The ordering
convention is chosen so that for a two player game in which one player
is a row player and the other a column player, the row player’s payoff
is shown first, followed by the column player, which is the most
common convention in print.

Adding players and strategies

To add an additional player to the game, use the menu item
Edit ‣ Add player,
or the corresponding toolbar icon . The newly created player
has one strategy, by default labeled with the number 1.

Gambit supports arbitrary numbers of strategies for each player. To
add a new strategy for a player, click the new strategy icon located
to the left of that player’s name.

To edit the names of strategies, click on any cell in the strategic
game table where the strategy label appears, and edit the label using
the edit control.

Editing payoffs

Payoffs for each player are specified individually for each
contingency, or collection of strategies, in the game. To edit any
payoff in the table, click that cell in the table and edit the payoff.
Pressing the Escape key (Esc) cancels any editing of the payoff
and restores the previous value.

To speed entry of many payoffs, as is typical when creating a new
game, accepting a payoff entry via the Tab key automatically moves
the edit control to the next cell to the right. If the payoff is the
last payoff listed in a row of the table, the edit control wraps
around to the first payoff in the next row; if the payoff is in the
last row, the edit control wraps around to the first payoff in the
first row. So a strategic game payoff table can be quickly entered by
clicking on the first payoff in the upper-left cell of the table,
inputting the payoff for the first (row) player, pressing the Tab
key, inputting the payoff for the second (column) player, pressing the
Tab key, and so forth, until all the payoff entries in the table
have been filled.

Investigating dominated strategies and actions

Selecting Tools ‣ Dominance
toggles the appearance of a toolbar which
can be used to investigate the structure of dominated strategies and
actions.

Dominated actions in extensive game

In extensive games, the dominance toolbar controls the elimination of actions which are conditionally dominated.

[image: the poker game, with the dominance toolbar shown]
Actions may be eliminated based on two criteria:

	Strict dominance

	The action is always worse than another,
regardless of beliefs at the information set;

	Strict or weak dominance

	There is another action at the information
set that is always at least as good as the action, and strictly better
in some cases.

[image: the poker game, with the dominated action eliminated]
For example, in the poker game, it is strictly dominated for Fred to
choose Fold after Red. Clicking the next level icon
removes the dominated action from the game display.

The tree layout remains unchanged, including nodes which can only be
reached using actions which have been eliminated. To compress the tree
to remove the unreachable nodes, check the box labeled
Show only
reachable nodes.

For this game, no further actions can be eliminated. In general,
further steps of elimination can be done by again clicking the next
level icon. The toolbar keeps track of the number of levels of
elimination currently shown; the previous level icon moves up one
level of elimination.

[image: the poker game, with only reachable actions shown]
The elimination of multiple levels can be automated using the fast
forward icon , which iteratively eliminates dominated actions until no
further actions can be eliminated. The rewind icon restores the
display to the full game.

Dominated strategies in strategic games

The dominance toolbar operates in strategic games in the same way as
the in the extensive game. Strategies can be eliminated iteratively
based on whether they are strictly or weakly dominated.

[image: the prisoner's dilemma example, with dominated strategies indicated]
When the dominance toolbar is shown, the strategic game table contains
indicators of strategies that are dominated.
In the prisoner’s dilemma, the Cooperate strategy is strictly
dominated for both players. This strict dominance is indicated by the
solid “X” drawn across the corresponding strategy labels for both
players. In addition, the payoffs corresponding to the dominated
strategies are also drawn with a solid “X” across them. Thus, any
contingency in the table containing at least one “X” is a contingency
that can only be reached by at least one player playing a strategy
that is dominated.

Strategies that are weakly dominated are similarly indicated, except
the “X” shape is drawn using a thinner, dashed line instead of the
thick, solid line.

[image: the prisoner's dilemma example, with dominated strategies removed]
Clicking the next level icon removes the strictly dominated strategies
from the display.

Computing Nash equilibria

Gambit offers broad support for computing Nash equilibria in both
extensive and strategic games. To access the provided algorithms for
computing equilibria, select Tools ‣ Equilibrium,
or click on the
calculate icon on the toolbar.

Selecting the method of computing equilibria

The process of computing Nash equilibria in extensive and strategic
games is similar. This section focuses on the case of extensive games;
the process for strategic games is analogous, except the extensive
game-specific features, such as displaying the profiles on the game
tree, are not applicable.

Gambit provides guidance on the options for computing Nash equilibria
in a dialog.
The methods applicable to a particular game depend on three criteria:
the number of equilibria to compute, whether the computation is to be
done on the extensive or strategic games, and on details of the game,
such as whether the game has two players or more, and whether the game
is constant-sum.

[image: dialog for computing Nash equilibria]
The first step in finding equilibria is to specify how many equilibria
are to be found. Some algorithms for computing equilibria are adapted
to finding a single equilibrium, while others attempt to compute the
whole equilibrium set. The first drop-down in the dialog specifies how
many equilibria to compute. In this drop-down there are options for
as many equilibria as possible and, for two-player games,
all equilibria. For some games, there exist algorithms which will
compute many equilibria (relatively) efficiently, but are not
guaranteed to find all equilibria.

To simplify this process of choosing the method to compute equilibria
in the second drop-down, Gambit provides for any game “recommended”
methods for computing one, some, and all Nash equilibria,
respectively. These methods are selected based on experience as to the
efficiency and reliability of the methods, and should generally work
well on most games. For more control over the process, the user can
select from the second drop-down in the dialog one of the appropriate
methods for computing equilibria. This list only shows the methods
which are appropriate for the game, given the selection of how many
equilibria to compute. More details on these methods are contained
in Command-line tools.

[image: dialog for monitoring computation of equilibria]
Finally, for extensive games, there is an option of whether to use the
extensive or strategic game for computation. In general, computation
using the extensive game is preferred, since it is often a
significantly more compact representation of the strategic
characeteristics of the game than the reduced strategic game is.

For even moderate sized games, computation of equilibrium can be a
time-intensive process. Gambit runs all computations in the
background, and displays a dialog
showing all equilibria computed so
far. The computation can be cancelled at any time by clicking on the
cancel icon , which terminates the computation but keeps any
equilibria computed.

Viewing computed profiles in the game

After computing equilibria, a panel showing the list of equilibria
computed is displayed automatically. The display of this panel can be
toggled by selecting View ‣ Profiles,
or clicking on the playing card
icon on the toolbar.

[image: poker game with the unique equilibrium displayed]
This game has a unique equilibrium in which Fred raises after Red with
probability one, and raises with probability one-third after Black.
Alice, at her only information set, plays meet with probability two-
thirds and raise with probability one-third.

This equilibrium is displayed in a table in the profiles panel. If
more than one equilibrium is found, this panel lists all equilibria
found. Equilibria computed are grouped by separate computational runs;
computing equilibria using a different method (or different settings)
will add a second list of profiles. The list of profiles displayed is
selected using the drop-down at the top left of the profiles panel; in
the screenshot, it is set to
Profiles 1. A
brief description of the method used to compute the equilibria is
listed across the top of the profiles panel.

The currently selected equilibrium is shown in bold in the profiles
listing, and information about this equilibrium is displayed in the
extensive game. In the figure, the probabilities of selecting each
action are displayed below each branch of the tree. (This is the
default Gambit setting; see Controlling the layout of the tree
for configuring the labeling of trees.)
Each branch of the tree also shows a black line, the length of which
is proportional to the probability with which the action is played.

[image: poker game with the beliefs at Alice's top node]
Clicking on any node in the tree displays additional information about
the profile at that node.
The player panel displays
information relevant to the selected node, including the payoff to all players
conditional on reaching the node, as well as information about Alice’s
beliefs at the node.

The computed profiles can also be viewed in the reduced strategic
game. Clicking on the strategic game icon changes the view to the
reduced strategic form of the game, and shows the equilibrium profiles
converted to mixed strategies in the strategic game.

Computing quantal response equilibria

Gambit provides methods for computing the logit quantal response
equilibrium correspondence for extensive games [McKPal98]
and strategic games [McKPal95],
using the tracing method of [Tur05].

[image: quantal response equilibria]
To compute the correspondence, select Tools ‣ Qre.
If viewing an
extensive game, the agent quantal response equilibrium correspondence
is computed; if viewing a strategic game (including the reduced
strategic game derived from an extensive game), the correspondence is
computed in mixed strategies.

The computed correspondence values can be saved to a CSV (comma-
separated values) file by clicking the button labeled
Save correspondence to .csv file.
This format is suitable for reading by a
spreadsheet or graphing application.

Quantal response equilibria in strategic games (experimental)

There is an experimental graphing interface for quantal response
equilibria in strategic games.
The graph by default plots the probabilities of all strategies, color-
coded by player, as a function of the lambda parameter. The lambda
values on the horizontal axis are plotted using a sigmoid
transformation; the Graph scaling value controls the shape of this
transformation. Lower values of the scaling give more graph space to
lower values of lambda; higher values of the scaling give more space
to higher values of lambda.

[image: quantal response equilibria graphing]
The strategies graphed are indicated in the panel at the left of the
window. Clicking on the checkbox next to a strategy toggles whether it
is displayed in the graph.

The data points computed in the correspondence can be viewed (as in
the extensive game example above) by clicking on the show data icon on
the toolbar. The data points can be saved to a CSV file by clicking on
the .

To zoom in on a portion of the graph of interest, hold down the left
mouse button and drag a rectangle on the graph. The plot window zooms
in on the portion of the graph selected by that rectangle. To restore
the graph view to the full graph, click on the zoom to fit icon .

To print the graph as shown, click on the print icon . Note that this
is very experimental, and the output may not be very satisfactory yet.

Printing and exporting games

Gambit supports (almost) WYSIWYG (what you see is what you get) output
of both extensive and strategic games, both to a printer and to
several graphical formats. For all of these operations, the game is
drawn exactly as currently displayed on the screen, including whether
the extensive or strategic representation is used, the layout, colors
for players, dominance and probability indicators, and so forth.

Printing a game

To print the game, press Ctrl-P, select
File ‣ Print, or click
the printer icon on the toolbar. The game is scaled so that the
printout fits on one page, while maintaining the same ratio of
horizontal to vertical size; that is, the scaling factor is the same
in both horizontal and vertical dimensions.

Note that especially for extensive games, one dimension of the tree is
much larger than the other. Typically, the extent of the tree
vertically is much greater than its horizontal extent. Because the
printout is scaled to fit on one page, printing such a tree will
generally result in what appears to be a thin line running vertically
down the center of the page. This is in fact the tree, shrunk so the
large vertical dimension fits on the page, meaning that the horizontal
dimension, scaled at the same ratio, becomes very tiny.

Saving to a graphics file

Gambit supports export to five graphical file formats:

	Windows bitmaps (.bmp)

	JPEG, a lossy compressed format (.jpg , .jpeg)

	PNG, a lossless compressed format (.png); these are similar to
GIFs

	Encapsulated PostScript (.ps)

	Scalable vector graphics (.svg)

To export a game to one of these formats, select
File ‣ Export, and
select the corresponding menu entry.

The Windows bitmap and PNG formats are generally recommended for
export, as they both are lossless formats, which will reproduce the
game image exactly as in Gambit. PNG files use a lossless compression
algorithm, so they are typically much smaller than the Windows bitmap
for the same game. Not all image viewing and manipulation tools handle
PNG files; in those cases, use the Windows bitmap output instead. JPEG
files use a compression algorithm that only approximates the original
version, which often makes it ill-suited for use in saving game
images, since it often leads to “blocking” in the image file.

For all three of these formats, the dimensions of the exported graphic
are determined by the dimensions of the game as drawn on screen. Image
export is only supported for games which are less than about 65000
pixels in either the horizontal or vertical dimensions. This is
unlikely to be a practical problem, since such games are so large they
usually cannot be drawn in such a way that a human can make sense of
them.

Encapsulated PostScript output is generally useful for inclusion in
LaTeX and other scientific document preparation systems. This is a
vector-based output, and thus can be rescaled much more effectively
than the other output formats.

[image: Chadwick]
Gambit: Software Tools for Game Theory

Command-line tools

Gambit provides command-line interfaces for each method for computing
Nash equilibria. These are suitable for scripting or calling from
other programs. This chapter describes the use of these programs.
For a general overview of methods for computing equilibria,
see the survey of [McKMcL96].

The graphical interface also provides a frontend for calling these
programs and evaluating their output. Direct use of the command-line
programs is intended for advanced users and applications.

These programs take an extensive or strategic game file, which can be
specified on the command line or piped via standard input, and output
a list of equilibria computed. The default output format is to present
equilibria computed as a list of comma-separated probabilities,
preceded by the tag NE. For mixed strategy profiles, the
probabilities are sorted lexicographically by player, then by
strategy. For behavior strategy profiles, the probabilites are sorted
by player, then information set, then action number, where the
information sets for a player are sorted by the order in which they
are encountered in a depth-first traversal of the game tree.
Many programs take an option -D, which, if specified, instead prints
a more verbose, human-friendly description of each strategy profile
computed.

Many of the programs optionally output additional information
about the operation of the algorithm. These outputs have other,
program-specific tags, described in the individual program
documentation.

gambit-enumpure: Enumerate pure-strategy equilibria of a game

gambit-enumpure reads a game on standard input and searches for
pure-strategy Nash equilibria.

Changed in version 14.0.2: The effect of the -S switch is now purely cosmetic, determining
how the equilibria computed are represented in the
output. Previously, -S computed using the strategic game; if this
was not specified for an extensive game, the agent form equilibria
were returned.

	
-S

	Report equilibria in reduced strategic form strategies, even if the
game is an extensive game. By default, if passed an extensive
game, the output will be in behavior strategies. Specifying this switch
does not imply any change in operation internally, as pure-strategy
equilibria are defined in terms of reduced strategic form
strategies.

	
-D

	
New in version 14.0.2.

The default output format for computed equilibria is a
comma-separated list of strategy or action probabilities, suitable
for postprocessing by automated tools. Specifying -D instead
causes the program to output greater detail on each equilbrium
profile computed.

	
-A

	
New in version 14.0.2.

Report agent form equilibria, that is, equilibria which consider
only deviations at one information set. Only has an effect for
extensive games, as strategic games have only one information set
per player.

	
-P

	By default, the program computes all pure-strategy Nash
equilibria in an extensive game. This switch instructs the program to
find only pure-strategy Nash equilibria which are subgame perfect.
(This has no effect for strategic games, since there are no proper
subgames of a strategic game.)

	
-h

	Prints a help message listing the available options.

	
-q

	Suppresses printing of the banner at program launch.

Computing the pure-strategy equilibria of extensive game e02.efg, the example in Figure 2 of Selten
(International Journal of Game Theory, 1975):

$ gambit-enumpure e02.efg
Search for Nash equilibria in pure strategies
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

NE,1,0,0,0,1,0

With the -S switch, the set of equilibria returned is the same,
except expressed in strategic game strategies rather than behavior
strategies:

$ gambit-enumpure -S e02.efg
Search for Nash equilibria in pure strategies
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

NE,1,0,0,1,0

The -A switch considers only behavior strategy profiles where there
is no way for a player to improve his payoff by changing action at
only one information set; therefore the set of solutions is larger:

$ gambit-enumpure -A e02.efg
Search for Nash equilibria in pure strategies
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

NE,1,0,1,0,1,0
NE,1,0,1,0,0,1
NE,1,0,0,1,1,0

gambit-enumpoly: Compute equilibria of a game using polynomial systems of equations

gambit-enumpoly reads a game on standard input and
computes Nash equilibria by solving systems of polynomial equations
and inequalities.

This program searches for all Nash equilibria in a strategic game
using a support enumeration approach. This approach computes all the
supports which could, in principle, be the support of a Nash
equilibrium, and then searches for a totally mixed equilibrium on that
support by solving a system of polynomial equalities and inequalities
formed by the Nash equilibrium conditions. The ordering of the
supports is done in such a way as to maximize use of previously
computed information, making it suited to the computation of all Nash
equilibria.

When the verbose switch -v is used, the program outputs each support
as it is considered. The supports are presented as a comma-separated
list of binary strings, where each entry represents one player. The
digit 1 represents a strategy which is present in the support, and the
digit 0 represents a strategy which is not present. Each candidate
support is printed with the label “candidate,”.

Note that the subroutine to compute a solution to the system of
polynomial equations and inequalities will fail in degenerate cases.
When the verbose switch -v is used, these supports are identified on
standard output with the label “singular,”. It is possible that there
exist equilibria, often a connected component of equilibria, on these
singular supports.

	
-d

	Express all output using decimal representations with the specified
number of digits.

	
-h

	Prints a help message listing the available options.

	
-H

	By default, the program uses an enumeration method designed to
visit as few supports as possible in searching for all equilibria.
With this switch, the program uses a heuristic search method based on
Porter, Nudelman, and Shoham [PNS04], which is designed to minimize the
time until the first equilibrium is found. This switch only has an
effect when solving strategic games.

	
-S

	By default, the program uses behavior strategies for extensive
games; this switch instructs the program to use reduced strategic game
strategies for extensive games. (This has no effect for strategic
games, since a strategic game is its own reduced strategic game.)

	
-q

	Suppresses printing of the banner at program launch.

	
-v

	Sets verbose mode. In verbose mode, supports are printed on
standard output with the label “candidate” as they are considered, and
singular supports are identified with the label “singular.” By
default, no information about supports is printed.

Computing equilbria of the extensive game e01.efg, the example in Figure 1 of Selten
(International Journal of Game Theory, 1975) sometimes called
“Selten’s horse”:

$ gambit-enumpoly e01.efg
Compute Nash equilibria by solving polynomial systems
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
Heuristic search implementation Copyright (C) 2006, Litao Wei
This is free software, distributed under the GNU GPL

NE,0.000000,1.000000,0.333333,0.666667,1.000000,0.000000
NE,1.000000,0.000000,1.000000,0.000000,0.250000,0.750000
NE,1.000000,0.000000,1.000000,0.000000,0.000000,0.000000
NE,0.000000,1.000000,0.000000,0.000000,1.000000,0.000000

gambit-enummixed: Enumerate equilibria in a two-player game

gambit-enummixed reads a two-player game on standard input and
computes Nash equilibria using extreme point enumeration.

In a two-player strategic game, the set of Nash equilibria can be expressed
as the union of convex sets. This program generates all the extreme
points of those convex sets. (Mangasarian [Man64])
This is a superset of the points generated by the path-following
procedure of Lemke and Howson (see gambit-lcp: Compute equilibria in a two-player game via linear complementarity). It was
shown by Shapley [Sha74] that there are equilibria not accessible via
the method in gambit-lcp: Compute equilibria in a two-player game via linear complementarity, whereas the output of
gambit-enummixed is guaranteed to return all the extreme
points.

	
-d

	By default, this program computes using exact
rational arithmetic. Since the extreme points computed by this method
are guaranteed to be rational when the payoffs in the game are
rational, this permits exact computation of the equilibrium set.
Computation using rational arithmetic is in general slow, however. For
most games, acceptable results can be obtained by computing using the
computer’s native floating-point arithmetic. Using this flag enables
computation in floating-point, and expresses all output using decimal
representations with the specified number of digits.

	
-D

	Since all Nash equilibria involve only strategies which survive
iterative elimination of strictly dominated strategies, the program
carries out the elimination automatically prior to computation.
This is recommended, since it almost always results in superior
performance.
Specifying -D skips the elimination step and performs the
enumeration on the full game.

	
-c

	The program outputs the extreme equilibria as it finds them,
prefixed by the tag NE . If this option is specified, once all extreme
equilbria are identified, the program computes the convex sets which
make up the set of equilibria. The program then additionally outputs
each convex set, prefixed by convex-N , where N indexes the set. The
set of all equilibria, then, is the union of these convex sets.

	
-h

	Prints a help message listing the available options.

	
-q

	Suppresses printing of the banner at program launch.

	
-L

	Use lrslib [http://cgm.cs.mcgill.ca/~avis/C/lrs.html] by David Avis
to carry out the enumeration process. This is an experimental
feature that has not been widely tested.

Computing the equilibria, in mixed strategies, of e02.nfg, the reduced strategic form of the example
in Figure 2 of Selten (International Journal of Game Theory,
1975):

$ gambit-enummixed e02.nfg
Compute Nash equilibria by enumerating extreme points
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
Enumeration code based on lrslib 4.2b,
Copyright (C) 1995-2005 by David Avis (avis@cs.mcgill.ca)
This is free software, distributed under the GNU GPL

NE,1,0,0,1,0
NE,1,0,0,1/2,1/2

In fact, the game e02.nfg has a one-dimensional continuum of
equilibria. This fact can be observed by examining the connectedness
information using the -c switch:

$ gambit-enummixed -c e02.nfg
Compute Nash equilibria by enumerating extreme points
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
Enumeration code based on lrslib 4.2b,
Copyright (C) 1995-2005 by David Avis (avis@cs.mcgill.ca)
This is free software, distributed under the GNU GPL

NE,1,0,0,1,0
NE,1,0,0,1/2,1/2
convex-1,1,0,0,1/2,1/2
convex-1,1,0,0,1,0

gambit-gnm: Compute Nash equilibria in a strategic game using a global Newton method

gambit-gnm reads a game on standard input and computes Nash
equilibria using a global Newton method approach developed by Govindan
and Wilson [GovWil03]. This program is a wrapper around the
Gametracer 0.2 [http://dags.stanford.edu/Games/gametracer.html]
implementation by Ben Blum and Christian Shelton.

	
-d

	Express all output using decimal representations
with the specified number of digits.

	
-h

	Prints a help message listing the available options.

	
-n

	Randomly generate the specified number of perturbation vectors.

	
-q

	Suppresses printing of the banner at program launch.

	
-s

	Specifies a file containing a list of starting points
for the algorithm. The format of the file is comma-separated values,
one mixed strategy profile per line, in the same format used for
output of equilibria (excluding the initial NE tag).

	
-v

	Show intermediate output of the algorithm. If this option is
not specified, only the equilibria found are reported.

Computing an equilibrium of e02.nfg,
the reduced strategic form of the example in Figure 2 of Selten
(International Journal of Game Theory, 1975):

$ gambit-gnm e02.nfg
Compute Nash equilibria using a global Newton method
Gametracer version 0.2, Copyright (C) 2002, Ben Blum and Christian Shelton
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

NE,1,0,2.99905e-12,0.5,0.5

Note

This is an experimental program and has not been extensively tested.

See also

gambit-ipa: Compute Nash equilibria in a strategic game using iterated polymatrix approximation.

gambit-ipa: Compute Nash equilibria in a strategic game using iterated polymatrix approximation

gambit-ipa reads a game on standard input and computes Nash
equilibria using an iterated polymatrix approximation approach
developed by Govindan and Wilson [GovWil04].
This program is a wrapper around the
Gametracer 0.2 [http://dags.stanford.edu/Games/gametracer.html]
implementation by Ben Blum and Christian Shelton.

	
-d

	Express all output using decimal representations
with the specified number of digits.

	
-h

	Prints a help message listing the available options.

	
-q

	Suppresses printing of the banner at program launch.

Computing an equilibrium of e02.nfg,
the reduced strategic form of the example in Figure 2 of Selten
(International Journal of Game Theory, 1975):

$ gambit-ipa e02.nfg
Compute Nash equilibria using iterated polymatrix approximation
Gametracer version 0.2, Copyright (C) 2002, Ben Blum and Christian Shelton
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

NE,1.000000,0.000000,0.000000,1.000000,0.000000

Note

This is an experimental program and has not been extensively tested.

See also

gambit-gnm: Compute Nash equilibria in a strategic game using a global Newton method.

gambit-lcp: Compute equilibria in a two-player game via linear complementarity

gambit-lcp reads a two-player game on standard input and
computes Nash equilibria by finding solutions to a linear
complementarity problem. For extensive games, the program uses the
sequence form representation of the extensive game, as defined by
Koller, Megiddo, and von Stengel [KolMegSte94], and applies the
algorithm developed by Lemke. For strategic games, the program using
the method of Lemke and Howson [LemHow64]. There exist strategic
games for which some equilibria cannot be located by this method; see
Shapley [Sha74].

In a two-player strategic game, the set of Nash equilibria can be expressed
as the union of convex sets. This program will find extreme points
of those convex sets. See gambit-enummixed: Enumerate equilibria in a two-player game for a method
which is guaranteed to find all the extreme points for a strategic
game.

	
-d

	By default, this program computes using exact
rational arithmetic. Since the extreme points computed by this method
are guaranteed to be rational when the payoffs in the game are
rational, this permits exact computation of the equilibrium set.
Computation using rational arithmetic is in general slow, however. For
most games, acceptable results can be obtained by computing using the
computer’s native floating-point arithmetic. Using this flag enables
computation in floating-point, and expresses all output using decimal
representations with the specified number of digits.

	
-S

	By default, the program uses behavior strategies for extensive
games; this switch instructs the program to use reduced strategic game
strategies for extensive games. (This has no effect for strategic
games, since a strategic game is its own reduced strategic game.)

	
-D

	
New in version 14.0.2.

The default output format for computed equilibria is a
comma-separated list of strategy or action probabilities, suitable
for postprocessing by automated tools. Specifying -D instead
causes the program to output greater detail on each equilbrium
profile computed.

	
-P

	By default, the program computes Nash equilibria in an extensive
game. This switch instructs the program to find only equilibria
which are subgame perfect. (This has no effect for strategic
games, since there are no proper subgames of a strategic game.)

	
-h

	Prints a help message listing the available options.

	
-q

	Suppresses printing of the banner at program launch.

Computing an equilibrium of extensive game e02.efg, the example in Figure 2 of Selten
(International Journal of Game Theory, 1975):

$ gambit-lcp e02.efg
Compute Nash equilibria by solving a linear complementarity program
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

NE,1,0,1/2,1/2,1/2,1/2

gambit-lp: Compute equilibria in a two-player constant-sum game via linear programming

gambit-lp reads a two-player constant-sum game on standard input
and computes a Nash equilibrium by solving a linear program. The
program uses the sequence form formulation of Koller, Megiddo, and von
Stengel [KolMegSte94] for extensive games.

While the set of equilibria in a two-player constant-sum strategic
game is convex, this method will only identify one of the extreme
points of that set.

	
-d

	By default, this program computes using exact
rational arithmetic. Since the extreme points computed by this method
are guaranteed to be rational when the payoffs in the game are
rational, this permits exact computation of an equilibrium.
Computation using rational arithmetic is in general slow, however. For
most games, acceptable results can be obtained by computing using the
computer’s native floating-point arithmetic. Using this flag enables
computation in floating-point, and expresses all output using decimal
representations with the specified number of digits.

	
-S

	By default, the program uses behavior strategies for extensive
games; this switch instructs the program to use reduced strategic game
strategies for extensive games. (This has no effect for strategic
games, since a strategic game is its own reduced strategic game.)

	
-D

	
New in version 14.0.3.

The default output format for computed equilibria is a
comma-separated list of strategy or action probabilities, suitable
for postprocessing by automated tools. Specifying -D instead
causes the program to output greater detail on each equilbrium
profile computed.

	
-P

	By default, the program computes Nash equilibria in an extensive
game. This switch instructs the program to find only equilibria
which are subgame perfect. (This has no effect for strategic
games, since there are no proper subgames of a strategic game.)

	
-h

	Prints a help message listing the available options.

	
-q

	Suppresses printing of the banner at program launch.

Computing an equilibrium of the game 2x2const.nfg, a game with two players with two
strategies each, with a unique equilibrium in mixed strategies:

$ gambit-lp 2x2const.nfg
Compute Nash equilibria by solving a linear program
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

NE,1/3,2/3,1/3,2/3

gambit-liap: Compute Nash equilibria using function minimization

gambit-liap reads a game on standard input and computes
approximate Nash equilibria using a function minimization approach.

This procedure searches for equilibria by generating random starting
points and using conjugate gradient descent to minimize the Lyapunov
function of the game. This function is a nonnegative function which is
zero exactly at strategy profiles which are Nash equilibria.

Note that this procedure is not globally convergent. That is, it is
not guaranteed to find all, or even any, Nash equilibria.

	
-d

	Express all output using decimal representations with the
specified number of digits.

	
-n

	Specify the number of starting points to randomly generate.

	
-h

	Prints a help message listing the available options.

	
-q

	Suppresses printing of the banner at program launch.

	
-s

	Specifies a file containing a list of starting points
for the algorithm. The format of the file is comma-separated values,
one mixed strategy profile per line, in the same format used for
output of equilibria (excluding the initial NE tag).

	
-S

	By default, the program uses behavior strategies for extensive
games; this switch instructs the program to use reduced strategic game
strategies for extensive games. (This has no effect for strategic
games, since a strategic game is its own reduced strategic game.)

	
-v

	Sets verbose mode. In verbose mode, initial points, as well as
points at which the minimization fails at a constrained local minimum
that is not a Nash equilibrium, are all output, in addition to any
equilibria found.

Computing an equilibrium in mixed strategies of e02.efg, the example in Figure 2 of Selten
(International Journal of Game Theory, 1975):

$ gambit-liap e02.nfg
Compute Nash equilibria by minimizing the Lyapunov function
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

NE, 0.998701, 0.000229, 0.001070, 0.618833, 0.381167

gambit-simpdiv: Compute equilibria via simplicial subdivision

gambit-simpdiv reads a game on standard input and computes
approximations to Nash equilibria using a simplicial subdivision
approach.

This program implements the algorithm of van der Laan, Talman, and van
Der Heyden [VTH87]. The algorithm proceeds by constructing a triangulated grid
over the space of mixed strategy profiles, and uses a path-following
method to compute an approximate fixed point. This approximate fixed
point can then be used as a starting point on a refinement of the
grid. The program continues this process with finer and finer grids
until locating a mixed strategy profile at which the maximum regret is
small.

The algorithm begins with any mixed strategy profile consisting of
rational numbers as probabilities. Without any options, the algorithm
begins with the centroid, and computes one Nash equilibrium. To
attempt to compute other equilibria that may exist, use the
gambit-simpdiv -r or gambit-simpdiv -s
options to specify additional starting points for the algorithm.

	
-g

	Sets the granularity of the grid refinement. By
default, when the grid is refined, the stepsize is cut in half, which
corresponds to specifying -g 2. If this parameter is specified, the
grid is refined at each step by a multiple of MULT .

	
-h

	Prints a help message listing the available options.

	
-n

	Randomly generate COUNT starting points. Only
applicable if option gambit-simpdiv -r is also specified.

	
-q

	Suppresses printing of the banner at program launch.

	
-r

	Generate random starting points with denominator DENOM.
Since this algorithm operates on a grid, by its nature the
probabilities it works with are always rational numbers. If this
parameter is specified, starting points for the procedure are
generated randomly using the uniform distribution over strategy
profiles with probabilities having denominator DENOM.

	
-s

	Specifies a file containing a list of starting points
for the algorithm. The format of the file is comma-separated values,
one mixed strategy profile per line, in the same format used for
output of equilibria (excluding the initial NE tag).

	
-v

	Sets verbose mode. In verbose mode, initial points, as well as
the approximations computed at each grid refinement, are all output,
in addition to the approximate equilibrium profile found.

Computing an equilibrium in mixed strategies of e02.efg, the example in Figure 2 of Selten
(International Journal of Game Theory, 1975):

$ gambit-simpdiv e02.nfg
Compute Nash equilibria using simplicial subdivision
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

NE,1,0,0,1,0

gambit-logit: Compute quantal response equilbria

gambit-logit reads a game on standard input and computes the
principal branch of the (logit) quantal response correspondence.

The method is based on the procedure described in Turocy [Tur05] for
strategic games and Turocy [Tur10] for extensive games.
It uses standard path-following methods (as
described in Allgower and Georg’s “Numerical Continuation Methods”) to
adaptively trace the principal branch of the correspondence
efficiently and securely.

The method used is a predictor-corrector method, which first generates
a prediction using the differential equations describing the branch of
the correspondence, followed by a corrector step which refines the
prediction using Newton’s method for finding a zero of a function. Two
parameters control the operation of this tracing. The option -s sets
the initial step size for the predictor phase of the tracing. This
step size is then dynamically adjusted based on the rate of
convergence of Newton’s method in the corrector step. If the
convergence is fast, the step size is adjusted upward (accelerated);
if it is slow, the step size is decreased (decelerated). The option
-a sets the maximum acceleration (or deceleration). As described in
Turocy [Tur05], this acceleration helps to
efficiently trace the correspondence when it reaches its asymptotic
phase for large values of the precision parameter lambda.

	
-d

	Express all output using decimal representations with the specified
number of digits. The default is -d 6.

	
-s

	Sets the initial step size for the predictor phase of
the tracing procedure. The default value is .03. The step size is
specified in terms of the arclength along the branch of the
correspondence, and not the size of the step measured in terms of
lambda. So, for example, if the step size is currently .03, but the
position of the strategy profile on the branch is changing rapidly
with lambda, then lambda will change by much less then .03 between
points reported by the program.

	
-a

	Sets the maximum acceleration of the step size during
the tracing procedure. This is interpreted as a multiplier. The
default is 1.1, which means the step size is increased or decreased by
no more than ten percent of its current value at every step. A value
close to one would keep the step size (almost) constant at every step.

	
-m

	Stop when reaching the specified value of the
parameter lambda. By default, the tracing stops when lambda reaches
1,000,000, which is usually suitable for computing a good
approximation to a Nash equilibrium. For applications, such as to
laboratory experiments, where the behavior of the correspondence for
small values of lambda is of interest and the asymptotic behavior is
not relevant, setting MAXLAMBDA to a much smaller value may be
indicated.

	
-l

	While tracing, compute the logit equilibrium points
with parameter LAMBDA accurately.

	
-S

	By default, the program uses behavior strategies for extensive
games; this switch instructs the program to use reduced strategic game
strategies for extensive games. (This has no effect for strategic
games, since a strategic game is its own reduced strategic game.)

	
-h

	Prints a help message listing the available options.

	
-e

	By default, all points computed are output by the program. If
this switch is specified, only the approximation to the Nash
equilibrium at the end of the branch is output.

Computing the principal branch, in mixed strategies, of e02.nfg, the reduced strategic form of the example
in Figure 2 of Selten (International Journal of Game Theory,
1975):

$ gambit-logit e02.nfg
Compute a branch of the logit equilibrium correspondence
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

0.000000,0.333333,0.333333,0.333333,0.5,0.5
0.022853,0.335873,0.328284,0.335843,0.501962,0.498038
0.047978,0.338668,0.322803,0.33853,0.504249,0.495751
0.075600,0.341747,0.316863,0.34139,0.506915,0.493085
0.105965,0.345145,0.310443,0.344413,0.510023,0.489977
0.139346,0.348902,0.303519,0.347578,0.51364,0.48636

...

735614.794714,1,0,4.40659e-11,0.500016,0.499984
809176.283787,1,0,3.66976e-11,0.500015,0.499985
890093.921767,1,0,3.05596e-11,0.500014,0.499986
979103.323545,1,0,2.54469e-11,0.500012,0.499988
1077013.665501,1,0,2.11883e-11,0.500011,0.499989

gambit-convert: Convert games among various representations

gambit-convert reads a game on standard input in any supported format
and converts it to another text representation. Currently, this tool supports
outputting the strategic form of the game in one of these formats:

	A standard HTML table.

	A LaTeX fragment in the format of Martin Osborne’s sgame macros
(see http://www.economics.utoronto.ca/osborne/latex/index.html).

	
-O FORMAT

	Required. Specifies the output format. Supported options for
FORMAT are html or sgame.

	
-r PLAYER

	Specifies the player number to place on the rows of the tables.
The default if not specified is to place player 1 on the rows.

	
-c PLAYER

	Specifies the player number to place on the columns of the tables.
The default if not specified is to place player 2 on the columns.

	
-h

	Prints a help message listing the available options.

	
-q

	Suppresses printing of the banner at program launch.

Example invocation for HTML output:

$ gambit-convert -O html 2x2.nfg
Convert games among various file formats
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

<center><h1>Two person 2 x 2 game with unique mixed equilibrium</h1></center>
<table><tr><td></td><td align=center>1</td><td
align=center>2</td></tr><tr><td align=center>1</td><td
align=center>2,0</td><td align=center>0,1</td></tr><tr><td
align=center>2</td><td align=center>0,1</td><td
align=center>1,0</td></tr></table>

Example invocation for LaTeX output:

$ gambit-convert -O sgame 2x2.nfg
Convert games among various file formats
Gambit version 16.0.1, Copyright (C) 1994-2014, The Gambit Project
This is free software, distributed under the GNU GPL

\begin{game}{2}{2}[Player 1][Player 2]
&1 & 2\\
1 & $2,0$ & $0,1$ \\
2 & $0,1$ & $1,0$
\end{game}

[image: Chadwick]
Gambit: Software Tools for Game Theory

Python interface to Gambit library

Gambit provides a Python interface for programmatic manipulation of
games. This section documents this interface, which is under active
development. Refer to the instructions for building the Python
interface to compile and install the Python extension.

A tutorial introduction

Building an extensive game

The function Game.new_tree() creates a new, trivial
extensive game, with no players, and only a root node:

In [1]: import gambit

In [2]: g = gambit.Game.new_tree()

In [3]: len(g.players)
Out[3]: 0

The game also has no title. The title attribute provides
access to a game’s title:

In [4]: str(g)
Out[4]: "<Game ''>"

In [5]: g.title = "A simple poker example"

In [6]: g.title
Out[6]: 'A simple poker example'

In [7]: str(g)
Out[7]: "<Game 'A simple poker example'>"

The players attribute of a game is a collection of
the players. As seen above, calling len() on the set of
players gives the number of players in the game. Adding a
Player to the game is done with the add() member
of players:

In [8]: p = g.players.add("Alice")

In [9]: p
Out[9]: <Player [0] 'Alice' in game 'A simple poker example'>

Each Player has a text string stored in the
label attribute, which is useful for human
identification of players:

In [10]: p.label
Out[10]: 'Alice'

Game.players can be accessed like a Python list:

In [11]: len(g.players)
Out[11]: 1

In [12]: g.players[0]
Out[12]: <Player [0] 'Alice' in game 'A simple poker example'>

In [13]: g.players
Out[13]: [<Player [0] 'Alice' in game 'A simple poker example'>]

Building a strategic game

Games in strategic form are created using Game.new_table(), which
takes a list of integers specifying the number of strategies for
each player:

In [1]: g = gambit.Game.new_table([2,2])

In [2]: g.title = "A prisoner's dilemma game"

In [3]: g.players[0].label = "Alphonse"

In [4]: g.players[1].label = "Gaston"

In [5]: g
Out[5]:
NFG 1 R "A prisoner's dilemma game" { "Alphonse" "Gaston" }

{ { "1" "2" }
{ "1" "2" }
}
""

{
}
0 0 0 0

The strategies collection for a Player lists all the
strategies available for that player:

In [6]: g.players[0].strategies
Out[6]: [<Strategy [0] '1' for player 'Alphonse' in game 'A
prisoner's dilemma game'>,
 <Strategy [1] '2' for player 'Alphonse' in game 'A prisoner's dilemma game'>]

In [7]: len(g.players[0].strategies)
Out[7]: 2

In [8]: g.players[0].strategies[0].label = "Cooperate"

In [9]: g.players[0].strategies[1].label = "Defect"

In [10]: g.players[0].strategies
Out[10]: [<Strategy [0] 'Cooperate' for player 'Alphonse' in game 'A
prisoner's dilemma game'>,
 <Strategy [1] 'Defect' for player 'Alphonse' in game 'A prisoner's dilemma game'>]

The outcome associated with a particular combination of strategies is
accessed by treating the game like an array. For a game g,
g[i,j] is the outcome where the first player plays his
i th strategy, and the second player plays his
j th strategy. Payoffs associated with an outcome are set
or obtained by indexing the outcome by the player number. For a
prisoner’s dilemma game where the cooperative payoff is 8, the
betrayal payoff is 10, the sucker payoff is 2, and the noncooperative
(equilibrium) payoff is 5:

In [11]: g[0,0][0] = 8

In [12]: g[0,0][1] = 8

In [13]: g[0,1][0] = 2

In [14]: g[0,1][1] = 10

In [15]: g[1,0][0] = 10

In [16]: g[1,1][1] = 2

In [17]: g[1,0][1] = 2

In [18]: g[1,1][0] = 5

In [19]: g[1,1][1] = 5

Alternatively, one can use Game.from_arrays() in conjunction
with numpy arrays to construct a game with desired payoff matrices
more directly, as in:

In [20]: m = numpy.array([[8, 2], [10, 5]], dtype=gambit.Rational)

In [21]: g = gambit.Game.from_arrays(m, numpy.transpose(m))

Reading a game from a file

Games stored in existing Gambit savefiles in either the .efg or .nfg
formats can be loaded using Game.read_game():

In [1]: g = gambit.Game.read_game("e02.nfg")

In [2]: g
Out[2]:
NFG 1 R "Selten (IJGT, 75), Figure 2, normal form" { "Player 1" "Player 2" }

{ { "1" "2" "3" }
{ "1" "2" }
}
""

{
{ "" 1, 1 }
{ "" 0, 2 }
{ "" 0, 2 }
{ "" 1, 1 }
{ "" 0, 3 }
{ "" 2, 0 }
}
1 2 3 4 5 6

Iterating the pure strategy profiles in a game

Each entry in a strategic game corresponds to the outcome arising from
a particular combination fo pure strategies played by the players.
The property Game.contingencies is the collection of
all such combinations. Iterating over the contingencies collection
visits each pure strategy profile possible in the game:

In [1]: g = gambit.Game.read_game("e02.nfg")

In [2]: list(g.contingencies)
Out[2]: [[0, 0], [0, 1], [1, 0], [1, 1], [2, 0], [2, 1]]

Each pure strategy profile can then be used to access individual
outcomes and payoffs in the game:

In [3]: for profile in g.contingencies:
 ...: print profile, g[profile][0], g[profile][1]
 ...:
[0, 0] 1 1
[0, 1] 1 1
[1, 0] 0 2
[1, 1] 0 3
[2, 0] 0 2
[2, 1] 2 0

Mixed strategy and behavior profiles

A MixedStrategyProfile object, which represents a probability
distribution over the pure strategies of each player, is constructed
using Game.mixed_strategy_profile(). Mixed strategy
profiles are initialized to uniform randomization over all strategies
for all players.

Mixed strategy profiles can be indexed in three ways.

	Specifying a strategy returns the probability of that strategy
being played in the profile.

	Specifying a player returns a list of probabilities, one for each
strategy available to the player.

	Profiles can be treated as a list indexed from 0 up to the number
of total strategies in the game minus one.

This sample illustrates the three methods:

In [1]: g = gambit.Game.read_game("e02.nfg")

In [2]: p = g.mixed_strategy_profile()

In [3]: list(p)
Out[3]: [0.33333333333333331, 0.33333333333333331, 0.33333333333333331, 0.5, 0.5]

In [4]: p[g.players[0]]
Out[4]: [0.33333333333333331, 0.33333333333333331, 0.33333333333333331]

In [5]: p[g.players[1].strategies[0]]
Out[5]: 0.5

The expected payoff to a player is obtained using
MixedStrategyProfile.payoff():

In [6]: p.payoff(g.players[0])
Out[6]: 0.66666666666666663

The standalone expected payoff to playing a given strategy, assuming
all other players play according to the profile, is obtained using
MixedStrategyProfile.strategy_value():

In [7]: p.strategy_value(g.players[0].strategies[2])
Out[7]: 1.0

A MixedBehaviorProfile object, which represents a probability
distribution over the actions at each information set, is constructed
using Game.mixed_behavior_profile(). Behavior profiles are
initialized to uniform randomization over all actions at each
information set.

Mixed behavior profiles are indexed similarly to mixed strategy
profiles, except that indexing by a player returns a list of lists of
probabilities, containing one list for each information set controlled
by that player:

In [1]: g = gambit.Game.read_game("e02.efg")

In [2]: p = g.mixed_behavior_profile()

In [3]: list(p)
Out[3]: [0.5, 0.5, 0.5, 0.5, 0.5, 0.5]

In [5]: p[g.players[0]]
Out[5]: [[0.5, 0.5], [0.5, 0.5]]

In [6]: p[g.players[0].infosets[0]]
Out[6]: [0.5, 0.5]

In [7]: p[g.players[0].infosets[0].actions[0]]
Out[7]: 0.5

For games with a tree representation, a
MixedStrategyProfile can be converted to its equivalent
MixedBehaviorProfile by calling
MixedStrategyProfile.as_behavior(). Equally, a
MixedBehaviorProfile can be converted to an equivalent
MixedStrategyProfile using MixedBehaviorProfile.as_strategy().

Computing Nash equilibria

Interfaces to algorithms for computing Nash equilibria are collected
in the module gambit.nash. There are two choices for
calling these algorithms: directly within Python, or via the
corresponding Gambit command-line tool.

Calling an algorithm directly within Python has less overhead, which
makes this approach well-suited to the analysis of smaller games,
where the expected running time is small. In addition, these
interfaces may offer more fine-grained control of the behavior
of some algorithms.

Calling the Gambit command-line tool launches the algorithm as a
separate process. This makes it easier to abort during the run of the
algorithm (preserving where possible the equilibria which have already
been found), and also makes the program more robust to any internal
errors which may arise in the calculation.

Calling command-line tools

The interface to each command-line tool is encapsulated in a class
with the word “External” in the name. These operate by
creating a subprocess, which calls the corresponding Gambit
command-line tool. Therefore, a working
Gambit installation needs to be in place, with the command-line tools
located in the executable search path.

	Method
	Python class

	gambit-enumpure
	ExternalEnumPureSolver

	gambit-enummixed
	ExternalEnumMixedSolver

	gambit-lp
	ExternalLPSolver

	gambit-lcp
	ExternalLCPSolver

	gambit-simpdiv
	ExternalSimpdivSolver

	gambit-gnm
	ExternalGlobalNewtonSolver

	gambit-enumpoly
	ExternalEnumPolySolver

	gambit-liap
	ExternalLyapunovSolver

	gambit-ipa
	ExternalIteratedPolymatrixSolver

	gambit-logit
	ExternalLogitSolver

For example, consider the game e02.nfg from the set of standard
Gambit examples. This game has a continuum of equilibria, in which
the first player plays his first strategty with probability one,
and the second player plays a mixed strategy, placing at least
probability one-half on her first strategy:

In [1]: g = gambit.Game.read_game("e02.nfg")

In [2]: solver = gambit.nash.ExternalEnumPureSolver()

In [3]: solver.solve(g)
Out[3]: [[1.0, 0.0, 0.0, 1.0, 0.0]]

In [4]: solver = gambit.nash.ExternalEnumMixedSolver()

In [5]: solver.solve(g)
Out[5]: [[1.0, 0.0, 0.0, 1.0, 0.0], [1.0, 0.0, 0.0, 0.5, 0.5]]

In [6]: solver = gambit.nash.ExternalLogitSolver()

In [7]: solver.solve(g)
Out[7]: [[0.99999999997881173, 0.0, 2.1188267679986399e-11, 0.50001141005647654, 0.49998858994352352]]

In this example, the pure strategy solver returns the unique
equilibrium in pure strategies. Solving using
gambit-enummixed gives two equilibria, which are the
extreme points of the set of equilibria. Solving by tracing the
quantal response equilibrium correspondence produces a close numerical
approximation to one equilibrium; in fact, the equilibrium which is
the limit of the principal branch is the one in which the second
player randomizes with equal probability on both strategies.

When a game’s representation is in extensive form, these solvers
default to using the version of the algorithm which operates on the
extensive game, where available, and returns a list of
gambit.MixedBehaviorProfile objects. This can be overridden when
calling solve() via the use_strategic parameter:

In [1]: g = gambit.Game.read_game("e02.efg")

In [2]: solver = gambit.nash.ExternalLCPSolver()

In [3]: solver.solve(g)
Out[3]: [<NashProfile for 'Selten (IJGT, 75), Figure 2': [1.0, 0.0, 0.5, 0.5, 0.5, 0.5]>]

In [4]: solver.solve(g, use_strategic=True)
Out[4]: [<NashProfile for 'Selten (IJGT, 75), Figure 2': [1.0, 0.0, 0.0, 1.0, 0.0]>]

As this game is in extensive form, in the first call, the returned
profile is a MixedBehaviorProfile, while in the second, it
is a MixedStrategyProfile. While the set of equilibria is
not affected by whether behavior or mixed strategies are used, the
equilibria returned by specific solution methods may differ, when
using a call which does not necessarily return all equilibria.

Calling internally-linked libraries

Where available, versions of algorithms which have been linked
internally into the Python library are generally called via
convenience functions. The following table lists the algorithms
available via this approach.

	Method
	Python function

	gambit-enumpure
	gambit.nash.enumpure_solve()

	gambit-lp
	gambit.nash.lp_solve()

	gambit-lcp
	gambit.nash.lcp_solve()

Parameters are available to modify the operation of the algorithm.
The most common ones are use_strategic, to indicate the use of a
strategic form version of an algorithm where both extensive and
strategic versions are available, and rational, to indicate
computation using rational arithmetic, where this is an option to the
algorithm.

For example, taking again the game e02.efg as an example:

In [1]: g = gambit.Game.read_game("e02.efg")

In [2]: gambit.nash.lcp_solve(g)
Out[2]: [[1.0, 0.0, 0.5, 0.5, 0.5, 0.5]]

In [3]: gambit.nash.lcp_solve(g, rational=True)
Out[3]: [[Fraction(1, 1), Fraction(0, 1), Fraction(1, 2), Fraction(1, 2), Fraction(1, 2), Fraction(1, 2)]]

In [4]: gambit.nash.lcp_solve(g, use_strategic=True)
Out[4]: [[1.0, 0.0, 0.0, 1.0, 0.0]]

In [5]: gambit.nash.lcp_solve(g, use_strategic=True, rational=True)
Out[5]: [[Fraction(1, 1), Fraction(0, 1), Fraction(0, 1), Fraction(1, 1), Fraction(0, 1)]]

API documentation

Game representations

	
class gambit.Game

	An object representing a game, in extensive or strategic form.

	
classmethod new_tree()

	Creates a new Game
consisting of a trivial game tree, with one
node, which is both root and terminal, and no players.

	
classmethod new_table(dim)

	Creates a new Game with a strategic
representation.

	Parameters:	dim – A list specifying the number of strategies for each player.

	
classmethod from_arrays(*arrays)

	Creates a new Game with a strategic representation.
Each entry in arrays is a numpy array giving the payoff matrix for the
corresponding player. The arrays must all have the same shape,
and have the same number of dimensions as the total number of players.

	
classmethod read_game(fn)

	Constructs a game from its serialized representation in a file.
See Game representation formats for details on recognized formats.

	Parameters:	fn (file) – The path to the file to open

	Raises:	IOError – if the file cannot be opened, or does not contain
a valid game representation

	
classmethod parse_game(s)

	Constructs a game from its seralized representation in a string.
See Game representation formats for details on recognized formats.

	Parameters:	s (str) – The string containing the serialized representation

	Raises:	IOError – if the string does not contain a valid game
representation

	
is_tree

	Returns True if the game has a tree representation.

	
title

	Accesses the text string of the game’s title.

	
comment

	Accesses the text string of the game’s comment.

	
actions

	Returns a list-like object representing the actions defined in the game.

	Raises:	gambit.UndefinedOperationError – if the game does not have a tree representation.

	
infosets

	Returns a list-like object representing the information sets defined in the game.

	Raises:	gambit.UndefinedOperationError – if the game does not have a tree representation.

	
players

	Returns a Players collection object
representing the players defined in the game.

	
strategies

	Returns a list-like object representing the strategies defined in the game.

	
contingencies

	Returns a collection object representing the collection of all
possible pure strategy profiles in the game.

	
root

	Returns the Node representing the root
node of the game.

	Raises:	UndefinedOperationError if the game does not have a tree representation.

	
is_const_sum

	Returns True if the game is constant sum.

	
is_perfect_recall

	Returns True if the game is of perfect recall.

	
min_payoff

	Returns the smallest payoff in any outcome of the game.

	
max_payoff

	Returns the largest payoff in any outcome of the game.

	
__getitem__(profile)

	Returns the Outcome associated with a
profile of pure strategies.

	Parameters:	profile – A list of integers specifying the strategy
number each player plays in the profile.

	
mixed_strategy_profile(rational=False)

	Returns a mixed strategy profile MixedStrategyProfile
over the game, initialized to uniform randomization for each
player over his strategies. If the game has a tree
representation, the mixed strategy profile is defined over the
reduced strategic form representation.

	Parameters:	rational – If True, probabilities are
represented using rational numbers; otherwise
double-precision floating point numbers are
used.

	
mixed_behavior_profile(rational=False)

	Returns a behavior strategy profile
MixedBehaviorProfile over the game, initialized to
uniform randomization for each player over his actions at each
information set.

	Parameters:	rational – If True, probabilities are
represented using rational numbers; otherwise
double-precision floating point numbers are
used.

	Raises:	UndefinedOperationError – if the game
does not have a tree representation.

	
write(format='native')

	Returns a serialization of the game. Several output formats are
supported, depending on the representation of the game.

	efg: A representation of the game in
the .efg extensive game file format.
Not available for games in strategic representation.

	nfg: A representation of the game in
the .nfg strategic game file format.
For an extensive game, this uses the reduced strategic form
representation.

	gte: The XML representation used by the Game Theory Explorer
tool. Only available for extensive games.

	native: The format most appropriate to the
underlying representation of the game, i.e., efg or nfg.

This method also supports exporting to other output formats
(which cannot be used directly to re-load the game later, but
are suitable for human consumption, inclusion in papers, and so
on):

	html: A rendering of the strategic form of the game as a
collection of HTML tables. The first player is the row
chooser; the second player the column chooser. For games with
more than two players, a collection of tables is generated,
one for each possible strategy combination of players 3 and higher.

	sgame: A rendering of the strategic form of the game in
LaTeX, suitable for use with Martin Osborne’s sgame style [https://www.economics.utoronto.ca/osborne/latex/].
The first player is the row
chooser; the second player the column chooser. For games with
more than two players, a collection of tables is generated,
one for each possible strategy combination of players 3 and higher.

	
class gambit.StrategicRestriction

	A read-only view on a Game, defined by a subset
of the strategies on the original game.

In addition to the members described here, a StrategicRestriction
implements the interface of a Game, although
operations which change the content of the game will raise an
exception.

	
unrestrict()

	Returns the Game object on which the
restriction was based.

Representations of play of games

The main responsibility of these classes is to capture information
about a plan of play of a game, by one or more players.

	
class gambit.StrategySupportProfile

	A set-like object representing a subset of the strategies in a
game. It incorporates the restriction that each player must have
at least one strategy.

	
game

	Returns the Game on which the support
profile is defined.

	
issubset(other)

	Returns True if this profile is a subset of
other.

	Parameters:	other (StrategySupportProfile) – another support profile

	
issuperset(other)

	Returns True if this profile is a superset of
other.

	Parameters:	other (StrategySupportProfile) – another support profile

	
restrict()

	Creates a StrategicRestriction object,
which defines a restriction of the game in which only the
strategies in this profile are present.

	
remove(strategy)

	Modifies the support profile by removing the specified strategy.

	Parameters:	strategy (Strategy) – the strategy to remove

	Raises:	UndefinedOperationError – if attempting to remove the
last strategy for a player

	
difference(other)

	Returns a new support profile containing all the strategies
which are present in this profile, but not in other.

	Parameters:	other (StrategySupportProfile) – another support profile

	
intersection(other)

	Returns a new support profile containing all the strategies
present in both this profile and in other.

	Parameters:	other (StrategySupportProfile) – another support profile

	
union(other)

	Returns a new support profile containing all the strategies
present in this profile, in other, or in both.

	Parameters:	other (StrategySupportProfile) – another support profile

	
class gambit.MixedStrategyProfile

	Represents a mixed strategy profile over a Game.

	
__getitem__(index)

	Returns a slice of the profile based on the parameter
index.

	If index is a Strategy, returns the
probability with which that strategy is played in the profile.

	If index is a Player, returns a list of
probabilities, one for each strategy belonging to that player.

	If index is an integer, returns the index th entry in
the profile, treating the profile as a flat list of probabilities.

	
__setitem__(strategy, prob)

	Sets the probability strategy is played in the profile to prob.

	
as_behavior()

	Returns a behavior strategy profile BehavProfile associated
to the profile.

	Raises:	gambit.UndefinedOperationError – if the game does not
have a tree representation.

	
copy()

	Creates a copy of the mixed strategy profile.

	
payoff(player)

	Returns the expected payoff to a player if all players play
according to the profile.

	
strategy_value(strategy)

	Returns the expected payoff to choosing the strategy, if all
other players play according to the profile.

	
strategy_values(player)

	Returns the expected payoffs for a player’s set of strategies
if all other players play according to the profile.

	
liap_value()

	Returns the Lyapunov value (see [McK91]) of the strategy profile. The
Lyapunov value is a non-negative number which is zero exactly at
Nash equilibria.

	
normalize()

	Each player’s component of the profile is not enforced to sum to
one, so that, for example, counts rather than probabilities can
be expressed. Calling this on a profile normalizes the
distribution over each player’s strategies to sum to one.

	
randomize(denom)

	Randomizes the probabilities in the profile. These are
generated as uniform distributions over each mixed strategy. If
denom is specified, all probabilities are divisible by
denom, that is, the distribution is uniform over a discrete
grid of mixed strategies. denom is required for profiles
in which the probabilities are rational numbers.

	Raises:	TypeError – if denom is not specified for a profile
with rational probabilities.

	
class gambit.MixedBehaviorProfile

	Represents a behavior strategy profile over a Game.

	
__getitem__(index)

	Returns a slice of the profile based on the parameter
index.

	If index is a Action,
returns the probability with which that action is played in
the profile.

	If index is an Infoset,
returns a list of probabilities, one for each action belonging
to that information set.

	If index is a Player,
returns a list of lists of probabilities, one list for each
information set controlled by the player.

	If index is an integer, returns the
index th entry in the profile, treating the profile as a
flat list of probabilities.

	
__setitem__(action, prob)

	Sets the probability action is played in the profile to prob.

	
as_strategy()

	Returns a MixedStrategyProfile which is equivalent
to the profile.

	
belief(node)

	Returns the probability node is reached, given its information
set was reached.

	
belief(infoset)

	Returns a list of belief probabilities of each node in infoset.

	
copy()

	Creates a copy of the behavior strategy profile.

	
payoff(player)

	Returns the expected payoff to player if all players play
according to the profile.

	
payoff(action)

	Returns the expected payoff to choosing action, conditional
on having reached the information set, if all
other players play according to the profile.

	
payoff(infoset)

	Returns the expected payoff to the player who has the move at
infoset, conditional on the information set being reached,
if all players play according to the profile.

	
regret(action)

	Returns the regret associated to action.

	
realiz_prob(infoset)

	Returns the probability with which information set infoset
is reached, if all players play according to the profile.

	
liap_value()

	Returns the Lyapunov value (see [McK91]) of the strategy profile. The
Lyapunov value is a non-negative number which is zero exactly at
Nash equilibria.

	
normalize()

	Each information set’s component of the profile is not enforced to sum to
one, so that, for example, counts rather than probabilities can
be expressed. Calling this on a profile normalizes the
distribution over each information set’s actions to sum to one.

	
randomize(denom)

	Randomizes the probabilities in the profile. These are
generated as uniform distributions over the actions at each
information set. If
denom is specified, all probabilities are divisible by
denom, that is, the distribution is uniform over a discrete
grid of mixed strategies. denom is required for profiles
in which the probabilities are rational numbers.

	Raises:	TypeError – if denom is not specified for a profile
with rational probabilities.

Elements of games

These classes represent elements which exist inside of the definition
of game.

	
class gambit.Rational

	
New in version 15.0.0.

Represents a rational number in specifying numerical data for a
game, or in a computed strategy profile. This is implemented as a
subclass of the Python standard library
fractions.Fraction, with additional instrumentation for
rendering in IPython notebooks.

	
class gambit.Players

	A collection object representing the players in a game.

	
len()

	Returns the number of players in the game.

	
__getitem__(i)

	Returns player number i in the game. Players are numbered
starting with 0.

	
chance

	Returns the player representing all chance moves in the game.

	
add([label=""])

	Add a Player to the game. If label
is specified, sets the text label for the player. In the case
of extensive games this will create a new player with no
moves. In the case of strategic form games it creates a player
with one strategy. If the provided player label is shared by
another player a warning will be returned.

	
class gambit.Player

	Represents a player in a Game.

	
game

	Returns the Game in which the player is.

	
label

	A text label useful for identification of the player.

	
number

	Returns the number of the player in the Game.
Players are numbered starting with 0.

	
is_chance

	Returns True if the player object represents the chance player.

	
infosets

	Returns a list-like object representing the information sets of the player.

	
strategies

	Returns a gambit.Strategies collection object
representing the strategies of the player.

	
min_payoff

	Returns the smallest payoff for the player in any outcome of the game.

	
max_payoff

	Returns the largest payoff for the player in any outcome of the game.

	
class gambit.Infoset

	An information set for an extensive form game.

	
precedes(node)

	Returns True or False depending on whether the specified node
precedes the information set in the extensive game.

	
reveal(player)

	Reveals the information set to a player.

	
actions

	Returns a gambit.Actions collection object representing
the actions defined in this information set.

	
label

	A text label used to identify the information set.

	
is_chance

	Returns True or False depending on whether this information set is
associated to the chance player.

	
members

	Returns the set of nodes associated with this information set.

	
player

	Returns the player object associated with this information set.

	
class gambit.Actions

	A collection object representing the actions available at an
information set in a game.

	
len()

	Returns the number of actions for the player.

	
__getitem__(i)

	Returns action number i. Actions are numbered
starting with 0.

	
add([action=None])

	Add a Action to the list of actions of an
information set.

	
class gambit.Action

	An action associated with an information set.

	
delete()

	Deletes this action from the game.

	Raises:	gambit.UndefinedOperationError – when the action is the
last one of its infoset.

	
precedes(node)

	Returns True if node precedes this action in the
extensive game.

	
label

	A text label used to identify the action.

	
infoset

	Returns the information to which this action is associated.

	
prob

	A settable property that represents the probability associated
with the action. It can be a value stored as an int,
gambit.Rational, or gambit.Decimal.

	
class gambit.Strategies

	A collection object representing the strategies available to a
player in a game.

	
len()

	Returns the number of strategies for the player.

	
__getitem__(i)

	Returns strategy number i. Strategies are numbered
starting with 0.

	
add([label=""])

	Add a Strategy to the player’s list of strategies.

	Raises:	TypeError – if called on a game which has an extensive representation.

	
class gambit.Strategy

	Represents a strategy available to a Player.

	
label

	A text label useful for identification of the strategy.

	
class gambit.Node

	Represents a node in a Game.

	
is_successor_of(node)

	Returns True if the node is a successor of node.

	
is_subgame_root(node)

	Returns True if the current node is a root of a proper subgame.

	
label

	A text label useful for identification of the node.

	
is_terminal

	Returns True if the node is a terminal node in the game tree.

	
children

	Returns a collection of the node’s children.

	
game

	Returns the Game to which the node belongs.

	
infoset

	Returns the Infoset associated with the node.

	
player

	Returns the Player associated with the node.

	
parent

	Returns the Node that is the parent of this node.

	
prior_action

	Returns the action immediately prior to the node.

	
prior_sibling

	Returns the Node that is prior to the
node at the same level of the game tree.

	
next_sibling

	Returns the Node that is the next node at the same
level of the game tree.

	
outcome

	Returns the Outcome that is associated
with the node.

	
append_move(infoset[, actions])

	Add a move to a terminal node, at the gambit.Infoset
infoset. Alternatively, a gambit.Player can be
passed as the information set, in which case the move is placed
in a new information set for that player; in this instance, the
number of actions at the new information set must be specified.

	Raises:	
	gambit.UndefinedOperationError – when called on a non-terminal node.

	gambit.UndefinedOperationError – when called with a Player object and no actions, or actions < 1.

	gambit.UndefinedOperationError – when called with a Infoset object and with actions.

	gambit.MismatchError – when called with objects from different games.

	
insert_move(infoset[, actions])

	Insert a move at a node, at the Infoset
infoset. Alternatively, a Player can be
passed as the information set, in which case the move is placed
in a new information set for that player; in this instance, the
number of actions at the new information set must be specified.
The newly-inserted node takes the place of the node in the game
tree, and the existing node becomes the first child of the new node.

	Raises:	
	gambit.UndefinedOperationError – when called with a Player object and no actions, or actions < 1.

	gambit.UndefinedOperationError – when called with a Infoset object and with actions.

	gambit.MismatchError – when called with objects from different games.

	
leave_infoset()

	Removes this node from its information set. If this node is the last
of its information set, this method does nothing.

	
delete_parent()

	Deletes the parent node and its subtrees other than the one
which contains this node and moves this node into its former
parent’s place.

	
delete_tree()

	Deletes the whole subtree which has this node as a root, except
the actual node.

	
copy_tree(node)

	Copies the subtree rooted at this node to node.

	Raises:	gambit.MismatchError – if both objects aren’t in the same game.

	
move_tree(node)

	Move the subtree rooted at this node to node.

	Raises:	gambit.MismatchError – if both objects aren’t in the same game.

	
class gambit.Outcomes

	A collection object representing the outcomes of a game.

	
len()

	Returns the number of outcomes in the game.

	
__getitem__(i)

	Returns outcome i in the game. Outcomes are numbered
starting with 0.

	
add([label=""])

	Add a Outcome to the game. If label
is specified, sets the text label for the outcome. If the
provided outcome label is shared by another outcome a warning
will be returned.

	
class gambit.Outcome

	Represents an outcome in a Game.

	
delete()

	Deletes the outcome from the game.

	
label

	A text label useful for identification of the outcome.

	
__getitem__(player)

	Returns the payoff to player at the outcome. player
may be a Player, a string, or an integer.
If a string, returns the payoff to the player with that string
as its label. If an integer, returns the payoff to player
number player.

	
__setitem__(player, payoff)

	Sets the payoff to the pl th player at the outcome to the
specified payoff. Payoffs may be specified as integers
or instances of gambit.Decimal or gambit.Rational.
Players may be specified as in __getitem__().

Representation of errors and exceptions

	
exception gambit.MismatchError

	A subclass of ValueError which is raised when
attempting an operation among objects from different games.

	
exception gambit.UndefinedOperationError

	A subclass of ValueError which is raised when an
operation which is not well-defined is attempted.

Computation of Nash equilibria

	
gambit.nash.enumpure_solve(game, use_strategic=True, external=False)

	Compute pure-strategy Nash equilibria of a
game.

	Parameters:	
	use_strategic (bool) – Use the strategic form. If
False, computes agent-form
pure-strategy equilibria, which treat
only unilateral deviations at an
individual information set

	external (bool) – Call the external command-line solver instead
of the internally-linked implementation

	
gambit.nash.enummixed_solve(game, rational=True, external=False, use_lrs=False)

	Compute all mixed-strategy Nash equilibria of a two-player strategic game.

	Parameters:	
	rational (bool) – Compute using rational precision (more
precise, often much slower)

	external (bool) – Call the external command-line solver instead
of the internally-linked implementation

	use_lrs (bool) – Use the lrslib-based implementation. This is
experimental but preliminary results suggest it is
significantly faster.

	Raises:	RuntimeError – if game has more than two players.

	
gambit.nash.lcp_solve(game, rational=True, use_strategic=False, external=False, stop_after=None, max_depth=None)

	Compute Nash equilibria of a two-player game using linear
complementarity programming.

	Parameters:	
	rational (bool) – Compute using rational precision (more
precise, often much slower)

	use_strategic (bool) – Use the strategic form version even for
extensive games

	external (bool) – Call the external command-line solver instead
of the internally-linked implementation

	stop_after (int) – Number of equilibria to contribute (default
is to compute until all reachable equilbria
are found)

	max_depth (int) – Maximum recursion depth (default is no limit)

	Raises:	RuntimeError – if game has more than two players.

	
gambit.nash.lp_solve(game, rational=True, use_strategic=False, external=False)

	Compute Nash equilibria of a two-player constant-sum game using linear
programming.

	Parameters:	
	rational (bool) – Compute using rational precision (more
precise, often much slower)

	use_strategic (bool) – Use the strategic form version even for
extensive games

	external (bool) – Call the external command-line solver instead
of the internally-linked implementation

	Raises:	RuntimeError – if game has more than two players.

	
gambit.nash.simpdiv_solve(game, external=False)

	Compute Nash equilibria of a game using simplicial
subdivision.

	Parameters:	external (bool) – Call the external command-line solver instead
of the internally-linked implementation

	
gambit.nash.ipa_solve(game, external=False)

	Compute Nash equilibria of a game using iterated polymatrix
approximation.

	Parameters:	external (bool) – Call the external command-line solver instead
of the internally-linked implementation

	
gambit.nash.gnm_solve(game, external=False)

	Compute Nash equilibria of a game using the global Newton
method.

	Parameters:	external (bool) – Call the external command-line solver instead
of the internally-linked implementation

[image: Chadwick]
Gambit: Software Tools for Game Theory

Sample games

	2x2x2.nfg

	A three-player normal form game with two strategies per player.
This game has nine Nash equilibria,
which is the maximal number of regular Nash equilibria possible
for a game of this size. See
McKelvey, Richard D. and McLennan, Andrew (1997).
The maximal number of regular totally mixed Nash equilibria.
Journal of Economic Theory 72(2): 411-425. [http://dx.doi.org/10.1006/jeth.1996.2214]

	2x2x2-nau.nfg

	A three-player normal form game with two strategies per player.
This game has three pure strategy equilibria, two
equilibria which are incompletely mixed, and a continuum of
completely mixed equilibria. This game appears as an example in
Nau, Robert, Gomez Canovas, Sabrina, and Hansen, Pierre (2004).
On the geometry of Nash equilibria and correlated equilibria.
International Journal of Game Theory 32(4): 443-453. [http://dx.doi.org/10.1007/s001820300162]

	bagwell.efg

	Stackelberg leader game with imperfectly observed commitment,
from Bagwell, Kyle (1993) Commitment and observability in games.
Games and Economic Behavior 8: 271-280. [http://dx.doi.org/10.1016/S0899-8256(05)80001-6]

	bayes2a.efg

	A twice-repeated Bayesian game, with two players, each having two
types and two actions. This game also illustrates the use of payoffs
at nonterminal nodes in Gambit, which can substantially simplify the
representation of multi-stage games such as this.

	cent3.efg

	A three-stage centipede game, featuring an exogenous probability
that one player is an altruistic type, who always passes.
See, for example,
McKelvey, Richard D. and Palfrey, Thomas R. (1992) An
experimental study of the centipede game. Econometrica 60(4):
803-836. [http://www.jstor.org/stable/2951567]

	condjury.efg

	A three-person Condorcet jury game, after the analysis of
Feddersen, Timothy and Pesendorfer, Wolfgang (1998)
Convicting the innocent: The inferiority of unanimous jury verdicts
under strategic voting. American Political Science Review 92(1):
23-35. [http://www.jstor.org/stable/2585926].

	loopback.nfg

	A game due to McKelvey which illustrates that the logit quantal
response equilibrium correspondence can have a “backward-bending”
segment on the principal branch.

	montyhal.efg

	The famous
Monty Hall problem [http://en.wikipedia.org/wiki/Monty_Hall_problem]: if Monty offers
to let you switch doors, should you?

	nim.efg

	The classic game of
Nim [http://en.wikipedia.org/wiki/Nim], which is a useful example
of the value of backward induction. This version starts with five
stones. An interesting experimental study of this class of games is
McKinney, C. Nicholas and Van Huyck, John B. (2013) Eureka
learning: Heuristics and response time in perfect information
games. Games and Economic Behavior 79:
223-232. [http:dx.doi.org/10.1016/j.geb.2013.02.003]

	pbride.efg

	A signaling game from
Joel Watson’s Strategy textbook [http://books.wwnorton.com/books/detail.aspx?ID=4294969499],
modeling the confrontation in The Princess Bride between Humperdinck
and Roberts in the bedchamber.

	poker.efg

	A simple game of one-card poker introduced in
Myerson, Roger (1991) Game Theory: Analysis of Conflict. [http://www.hup.harvard.edu/catalog.php?isbn=9780674341166].
A bit unusually for poker, the “fold” action by a player with a
strong hand counts for a win for that player, so folding is only
weakly rather than strictly dominated in this case.

	4cards.efg

	A slightly more complex poker example, contributed by Alix Martin.

	spence.efg

	A version of Spence’s classic job-market signaling game. This version
comes from Joel Watson’s Strategy textbook [http://books.wwnorton.com/books/detail.aspx?ID=4294969499].

These games, and others, ship in the standard Gambit source
distribution in the directory contrib/games.

[image: Chadwick]
Gambit: Software Tools for Game Theory

For contributors: Ideas and suggestions for Gambit-related projects

Research on doing computation on finite games, and using numerical and
algorithmic methods to analyze games, are areas of quite active
research. There are a number of opportunities for programmers of all
skill levels and backgrounds to contribute to improving and extending
Gambit.

A number of such ideas are outlined in this section.
Each project includes the required implementation environment,
and a summary of the background prerequisites
someone should have in order to take on the project successfully, in
terms of mathematics, game theory, and software engineering.

Students who are interested in applying to participate in the
Google Summer of Code program should also first read our
introductory document and application template at
http://www.gambit-project.org/application.txt.

For beginning contibutors - especially those who are interested
in potentially applying to work on Gambit projects in future
Google Summer of Code editions - there are a number of
issues in the Gambit issue tracker tagged as “easy” [https://github.com/gambitproject/gambit/issues?labels=easy&sort=created&direction=desc&state=open&page=1].
These are excellent ways to get familiar with the Gambit codebase.
Contributors who have completed one or more such easy tasks will have
a significantly greater chance of being considered for possible
GSoC work.

The Gambit source tree [http://gambit.git.sourceforge.net/git/gitweb-index.cgi] is managed
using git [http://www.git-scm.com]. It is recommended to have some
familiarity with how git works, or to be willing to learn. (It’s not
that hard, and once you do learn it, you’ll wonder how you ever lived
without it.)

This section lists project ideas pertaining to the Gambit library
and desktop interface. There are additional project opportunities
in the Game Theory Explorer web/cloud interface. These are
listed separately here [http://gte.csc.liv.ac.uk/index/index.html#document-ideas].

Refactor and update game representation library

The basic library (in src/libgambit) for representing games was
written in the mid-1990s. As such, it predates many modern C++
features (including templates, STL, exceptions, Boost, and so on).
There are a number of projects for taking existing functionality,
refactoring it into separate components, and then enhancing what
those components can do.

File formats for serializing games

Gambit supports a number of file formats for reading and writing
games. There are traditional formats for extensive and strategic
games. The graphical interface wraps these formats into an XML
document which can store additional metadata about the game. The Game
Theory Explorer also defines an XML format for storing games. And,
from Gambit 14, there is a special file format for representing
games in action graph format.

Separately, Gambit has a command-line tool for outputting games in
HTML and LaTeX formats.

This project would refactor these features into a unified framework
for reading and writing games in various formats. It would include:

	Migrating the XML manipulation code from the graphical interface
into the basic game representation library.

	Implementing in C++ the reader/writer for Game Theory Explorer files
(a first version of this is available in Python in the gambit.gte
module).

	Unifying the gambit-nfg2tex and
gambit-nfg2html command line tools into a
gambit-convert tool, which would convert from and to many
file formats.

	Extend all the Gambit command-line tools to read files of any
accepted format, and not just .efg and .nfg files.

	Languages: C++; Python/Cython optional; XML experience helpful

	Prerequisites: Introductory game theory for familiarity with
terminology of the objects in a game; undergraduate-level software
engineering experience.

Structure equilibrium calculations using the strategy pattern

Gambit’s architecture packages methods for finding Nash equilibria as
standalone command-line tools. Owing to different histories in
implementing these methods, internally the interfaces to these methods
at the C++ level are quite heterogeneous. In some cases, something
like the “strategy pattern” has been used to encapsulate these
algorithms. In others, the interface is simply a global-scope
function call with little or no structured interface.

This project would involve organizing all these interfaces in a
consistent and unified way using the “strategy pattern.” One can see
an emerging structure in the gambit-enumpure
implementation at src/tools/enumpure/enumpure.cc in the master
branch of the git repository. The idea would be to develop a unified
framework for being able to interchange methods to compute Nash
equilibria (or other concepts) on games. If the project were to go
well, as an extension these interfaces could then be wrapped in the
Python API for direct access to the solvers (which are currently
called via the command-line tools).

	Languages: C++.

	Prerequisites: Introductory game theory for familiarity with
terminology of the objects in a game; undergraduate-level software
engineering experience.

Implement Strategic Restriction of a game in C++

Gambit has a concept of a StrategySupport (defined in
src/libgambit/stratspt.h and src/libgambit/stratspt.cc),
which is used, among other things, to represent a game where strictly
dominated strategies have been eliminated (which can be useful in
improving the efficiency of equilibrium computations). The
implementation of this has historically been awkward. Proper OO
design would suggest that a StrategySupport should be
able to be used anywhere a Game could be used, but this
is not the case. In practice, a StrategySupport has just
been a subset of the strategies of a game, which has to be passed
along as a sidecar to the game in order to get anything done.

Recently, in the Python API, the model for dealing with this has been
improved. In Python, there is a StrategicRestriction
of a game, which in fact can be used seamlessly anyplace a game can be
used. Separately, there is a StrategySupportProfile,
which is basically just a subset of strategies of a game. This
separation of concepts has proven to be clean and useful.

The project would be to develop the concept of a strategic restriction
in C++, using the Python API as a model, with the idea of ultimately
replacing the StrategySupport.

	Languages: C++; Python/Cython useful for understanding the
current implementation in Python.

	Prerequisites: Introductory game theory for familiarity with
terminology of the objects in a game; undergraduate-level software
engineering experience.

Implement Behavior Restriction of a game in Python

The Python API has a concept of a StrategicRestriction of
a game, which is the restriction of a game to a subset of strategies
for each player. This restriction can be used seamlessly anywhere a
game can be used.

This project would develop a parallel concept of a
BehaviorRestriction. Logically this is similar to a
StrategicRestriction, except that instead of operating on
the set of reduced strategic game strategies, it would operate on
behavior strategies (actions at information sets) in a game tree.

This is a bit more challenging than the
StrategicRestriction because of the need to be able to
traverse the resulting game tree. Removing actions from a game can
result in entire subtrees of the game being removed, which can then
include the removal of information sets from the game so restricted.

The idea of this project is to carry out the implementation in
Python/Cython first, as the experience from the strategic restriction
project was that the more rapid prototyping possible in Python was a
big help. However, as the ultimate goal will be to provide this at
the C++ level, there is also the possibility of attacking the problem
directly in C++ as well.

	Langauges: Python/Cython; C++.

	Prerequisites: Introductory game theory for familiarity with
terminology of the objects in a game; undergraduate-level software
engineering experience.

Implementing algorithms for finding equilibria in games

Each of the following are separate ideas for open projects on
computing equilibria and other interesting quantities on games.
Each of these is a single project For GSoC applications, you should
select exactly one of these, as each is easily a full summer’s worth
of work (no matter how easy some of them may seem at first read!)

Enumerating all equilibria of a two-player bimatrix game using the EEE algorithm

The task is to implement the EEE algorithm, which is a published algorithm to
enumerate all extreme equilibria of a bimatrix game.

	Languages: C, Java

	Prerequisites: Background in game theory, basic linear
algebra and linear programming. Experience with programs of at least
medium complexity so that existing code can be expanded.

Fuller details:

The task is to implement the EEE algorithm, which is a published algorithm to
enumerate all extreme equilibria of a bimatrix game.

The most up-to-date version can be found in Sections 7 and 8
of

D. Avis, G. Rosenberg, R. Savani, and B. von Stengel (2010),
Enumeration of Nash equilibria for two-player games.
Economic Theory 42, 9-37.

http://www.maths.lse.ac.uk/Personal/stengel/ETissue/ARSvS.pdf

Extra information, including some code,
is provided in the following report:

G. Rosenberg (2004),
Enumeration of All Extreme Equilibria of Bimatrix Games with Integer Pivoting and Improved Degeneracy Check.
CDAM Research Report LSE-CDAM-2004-18.

http://www.cdam.lse.ac.uk/Reports/Files/cdam-2005-18.pdf

The original algorithm was described in the following paper:

C. Audet, P. Hansen, B. Jaumard, and G. Savard (2001),
Enumeration of all extreme equilibria of bimatrix games.
SIAM Journal on Scientific Computing 23, 323–338.

The implementation should include a feature to compare the
algorithm’s output (a list of extreme equilibria) with the
ouput of other algorithms for the same task (e.g.
lrsnash).

In addition a framework that compares running times (and the
number of recursive calls, calls to pivoting methods, and
other crucial operations) should be provided.
The output should record and document the computational
experiments so that they can be reproduced, in a general
setup - sufficiently documented - that can be used for
similar comparisons.

Improve integration and testing of Gametracer

Gambit incorporates the
Gametracer [http://dags.stanford.edu/Games/gametracer.html] package
to provide
implementations of two methods for computing equilibria,
gambit-gnm and gambit-ipa.
The integration
is rather crude, as internally the program converts the game
from native Gambit representation into Gametracer’s
representation, and the converts the output back. Using
Gametracer’s implementations as a starting point, refactor
the implementation to use Gambit’s native classes directly,
and carry out experiments on the reliability and performance
of the algorithms.

	Languages: C++

	Prerequisites: Some level of comfort with linear algebra;
enjoyment of refactoring code.

Interface with lrslib

Gambit’s gambit-enummixed tool computes all
extreme Nash equilibria of a two-player game. There is another
package, lrslib by David Avis [http://cgm.cs.mcgill.ca/~avis/C/lrs.html], which implements the
same algorithm more efficiently and robustly. There is a partial
interface with an older version of lrslib in the Gambit source tree,
which has proven not to be very reliable. The project is to complete
the integration and testing of the lrslib integration.

	Languages: C/C++

	Prerequisites: Some level of comfort with linear algebra.

Finding equilibria reachable by Lemke’s algorithm with varying “covering vectors”

Related to the Lemke-Howson method above, but with a
slightly different algorithm that has an extra parameter,
called the “covering vector”. That parameter can serve a
randomly selected starting point of the computation and
potentially reach many more equilibria.

	Prerequisites: Theoretical understanding of the Lemke-Howson
method or of the Simplex algorithm for Linear Programming.
Literature exists that is accessible for students with at
least senior-level background in computer science,
mathematics or operations research. An existing
implementation of a Lemke-Howson style pivoting algorithm
should be adapted with suitable alterations.

Computing the index of an equilibrium component

The task is to implement a published algorithm to compute
the so-called index of an equilibrium component in a
bimatrix game. This component is the output to an existing
enumeration algorithm.

	Languages: C

	Prerequisites: Senior-level mathematics, interest in game theory
and some basic topology.

Fuller details:

The aim of this project is to implement an existing
algorithm that finds the index of an equilibrium component.
The relevant description of this is chapter 2 of

Anne Balthasar, Geometry and Equilibria in Bimatrix Games,
PhD Thesis, London School of Economics, 2009.

http://www.maths.lse.ac.uk/Personal/stengel/phds/#anne

	which are pages 21-41 of

	http://www.maths.lse.ac.uk/Personal/stengel/phds/anne-final.pdf

The mathematics in this chapter are pretty scary (in
particular section 2.2, which is however not needed) but the
final page 41 which describes the algorithm is less scary.

Nevertheless, this is rather advanced material because it
builds on several different existing algorithms (for finding
extreme equilibria in bimatrix games, and “cliques” that
define convex sets of equilibria, and their non-disjoint
unions that define “components”). It requires the
understanding of what equilibria in bimatrix games are
about. These algorithms are described in

D. Avis, G. Rosenberg, R. Savani, and B. von Stengel (2010),
Enumeration of Nash equilibria for two-player games.
Economic Theory 42, 9-37.

http://www.maths.lse.ac.uk/Personal/stengel/ETissue/ARSvS.pdf

and students who do not eventually understand that text
should not work on this project. For this reason, at least
senior-level (= third year) mathematics is required in terms of
mathematical maturity. In the Avis et al. (2010) paper,
pages 19-21 describe the lexicographic method for pivoting
as it is used in the simplex method for linear programming.
A variant of this lexicographic method is used in the
chapter by Anne Balthasar. Understanding this is a
requirement to work on this project (and a good test of how
accessible all this is).

We give here two brief examples that supplement the above
literature. Consider the following bimatrix game. It is
very simple, and students of game theory may find it useful
to first find out on their own what the equilibria of this
game are:

2 x 2 Payoff matrix A:

1 1
0 1

2 x 2 Payoff matrix B:

1 1
0 1

EE = Extreme Equilibrium, EP = Expected Payoff

EE 1 P1: (1) 1 0 EP= 1 P2: (1) 1 0 EP= 1
EE 2 P1: (1) 1 0 EP= 1 P2: (2) 0 1 EP= 1
EE 3 P1: (2) 0 1 EP= 1 P2: (2) 0 1 EP= 1

Connected component 1:
{1, 2} x {2}
{1} x {1, 2}

This shows the following: there are 3 Nash equilibria,
which partly use the same strategies of the two players,
which are numbered (1), (2) for each player. It will take
a bit of time to understand the above output. For our
purposes, the bottom “component” is most relevant:
It has two lines, and {1, 2} x {2} means
that equilibrium (1),(2) - which is according to the
previous list the strategy pair (1,0), (1,0) as well as
(2),(2), which is (0,1), (1,0) are “extreme
equilibria”, and moreover any convex combination of (1) and
(2) of player 1 - this is the first {1, 2} - can be
combined with strategy (2) of player 2.
This is part of the “clique” output of Algorithm 2 on page
19 of Avis et al. (2010).
There is a second such convex set of equilibria in the
second line, indicated by {1} x {1, 2}.
Moreover, these two convex sets intersect (in the
equilibrium (1),(2)) and form therefore a “component” of
equilibria. For such a component, the index has to be
found, which happens to be the integer 1 in this case.

The following bimatrix game has also two convex sets of Nash
equilibria, but they are disjoint and therefore listed as
separate components on their own:

3 x 2 Payoff matrix A:

1 1
0 1
1 0

3 x 2 Payoff matrix B:

2 1
0 1
0 1

EE = Extreme Equilibrium, EP = Expected Payoff

Rational Output

EE 1 P1: (1) 1 0 0 EP= 1 P2: (1) 1 0 EP= 2
EE 2 P1: (2) 1/2 1/2 0 EP= 1 P2: (2) 0 1 EP= 1
EE 3 P1: (3) 1/2 0 1/2 EP= 1 P2: (1) 1 0 EP= 1
EE 4 P1: (4) 0 1 0 EP= 1 P2: (2) 0 1 EP= 1

Connected component 1:
{1, 3} x {1}

Connected component 2:
{2, 4} x {2}

Here the first component has index 1 and the second has
index 0. One reason for the latter is that if the game is
slightly perturbed, for example by giving a slightly lower
payoff than 1 in row 2 of the game, then the second strategy
of player 1 is strictly dominated and the equilibria (2) and
(4) of player 1, and thus the entire component 2, disappear
altogether. This can only happen if the index is zero, so
the index gives some useful information as to whether an
equilibrium component is “robust” or “stable” when payoffs
are slightly perturbed.

Enumerating all equilibria of a two-player game tree

Extension of an existing algorithm for enumerating all
equilibria of a bimatrix game to game trees with imperfect
information using the so-called “sequence form”. The method
is described in abstract form but not implemented.

	Langauges: C++

	Prerequisites: Background in game theory and basic linear
algebra. Experience with programs of at least
medium complexity so that existing code can be expanded.

Solving for equilibria using polynomial systems of equations

The set of Nash equilibrium conditions can be expressed as a
system of polynomial equations and inequalities. The field
of algebraic geometry has been developing packages to
compute all solutions to a system of polynomial equations.
Two such packages are
PHCpack [http://www.math.uic.edu/~jan/download.html”] and
Bertini [http://www.nd.edu/~sommese/bertini/].
Gambit has an
experimental interface, written in Python, to build the
required systems of equations, call out to the solvers, and
identify solutions corresponding to Nash equilibria.
Refactor the implementation to be more flexible and
Pythonic, and carry out experiments on the reliability and
performance of the algorithms.

	Languages: Python

	Prerequisites: Experience with text processing to pass data to
and from the external solvers.

Implement Herings-Peeters homotopy algorithm to compute Nash equilibria

Herings and Peeters
(Economic Theory, 18(1), 159-185, 2001 [http://dx.doi.org/10.1007/PL00004129]) have proposed a
homotopy algorithm to compute Nash equilibria. They have
created a
first implementation of the method in Fortran [http://www.personeel.unimaas.nl/r.peeters/software.htm],
using hompack [http://www.netlib.org/hompack/].
Create a Gambit implementation of this method, and carry out
experiments on the reliability and performance of the
algorithms.

	Languages: C/C++, ability to at least read Fortran

	Prerequisites: Basic game theory and knowledge of pivoting
algorithms like the Simplex method for Linear Programming or
the Lemke-Howson method for games. Senior-level
mathematics, mathematical economics, or operations research.

[image: Chadwick]
Gambit: Software Tools for Game Theory

For developers: Building Gambit from source

This section covers instructions for building Gambit from source.
This is for those who are interested in developing Gambit, or who
want to play around with the latest features before they make it
into a pre-compiled binary version.

This section requires at least some familiarity with programming.
Most users will want to stick with binary distributions; see
Downloading Gambit for how to get the current version for
your operating system.

General information

Gambit uses the standard autotools mechanism for configuring and building.
This should be familiar to most users of Un*ces and MacOS X.

If you are building from a source tarball,
you just need to unpack the sources, change directory to the top level
of the sources (typically of the form gambit-xx.y.z), and do the
usual

./configure
make
sudo make install

Command-line options are available to modify the configuration process;
do ./configure –help for information. Of these, the option which
may be most useful is to disable the build of the graphical interface

By default Gambit will be installed in /usr/local. You can change this
by replacing configure step with one of the form

./configure --prefix=/your/path/here

Note

The graphical interface relies on external calls to other
programs built in this process, especially for the computation of
equilibria. It is strongly recommended that you install the Gambit
executables to a directory in your path!

Building from git repository

If you want to live on the bleeding edge, you can get the latest
version of the Gambit sources from the Gambit repository on
github.com, via

git clone git://github.com/gambitproject/gambit.git
cd gambit

After this, you will need to set up the build scripts by executing

aclocal
libtoolize
automake --add-missing
autoconf

For this, you will need to have automake, autoconf, and libtool2
installed on your system.

At this point, you can then continue with the configuration and build
stages as in the previous section.

In the git repository, the branch master always points to the
latest development version. New development should in general always
be based off this branch. Branches labeled maintVV, where VV
is the version number, point to the latest commit on a stable
version; so, for example, maint13 refers to the latest commit for
Gambit version 13.x.x. Bug fixes should typically be based off of
this branch.

Supported compilers

Currently, gcc is the only compiler supported. The version of gcc needs
to be new enough to handle templates correctly. The oldest versions
of gcc known to compile Gambit are 3.4.6 (Linux, Ubuntu) and 3.4.2 (MinGW for Windows, Debian stable).

If you wish to use another compiler, the most likely stumbling block is
that Gambit uses templated member functions for classes, so the compiler
must support these. (Version of gcc prior to 3.4 do not, for example.)

For Windows users

For Windows users wanting to compile Gambit on their own, you’ll need
to use either the Cygwin or MinGW environments. We do compilation and
testing of Gambit on Windows using MinGW, which can be gotten from
http://www.mingw.org.
We prefer MinGW over Cygwin because MinGW will create native Windows
applications, whereas Cygwin requires an extra compatibility layer.

For OS X users

For building the command-line tools only, one should follow the
instructions for Un*x/Linux platforms above. make install will
install the command-line tools into /usr/local/bin (or the path
specified in the configure step).

To build the graphical interface, wxWidgets 2.9.5 or higher is
recommended, although 2.8.12 should also be suitable.
(The interface will build with wxWidgets 2.9.4, but there is a bug
in wxWidgets involving drag-and-drop which renders the graphical interface
essentially unusable.)

Snow Leopard (OS X 10.8) users will have to take some extra steps to
build wxWidgets if 2.8.12 is used.
wxWidgets 2.8.12 requires the 10.6 SDK to build the
using Cocoa; this has been removed by Apple in recent editions of
XCode. Download and unpack the 10.6 SDK from an earlier XCode version
into
/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.6.sdk.
With that in place, unpack the wxWidgets sources, and from the root
directory of the wxWidgets sources, do:

mkdir build-debug
cd build-debug
arch_flags="-arch i386" CFLAGS="$arch_flags" CXXFLAGS="$arch_flags" \
 CPPFLAGS="$arch_flags" LDFLAGS="$arch_flags" OBJCFLAGS="$arch_flags" \
 OBJCXXFLAGS="$arch_flags" \
 ../configure \
 --with-macosx-version-min=10.6 \
 --with-macosx-sdk=/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.6.sdk \
 --prefix="$(pwd)" --disable-shared --enable-debug --enable-unicode
make

Then, when configuring Gambit, use:

arch_flags="-arch i386" CFLAGS="$arch_flags" CXXFLAGS="$arch_flags" \
 CPPFLAGS="$arch_flags" LDFLAGS="$arch_flags" OBJCFLAGS="$arch_flags" \
 OBJCXXFLAGS="$arch_flags" \
 ./configure --with-wxdir=WXPATH/build-debug
make osx-bundle

where WXPATH is the path at which you have the wxWidgets sources
unpacked. These steps are not required for wxWidgets 2.9.5 or higher.

This produces an application Gambit.app in the current directory,
which can be run from its current location, or copied elsewhere in the
disk (such as /Applications). The application bundle includes the
command-line executables.

The graphical interface and wxWidgets

Gambit requires wxWidgets version 2.8.0 or higher for the
graphical interface, although 2.9.5 or higher is recommended.
See the wxWidgets website at
http://www.wxwidgets.org
to download this if you need it. Packages of this should be available
for most Un*x users through their package managers (apt or rpm). Note
that you’ll need the appropriate -dev package for wxWidgets to get the
header files needed to build Gambit.

Un*x users, please note that Gambit at this time only supports the
GTK port of wxWidgets.

If wxWidgets it isn’t installed in a standard place (e.g., /usr or
/usr/local), you’ll need to tell configure where to find it with the
–with-wx-prefix=PREFIX option, for example:

./configure --with-wx-prefix=/home/mylogin/wx

Finally, if you don’t want to build the graphical interface, you
can either (a) simply not install wxWidgets, or (b) pass the argument
–disable-gui to the configure step, for example,

./configure --disable-gui

This will just build the command-line tools, and will not require
a wxWidgets installation.

Building the Python extension

The Python extension for Gambit is in src/python
in the Gambit source tree. Prerequisite packages include setuptools,
Cython, IPython, and scipy.

Building the extension follows the standard approach:

cd src/python
python setup.py build
sudo python setup.py install

There is a set of test cases in src/python/gambit/tests. These can
be exercised via nosetests (requires Python package nose):

cd src/python/gambit/tests
nosetests

Once installed, simply import gambit in your Python shell or
script to get started.

[image: Chadwick]
Gambit: Software Tools for Game Theory

Game representation formats

This section documents the file formats recognized by Gambit. These
file formats are text-based and designed to be readable and editable
by hand by humans to the extent possible, although programmatic tools
to generate and manipulate these files are almost certainly needed for
all but the most trivial of games.

These formats can be viewed as being low-level. They define games
explicitly in terms of their structure, and do not support any sort of
parameterization, macros, and the like. Thus, they are adapted largely
to the type of input required by the numerical methods for computing
Nash equilibria, which only apply to a particular realization of a
game’s parameters. Higher-level tools, whether the graphical interface
or scripting applications, are indicated for doing parametric analysis
and the like.

Conventions common to all file formats

Several conventions are common to the interpretation of the file
formats listed below.

Whitespace is not significant. In general, whitespace (carriage
returns, horizontal and vertical tabs, and spaces) do not have an
effect on the meaning of the file. The only exception is inside
explicit double-quotes, where all characters are significant. The
formatting shown here is the same as generated by the Gambit code and
has been chosen for its readability; other formattings are possible
(and legal).

Text labels. Most objects in an extensive game may be given
textual labels. These are prominently used in the graphical interface,
for example, and it is encouraged for users to assign nonempty text
labels to objects if the game is going to be viewed in the graphical
interface. In all cases, these labels are surrounded by the quotation
character (”). The use of an explicit ” character within a text label
can be accomplished by preceding the embedded ” characters with a
backwards slash ().
Example 5-1. Escaping quotes in a text label

This is an alternate version of the first line of the example file, in
which the title of the game contains the term Bayesian game in
quotation marks.

EFG 2 R "An example of a \"Bayesian game\"" { "Player 1" "Player 2" }

Numerical data. yNumerical data, namely, the payoffs at outcomes,
and the action probabilities for chance nodes, may be expressed in
integer, decimal, or rational formats. In all cases, numbers are
understood by Gambit to be exact, and represented as such internally.
For example, the numerical entries 0.1 and 1/10 represent the same
quantity.

In versions 0.97 and prior, Gambit distinguished between floating
point and rational data. In these versions, the quantity 0.1 was
represented interally as a floating-point number. In this case, since
0.1 does not have an exact representation in binary floating point,
the values 0.1 and 1/10 were not identical, and some methods for
computing equilibria could give (slightly) different results for games
using one versus the other. In particular, using rational-precision
methods on games with the floating point numbers could give unexpected
output, since the conversion of 0.1 first to floating-point then to
rational would involve roundoff error. This is largely of technical
concern, and the current Gambit implementation now behaves in such a
way as to give the “expected” result when decimal numbers appear in
the file format.

The extensive game (.efg) file format

The extensive game (.efg) file format has been used by Gambit, with
minor variations, to represent extensive games since circa 1994. It
replaced an earlier format, which had no particular name but which had
the conventional extension .dt1. It is intended that some new formats
will be introduced in the future; however, this format will be
supported by Gambit, possibly through the use of converter programs to
those putative future formats, for the foreseeable future.

A sample file

This is a sample file illustrating the general format of the file.
This file is similar to the one distributed in the Gambit distribution
under the name bayes1a.efg .

EFG 2 R "General Bayes game, one stage" { "Player 1" "Player 2" }
c "ROOT" 1 "(0,1)" { "1G" 0.500000 "1B" 0.500000 } 0
c "" 2 "(0,2)" { "2g" 0.500000 "2b" 0.500000 } 0
p "" 1 1 "(1,1)" { "H" "L" } 0
p "" 2 1 "(2,1)" { "h" "l" } 0
t "" 1 "Outcome 1" { 10.000000 2.000000 }
t "" 2 "Outcome 2" { 0.000000 10.000000 }
p "" 2 1 "(2,1)" { "h" "l" } 0
t "" 3 "Outcome 3" { 2.000000 4.000000 }
t "" 4 "Outcome 4" { 4.000000 0.000000 }
p "" 1 1 "(1,1)" { "H" "L" } 0
p "" 2 2 "(2,2)" { "h" "l" } 0
t "" 5 "Outcome 5" { 10.000000 2.000000 }
t "" 6 "Outcome 6" { 0.000000 10.000000 }
p "" 2 2 "(2,2)" { "h" "l" } 0
t "" 7 "Outcome 7" { 2.000000 4.000000 }
t "" 8 "Outcome 8" { 4.000000 0.000000 }
c "" 3 "(0,3)" { "2g" 0.500000 "2b" 0.500000 } 0
p "" 1 2 "(1,2)" { "H" "L" } 0
p "" 2 1 "(2,1)" { "h" "l" } 0
t "" 9 "Outcome 9" { 4.000000 2.000000 }
t "" 10 "Outcome 10" { 2.000000 10.000000 }
p "" 2 1 "(2,1)" { "h" "l" } 0
t "" 11 "Outcome 11" { 0.000000 4.000000 }
t "" 12 "Outcome 12" { 10.000000 2.000000 }
p "" 1 2 "(1,2)" { "H" "L" } 0
p "" 2 2 "(2,2)" { "h" "l" } 0
t "" 13 "Outcome 13" { 4.000000 2.000000 }
t "" 14 "Outcome 14" { 2.000000 10.000000 }
p "" 2 2 "(2,2)" { "h" "l" } 0
t "" 15 "Outcome 15" { 0.000000 4.000000 }
t "" 16 "Outcome 16" { 10.000000 0.000000 }

Structure of the prologue

The extensive gamefile consists of two parts: the prologue, or header,
and the list of nodes, or body. In the example file, the prologue is
the first line. (Again, this is just a consequence of the formatting
we have chosen and is not a requirement of the file structure itself.)

The prologue is constructed as follows. The file begins with the token
EFG , identifying it as an extensive gamefile. Next is the digit 2 ;
this digit is a version number. Since only version 2 files have been
supported for more than a decade, all files have a 2 in this position.
Next comes the letter R . The letter R used to distinguish files which
had rational numbers for numerical data; this distinction is obsolete,
so all new files should have R in this position.

The prologue continues with the title of the game. Following the title
is a list of the names of the players defined in the game. This list
follows the convention found elsewhere in the file of being surrounded
by curly braces and delimited by whitespace (but not commas,
semicolons, or any other character). The order of the players is
significant; the first entry in the list will be numbered as player 1,
the second entry as player 2, and so forth. At the end of the prologue
is an optional text comment field.

Structure of the body (list of nodes)

The body of the file lists the nodes which comprise the game tree.
These nodes are listed in the prefix traversal of the tree. The prefix
traversal for a subtree is defined as being the root node of the
subtree, followed by the prefix traversal of the subtree rooted by
each child, in order from first to last. Thus, for the whole tree, the
root node appears first, followed by the prefix traversals of its
child subtrees. For convenience, the game above follows the convention
of one line per node.

Each node entry begins with an unquoted character indicating the type
of the node. There are three node types:

	c for a chance node

	p for a personal player node

	t for a terminal node

Each node type will be discussed individually below. There are three
numbering conventions which are used to identify the information
structure of the tree. Wherever a player number is called for, the
integer specified corresponds to the index of the player in the player
list from the prologue. The first player in the list is numbered 1,
the second 2, and so on. Information sets are identified by an
arbitrary positive integer which is unique within the player. Gambit
generates these numbers as 1, 2, etc. as they appear first in the
file, but there are no requirements other than uniqueness. The same
integer may be used to specify information sets for different players;
this is not ambiguous since the player number appears as well.
Finally, outcomes are also arbitrarily numbered in the file format in
the same way in which information sets are, except for the special
number 0 which indicates the null outcome.

Information sets and outcomes may (and frequently will) appear
multiple times within a game. By convention, the second and subsequent
times an information set or outcome appears, the file may omit the
descriptive information for that information set or outcome.
Alternatively, the file may specify the descriptive information again;
however, it must precisely match the original declaration of the
information set or outcome. If any part of the description is omitted,
the whole description must be omitted.

Outcomes may appear at nonterminal nodes. In these cases, payoffs are
interepreted as incremental payoffs; the payoff to a player for a
given path through the tree is interpreted as the sum of the payoffs
at the outcomes encountered on that path (including at the terminal
node). This is ideal for the representation of games with well-
defined”stages”; see, for example, the file bayes2a.efg in the Gambit
distribution for a two-stage example of the Bayesian game represented
previously.

In the following lists, fields which are omittable according to the
above rules are indicated by the label (optional).

Format of chance (nature) nodes. Entries for chance nodes begin
with the character c . Following this, in order, are

	a text string, giving the name of the node

	a positive integer specifying the information set number

	(optional) the name of the information set

	(optional) a list of actions at the information set with their
corresponding probabilities

	a nonnegative integer specifying the outcome

	(optional)the payoffs to each player for the outcome

Format of personal (player) nodes. Entries for personal player
decision nodes begin with the character p . Following this, in order,
are:

	a text string, giving the name of the node

	a positive integer specifying the player who owns the node

	a positive integer specifying the information set

	(optional) the name of the information set

	(optional) a list of action names for the information set

	a nonnegative integer specifying the outcome

	(optional) the name of the outcome

	the payoffs to each player for the outcome

Format of terminal nodes. Entries for terminal nodes begin with
the character t . Following this, in order, are:

	a text string, giving the name of the node

	a nonnegative integer specifying the outcome

	(optional) the name of the outcome

	the payoffs to each player for the outcome

There is no explicit end-of-file delimiter for the file.

The strategic game (.nfg) file format, payoff version

This file format defines a strategic N-player game. In this version,
the payoffs are listed in a tabular format. See the next section for a
version of this format in which outcomes can be used to identify an
equivalence among multiple strategy profiles.

A sample file

This is a sample file illustrating the general format of the file.
This file is distributed in the Gambit distribution under the name
e02.nfg .

NFG 1 R "Selten (IJGT, 75), Figure 2, normal form"
{ "Player 1" "Player 2" } { 3 2 }

1 1 0 2 0 2 1 1 0 3 2 0

Structure of the prologue

The prologue is constructed as follows. The file begins with the token
NFG , identifying it as a strategic gamefile. Next is the digit 1 ;
this digit is a version number. Since only version 1 files have been
supported for more than a decade, all files have a 1 in this position.
Next comes the letter R . The letter R used to distinguish files which
had rational numbers for numerical data; this distinction is obsolete,
so all new files should have R in this position.

The prologue continues with the title of the game. Following the title
is a list of the names of the players defined in the game. This list
follows the convention found elsewhere in the file of being surrounded
by curly braces and delimited by whitespace (but not commas,
semicolons, or any other character). The order of the players is
significant; the first entry in the list will be numbered as player 1,
the second entry as player 2, and so forth.

Following the list of players is a list of positive integers. This
list specifies the number of strategies available to each player,
given in the same order as the players are listed in the list of
players.

The prologue concludes with an optional text comment field.

Structure of the body (list of payoffs)

The body of the format lists the payoffs in the game. This is a “flat”
list, not surrounded by braces or other punctuation.

The assignment of the numeric data in this list to the entries in the
strategic game table proceeds as follows. The list begins with the
strategy profile in which each player plays their first strategy. The
payoffs to all players in this contingency are listed in the same
order as the players are given in the prologus. This, in the example
file, the first two payoff entries are 1 1 , which means, when both
players play their first strategy, player 1 receives a payoff of 1,
and player 2 receives a payoff of 1.

Next, the strategy of the first player is incremented. Thus, player
1’s strategy is incremented to his second strategy. In this case, when
player 1 plays his second strategy and player 2 his first strategy,
the payoffs are 0 2 : a payoff of 0 to player 1 and a payoff of 2 to
player 2.

Now the strategy of the first player is again incremented. Thus, the
first player is playing his third strategy, and the second player his
first strategy; the payoffs are again 0 2 .

Now, the strategy of the first player is incremented yet again. But,
the first player was already playing strategy number 3 of 3. Thus, his
strategy now “rolls over” to 1, and the strategy of the second player
increments to 2. Then, the next entries 1 1 correspond to the payoffs
of player 1 and player 2, respectively, in the case where player 1
plays his second strategy, and player 2 his first strategy.

In general, the ordering of contingencies is done in the same way that
we count: incrementing the least-significant digit place in the number
first, and then incrementing more significant digit places in the
number as the lower ones “roll over.” The only differences are that
the counting starts with the digit 1, instead of 0, and that the
“base” used for each digit is not 10, but instead is the number of
strategies that player has in the game.

The strategic game (.nfg) file format, outcome version

This file format defines a strategic N-player game. In this version,
the payoffs are defined by means of outcomes, which may appear more
than one place in the game table. This may give a more compact means
of representing a game where many different strategy combinations map
to the same consequences for the players. For a version of this format
in which payoffs are listed explicitly, without identification by
outcomes, see the previous section.

A sample file

This is a sample file illustrating the general format of the file.
This file defines the same game as the example in the previous
section.

NFG 1 R "Selten (IJGT, 75), Figure 2, normal form" { "Player 1" "Player 2" }

{
{ "1" "2" "3" }
{ "1" "2" }
}

{
{ "" 1, 1 }
{ "" 0, 2 }
{ "" 0, 2 }
{ "" 1, 1 }
{ "" 0, 3 }
{ "" 2, 0 }
}
1 2 3 4 5 6

Structure of the prologue

The prologue is constructed as follows. The file begins with the token
NFG , identifying it as a strategic gamefile. Next is the digit 1 ;
this digit is a version number. Since only version 1 files have been
supported for more than a decade, all files have a 1 in this position.
Next comes the letter R . The letter R used to distinguish files which
had rational numbers for numerical data; this distinction is obsolete,
so all new files should have R in this position.

The prologue continues with the title of the game. Following the title
is a list of the names of the players defined in the game. This list
follows the convention found elsewhere in the file of being surrounded
by curly braces and delimited by whitespace (but not commas,
semicolons, or any other character). The order of the players is
significant; the first entry in the list will be numbered as player 1,
the second entry as player 2, and so forth.

Following the list of players is a list of strategies. This is a
nested list; each player’s strategies are given as a list of text
labels, surrounded by curly braces.

The nested strategy list is followed by an optional text comment
field.

The prologue closes with a list of outcomes. This is also a nested
list. Each outcome is specified by a text string, followed by a list
of numerical payoffs, one for each player defined. The payoffs may
optionally be separated by commas, as in the example file. The
outcomes are implicitly numbered in the order they appear; the first
outcome is given the number 1, the second 2, and so forth.

Structure of the body (list of outcomes)

The body of the file is a list of outcome indices. These are presented
in the same lexicographic order as the payoffs in the payoff file
format; please see the documentation of that format for the
description of the ordering. For each entry in the table, a
nonnegative integer is given, corresponding to the outcome number
assigned as described in the prologue section. The special outcome
number 0 is reserved for the “null” outcome, which is defined as a
payoff of zero to all players. The number of entries in this list,
then, should be the same as the product of the number of strategies
for all players in the game.

The action graph game (.agg) file format

Action graph games (AGGs) are a compact representation of simultaneous-move games with structured utility functions.
For more information on AGGs, the following paper gives a comprehensive discussion.

A.X. Jiang, K. Leyton-Brown and N. Bhat, Action-Graph Games [http://www.cs.ubc.ca/~jiang/papers/AGG.pdf], Games and Economic Behavior, Volume 71, Issue 1, January 2011, Pages 141-173.

Each file in this format describes an action graph game.
In order for the file to be recognized as AGG by GAMBIT, the initial line of the file should be:

#AGG

The rest of the file consists of 8 sections, separated by whitespaces. Lines with starting ‘#’ are treated as comments and are allowed between sections.

	The number of players, n.

	The number of action nodes, |S|.

	The number of function nodes, |P|.

	Size of action set for each player. This is a row of n integers:

|S1| |S2| |Sn|

	Each Player’s action set. We have N rows; row i has |Si| integers in ascending order,
which are indices of Action nodes. Action nodes are indexed from 0 to |S|-1.

	The Action Graph. We have |S|+|P| nodes, indexed from 0 to |S|+|P|-1.
The function nodes are indexed after the action nodes. The graph
is represented as (|S|+|P|) neighbor lists, one list per row.
Rows 0 to |S|-1 are for action nodes; rows |S| to |S|+|P|-1 are for
function nodes. In each row, the first number |v| specifies the
number of neighbors of the node. Then follows |v| numbers,
corresponding to the indices of the neighbors.

We require that each function node has at least one neighbor, and
the neighbors of function nodes are action nodes. The action graph
restricted to the function nodes has to be a directed acyclic graph (DAG).

	Signatures of functions. This is |P| rows, each specifying the mapping
f_p that maps from the configuration of the function node p’s neighbors to
an integer for p’s “action count”. Each function is specified by its “signature”
consisting of an integer type, possibly followed by further parameters. Several types of mapping are
implemented:

	Types 0-3 require no further input.

	Type 0: Sum. i.e. The action count of a function node p is the sum of
the action counts of p’s neighbors.

	Type 1: Existence: boolean for whether the sum of the counts of
neighbors are positive.

	Type 2: The index of the neighbor with the highest index that has
non-zero counts, or |S|+|P| if none applies.

	Type 3: The index of the neighbor with the lowest index that has
non-zero counts, or |S|+|P| if none applies.

	Types 10-13 are extended versions of type 0-3, each requiring
further parameters of an integer default value and a list of weights,
|S| integers enclosed in square brackets. Each action node is thus associated with an integer weight.

	Type 10: Extended Sum. Each instance of an action in p’s neighborhood being chosen contributes the
weight of that action to the sum. These are added to the default value.

	Type 11: Extended Existence: boolean for whether the extended sum is positive. The input default value
and weights are required to be nonnegative.

	Type 12: The weight of the neighbor with the highest index that has
non-zero counts, or the default value if none applies.

	Type 13: The weight of the neighbor with the lowest index that has
non-zero counts, or the default value if none applies.

The following is an example of the signatures for an AGG with three action nodes and two function nodes:

2
10 0 [2 3 4]

	The payoff function for each action node. So we have
|S| subblocks of numbers. Payoff function for action s is a mapping
from configurations to real numbers. Configurations are
represented as a tuple of integers; the size of the tuple is the size
of the neighborhood of s. Each configuration specifies the action counts
for the neighbors of s, in the same order as the neighbor list of s.

The first number of each subblock specifies
the type of the payoff function. There are multiple ways of representing
payoff functions; we (or other people) can extend the file format by
defining new types of payoff functions. We define two basic types:

	Type 0

	The complete representation. The set of possible
configurations can be derived from the action graph. This set of
configurations can also be sorted in lexicographical order. So we can
just specify the payoffs without explicitly giving the configurations.
So we just need to give one row of real numbers, which correspond to
payoffs for the ordered set of configurations.

If action s is in multiple players’ action sets (say players
i, j),
then it is possible that the set of possible configurations
given si
is different from the set of possible configurations given
sj.
In such cases, we need to specify payoffs for the union of the
sets of configurations (sorted in lexicographical order).

	Type 1

	The mapping representation, in which we specify the configurations
and the corresponding payoffs. For the payoff function of action s,
first give Delta_s, the number of elements in the mapping.
Then follows Delta_s rows. In each row, first specify the configuration,
which is a tuple of integers, enclosed by a pair of brackets “[” and “]”, then the payoff.
For example, the following specifies a payoff function of type 1, with two configurations:

1 2
[1 0] 2.5
[1 1] -1.2

The Bayesian action graph game (.bagg) format

Bayesian action graph games (BAGGs) are a compact representation of Bayesian (i.e., incomplete-information) games.
For more information on BAGGs, the following paper gives a detailed discussion.

A.X. Jiang and K. Leyton-Brown, Bayesian Action-Graph Games [http://www.cs.ubc.ca/~jiang/papers/BAGG.pdf]. NIPS, 2010.

Each file in this format describes a BAGG.
In order for the file to be recognized as BAGG by GAMBIT, the initial line of the file should be:

#BAGG

The rest of the file consists of the following sections,
separated by whitespaces. Lines with starting ‘#’ are treated as comments and are allowed between sections.

	The number of Players, n.

	The number of action nodes, |S|.

	The number of function nodes, |P|.

	The number of types for each player, as a row of n integers.

	Type distribution for each player. The distributions are assumed to be independent.
Each distribution is represented as a row of real numbers.
The following example block gives the type distributions for a BAGG with two players and two types for each player:

0.5 0.5
0.2 0.8

	Size of type-action set for each player’s each type.

	Type-action set for each player’s each type.
Each type-action set is represented as a row of integers in ascending order,
which are indices of action nodes. Action nodes are indexed from 0 to |S|-1.

	The action graph: same as in the AGG format.

	types of functions: same as in the AGG format.

	utility function for each action node: same as in the AGG format.

[image: Chadwick]
Gambit: Software Tools for Game Theory

Bibliography

Articles on computation of Nash equilibria

	[Eav71]	B. C. Eaves, “The linear complementarity problem”, 612-634,
Management Science , 17, 1971.

	[GovWil03]	Govindan, Srihari and Robert Wilson. (2003)
“A Global Newton Method to Compute Nash Equilibria.”
Journal of Economic Theory 110(1): 65-86.

	[GovWil04]	Govindan, Srihari and Robert Wilson. (2004)
“Computing Nash Equilibria by Iterated Polymatrix Approximation.”
Journal of Economic Dynamics and Control 28: 1229-1241.

	[Jiang11]	A. X. Jiang, K. Leyton-Brown, and N. Bhat. (2011)
“Action-Graph Games.” Games and Economic Behavior 71(1): 141-173.

	[KolMegSte94]	Daphne Koller, Nimrod Megiddo, and Bernhard von
Stengel (1996).
“Efficient computation of equilibria for extensive two-person games.”
Games and Economic Behavior 14: 247-259.

	[LemHow64]	C. E. Lemke and J. T. Howson, “Equilibrium points of
bimatrix games”, 413-423, Journal of the Society of Industrial and
Applied Mathematics , 12, 1964.

	[Man64]	O. Mangasarian, “Equilibrium points in bimatrix games”,
778-780, Journal of the Society for Industrial and Applied
Mathematics, 12, 1964.

	[McK91]	Richard McKelvey, A Liapunov function for Nash equilibria,
1991, California Institute of Technology.

	[McKMcL96]	Richard McKelvey and Andrew McLennan, “Computation of
equilibria in finite games”, 87-142, Handbook of Computational
Economics , Edited by H. Amman, D. Kendrick, J. Rust, Elsevier, 1996.

	[PNS04]	Ryan Porter, Eugene Nudelman, and Yoav Shoham.
“Simple search methods for finding a Nash equilibrium.”
Games and Economic Behavior 664-669, 2004.

	[Ros71]	J. Rosenmuller, “On a generalization of the Lemke-Howson
Algorithm to noncooperative n-person games”, 73-79, SIAM Journal of
Applied Mathematics, 21, 1971.

	[Sha74]	Lloyd Shapley, “A note on the Lemke-Howson algorithm”, 175-189,
Mathematical Programming Study , 1, 1974.

	[Tur05]	Theodore L. Turocy, “A dynamic homotopy interpretation of the
logistic quantal response equilibrium correspondence”, 243-263, Games
and Economic Behavior, 51, 2005.

	[Tur10]	Theodore L. Turocy, “Using Quantal Response to Compute
Nash and Sequential Equilibria.” Economic Theory 42(1): 255-269, 2010.

	[VTH87]	G. van der Laan, A. J. J. Talman, and L. van Der Heyden,
“Simplicial variable dimension algorithms for solving the nonlinear
complementarity problem on a product of unit simplices using a general
labelling”, 377-397, Mathematics of Operations Research , 1987.

	[Wil71]	Robert Wilson, “Computing equilibria of n-person games”, 80-87,
SIAM Applied Math, 21, 1971.

	[Yam93]	Y. Yamamoto, 1993, “A Path-Following Procedure to Find a Proper
Equilibrium of Finite Games ”, International Journal of Game Theory .

General game theory articles and texts

	[Harsanyi1967a]	John Harsanyi, “Games of Incomplete Information Played
By Bayesian Players I”, 159-182, Management Science , 14, 1967.

	[Harsanyi1967b]	John Harsanyi, “Games of Incomplete Information Played
By Bayesian Players II”, 320-334, Management Science , 14, 1967.

	[Harsanyi1968]	John Harsanyi, “Games of Incomplete Information Played
By Bayesian Players III”, 486-502, Management Science , 14, 1968.

	[KreWil82]	David Kreps and Robert Wilson, “Sequential Equilibria”,
863-894, Econometrica , 50, 1982.

	[McKPal95]	Richard McKelvey and Tom Palfrey, “Quantal response
equilibria for normal form games”, 6-38, Games and Economic Behavior ,
10, 1995.

	[McKPal98]	Richard McKelvey and Tom Palfrey, “Quantal response
equilibria for extensive form games”, 9-41, Experimental Economics ,
1, 1998.

	[Mye78]	Roger Myerson, “Refinements of the Nash equilibrium concept”,
73-80, International Journal of Game Theory , 7, 1978.

	[Nas50]	John Nash, “Equilibrium points in n-person games”, 48-49,
Proceedings of the National Academy of Sciences , 36, 1950.

	[Sel75]	Reinhard Selten, Reexamination of the perfectness concept for
equilibrium points in extensive games , 25-55, International Journal
of Game Theory , 4, 1975.

	[vanD83]	Eric van Damme, 1983, Stability and Perfection of Nash
Equilibria , Springer-Verlag, Berlin.

Textbooks and general reference

	[Mye91]	Roger Myerson, 1991, Game Theory : Analysis of Conflict ,
Harvard University Press.

[image: Chadwick]
Gambit: Software Tools for Game Theory

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gambit	

 	
 	
 gambit.nash	

[image: Chadwick]
Gambit: Software Tools for Game Theory

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

Symbols

 	
 	
 -A

 	gambit-enumpure command line option

 	
 -a

 	gambit-logit command line option

 	
 -c

 	gambit-enummixed command line option

 	
 -c PLAYER

 	gambit-convert command line option

 	
 -D

 	gambit-enummixed command line option

 	gambit-enumpure command line option

 	gambit-lcp command line option

 	gambit-lp command line option

 	
 -d

 	gambit-enummixed command line option

 	gambit-enumpoly command line option

 	gambit-gnm command line option

 	gambit-ipa command line option

 	gambit-lcp command line option

 	gambit-liap command line option

 	gambit-logit command line option

 	gambit-lp command line option

 	
 -e

 	gambit-logit command line option

 	
 -g

 	gambit-simpdiv command line option

 	
 -H

 	gambit-enumpoly command line option

 	
 -h

 	gambit-convert command line option

 	gambit-enummixed command line option

 	gambit-enumpoly command line option

 	gambit-enumpure command line option

 	gambit-gnm command line option

 	gambit-ipa command line option

 	gambit-lcp command line option

 	gambit-liap command line option

 	gambit-logit command line option

 	gambit-lp command line option

 	gambit-simpdiv command line option

 	
 -L

 	gambit-enummixed command line option

 	
 -l

 	gambit-logit command line option

 	
 	
 -m

 	gambit-logit command line option

 	
 -n

 	gambit-gnm command line option

 	gambit-liap command line option

 	gambit-simpdiv command line option

 	
 -O FORMAT

 	gambit-convert command line option

 	
 -P

 	gambit-enumpure command line option

 	gambit-lcp command line option

 	gambit-lp command line option

 	
 -q

 	gambit-convert command line option

 	gambit-enummixed command line option

 	gambit-enumpoly command line option

 	gambit-enumpure command line option

 	gambit-gnm command line option

 	gambit-ipa command line option

 	gambit-lcp command line option

 	gambit-liap command line option

 	gambit-lp command line option

 	gambit-simpdiv command line option

 	
 -r

 	gambit-simpdiv command line option

 	
 -r PLAYER

 	gambit-convert command line option

 	
 -S

 	gambit-enumpoly command line option

 	gambit-enumpure command line option

 	gambit-lcp command line option

 	gambit-liap command line option

 	gambit-logit command line option

 	gambit-lp command line option

 	
 -s

 	gambit-gnm command line option

 	gambit-liap command line option

 	gambit-logit command line option

 	gambit-simpdiv command line option

 	
 -v

 	gambit-enumpoly command line option

 	gambit-gnm command line option

 	gambit-liap command line option

 	gambit-simpdiv command line option

_

 	
 	__getitem__() (gambit.Actions method)

 	(gambit.Game method)

 	(gambit.MixedBehaviorProfile method)

 	(gambit.MixedStrategyProfile method)

 	(gambit.Outcome method)

 	(gambit.Outcomes method)

 	(gambit.Players method)

 	(gambit.Strategies method)

 	
 	__setitem__() (gambit.MixedBehaviorProfile method)

 	(gambit.MixedStrategyProfile method)

 	(gambit.Outcome method)

A

 	
 	Action (class in gambit)

 	Actions (class in gambit)

 	actions (gambit.Game attribute)

 	(gambit.Infoset attribute)

 	add() (gambit.Actions method)

 	(gambit.Outcomes method)

 	(gambit.Players method)

 	(gambit.Strategies method)

 	
 	append_move() (gambit.Node method)

 	as_behavior() (gambit.MixedStrategyProfile method)

 	as_strategy() (gambit.MixedBehaviorProfile method)

B

 	
 	belief() (gambit.MixedBehaviorProfile method), [1]

C

 	
 	chance (gambit.Players attribute)

 	children (gambit.Node attribute)

 	comment (gambit.Game attribute)

 	
 	contingencies (gambit.Game attribute)

 	copy() (gambit.MixedBehaviorProfile method)

 	(gambit.MixedStrategyProfile method)

 	copy_tree() (gambit.Node method)

D

 	
 	delete() (gambit.Action method)

 	(gambit.Outcome method)

 	
 	delete_parent() (gambit.Node method)

 	delete_tree() (gambit.Node method)

 	difference() (gambit.StrategySupportProfile method)

E

 	
 	enummixed_solve() (in module gambit.nash)

 	
 	enumpure_solve() (in module gambit.nash)

F

 	
 	from_arrays() (gambit.Game class method)

G

 	
 	gambit (module)

 	
 gambit-convert command line option

 	-O FORMAT

 	-c PLAYER

 	-h

 	-q

 	-r PLAYER

 	
 gambit-enummixed command line option

 	-D

 	-L

 	-c

 	-d

 	-h

 	-q

 	
 gambit-enumpoly command line option

 	-H

 	-S

 	-d

 	-h

 	-q

 	-v

 	
 gambit-enumpure command line option

 	-A

 	-D

 	-P

 	-S

 	-h

 	-q

 	
 gambit-gnm command line option

 	-d

 	-h

 	-n

 	-q

 	-s

 	-v

 	
 gambit-ipa command line option

 	-d

 	-h

 	-q

 	
 gambit-lcp command line option

 	-D

 	-P

 	-S

 	-d

 	-h

 	-q

 	
 	
 gambit-liap command line option

 	-S

 	-d

 	-h

 	-n

 	-q

 	-s

 	-v

 	
 gambit-logit command line option

 	-S

 	-a

 	-d

 	-e

 	-h

 	-l

 	-m

 	-s

 	
 gambit-lp command line option

 	-D

 	-P

 	-S

 	-d

 	-h

 	-q

 	
 gambit-simpdiv command line option

 	-g

 	-h

 	-n

 	-q

 	-r

 	-s

 	-v

 	gambit.nash (module)

 	Game (class in gambit)

 	game (gambit.Node attribute)

 	(gambit.Player attribute)

 	(gambit.StrategySupportProfile attribute)

 	gnm_solve() (in module gambit.nash)

I

 	
 	Infoset (class in gambit)

 	infoset (gambit.Action attribute)

 	(gambit.Node attribute)

 	infosets (gambit.Game attribute)

 	(gambit.Player attribute)

 	insert_move() (gambit.Node method)

 	intersection() (gambit.StrategySupportProfile method)

 	ipa_solve() (in module gambit.nash)

 	is_chance (gambit.Infoset attribute)

 	(gambit.Player attribute)

 	
 	is_const_sum (gambit.Game attribute)

 	is_perfect_recall (gambit.Game attribute)

 	is_subgame_root() (gambit.Node method)

 	is_successor_of() (gambit.Node method)

 	is_terminal (gambit.Node attribute)

 	is_tree (gambit.Game attribute)

 	issubset() (gambit.StrategySupportProfile method)

 	issuperset() (gambit.StrategySupportProfile method)

L

 	
 	label (gambit.Action attribute)

 	(gambit.Infoset attribute)

 	(gambit.Node attribute)

 	(gambit.Outcome attribute)

 	(gambit.Player attribute)

 	(gambit.Strategy attribute)

 	lcp_solve() (in module gambit.nash)

 	
 	leave_infoset() (gambit.Node method)

 	len() (gambit.Actions method)

 	(gambit.Outcomes method)

 	(gambit.Players method)

 	(gambit.Strategies method)

 	liap_value() (gambit.MixedBehaviorProfile method)

 	(gambit.MixedStrategyProfile method)

 	lp_solve() (in module gambit.nash)

M

 	
 	max_payoff (gambit.Game attribute)

 	(gambit.Player attribute)

 	members (gambit.Infoset attribute)

 	min_payoff (gambit.Game attribute)

 	(gambit.Player attribute)

 	
 	MismatchError

 	mixed_behavior_profile() (gambit.Game method)

 	mixed_strategy_profile() (gambit.Game method)

 	MixedBehaviorProfile (class in gambit)

 	MixedStrategyProfile (class in gambit)

 	move_tree() (gambit.Node method)

N

 	
 	new_table() (gambit.Game class method)

 	new_tree() (gambit.Game class method)

 	next_sibling (gambit.Node attribute)

 	
 	Node (class in gambit)

 	normalize() (gambit.MixedBehaviorProfile method)

 	(gambit.MixedStrategyProfile method)

 	number (gambit.Player attribute)

O

 	
 	Outcome (class in gambit)

 	
 	outcome (gambit.Node attribute)

 	Outcomes (class in gambit)

P

 	
 	parent (gambit.Node attribute)

 	parse_game() (gambit.Game class method)

 	payoff() (gambit.MixedBehaviorProfile method), [1], [2]

 	(gambit.MixedStrategyProfile method)

 	Player (class in gambit)

 	player (gambit.Infoset attribute)

 	(gambit.Node attribute)

 	
 	Players (class in gambit)

 	players (gambit.Game attribute)

 	precedes() (gambit.Action method)

 	(gambit.Infoset method)

 	prior_action (gambit.Node attribute)

 	prior_sibling (gambit.Node attribute)

 	prob (gambit.Action attribute)

R

 	
 	randomize() (gambit.MixedBehaviorProfile method)

 	(gambit.MixedStrategyProfile method)

 	Rational (class in gambit)

 	read_game() (gambit.Game class method)

 	realiz_prob() (gambit.MixedBehaviorProfile method)

 	
 	regret() (gambit.MixedBehaviorProfile method)

 	remove() (gambit.StrategySupportProfile method)

 	restrict() (gambit.StrategySupportProfile method)

 	reveal() (gambit.Infoset method)

 	root (gambit.Game attribute)

S

 	
 	simpdiv_solve() (in module gambit.nash)

 	StrategicRestriction (class in gambit)

 	Strategies (class in gambit)

 	strategies (gambit.Game attribute)

 	(gambit.Player attribute)

 	
 	Strategy (class in gambit)

 	strategy_value() (gambit.MixedStrategyProfile method)

 	strategy_values() (gambit.MixedStrategyProfile method)

 	StrategySupportProfile (class in gambit)

T

 	
 	title (gambit.Game attribute)

U

 	
 	UndefinedOperationError

 	
 	union() (gambit.StrategySupportProfile method)

 	unrestrict() (gambit.StrategicRestriction method)

W

 	
 	write() (gambit.Game method)

 _images/layoutnodes.png
Nodes | Branches | Information sets
Drawing nodes

Indicate chance nodes with | afilled circle v
Indicate player nodes with | afilled circle v

Indicate terminal nodes with | a filled circle v

Layout sizing

Horizontal size of nodes 10 G

Vertical spacing between terminal nodes 50 :

Set to defaults| | % Cancel

¥ 0K

&

_static/up.png

_static/gambit.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		Welcome

 		An overview of Gambit

 		What is Gambit?

 		A brief history of Gambit

 		Key features of Gambit

 		Limitations of Gambit

 		Developers

 		Downloading Gambit

 		Community

 		Bug reports

 		The graphical interface

 		General concepts

 		General layout of the main window

 		Payoffs and probabilities in Gambit

 		A word about file formats

 		Extensive games

 		Creating a new extensive game

 		Adding moves

 		Copying and moving subtrees

 		Removing parts of a game tree

 		Managing information sets

 		Outcomes and payoffs

 		Formatting and labeling the tree

 		Labels on nodes and branches

 		Controlling the layout of the tree

 		Selecting fonts and colors

 		Strategic games

 		Navigating a strategic game

 		Adding players and strategies

 		Editing payoffs

 		Investigating dominated strategies and actions

 		Dominated actions in extensive game

 		Dominated strategies in strategic games

 		Computing Nash equilibria

 		Selecting the method of computing equilibria

 		Viewing computed profiles in the game

 		Computing quantal response equilibria

 		Quantal response equilibria in strategic games (experimental)

 		Printing and exporting games

 		Printing a game

 		Saving to a graphics file

 		Command-line tools

 		gambit-enumpure: Enumerate pure-strategy equilibria of a game

 		gambit-enumpoly: Compute equilibria of a game using polynomial systems of equations

 		gambit-enummixed: Enumerate equilibria in a two-player game

 		gambit-gnm: Compute Nash equilibria in a strategic game using a global Newton method

 		gambit-ipa: Compute Nash equilibria in a strategic game using iterated polymatrix approximation

 		gambit-lcp: Compute equilibria in a two-player game via linear complementarity

 		gambit-lp: Compute equilibria in a two-player constant-sum game via linear programming

 		gambit-liap: Compute Nash equilibria using function minimization

 		gambit-simpdiv: Compute equilibria via simplicial subdivision

 		gambit-logit: Compute quantal response equilbria

 		gambit-convert: Convert games among various representations

 		Python interface to Gambit library

 		A tutorial introduction

 		Building an extensive game

 		Building a strategic game

 		Reading a game from a file

 		Iterating the pure strategy profiles in a game

 		Mixed strategy and behavior profiles

 		Computing Nash equilibria

 		API documentation

 		Game representations

 		Representations of play of games

 		Elements of games

 		Representation of errors and exceptions

 		Computation of Nash equilibria

 		Sample games

 		For contributors: Ideas and suggestions for Gambit-related projects

 		Refactor and update game representation library

 		File formats for serializing games

 		Structure equilibrium calculations using the strategy pattern

 		Implement Strategic Restriction of a game in C++

 		Implement Behavior Restriction of a game in Python

 		Implementing algorithms for finding equilibria in games

 		Enumerating all equilibria of a two-player bimatrix game using the EEE algorithm

 		Improve integration and testing of Gametracer

 		Interface with lrslib

 		Finding equilibria reachable by Lemke's algorithm with varying “covering vectors”

 		Computing the index of an equilibrium component

 		Enumerating all equilibria of a two-player game tree

 		Solving for equilibria using polynomial systems of equations

 		Implement Herings-Peeters homotopy algorithm to compute Nash equilibria

 		For developers: Building Gambit from source

 		General information

 		Building from git repository

 		Supported compilers

 		For Windows users

 		For OS X users

 		The graphical interface and wxWidgets

 		Building the Python extension

 		Game representation formats

 		Conventions common to all file formats

 		The extensive game (.efg) file format

 		A sample file

 		Structure of the prologue

 		Structure of the body (list of nodes)

 		The strategic game (.nfg) file format, payoff version

 		A sample file

 		Structure of the prologue

 		Structure of the body (list of payoffs)

 		The strategic game (.nfg) file format, outcome version

 		A sample file

 		Structure of the prologue

 		Structure of the body (list of outcomes)

 		The action graph game (.agg) file format

 		The Bayesian action graph game (.bagg) format

 		Bibliography

 		Articles on computation of Nash equilibria

 		General game theory articles and texts

 		Textbooks and general reference

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_images/pokerdom2.png
_ 0B ®
File Edit View Format Tools Help

CEOPREE &8& ¢ 8RR @ o OB S

Hide actions which are | strictly ~ | dominated: |[¢a| | 42| Eliminated 1level |8 | (®]| (] Show only reachable nodes
’ & Chance
22
& & Fred
14
& & Alice

_images/pokerdom3.png
_ 0B ®
File Edit View Format Tools Help

CEOPREE &8& ¢ 8RR @ o OB S

Hide actions which are | strictly ~ | dominated: |[¢a| | 42| Eliminated 1level |8 | ®]| # Show only reachable nodes
’ & Chance
22
& & Fred
14
& & Alice
22
14

_images/pddom2.png
I le Edit View Format Tools Help

Hide strategies which are

& E & Alice
A&E & sob

CO0EBE 88 ¢ &

ekc
W EOE S
strictly v dominated: [¢@ <43 Eliminated 1level & ®f
Payoffs
Defect | Defect 1 1

_images/labels.png
Node labeling

Display | the node's label ~ | above each node
Display | the information set's number. + | below each node
Action labeling
Display | the name of the action ~ | above each action

Display | the probability the action is played v | below each action

% Cancel | | ¢ OK

&

_images/layoutinfosets.png
Nodes | Branches | Information sets

Drawing information sets

Connect members of information sets

Draw information set connections

using bubbles

Set to defaults

regardless of level

% Cancel

_images/nash.png
Compute all Nash equilibria v

with Gambit's recommended method v

using the extensive game v

% Cancel | | ¢ OK

_images/pokerdom1.png
IDle Edit View Format Tools Help

“OEBE 88&8 9¢ 8QaQR = e O

Hide actions which are
’ & Chance

& & Fred

& & Alice

strictly

dominated: & 4@ All actions shown

Meet

B a2
>

Show only reachable nodes

_images/beliefs.png
e e ——— L
e it w Format Tools 1p

EOCEBE &8 9¢ 8QAQR| % &

aa
aa
& crance Meet
22
& & Fred
Payoff: 113 1
Node value: 5/3
& & Alice
Payoff: -1/3
Node value: -5/3 2z
Node reached: 1/2
Infoset value: -1 1a

Infoset reached: 2/3
Belief: 3/4

Profiles 1 v | All equilibria by enumeration of mixed strategies in strategic game

|1 : Fold |2: Raise old | 1: Meet | 1: Pass
1 2 2 1
1 o 3 3 3 3

_images/overview.png
Ime Edit View Format Tools Help

“O0EBE 88 %¢ &aQAR

$a
&
&

Chance

Fred

Alice

m
e

Meet

_images/layoutbranches.png
Nodes | Branches | Information sets

Drawing branches

Draw branches | with a tine for branch labels

Draw labels horizontally

Length of branches

Length of branch fork 60

Length of branch tine 20

Set to defaults

% Cancel

_images/profiles.png
e e ——e e ——————-
e it w Format Tools 1p

EOCEBE &8 9¢ 8QAQR| % &

aa
aa
g8 cnce :
22
& & Fred
Payoff: 1/3 11
& & Alice
Payoff: -1/3
22
1a

23

Profiles 1 v | All equilibria by enumeration of mixed strategies in strategic game

| 1: Raise | 1: Fold |2: Raise |2: Fold | 1: Meet | 1: Pass
1 2 2 1
1 o 3 3 3 3

_images/computing.png
The computation is currently in progress. Number of equilibria found so far: 1 |)

[un[uLz 2Lz A[s L@ A]a s A]s e nle Lz n]rLsH
s a2 sz T s
3 5 T T 5 5 1 o 1 o 5 5 o 1 o
(e «

_images/pddom1.png
IDle Edit View Format Tools Help

CO0EBE 88 ¢ &

Hide strategies which are

& E & Alice
A&E & sob

@ H &%
strictly v dominated: J4a 43 All strategies shown & ®f
Payoffs
ca; e
Icoop<fate|
Defect 10
co; el 10
Defect

Defect

_images/pd1.png
Ime Edit View Format Tools Help

c0eEE 88 % ¢ & %

&FE & Alce Cooperate

Cooperate] o o
A&E & sob

Defect 10 0

_images/pd3.png
I le Edit View Format Tools Help

& E & Alice
A&E & sob

CO0EBE 88 ¢ &

0] aw
W E OB 8
Payoffs
Cooperate] o o
Cooperate
Defect o 10
Cooperatel 10 o

Defect

Defect

_images/logit.png
_

The computation has completed. [}
[=] 8 | @ Gravhscaling'y 3
Show strategies 10
—Player 1:1*
1+ M k
21 M 08
Player 1 -
Y a1 @2
222 M
0
2 #
2c M| 2
Player 2 £
ver2 @ | £ oa
222 M
02
-0.0 d
0 01 o0z 04 o7 1o 15 23 40 90 900
Lambda E
X e
@ OK

_images/connectinfoset.png
I e Edit View Format Tools Help

CEOPREE && 9¢ QAR @ o OHB S
’ & Chance
& & rlayer1
& & rlayer2
& & rlayers

_images/qre.png
L

The computation has completed. [}

Lambda 1: Fold 2: Raise | 2: Fold 1: Meet LPA

00216 oases o508 oas7a 05053 o
2 0.0454 04716 05053 04947 05108 0
3 00716 05450 04550 05081 04919 05166 O
a 01007 05632 04389 05109 04891 05227 0O
5 01328) 05832 04168 05137 04863 05290 0O
6 01684 06052 03948 05166 04834 05354 0
7 02080 06292 03708 05194 04805 05420 O
8 02521 06553 03447 05223 04777, 05488 0O
9 03014 06835 03164 05251 04749 05554 O
10 03567, 07138 02862 05279 04721 05622 O
11 04101 07459 02541 05307 04693 05690 O

B 04sss 0779 02208 05333 o4es7 05758 0°
-—— “r

Save correspondence to csvfile| | ¢ OK

&

_images/editnode.png
Node label

Information set | Player 1, Infoset 1

This is the root node of the tree

Outcome | (null)

% Cancel | | ¢ OK

_images/pd2.png
I le Edit View Format Tools Help

& E & Alice
A&E & sob

CO0EBE 88 ¢ &

0] aw
W E OB 8
Payoffs
Cooperate] © o
Cooperate
Defect o 10
Cooperatel 10 o

Defect

Defect

_images/insertmove.png
Insert move for Player 1

at anew information set

with 2 + actions

% Cancel | | ¢ OK

