

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Galaxy Benchmarker

A tool for benchmarking Galaxy job-destinations.

The goal is to easily benchmark different job-destinations. All you have to do is to configure the benchmarker itself,
define the destinations you want to benchmark, the workflows you want to run and the benchmarks you want to use. GalaxyBenchmarker
should handle the rest, like configuring Galaxy (to send the jobs to the right destination), submitting workflows and
collecting the metrics.

GalaxyBenchmarker is designed to be easily extendable in terms of destinations-types and benchmark-scenarios.

Benchmark-Scenarios

Currently there are three types/scenarios of benchmarks available. Every benchmark allows to define its destination and workflows to test, how often workflows should
be run per destination and if some ansible-playbooks should be run before or after the benchmark ran.

Cold vs Warm

What is the difference between running a workflow for the first time or for it having been run multiple
times already? What is the overhead for staging time, installing tools, etc?

This benchmark cleans up Pulsar for every cold run, using a Ansible-Playbook ([coldwarm_pretask.yml]).

Destination Comparison

What are the differences between multiple destinations in terms of staging time (sending data
to a remote location might take some time), runtime, etc.

Burst

How does a destination handle a big burst of requests?

Requirements

	A Galaxy-Instance

	InfluxDB for saving the benchmark results

	Some job-destinations to benchmark

	Python 3.7

	Ansible

	Docker (if you want to use the docker-compose setup)

Usage

A docker-compose setup is already provided that ships with InfluxDB and Grafana for easy
analysis of the metrics.

Install all dependencies (not needed if using docker-compose setup)

Some additional packages are needed in order for GalaxyBenchmarker to function properly.
To install those, run the following command:

pip3 install -r requirements.txt

Configure the GalaxyBenchmarker

To use the benchmarker, you first need to create a yaml-configuration file.
You can find a basic example in benchmark_config.yml.usegalaxyeu. As a start,
rename it to benchmark_config.yml and fill in the credentials for your regular
UseGalaxy.eu user and, additionally, the user key for which the jobs are routed
to your wanted destination.

Next, we need to define the workflows that should be run. The benchmarker
uses the test functionality of Planemo [https://github.com/galaxyproject/planemo] to
submit workflows. The docker-compose setup already clones the examples from
https://github.com/usegalaxy-eu/workflow-testing. These are available at the
the path /workflow-testing.

Workflows are defined in the configuration as following:

workflows:
 - name: ARDWorkflow
 type: Galaxy
 path: /workflow-testing/sklearn/ard/ard.ga

The benchmarker can submit jobs to multiple job destinations to compare the performance of each. For routing
the jobs to the right destination, users can be defined for each. The GalaxyBenchmarker can take
care of that
(see the configuration examples [https://github.com/AndreasSko/Galaxy-Benchmarker/blob/master/benchmark_config.yml.example])
if you are an administrator for the Galaxy instance. Otherwise, it is also possible to use different
users for each destination and link them in the configuration of the benchmarker:

destinations:
 - name: Destination1
 type: Galaxy
 galaxy_user_key: USERKEY

Now, we just need to define the actual benchmark that we want to perform. To compare different job destinations,
you can do the following:

benchmarks:
 - name: DestinationComparisonBenchmark
 type: DestinationComparison
 destinations:
 - Destination1
 workflows:
 - ARDWorkflow
 runs_per_workflow: 1

Run the benchmark using docker-compose

Now you should be ready to run the benchmark. Simply run:

docker-compose up

This will spin up a InfluxDB and Grafana container, together with a container
running the benchmarker. After the benchmarking has been finished, you can
view the results using Grafana at http://localhost:3000
(username: admin, password: admin).

:warning:

The data of InfluxDB is stored inside the container. Before running
docker-compose down remember to back up your data!

Run the benchmarks (without docker-compose)

The GalaxyBenchmarker can use different configuration files. If none is given, it will look for benchmark_config.yml

python3 galaxy_benchmarker --config benchmark_config.yml

Benchmark Types

Destination Comparison

Used to compare the performance of different destinations.

Requirements

	1-n Galaxy destinations

	1-n Galaxy workflows

	runs_per_workflow >= 1: How many times should a workflow be run on every destination?

Optional settings

	warmup: if set to true, a “warmup run” will be performed for every workflow
on every destination, while its results won’t be counted

	pre_task/post_task: a task that will be run before or after the benchmark has been completed

Cold vs Warm

Used to compare the performance of a cold run (workflows hasn’t been run before) to a warm run. To
simulate a cold run, you can define pre tasks that will be run before every cold workflow run, to
clean up caches etc.

Note: This benchmark type can only use one destination!

Requirements

	1 Galaxy destination

	1-n Galaxy workflows

	runs_per_workflow >= 1: How many times should a workflow be run on every destination?

	cold_pre_task: a task task that will be run in the cold phase before every workflow run

Optional settings

	pre_task/post_task: a task that will be run before or after the benchmark has been completed

	warm_pre_task: a task task that will be run in the warm phase before every workflow run

Burst

Used to start a burst of workflows at the same time.

Requirements

	1-n Galaxy or Condor destinations

	1-n Galaxy or Condor workflows

	runs_per_workflow >= 1: How many times should a workflow be run on every destination?

	burst_rate > 0: How many workflows should be submitted per second?
(for example: 0.5 results in a workflow submit every two seconds)

Optional settings

	warmup: if set to true, a “warmup run” will be performed for every workflow
on every destination, while its results won’t be counted

	pre_task/post_task: a task that will be run before or after the benchmark has been completed

Destination Types

Currently, the benchmarks can be run on two main types of destinations, while the first
is the best supported.

Galaxy Destination

Regular

All you need to define is the username and api key to be used. This type expects, that
routing to destinations is handled by Galaxy and is user-based (e.g. one user per
destination).

name: DestinationName
type: Galaxy
galaxy_user_name: me@andreas-sk.de
galaxy_user_key: f4284f9728e430a8140435861b17a454

PulsarMQ

This type is used, if you want GalaxyBenchmarker to configure Galaxy to use a Pulsar
destination.

name: PulsarDestinationName
type: PulsarMQ
amqp_url: "pyamqp://username:password@rabbitmq.example.com:5672//"
tool_dependency_dir: /data/share/tools
jobs_directory_dir: /data/share/staging
persistence_dir: /data/share/persisted_data
To configure additional params in job_conf.xml
job_plugin_params:
 manager: __default__
job_destination_params:
 dependency_resolution: remote
 other_parameter: abc

Condor Destination

This destination type was defined in order to benchmark HTCondor directly. You need
to set the credentials to your Condor submit node. GalaxyBenchmarker directly
connects to the host via SSH and runs condor_submit.

name: CondorDestinationName
type: Condor
host: submit.htcondor.com
host_user: ssh-user
ssh_key: /local/path/to/ssh/key.cert
jobs_directory_dir: /data/share/condor

Workflow Types

Galaxy Workflow

The benchmarker uses the test functionality of Planemo [https://github.com/galaxyproject/planemo] to
submit workflows. Examples can be found at: https://github.com/usegalaxy-eu/workflow-testing. For a start, you
can clone this repository and use those workflows for benchmarking. Workflows are defined in the
configuration as following:

name: GalaxyWorkflowName
type: Galaxy
path: path/to/galaxy/workflow/file.ga
timeout: 100

Condor Workflow

A Condor Workflow is defined by the path to the folder containing its
files and the actual job file. GalaxyBenchmarker will upload the folder to
the Condor submit node using an Ansible Playbook and will trigger a
condor_submit to start the workflow.

name: CondorWorkflowName
type: Condor
path: path/to/condor/workflow/folder
job_file: job.job

Task Types

Ansible Playbook

An Ansible Playbook can be run on every destination defined in a benchmark.
Note: You will need to add host, host_user and ssh_key to the definition of
every destination.

Define a task as follows:

type: ansible-playbook
playbook: /path/to/playbook.yml

Benchmarker Task

These are tasks defined in task.py. Currently, there exist the following tasks:

	delete_old_histories: This will delete all histories of a user on Galaxy

	reboot_openstack_servers: This will reboot all OpenStack instance which name correspond to
name_contains

	reboot_random_openstack_server: This will reboot a randomly chosen OpenStack instance
which name correspond to name_contains

	rebuild_random_openstack_server: This will rebuild a randomly chosen OpenStack instance
which name correspond to name_contains

Define a task as follows:

type: benchmarker-task
name: task-name
params:
 param1: ab
 param2: cd

Additional options

All possible options can be found in the configuration examples [https://github.com/AndreasSko/Galaxy-Benchmarker/blob/master/benchmark_config.yml.example].

InfluxDB

In normal cases, GalaxyBenchmarker will save the results in a json file under the results directory. However, job
metrics can also be submitted to InfluxDB for further analysis.

influxdb:
 host: influxdb.example.com
 port: 8086
 username: glx_benchmarker_user
 password: supersecret
 db_name: glx_benchmarker

Example Dashboards for Grafana can be found at grafana_dashboards [https://github.com/AndreasSko/Galaxy-Benchmarker/tree/master/grafana_dashboards]

OpenStack

There exist some tasks that need access to OpenStack to work properly. For this,
you can define your credentials:

openstack:
 auth_url: https://auth.url.com:5000/v3/
 compute_endpoint_version: 2.1
 username: username
 password: password
 project_id: id
 region_name: region
 user_domain_name: Default

Let GalaxyBenchmarker handle the configuration

The GalaxyBenchmarker can configure Galaxy to use different job destinations and to install
tool dependencies. For that, you need have an admin user and SSH access to the instance.

galaxy:
 ...
 # Install tool dependencies
 shed_install: true
 # Should Galaxy be configured to use the given Destinations or is everything already set?
 configure_job_destinations: true
 ssh_user: ubuntu
 ssh_key: /local/path/to/ssh/key.cert
 galaxy_root_path: /srv/galaxy
 galaxy_config_dir: /srv/galaxy/server/config
 galaxy_user: galaxy

The settings for a new destination can then be defined as follows:

destinations:
 - name: PulsarDestination
 type: PulsarMQ
 amqp_url: "pyamqp://username:password@rabbitmq.example.com:5672//"
 # If used for ColdWarmBenchmark, we need to have ssh-access to the Pulsar-Server
 host: pulsar.example.com
 host_user: centos
 ssh_key: /local/path/to/ssh/key.cert
 tool_dependency_dir: /data/share/tools
 jobs_directory_dir: /data/share/staging
 persistence_dir: /data/share/persisted_data
 # To configure additional params in job_conf.xml
 job_plugin_params:
 manager: __default__
 job_destination_params:
 dependency_resolution: remote
 default_file_action: remote_transfer
 remote_metadata: false
 rewrite_parameters: true
 amqp_acknowledge: true
 amqp_ack_republish_time: 10

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

