

Fyrd’s Documentation

Python job submission on torque and slurm clusters with dependency tracking.

	Author

	Michael D Dacre <mike.dacre@gmail.com>

	License

	MIT License, property of Stanford, use as you wish

	Version

	0.6.2b1

[image: https://readthedocs.org/projects/fyrd/badge/?version=latest]
 [https://fyrd.readthedocs.io/][image: _images/fyrd.svg]
 [https://travis-ci.org/MikeDacre/fyrd][image: _images/c163cff81a1941a18b2c5455901695a3.svg]
 [https://www.codacy.com/app/mike-dacre/fyrd?utm_source=github.com&utm_medium=referral&utm_content=MikeDacre/fyrd&utm_campaign=Badge_Grade][image: _images/8cf2672f7f7a5c49c99409f2a50dd61237d327fb.svg][image: PyPI Version]
 [https://badge.fury.io/py/fyrd]Allows simple job submission with dependency tracking and queue waiting on
either torque, slurm, or locally with the multiprocessing module. It uses simple
techniques to avoid overwhelming the queue and to catch bugs on the fly.

It is routinely tested on Mac OS and Linux with slurm and torque clusters, or in
the absence of a cluster, on Python versions 2.7.10, 2.7.11, 2.7.12, 3.3.0, 3.4.0,
3.5.2, 3.6.2, and 3.7-dev. The full test suite is available in the tests folder.

Fyrd is pronounced ‘feared’ (sort of), it is an Anglo-Saxon term for an army,
particularly an army of freemen (in this case an army of compute nodes). The
logo is based on a Saxon shield commonly used by these groups. This software
was formerly known as ‘Python Cluster’.

The code is hosted at github:
https://github.com/MikeDacre/fyrd

To install, use PyPI [https://pypi.python.org/pypi/fyrd]:

pip install fyrd
fyrd conf init

Contents:

	Getting Started
	Simple Job Submission

	Functions
	Possible Infinate Recursion Error

	Using the Jobify Decorator

	File Submission

	Keywords

	Profiles

	Configuration

	Keyword Arguments
	Common: Used in every mode

	Func: Used for function calls

	Cluster: Options that work in both slurm and torque

	Slurm: Used for slurm only

	Synonyms

	Adding your own keywords

	Console Scripts
	fyrd
	Emailing

	Examples

	All Options

	Aliases

	Advanced Usage
	The Job Class
	Script File Handling

	Job Output Handling and Retrieval

	Job Files

	Helpers
	Decorator

	Pandas

	Running on a split file

	Queue Management

	Config

	Logging

	Adding Batch Systems
	Options
	Batch Script

	Constants

	Functions

	Summary

	API Reference
	fyrd.queue
	fyrd.queue.Queue

	fyrd.queue Jobs

	fyrd.queue.QueueError

	fyrd.job
	fyrd.job.Job

	fyrd.submission_scripts

	fyrd.batch_systems
	fyrd.batch_systems functions

	fyrd.batch_systems.options

	fyrd.conf
	config

	profiles

	fyrd.helpers

	fyrd.basic

	fyrd.run

	fyrd.logme

	Change Log
	Version 0.6.211

	Version 0.6.2a1
	Major Changes

	Minor Changes

	Indices and tables

Getting Started

Simple Job Submission

At its simplest, this module can be used by just executing ``submit(<command>)``,
where command is a function or system command/shell script. The module will
autodetect the cluster, generate an intuitive name, run the job, and write all
outputs to files in the current directory. These can be cleaned with
``clean_dir()``.

To run with dependency tracking, run:

import fyrd
job = fyrd.submit(<command1>)
job2 = fyrd.submit(<command2>, depends=job1)
out1, out2 = fyrd.get([job, job2]) # Will block until job completes

The ``submit()`` function is actually just a wrapper for the
Job class. The same behavior as above can be
obtained by initializing a ``Job`` object directly:

import fyrd
job = fyrd.Job(<command1>)
job.submit()
job2 = fyrd.Job(<command2>, depends=job1).submit()
out = job2.get() # Will block until job completes

Note that as shown above, the submit method returns the ``Job`` object, so it
can be called on job initialization. Also note that the object returned by
calling the ``submit()`` function (as in the first example) is also a ``Job``
object, so these two examples can be used fully interchangeably.

Similar wrappers allow you to submit and monitor existing job files, such
as those made by other pipelines:

import os
import fyrd
jobs = []
job_dir = os.path.abspath('./jobs/')
for job in [os.path.join(job_dir, i) for i in os.listdir(job_dir) if i.endswith('sh')]:
 jobs.append(fyrd.submit_file(job))
fyrd.wait(jobs) # Will block until every job is completed

This type of thing can also be accomplished using the console script:

fyrd run --wait ./jobs/*.sh

Functions

The submit function works well with python functions as well as with shell
scripts and shell commands, in fact, this is the most powerful feature of this
package. For example:

import fyrd
def raise_me(something, power=2):
 return something**power
outs = []
if __name__ == '__main__':
 for i in range(80):
 outs.append(fyrd.submit(raise_me, (i,), {'power': 4},
 mem='10MB', time='00:00:30'))
 final_sum = 0
 for i in outs:
 final_sum += i.get()
 print(final_sum)

By default this will submit every instance as a job on the cluster, then get the
results and clean up all intermediate files, and the code will work identically
on a Mac with no cluster access, a slurm cluster, or a torque cluster, with no
need to change syntax.

This is very powerful when combined with simple methods that split files or
large python classes, to make this kind of work easier, a number of simple
functions are provided in the helpers module,
to learn more about that, review the Advanced Usage section of this documentation.

Function submission works equally well for submitting methods, however the original
class object will not be updated, the method return value will be accurate, but any
changes the method makes to ``self`` will not be returned from the cluster and will be
lost.

Possible Infinate Recursion Error

Warning: in order for function submission to work, fyrd ends up importing
your original script file on the nodes. This means that all code in your file
will be executed, so anything that isn’t a function or class must be protected
with an ``if __name__ == '__main__':`` protecting statement.

If you do not do this you can end up with multi-submission and infinite
recursion, which could mess up your jobs or just crash the job, but either way,
it won’t be good.

This isn’t true when submitting from an interactive session such as ipython
or jupyter.

Using the Jobify Decorator

Function submission can be made much easier by using the ``jobify`` decorator.

Using the example above with a decorator, we can do this:

import fyrd
@fyrd.jobify(mem='10MB', time='00:00:30')
def raise_me(something, power=2):
 return something**power
outs = []
if __name__ == '__main__':
 for i in range(80):
 outs.append(raise_me(i, power=4))
 final_sum = 0
 for i in outs:
 final_sum += i.get()
 print(final_sum)

Here is a full, if silly, example with outputs:

>>> import fyrd
>>> @fyrd.jobify(name='test_job', mem='1GB')
... def test(string, iterations=4):
... """This does basically nothing!"""
... outstring = ""
... for i in range(iterations):
... outstring += "Version {0}: {1}".format(i, string)
... return outstring
...
>>> test?
Signature: test(*args, **kwargs)
Docstring:
This is a fyrd.job.Job decorated function.

When you call it it will return a Job object from which you can get
the results with the ````.get()```` method.

Original Docstring:

This does basically nothing!
File: ~/code/fyrd/fyrd/helpers.py
Type: function
>>> j = test('hi')
>>> j.get()
'Version 0: hiVersion 1: hiVersion 2: hiVersion 3: hi'

You can see that the decorator also maintains the original docstring if it is
implemented.

By default, the returned job will be submitted already, but you can override
that behavior:

import fyrd
@fyrd.jobify(mem='10MB', time='00:00:30', submit=False)
def raise_me(something, power=2):
 return something**power

File Submission

If you want to just submit a job file that has already been created, either by
this software or any other method, that can be done like this:

from fyrd import submit_file
submit_file('/path/to/script', dependencies=[7, 9])

This will return the job number and will enter the job into the queue as
dependant on jobs 7 and 9. The dependencies can be omitted.

Keywords

The ``Job`` class, and therefore every submission script, accepts a large number of
keyword arguments and synonyms to make job submission easy. Some good examples:

	cores

	mem (or memory)

	time (or walltime)

	partition (or queue)

The synonyms are provided to make submission easy for anyone familiar with
the arguments used by either torque or slurm. For example:

job = Job('zcat huge_file | parse_file', cores=1, mem='30GB', time='24:00:00')
job = Job(my_parallel_function, cores=28, mem=12000, queue='high_mem')
for i in huge_list:
 out.append(submit(parser_function, i, cores=1, mem='1GB', partition='small'))
job = Job('ls /etc')

As you can see, optional keywords make submission very easy and flexible. The
whole point of this software it to make working with a remote cluster in python
as easy as possible.

For a full list of keyword arguments see the
Keyword Arguments section of the documentation.

All options are defined in the fyrd.options module.
If you want extra options, just submit an issue or add them yourself and send
me a pull request.

Profiles

One of the issues with using keyword options is the nuisance of having to type
them every time. More importantly, when writing code to work on any cluster one
has to deal with heterogeneity between the clusters, such as the number of cores
available on each node, or the name of the submission queue.

Because of this, fyrd makes use of profiles that bundle keyword arguments and
give them a name, so that cluster submission can look like this:

job = Job('zcat huge_file | parse_file', profile='large')
job = Job(my_parallel_function, cores=28, profile='high_mem')

These profiles are defined in ``~/.fyrd/profiles.txt`` by default and have the
following syntax:

[large]
partition = normal
cores = 16
nodes = 1
time = 24:00:00
mem = 32000

This means that you can now do this:

Job(my_function, profile='large')

You can create as many of these as you like.

While you can edit the profile file directly to add and edit profile, it is
easier and more stable to use the console script:

..code:: shell

fyrd profile list
fyrd profile edit large time:02-00:00:00 mem=64GB
fyrd profile edit DEFAULT partition:normal
fyrd profile remove-option DEFAULT cores
fyrd profile add silly cores:92 mem:1MB
fyrd profile delete silly

The advantage of using the console script is that argument parsing is done on
editing the profiles, so any errors are caught at that time. If you edit the
file manually, then any mistakes will cause an Exception to be raised when you
try to submit a job.

If no arguments are given the default profile (called ‘DEFAULT’ in the
config file) is used.

Note: any arguments in the DEFAULT profile are available in all profiles if
the are not manually overridden there. The DEFAULT profile cannot be deleted. It
is a good place to put the name of the default queue.

Configuration

Many program parameters can be set in the config file, found by default at
~/.fyrd/config.txt.

This file has three sections with the following defaults:

[queue]:

max_jobs (int): sets the maximum number of running jobs before
 submission will pause and wait for the queue to empty
sleep_len (int): sets the amount of time the program will wait between
 submission attempts
queue_update (int): sets the amount of time between refreshes of the queue.
res_time (int): Time in seconds to wait if a job is in an uncertain
 state, usually preempted or suspended. These jobs often
 resolve into running or completed again after some time
 so it makes sense to wait a bit, but not forever. The
 default is 45 minutes: 2700 seconds.
queue_type (str): the type of queue to use, one of 'torque', 'slurm',
 'local', 'auto'. Default is auto to auto-detect the
 queue.

[jobs]:

clean_files (bool): means that by default files will be deleted when job
 completes
clean_outputs (bool): is the same but for output files (they are saved
 first)
file_block_time (int): Max amount of time to block after job completes in
 the queue while waiting for output files to appear.
 Some queues can take a long time to copy files under
 load, so it is worth setting this high, it won't
 block unless the files do not appear.
filepath (str): Path to write all temp and output files by default,
 must be globally cluster accessible. Note: this is
 not the runtime path, just where files are written
 to.
suffix (str): The suffix to use when writing scripts and output
 files
auto_submit (bool): If wait() or get() are called prior to submission,
 auto-submit the job. Otherwise throws an error and
 returns None
generic_python (bool): Use /usr/bin/env python instead of the current
 executable, not advised, but sometimes necessary.
profile_file (str): the config file where profiles are defined.

[jobqueue]:

Sets options for the local queue system, will be removed in the future in
favor of database.

jobno (int): The current job number for the local queue, auto-increments
 with every submission.

Example file:

[queue]
res_time = 2700
queue_type = auto
sleep_len = 1
queue_update = 2
max_jobs = 1000
bool = True

[jobs]
suffix = cluster
file_block_time = 12
filepath = None
clean_outputs = False
auto_submit = True
profile_file = /Users/dacre/.fyrd/profiles.txt
clean_files = True
generic_python = False

[jobqueue]
jobno = 9

The config is managed by fyrd/conf.py and enforces a
minimum set of entries. If the config does not exist or any entries are
missing, they will be created on the fly using the defaults defined in the
defaults.

Keyword Arguments

To make submission easier, this module defines a number of keyword arguments in
the options.py file that can be used for all submission and Job() functions.
These include things like ‘cores’ and ‘nodes’ and ‘mem’.

The following is a complete list of arguments that can be used in this version

Common: Used in every mode

	Option

	Description

	Type

	Default

	depends

	A job or list of jobs to depend on

	list

	None

	clean_files

	Auto clean script files when fetching outputs

	bool

	None

	clean_outputs

	Auto clean output files when fetching outputs

	bool

	None

	cores

	Number of cores to use for the job

	int

	1

	modules

	Modules to load with the module load command

	list

	None

	syspaths

	Paths to add to _sys.path for submitted functions

	list

	None

	scriptpath

	Folder to write cluster script files to, must be accessible to the compute nodes.

	str

	.

	outpath

	Folder to write cluster output files to, must be accessible to the compute nodes.

	str

	.

	runpath

	The working directory for the job

	str

	.

	suffix

	A suffix to append to job files (e.g. job.suffix.qsub)

	str

	cluster

	outfile

	File to write STDOUT to

	str

	None

	errfile

	File to write STDERR to

	str

	None

Func: Used for function calls

	Option

	Description

	Type

	Default

	imports

	Imports to be used in function calls (e.g. sys, os)

	list

	None

Cluster: Options that work in both slurm and torque

	Option

	Description

	Type

	Default

	nodes

	Number of nodes to request

	int

	1

	features

	A comma-separated list of node features to require

	list

	None

	qos

	A quality of service to require

	str

	None

	time

	Walltime in HH:MM:SS

	str

	12:00:00

	mem

	Memory to use in MB (e.g. 4000)

	[‘int’, ‘str’]

	4000

	partition

	The partition/queue to run in (e.g. local/batch)

	str

	None

	account

	Account to be charged

	str

	None

	export

	Comma separated list of environmental variables to export

	str

	None

Slurm: Used for slurm only

	Option

	Description

	Type

	Default

	begin

	Start after this much time

	str

	None

Synonyms

	Synonym

	Option

	depend

	depends

	dependency

	depends

	dependencies

	depends

	stdout

	outfile

	stderr

	errfile

	queue

	partition

	memory

	mem

	cpus

	cores

	threads

	cores

	walltime

	time

	delete_files

	clean_files

	delete_outputs

	clean_outputs

	filedir

	scriptpath

	filepath

	scriptpath

	dir

	runpath

	path

	runpath

	paths

	syspaths

	syspath

	syspaths

	scriptdir

	scriptpath

	cleanfiles

	clean_files

	delfiles

	clean_files

	cleanouts

	clean_outputs

	delouts

	clean_outputs

	deloutputs

	clean_outputs

	cleanoutputs

	clean_outputs

Note: Type is enforced, any provided argument must match that python type
(automatic conversion is attempted), the default is just a recommendation and is
not currently used. These arguments are passed like regular arguments to the
submission and Job() functions, eg:

Job(nodes=1, cores=4, mem='20MB')

This will be interpretted correctly on any system. If torque or slurm are not
available, any cluster arguments will be ignored. The module will attempt to
honor the cores request, but if it exceeds the maximum number of cores on the
local machine, then the request will be trimmed accordingly (i.e. a 50 core
request will become 8 cores on an 8 core machine).

Adding your own keywords

There are many more options available for torque and slurm, to add your own,
edit the options.py file, and look for CLUSTER_OPTS (or TORQUE/SLURM if your
keyword option is only availble on one system). Add your option using the same
format as is present in that file. The format is:

('name', {'slurm': '--option-str={}', 'torque': '--torque-option={}',
 'help': 'This is an option!', 'type': str, 'default': None})

You can also add list options, but they must include ‘sjoin’ and ‘tjoin’ keys to
define how to merge the list for slurm and torque, or you must write custom
option handling code in fyrd.options.options_to_string(). For an
excellent example of both approaches included in a single option, see the
‘features’ keyword above.

Console Scripts

This software is primarily intended to be a library, however some management tasks are just
easier from the console. For that reason, fyrd has a frontend console script that makes
tasks such as managing the local config and profiles trivial, it also has modes to inspect
the queue easily, and to wait for jobs from the console, as well as to clean the working
directory.

fyrd

This software has uses a subcommand system to separate modes, and has six modes:

	run - run an arbitrary shell script on the cluster

	run-job - run existing cluster script(s)

	wait - wait for a list of jobs

	queue - show running jobs, makes filtering jobs very easy

	config — show and edit the contents of the config file

	profile - inspect and manage cluster profiles

	keywords - print a list of current keyword arguments with descriptions for each

	clean - clean all script and output files in the given directory

Several of the commands have aliases (conf and prof being the two main ones)

Emailing

The run, run-job, and wait commands can all email you when they are done. To use
this you need to configure the sending in the ~/fyrd/config.txt file:

[notify]
mode = linux # Can be linux or smtp, linux uses the mail command
notify_address = your.address@gmail.com
The following are only needed for smtp mode
smtp_host = smtp.gmail.com
smtp_port = 587
smtp_tls = True
smtp_from = your.server@gmail.com
smtp_user = None # Defaults to smtp_from
This is insecure, so use an application specific password. This should
be a read-only file with the SMTP password. After making it run:
chmod 400 ~/.fyrd/smtp_pass
smtp_passfile = ~/.fyrd/smtp_pass

To enable emailing, pass -n (notify) to wait, or -w -n to the other two commands.
You can also manually specify the address with -e your.address@gmail.com.

Examples

fyrd run 'samtools display big_file.bam | python $HOME/bin/my_parser.py > outfile'
fyrd run --profile long --args walltime=24:00:00,mem=20G --wait -n \
 'samtools display big_file.bam | python $HOME/bin/my_parser.py > outfile'

fyrd submit --wait -n ./jobs/*.sh

fyrd prof list
fyrd prof add large cores:92 mem:200GB partition:high_mem time:00:06:00

fyrd queue # Shows all of your current jobs
fyrd queue -a # Shows all users jobs
fyrd queue -p long -u bob dylan # Show all jobs owned by bob and dylan in the long queue

fyrd wait 19872 19876
fyrd wait -u john

Will block until all of bob's jobs in the long queue finish
fyrd queue -p long -u bob -l | xargs fyrd wait

fyrd clean

All Options

fyrd:

usage: fyrd [-h] [-v] {run,submit,wait,queue,conf,prof,keywords,clean} ...

Manage fyrd config, profiles, and queue.

============ ======================================
Author Michael D Dacre <mike.dacre@gmail.com>
Organization Stanford University
License MIT License, use as you wish
Version 0.6.2a1
============ ======================================

positional arguments:
 {run,submit,wait,queue,conf,prof,keywords,clean}
 run (r) Run simple shell scripts
 submit (sub, s) Submit existing job files
 wait (w) Wait for jobs
 queue (q) Search the queue
 conf (config) View and manage the config
 prof (profile) Manage profiles
 keywords (keys, options)
 Print available keyword arguments.
 clean Clean up a job directory

optional arguments:
 -h, --help show this help message and exit
 -v, --verbose Show debug outputs

fyrd run:

usage: fyrd run [-h] [-p PROFILE] [-c CORES] [-m MEM] [-t TIME] [-a ARGS] [-w]
 [-k] [-l] [-n] [-e EMAIL] [-s] [-x EXTRA_VARS] [-d]
 [shell_script] [file_parsing [file_parsing ...]]

Run a shell script on the cluster and optionally wait for completion.

Allows the running of a single simple shell script, or the same shell script on
many files, or more complex file interpretation.

positional arguments:
 shell_script The script to run
 file_parsing The script to run

optional arguments:
 -h, --help show this help message and exit
 -s, --simple The amount of walltime to request
 -x EXTRA_VARS, --extra-vars EXTRA_VARS
 Regex in form "new_var:orig_var:regex:sub,..."
 -d, --dry-run Print commands instead of running them

Run Options:
 -p PROFILE, --profile PROFILE
 The profile to use to run
 -c CORES, --cores CORES
 The number of cores to request
 -m MEM, --mem MEM The amount of memory to request
 -t TIME, --time TIME The amount of walltime to request
 -a ARGS, --args ARGS Submission args, e.g.:
 'time=00:20:00,mem=20G,cores=10'
 -w, --wait Wait for the job to complete
 -k, --keep Keep submission scripts
 -l, --clean Delete STDOUT and STDERR files when done

Notification Options:
 -n, --notify Send notification email when done
 -e EMAIL, --email EMAIL
 Email address to send notification to, default set in
 ~/.fyrd/config.txt

fyrd submit:

usage: fyrd submit [-h] [-p PROFILE] [-c CORES] [-m MEM] [-t TIME] [-a ARGS]
 [-w] [-k] [-l] [-n] [-e EMAIL]
 job_files [job_files ...]

Run a shell script on the cluster and optionally wait for completion.

Allows the running of a single simple shell script, or the same shell script on
many files, or more complex file interpretation.

positional arguments:
 job_files The script to run

optional arguments:
 -h, --help show this help message and exit

Run Options:
 -p PROFILE, --profile PROFILE
 The profile to use to run
 -c CORES, --cores CORES
 The number of cores to request
 -m MEM, --mem MEM The amount of memory to request
 -t TIME, --time TIME The amount of walltime to request
 -a ARGS, --args ARGS Submission args, e.g.:
 'time=00:20:00,mem=20G,cores=10'
 -w, --wait Wait for the job to complete
 -k, --keep Keep submission scripts
 -l, --clean Delete STDOUT and STDERR files when done

Notification Options:
 -n, --notify Send notification email when done
 -e EMAIL, --email EMAIL
 Email address to send notification to, default set in
 ~/.fyrd/config.txt

fyrd wait:

usage: fyrd wait [-h] [-n] [-e EMAIL] [-u USERS] [jobs [jobs ...]]

Wait on a list of jobs, block until they complete.

positional arguments:
 jobs Job list to wait for

optional arguments:
 -h, --help show this help message and exit
 -u USERS, --users USERS
 A comma-separated list of users to wait for

Notification Options:
 -n, --notify Send notification email when done
 -e EMAIL, --email EMAIL
 Email address to send notification to, default set in
 ~/.fyrd/config.txt

fyrd queue:

usage: fyrd queue [-h] [-u [...] | -a] [-p [...]] [-r | -q | -d | -b]
 [-l | -c]

Check the local queue, similar to squeue or qstat but simpler, good for
quickly checking the queue.

By default it searches only your own jobs, pass '--all-users' or
'--users <user> [<user2>...]' to change that behavior.

To just list jobs with some basic info, run with no arguments.

optional arguments:
 -h, --help show this help message and exit

queue filtering:
 -u [...], --users [...]
 Limit to these users
 -a, --all-users Display jobs for all users
 -p [...], --partitions [...]
 Limit to these partitions (queues)

queue state filtering:
 -r, --running Show only running jobs
 -q, --queued Show only queued jobs
 -d, --done Show only completed jobs
 -b, --bad Show only completed jobs

display options:
 -l, --list Print job numbers only, works well with xargs
 -c, --count Print job count only

fyrd conf:

usage: fyrd conf [-h] {show,list,help,update,alter,init} ...

This script allows display and management of the fyrd config file found
here: /home/dacre/.fyrd/config.txt.

positional arguments:
 {show,list,help,update,alter,init}
 show (list) Show current config
 help Show info on every config option
 update (alter) Update the config
 init Interactively initialize the config

optional arguments:
 -h, --help show this help message and exit

Show usage::
 fyrd conf show [-s <section>]

Update usage::
 fyrd conf update <section> <option> <value>

Values can only be altered one at a time

To create a new config from scratch interactively::
 fyrd conf init [--defaults]

fyrd prof:

usage: fyrd prof [-h]
 {show,list,add,new,update,alter,edit,remove-option,del-option,delete,del}
 ...

Fyrd jobs use keyword arguments to run (for a complete list run this script
with the keywords command). These keywords can be bundled into profiles, which
are kept in /home/dacre/.fyrd/profiles.txt. This file can be edited directly or manipulated here.

positional arguments:
 {show,list,add,new,update,alter,edit,remove-option,del-option,delete,del}
 show (list) Print current profiles
 add (new) Add a new profile
 update (alter, edit)
 Update an existing profile
 remove-option (del-option)
 Remove a profile option
 delete (del) Delete an existing profile

optional arguments:
 -h, --help show this help message and exit

Show::
 fyrd prof show

Delete::
 fyrd prof delete <name>

Update::
 fyrd prof update <name> <options>

Add::
 fyrd prof add <name> <options>

<options>:
 The options arguments must be in the following format::
 opt:val opt2:val2 opt3:val3

Note: the DEFAULT profile is special and cannot be deleted, deleting it will
cause it to be instantly recreated with the default values. Values from this
profile will be available in EVERY other profile if they are not overriden
there. i.e. if DEFAULT contains ``partition=normal``, if 'long' does not have
a 'partition' option, it will default to 'normal'.

To reset the profile to defaults, just delete the file and run this script
again.

fyrd keywords:

usage: fyrd keywords [-h] [-t | -s | -l]

optional arguments:
 -h, --help show this help message and exit
 -t, --table Print keywords as a table
 -s, --split-tables Print keywords as multiple tables
 -l, --list Print a list of keywords only

fyrd clean:

usage: fyrd clean [-h] [-o] [-s SUFFIX] [-q {torque,slurm,local}] [-n] [dir]

Clean all intermediate files created by the cluster module.

If not directory is passed, the default if either scriptpath or outpath are
set in the config is to clean files in those locations is to clean those
directories. If they are not set, the default is the current directory.

By default, outputs are not cleaned, to clean them too, pass '-o'

Caution:
 The clean() function will delete **EVERY** file with
 extensions matching those these::

 .<suffix>.err
 .<suffix>.out
 .<suffix>.sbatch & .fyrd.script for slurm mode
 .<suffix>.qsub for torque mode
 .<suffix> for local mode
 _func.<suffix>.py
 _func.<suffix>.py.pickle.in
 _func.<suffix>.py.pickle.out

positional arguments:
 dir Directory to clean (optional)

optional arguments:
 -h, --help show this help message and exit
 -o, --outputs Clean output files too
 -s SUFFIX, --suffix SUFFIX
 Suffix to use for cleaning
 -q {torque,slurm,local}, --qtype {torque,slurm,local}
 Limit deletions to this qtype
 -n, --no-confirm Do not confirm before deleting (for scripts)

Aliases

Several shell scripts are provided in bin/ to provide shortcuts to the fyrd
subcommands:

	frun: fyrd run

	fsub: fyrd submit

	my-queue (or myq): fyrd queue

	clean-job-files: fyrd clean

	monitor-jobs: fyrd wait

	cluster-keywords: fyrd keywords

Advanced Usage

Most of the important functionality is covered in the
Getting Started section, and full details on the library
are available in the API Reference section. This section just
provides some extra information on Job and Queue management, and importantly
introduces some of the higher-level options available through the
helpers.

The Job Class

The core of this submission system is the Job class, this class builds a job
using keyword arguments and profile parsing. The bulk of this is done at class
initialization and is covered in the getting started section of this
documentation and on job submission with the submit() method. There are
several other features of this class to be aware of though.

Script File Handling

Torque and slurm both require submission scripts to work. In the future these
will be stored by fyrd in a database and submitted from memory, but for now
they are written to disk.

The creation and writing of these scripts is handled by the
Script and
Function classes in the
fyrd.submission_scripts module.
These classes pass keywords to the
options_to_string() function
of the options method, which converts them into a submission string compatible
with the active cluster. These are then written to a script for submission
to the cluster.

The Function class has some additional functionality to allow easy submission
of functions to the cluster. It tries to build a list of all possible modules
that the function could need and adds import statements to all of them to the
function submission script. It then pickles the submitted function and
arguments to a pickle file on the disk, and writes a python script to the same
directory.

This python script unpickles the function and arguments and runs them, pickling
either the result or and exception, if one is raised, to the disc on completion.
The submission script calls this python script on the cluster nodes.

The script and output files are written to the path defined by the .filepath
attribute of the Job class, which is set using the ‘filepath’ keyword
argument. If not set, this directory defaults to the directory set in the
filepath section of the config file or the current working
directory. Note that this path is independent of the .runpath attibute, which
is where the code will actually run, and also defaults to the current working
directory.

Job Output Handling and Retrieval

The correct way to get outputs from within a python session is to call the
.get() method of the Job class. This first calls the .wait() method, which
blocks until job completion, and then the .fetch_outputs() method which
calls get_output, get_stdout, and get_stderr, which save all function outputs,
STDOUT, and STDERR to the class. This means that outputs can be accessed using
the following Job class attributes:

	.output — the function output for functions or STDOUT for scripts

	.stdout — the STDOUT for the script submission (always present)

	.stderr — the STDERR for the script submission (always present)

This makes job output retrieval very easy, but it is sometimes not what you want,
particularly if outputs are very large (they get loaded into memory).

The wait() method will not save any outputs. In addition get() can be
with the save=False argument, which means it will fetch the output (or STDOUT)
only, but will not write them to the class itself.

Note: By default, get() also deletes all script and output files. This
is generally a good thing as it keeps the working directory clean, but it isn’t
always what you want. To prevent outputs from being deleted, pass
delete_outfiles=False to get(), or alternatively set the .clean_outputs
attribute to False prior to running get(). To prevent the cleaning of
any files, including the script files, pass cleanup=False or set
.clean_files to False.

clean_files and clean_outputs can also be set globally in the config file.

Job Files

All jobs write out a job file before submission, even though this is not
necessary (or useful) with multiprocessing. This will change in a future
version.

To ensure files are obviously produced by this package and that files are unique
the file format is name.number.random_string.suffix.extension. These are:

name: Defined by the name= argument or guessed from the function/script
number: A number count of the total jobs with the same name already queued
random_string: An 8-character random string
suffix: A string defined in the config file, default ‘cluster’
extension: An obvious extension such as ‘.sbatch’ or ‘.qsub’

To change the directory these files are written to, set the filedir item in the
config file or use the ‘filedir’ keyword argument to Job or submit.

NOTE: This directory must be accessible to the compute nodes!!!

It is sometimes useful to set the filedir setting in the config to a single directory
accessible cluster-wide. This avoids cluttering the current directory, particularly
as outputs can be retrieved so easily from within python. If you are going to do
this set the ‘clean_files’ and ‘clean_outfiles’ arguments in the config file to
avoid cluttering the directory.

All Job objects have a ``clean()`` method that will delete any left over files.
In addition there is a clean_job_files script that will delete all files made by
this package in any given directory. Be very careful with the script though, it
can clobber a lot of work all at once if it is used wrong.

Helpers

The fyrd.helpers module defines several simple
functions that allow more complex job handling.

The helpers are all high level functions that are not required for the library
but make difficult jobs easy to assist in the goal of trivially easy cluster
submission.

Decorator

The fyrd.helpers.jobify (also imported as fyrd.jobify) allows you to decorate
any function to make it submit to the cluster.

For example:

import fyrd
@fyrd.jobify(name='test_job', mem='1GB')
def test(string, iterations=4):
 """This does basically nothing!"""
 outstring = ""
 for i in range(iterations):
 outstring += "Version {0}: {1}".format(i, string)
 return outstring

The decorator also maintains the original docstring if it is implemented.

By default, the returned job will be submitted already, but you can override
that behavior:

import fyrd
@fyrd.jobify(mem='10MB', time='00:00:30', submit=False)
def raise_me(something, power=2):
 return something**power

For more information, see the basic usage info.

Pandas

The most important function in fyrd.helpers is parapply(), which allows the
user to submit a pandas.DataFrame.apply method to the cluster in parallel by
splitting the DataFrame, submitting jobs, and then recombining the DataFrame at
the end, all without leaving any temp files behind. e.g.:

df = pandas.read_csv('my_huge_file.txt')
df = fyrd.helpers.parapply(100, df, long_running_function, profile='fast')

That command will split the dataframe into 100 pieces, submit each to the
cluster as a different job with the profile ‘fast’, and then recombine them
into a single DataFrame again at the end.

parapply_summary behaves similarly but assumes that the function summarizes the data
rather than returning a DataFrame of the same size. It thus runs the function on the
resulting DataFrame also, allowing all dfs to be merged. e.g.:

df = fyrd.helpers.parapply_summary(df, numpy.mean)

This will return just the mean of all the numeric columns, parapply would return a
DataFrame with duplicates for every submitted job.

Running on a split file

The splitrun [https://fyrd.readthedocs.io/en/latest/api.html#fyrd.helpers.splitrun]
function behaves similarly to the parapply() function, with the exception
that it works on a filesystem file instead, which it splits into pieces. It
then runs your job on all of the pieces and attempts to recombine them,
deleting the intermediate files as it goes.

If you specify an output file, the outputs are merged and places into that
file, otherwise, if the outputs are a string (always true for scripts), the
function returns a merged string. If the outputs are not strings, then the
function just returns a list out outputs that you will have to combine
yourself.

The key to this function is that if the job is a script, it must at a minimum
contain ‘{file}’ where the file argument goes, and if the job is a function it
must contain and argument or keyword argument that matches ‘<file>’.

If you expect the job to have and output, you must provide the outfile=
argument too, and be sure that ‘{outfile}’ is present in the script, if a
script, or ‘<outfile>’ is in either args or kwargs if a function.

In addition, you should pass inheader=True if the input file has a header
line, and outheader=True if the same is true for the outfile. It is very
important to pass these arguments, because they both will strip the top line
from a file if True. Importantly, if inheader is True on a file without a
header, the top line will appear at the top of every broken up file.

Examples:

script = """my_long_script --in {file} --out {outfile}"""
outfile = fyrd.helpers.splitrun(
 100, 'huge_file.txt', script, name='my_job', profile='long',
 outfile='output.txt', inheader=True, outheader=True
)

output = fyrd.helpers.splitrun(
 100, 'huge_file.txt', function, args=('<file>',), name='my_job',
 profile='long', outfile='output.txt', inheader=True, outheader=True
)

Queue Management

Queue handling is done by the Queue class in
the fyrd.queue module. This class calls the
fyrd.queue.queue_parser iterator which
in turn calls either
fyrd.queue.torque_queue_parser or
fyrd.queue.slurm_queue_parser
depending on the detected cluster environment (set by fyrd.queue.QUEUE_MODE
and overridden by the ‘queue_type’ config option if desired (not necessary,
queue type is auto-detected)).

These iterators return the following information from the queue:

job_id, name, userid, partition, state, node-list, node-count, cpu-per-node, exit-code

These pieces of information are used to create QueueJob objects for every
job, which are stored in the Queue.jobs attribute (a dictionary). The Queue
class provides several properties, attributes, and methods to allow easy
filtering of these jobs.

Most important is the QueueJob.state attribute, which holds information on
the current state of that job. To get a list of all states in the queue, call
the Queue.job_states property, which will return a list of states in the queue.
All of these states are also attributes of the Queue class, for example:

fyrd.Queue.completed

returns all completed jobs in the queue as a dictionary (a filtered copy of the
.jobs attribute).

Note: torque states are auto-converted to slurm states, as slurm states
are easier to read. e.g. ‘C’ becomes ‘completed’.

The most useful method of Queue is wait(), it will take a list of job numbers
or Job objects and wait until all of them are complete. This method is called
by the Job.wait() method, and can be called directly to wait for an arbitrary
number of jobs.

Note, if you add the following to ~/.fyrd/config.txt wait will automatically
send an email when done:

[notify]
mode = linux # Can be linux or smtp, linux uses the mail command
notify_address = your.address@gmail.com
The following are only needed for smtp mode
smtp_host = smtp.gmail.com
smtp_port = 587
smtp_tls = True
smtp_from = your.server@gmail.com
smtp_user = None # Defaults to smtp_from
This is insecure, so use an application specific password. This should
be a read-only file with the SMTP password. After making it run:
chmod 400 ~/.fyrd/smtp_pass
smtp_passfile = ~/.fyrd/smtp_pass

To wait for all jobs from a given user, you can do this:

q = fyrd.Queue()
q.wait(q.get_user_jobs(['bob', 'fred']))

This task can also be accomplished with the console application:

fyrd wait <job> [<job>...]
fyrd wait -u bob fred

The method can actually be simply accessed as a function instead of needing
the Queue class:

fyrd.wait([1,2,3])

To generate a Queue object, do the following:

import fyrd
q = fyrd.Queue(user='self')

This will give you a simple queue object containg a list of jobs that belong to
you. If you do not provide user, all jobs are included for all users. You can
provide qtype to explicitly force the queue object to contain jobs from one
queing system (e.g. local or torque).

To get a dictionary of all jobs, running jobs, queued jobs, and complete jobs,
use:

q.jobs
q.running
q.complete
q.queued

Every job is a QueueJob class and has a number of attributes, including
owner, nodes, cores, memory.

Config

Many of the important options used by this software are set in a config file
and can be managed on the console with fyrd conf

For full information see the Configuration section of
this documentation.

Logging

I use a custion logging script called logme to log
errors. To get verbose output, set fyrd.logme.MIN_LEVEL to ‘debug’ or
‘verbose’. To reduce output, set logme.MIN_LEVEL to ‘warn’.

Adding Batch Systems

Fyrd is intended to be fully modular, meaning anyone should be able to
implement support for any batch system, even other remote submission systems
like DistributedPython if they are able to define the following functions and
options.

To add a new batch system, you will need to:

	Edit __init__.py to:

	Update DEFINED_SYSTEMS to include your batch system

	Edit get_cluster_environment() to detect your batch system, this function
is ordered, meaning that it checks for slurm before torque, as slurm
implements torque aliases. You should add a sensible way of detecting your
batch system here.

	Create a file in this directory with the name of your batch system (must match
the name in DEFINED_SYSTEMS). This file must contain all constants and functions
described below in the Batch Script section.

	Edit options.py as described below in the Options section.

	Run the pyenv test suite on your cluster system and make sure all tests pass
on all versions of python supported by fyrd on your cluster system.

	Optionally add a buildkite script on your cluster to allow CI testing. Note,
this will technically give anyone with push privileges (i.e. me) the ability
to execute code on your server. I promise to do no evil, but I can understand
a degree of uncertainty regarding that. However, using buildkite will allow us
to make sure that future updates don’t break support for your batch system.

	Become a fyrd maintainer! I always need help, if you want to contribute more,
please do :-)

Options

Fyrd works primarily by converting batch system arguments (e.g. –queue
for torque and –partition for slurm) into python keyword arguments. This is
done by creating dictionaries in the fyrd/batch_systems/options.py file.

Option parsing is done on job creation by calling the
options.options_to_string() function on the user provided keyword arguments.
The primary point of this function is to convert all keyword arguments to
string forms that can go at the top of your batch file prior to cluster
submission. Therefore you must edit the dictionaries in options.py to
include your batch system definitions. The most important section to edit is
CLUSTER_CORE, this dictionary has sections for each batch system, e.g. for
walltime:

('time',
 {'help': 'Walltime in HH:MM:SS',
 'default': '12:00:00', 'type': str,
 'slurm': '--time={}', 'torque': '-l walltime={}'}),

This auto-converts the time argument provided by the user into –time for slurm
and -l walltime= for torque.

As all systems are a little different, options.options_to_string() first
calls the parse_strange_options() function in the batch system definition
script to allow you the option to manually parse all options that cannot be
handled so simply. Hopefully this function will do nothing, but return the input,
but in some cases it makes sense for this function to handle every argument, an
obvious example is when running using something like multiprocessing instead
of a true batch system.

Batch Script

The defined batch script must have the name of your system and must define the
following constants and functions in exactly the way described below. Your
functions can do anything you want, and you can have extra functions in your
file (maybe make them private with a leading _ in the name), but the primary
functions must take exactly the same arguments as those described below, and
provide exactly the same return values.

Constants

	PREFIX: The string that will go before options at the top of a script file,
could be blank for simple shell scripts, for slurm is is ‘#SBATCH’

Functions

queue_test(warn=True)

Input:

	warn: bool, warn on failure, optional

Output:

	functional: bool, True if this system can be used

Description:

Use this function to write code to test that your system can function. If you are
using a specific command line tool in your code, consider adding it to the config
file to allow users to specify an absolute path or alternate name.

Use a combination of _run.which() (which returns a full path to an executable if
the executable is in the user’s PATH and is executable) and _run.is_exe() (which
tests if a file is executable) to check your command line tools.

Use the warn parameter with _logme.log() to set a log level, e.g.:

log_level = 'error' if warn else 'debug'
_logme.log('Cannot use me :-(', log_level)

Try not to raise any Exceptions, instead try to just log the problem and return
False.

This code is run very frequently to test that the queue is usable, so make your code
as simple and efficient as possible.

normalize_job_id(job_id)

Input:

	job_id: string, return value from job submission

Output:

	job_id: string, a normalized job id

	array_id: string or None, a normalized array job id

Description:

Take a string returned by your job submission script (e.g. qsub) and turn it
into a normalized (hopefully string version of an int) job ID or process ID and
an array_id, if that is implemented by your system. The array_id can be None if
not implemented and should be None if not present (i.e. the job is not an array
job).

normalize_state(state)

Input:

	state: string, a state description from the queue, e.g. ‘running’, or ‘R’

Output:

	state: string, a state normalized into one of:
- ‘completed’,
- ‘completing’
- ‘held’
- ‘pending’
- ‘running’
- ‘suspended’
- ‘running’
- ‘suspended’

gen_scripts(job_object, command, args, precmd, modstr)

Input:

	job_object: Job, a fyrd.job.Job object for the current job

	command: string, a string of the command to be run

	args: any additional arguments that are to be submitted, generally not used

	precmd: string, the batch system directives created by options_to_string,
you can edit this or overwrite it if necessary

	modstr: string, a string of module imports (e.g. module load samtools) set by
the user

Output:

	submission_script: fyrd.submission_scripts.Script object with the script to
run

	exec_script: fyrd.submission_scripts.Script object with an additional script
called by submission script if necessary, can be None

Description:

This is one of the more complex functions, but essentially you are going to just
format the fyrd.script_runners.CMND_RUNNER_TRACK script using the objects in the
inputs. This just makes an executable submission script, so you can build this
anyway you want, you don’t have to use the CMND_RUNNER_TRACK script. However,
if you make your own script, the STDOUT must include timestamps like this:

date +'%y-%m-%d-%H:%M:%S'
echo "Running {name}"
{command}
exitcode=$?
echo Done
date +'%y-%m-%d-%H:%M:%S'
if [[$exitcode != 0]]; then
 echo Exited with code: $exitcode >&2
fi
exit $exitcode

This is because we parse the first two and last 2/3 lines of the file to get the
job runtimes and exit codes.

Here is an example function:

def gen_scripts(job_object, command, args, precmd, modstr):
"""Create script object for job, does not create a sep. exec script."""
scrpt = _os.path.join(job_object.scriptpath,
 '{}.cluster.qsub'.format(job_object.name))

sub_script = _scrpts.CMND_RUNNER_TRACK.format(
 precmd=precmd, usedir=job_object.runpath, name=job_object.name,
 command=command
)
return _Script(script=sub_script, file_name=scrpt), None

submit(file_name, dependencies=None, job=None, args=None, kwds=None)

Input:

	file_name: string, The path to the file to execute [required]

	dependencies: list, A list of dependencies (job objects or job numbers)
[optional]

	job: fyrd.job.Job, A job object of the calling job (not always passed)
[optional]

	args: list, A list of additional arguments (currently unused) [optional]

	kwargs: dict or str, A dictionary or string of ‘arg:val,arg,arg:val,…’
(currently unused) [optional]

Output:

	job_id: string, A job number

Description:

This function must actually submit the job file, however you want it to. If
possible, include dependency tracking, if that isn’t possible, raise a
NotImplemented Exception. You can make use of fyrd.run.cmd, which allows you
to execute code directly on the terminal and can catch errors and retry submission
however many times you choose (5 is a good number). It also returns the exit_code,
STDOUT, and STDERR for the execution.

The job object is passed whenever a job is submitted using the normal
submission process, and will contain all keyword arguments. If your batch
system requires command line arguments, you can parse the keyword arguments
with the parse_strange_options function and store them in the submit_args
attribute of the Job object. You can then access that attribute in this
submission function and pass them to fyrd.run.cmd (or any other method you
choose) as command line arguments.

Note, this submit function can also be called on existing scripts without a job
object, so your function should not require the job object. The args and kwds
arguments exist to allow additional parsing, although they are currently
unused; right now args gets the contents of Job.submit_args and kwds gets the
contents of the additional_keywords argument to Job.submit(). This argument
is currently ignored by all batch scripts.

Please add as much error catching code as possible in the submit function, the
torque.py example is a good one.

kill(job_ids)

Input:

	job_ids: list, A list of job numbers

Output:

	bool: True on success, False on failure

Immediately terminate the running jobs

queue_parser(user=None, partition=None)

Input:

	user: string, optional username to limit to

	partition: string, optional partition/queue to limit to

(Fine to ignore these arguments if they are not implemented on your system)

Yields (must be an iterator):

	job_id: string

	array_id: string, optional array job number

	name: string, a name for the job

	userid: string, user of the job (can be None)

	partition: string, partition running in (can be None)

	state: string a slurm-style string representation of the state

	nodelist: list, the nodes the job is running on

	numnodes: int, a count of the number of nodes

	threads_per_node: int, a count of the number of cores being used on each node

	exit_code: int, an exit_code (can be None if not exited yet) Must be an int
if state == ‘completed’. must be 0 if job completed successfully.

Description:

This is the iterator that is the core of the batch system definition. You must
somehow be able to parse all of the currently running jobs and return the above
information about every job. If your batch system implements array jobs, this
generator must yield one entry per array child, not parent job.

parse_strange_options(option_dict)

Inputs:

	option_dict: dictionary, a dictionary of keywords from the options.py file
prior to interpretation with option_to_string, allowing parsing of all
unusual keywords.

Outputs:

	outlist: list, A list of strings that will be added to the top of the submit
file

	option_dict: dictionary, A parsed version of option_dict with all options not
defined in the appropriate dictionaries in `options.py` removed.

	other_args: a list of parsed arguments to be passed at submit time, this will
be added to the submit_args attribute of the Job or passed as the args
argument to submit.

Summary

The modularity of this system is intended to make it easy to support any batch
system, however it is possible that some systems won’t fit into the mold defined
here. If that is the case, feel free to alter other parts of the code to make it
work, but be sure that all tests run successfully on every defined cluster on
every supported version of python. Feel free to reach out to me to request
testing if you do not have access to any system.

API Reference

fyrd.queue

The core class in this file is the Queue() class which does most of the queue
management. In addition, get_cluster_environment() attempts to autodetect the
cluster type (torque, slurm, normal) and sets the global cluster type for
the whole file. Finally, the wait() function accepts a list of jobs and will
block until those jobs are complete.

The Queue class relies on a few simple queue parsers defined by the
torque_queue_parser and slurm_queue_parser functions. These call qstat -x
or squeue and sacct to get job information, and yield a simple tuple of
that data with the following members:

job_id, name, userid, partition, state, node-list, node-count, cpu-per-node, exit-code

The Queue class then converts this information into a Queue.QueueJob object and
adds it to the internal jobs dictionary within the Queue class. This list is
now the basis for all of the other functionality encoded by the Queue class. It
can be accessed directly, or sliced by accessing the completed, queued, and
running attributes of the Queue class, these are used to simply divide up the
jobs dictionary to make finding information easy.

fyrd.queue.Queue

	
class fyrd.queue.Queue(user=None, partition=None, qtype=None)

	Bases: object [https://docs.python.org/3.6/library/functions.html#object]

A wrapper for all defined batch systems.

	
jobs

	dict – A dictionary of all jobs in this queue in the form:
{jobid: Queue.QueueJob}

	
finished

	dict – A dictionary of all completed jobs, same format as jobs

	
bad

	dict – A dictionary of all jobs with failed or unknown states, same format as
jobs

	
active_job_count

	int – Total jobs in the queue (including array job children)

	
max_jobs

	int – The maximum number of jobs allowed in the queue

	
can_submit

	bool – True if active_job_count < max_jobs, False otherwise

	
job_states

	list – A list of the different states of jobs in this queue

	
active_job_count

	int – A count of all jobs that are either pending or running in the current
queue

	
can_submit

	bool – True if total active jobs is less than max_jobs

	
users

	set – A set of all users with active jobs

	
job_states

	set – A set of all current job states

	
wait(jobs, return_disp=False)

	Block until all jobs in jobs are complete.

	
get(jobs)

	Get all results from a bunch of Job objects.

	
wait_to_submit(max_jobs=None)

	Block until fewer running/pending jobs in queue than max_jobs.

	
update()

	Refresh the list of jobs from the server.

	
get_jobs(key)

	Return a dict of jobs where state matches key.

	
get_user_jobs(users)

	Return a dict of jobs for all all jobs by each user in users.

Can filter by user, queue type or partition on initialization.

	Parameters

	
	user (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Optional usernameto filter the queue with. If user=’self’ or
‘current’, the current user will be used.

	partition (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Optional partition to filter the queue with.

	qtype (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – one of the defined batch queues (e.g. ‘slurm’)

Methods

	
Queue.wait(jobs, return_disp=False, notify=True)

	Block until all jobs in jobs are complete.

Update time is dependant upon the queue_update parameter in your
~/.fyrd/config.txt file.

	Parameters

	
	jobs (list [https://docs.python.org/3.6/library/stdtypes.html#list]) – List of either fyrd.job.Job, fyrd.queue.QueueJob, job_id

	return_disp (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If a job disappeares from the queue, return ‘disapeared’ instead of
True

	notify (str [https://docs.python.org/3.6/library/stdtypes.html#str], True, or False, optional) – If True, both notification address and wait_time must be set in
the [notify] section of the config. A notification email will be
sent if the time exceeds this time. This is the default.
If a string is passed, notification is forced and the string must
be the to address.
False means no notification

	Returns

	True on success False or None on failure unless return_disp is True
and the job disappeares, then returns ‘disappeared’

	Return type

	bool [https://docs.python.org/3.6/library/functions.html#bool] or str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
Queue.get(jobs)

	Get all results from a bunch of Job objects.

	Parameters

	jobs (list [https://docs.python.org/3.6/library/stdtypes.html#list]) – List of fyrd.Job objects

	Returns

	job_results – {job_id: Job}

	Return type

	dict [https://docs.python.org/3.6/library/stdtypes.html#dict]

	Raises

	fyrd.ClusterError – If any job fails or goes missing.

	
Queue.wait_to_submit(max_jobs=None)

	Block until fewer running/queued jobs in queue than max_jobs.

	Parameters

	max_jobs (int [https://docs.python.org/3.6/library/functions.html#int]) – Override self.max_jobs for wait

	
Queue.test_job_in_queue(job_id, array_id=None)

	Check to make sure job is in self.

Tries 12 times with 1 second between each. If found returns True,
else False.

	Parameters

	
	job_id (str [https://docs.python.org/3.6/library/stdtypes.html#str]) –

	array_id (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) –

	Returns

	exists

	Return type

	bool [https://docs.python.org/3.6/library/functions.html#bool]

	
Queue.get_jobs(key)

	Return a dict of jobs where state matches key.

	
Queue.get_user_jobs(users)

	Filter jobs by user.

	Parameters

	users (list [https://docs.python.org/3.6/library/stdtypes.html#list]) – A list of users/owners

	Returns

	A filtered job dictionary of {job_id: QueueJob} for all jobs
owned by the queried users.

	Return type

	dict [https://docs.python.org/3.6/library/stdtypes.html#dict]

	
Queue.update()

	Refresh the list of jobs from the server, limit queries.

	
Queue.check_dependencies(dependencies)

	Check if dependencies are running.

	Parameters

	dependencies (list [https://docs.python.org/3.6/library/stdtypes.html#list]) – List of job IDs

	Returns

	‘active’ if dependencies are running or queued, ‘good’ if
completed, ‘bad’ if failed, cancelled, or suspended, ‘absent’
otherwise.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

fyrd.queue Jobs

Hold information about individual jobs, QueueJob about primary jobs,
QueueChild about individual array jobs (which are stored in the children
attribute of QueueJob objects.

	
class fyrd.queue.QueueJob

	A very simple class to store info about jobs in the queue.

Only used for torque and slurm queues.

	
id

	int – Job ID

	
name

	str – Job name

	
owner

	str – User who owns the job

	
threads

	int – Number of cores used by the job

	
queue

	str – The queue/partition the job is running in

	
state

	str – Current state of the job, normalized to slurm states

	
nodes

	list – List of nodes job is running on

	
exitcode

	int – Exit code of completed job

	
disappeared

	bool – Job cannot be found in the queue anymore

	
array_job

	bool – This job is an array job and has children

	
children

	dict – If array job, list of child job numbers

Initialize.

	
class fyrd.queue.QueueChild(parent)

	A very simple class to store info about child jobs in the queue.

Only used for torque and slurm queues.

	
id

	int – Job ID

	
name

	str – Job name

	
owner

	str – User who owns the job

	
threads

	int – Number of cores used by the job

	
queue

	str – The queue/partition the job is running in

	
state

	str – Current state of the job, normalized to slurm states

	
nodes

	list – List of nodes job is running on

	
exitcode

	int – Exit code of completed job

	
disappeared

	bool – Job cannot be found in the queue anymore

	
parent

	QueueJob – Backref to parent job

Initialize with a parent.

fyrd.queue.QueueError

	
exception fyrd.queue.QueueError

	Simple Exception wrapper.

fyrd.job

Job management is handled by the Job() class. This is a very large class
that defines all the methods required to build and submit a job to the cluster.

It accepts keyword arguments defined in fyrd.options on
initialization, which are then fleshed out using profile information from the
config files defined by fyrd.conf.

The primary argument on initialization is the function or script to submit.

Examples:

Job('ls -lah | grep myfile')
Job(print, ('hi',))
Job('echo hostname', profile='tiny')
Job(huge_function, args=(1,2) kwargs={'hi': 'there'},
 profile='long', cores=28, mem='200GB')

fyrd.job.Job

	
class fyrd.Job(command, args=None, kwargs=None, name=None, qtype=None, profile=None, queue=None, **kwds)

	Bases: object [https://docs.python.org/3.6/library/functions.html#object]

Information about a single job on the cluster.

Holds information about submit time, number of cores, the job script,
and more.

Below are the core attributes and methods required to use this class,
note that this is an incomplete list.

	
id

	str – The ID number for the job, only set once the job has been submitted

	
name

	str – The name of the job

	
command

	str or callable – The function or shell script that will be submitted

	
args

	list – A list of arguments to the shell script or function in command

	
kwargs

	dict – A dictionary of keyword arguments to the function (not shell script) in
command

	
state

	str –

	A slurm-style one word description of the state of the job, one of:

	
	Not_Submitted

	queued

	running

	completed

	failed

	
submitted

	bool

	
written

	bool

	
done

	bool

	
running

	bool

	
dependencies

	list – A list of dependencies associated with this job

	
out

	str – The output of the function or a copy of stdout for a script

	
stdout

	str – Any output to STDOUT

	
stderr

	str – Any output to STDERR

	
exitcode

	int – The exitcode of the running processes (the script runner if the Job is
a function).

	
submit_time

	datetime – A datetime object for the time of submission

	
start

	datetime – A datetime object for time execution started on the remote node.

	
end

	datetime – A datetime object for time execution ended on the remote node.

	
runtime

	timedelta – A timedelta object containing runtime.

	
files

	list – A list of script files associated with this job

	
nodes

	list – A list of nodes associated with this job

	
modules

	list – A list of modules associated with this job

	
clean_files

	bool – If True, auto-delete script and function files on job completion

	
clean_outputs

	bool – If True, auto-delete script outputs and error files on job completion

	
kwds

	dict – Keyword arguments to the batch system (e.g. mem, cores, walltime), this
is initialized by taking every additional keyword argument to the Job.
e.g. Job(‘echo hi’, profile=large, walltime=‘00:20:00’, mem=‘2GB’) will
result in kwds containing {walltime: ‘00:20:00’, mem: ‘2GB’}. There is
no need to alter this manually.

	
submit_args

	list – List of parsed submit arguments that will be passed at runtime to the
submit function. Generated within the Job object, no need to set
manually, use the kwds attribute instead.

	
initialize()

	Use attributes to prep job for running

	
gen_scripts()

	Create script files (but do not write them)

	
write(overwrite=True)

	Write scripts to files

	
submit(wait_on_max_queue=True)

	Submit the job if it is ready and the queue is sufficiently open.

	
resubmit(wait_on_max_queue=True)

	Clean all internal states with scrub() and then resubmit

	
kill(confirm=True)

	Immediately kill the currently running job

	
clean(delete_outputs=True, get_outputs=True)

	Delete any files created by this object

	
scrub(confirm=True)

	Clean everything and reset to an unrun state.

	
update(fetch_info=True)

	Update our status from the queue

	
wait()

	Block until the job is done

	
get()

	Block until the job is done and then return the output (stdout if job
is a script), by default saves all outputs to self (i.e. .out, .stdout,
.stderr) and deletes all intermediate files before returning. If save
argument is False, does not delete the output files by default.

Notes

Printing or reproducing the class will display detailed job information.

Both wait() and get() will update the queue every few seconds
(defined by the queue_update item in the config) and add queue information
to the job as they go.

If the job disappears from the queue with no information, it will be listed
as ‘completed’.

All jobs have a .submission attribute, which is a Script object containing
the submission script for the job and the file name, plus a ‘written’ bool
that checks if the file exists.

In addition, some batch systems (e.g. SLURM) have an .exec_script
attribute, which is a Script object containing the shell command to run.
This difference is due to the fact that some SLURM systems execute multiple
lines of the submission file at the same time.

Finally, if the job command is a function, this object will also contain a
.function attribute, which contains the script to run the function.

Initialization function arguments.

	Parameters

	
	command (function/str) – The command or function to execute.

	args (tuple/dict, optional) – Optional arguments to add to command, particularly useful for
functions.

	kwargs (dict [https://docs.python.org/3.6/library/stdtypes.html#dict], optional) – Optional keyword arguments to pass to the command, only used for
functions.

	name (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – Optional name of the job. If not defined, guessed. If a job of the
same name is already queued, an integer job number (not the queue
number) will be added, ie. <name>.1

	qtype (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – Override the default queue type

	profile (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – The name of a profile saved in the conf

	queue (fyrd.queue.Queue, optional) – An already initiated Queue class to use.

	kwds – All other keywords are parsed into cluster keywords by the options
system. For available keywords see fyrd.option_help()

Methods

	
Job.initialize()

	Make self runnable using set attributes.

	
Job.gen_scripts()

	Create the script objects from the set parameters.

	
Job.write(overwrite=True)

	Write all scripts.

	Parameters

	overwrite (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Overwrite existing files, defaults to True.

	Returns

	self

	Return type

	Job

	
Job.clean(delete_outputs=None, get_outputs=True)

	Delete all scripts created by this module, if they were written.

	Parameters

	
	delete_outputs (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – also delete all output and err files, but get their contents first.

	get_outputs (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – if delete_outputs, save outputs before deleting.

	Returns

	self

	Return type

	Job

	
Job.scrub(confirm=True)

	Clean everything and reset to an unrun state.

	Parameters

	confirm (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Get user input before proceeding

	Returns

	self

	Return type

	Job

	
Job.submit(wait_on_max_queue=True, additional_keywords=None, max_jobs=None)

	Submit this job.

To disable max_queue_len, set it to 0. None will allow override by
the default settings in the config file, and any positive integer will
be interpretted to be the maximum queue length.

	Parameters

	
	wait_on_max_queue (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Block until queue limit is below the maximum before submitting.

	additional_keywords (dict [https://docs.python.org/3.6/library/stdtypes.html#dict], optional) – Pass this dictionary to the batch system submission function,
not necessary.

	max_jobs (int [https://docs.python.org/3.6/library/functions.html#int], optional) – Override the maximum number of jobs to wait for

	Returns

	self

	Return type

	Job

	
Job.resubmit(wait_on_max_queue=True, cancel_running=None)

	Attempt to auto resubmit, deletes prior files.

	Parameters

	
	wait_on_max_queue (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Block until queue limit is below the maximum before submitting.

	cancel_running (bool [https://docs.python.org/3.6/library/functions.html#bool] or None, optional) – If the job is currently running, cancel it before resubmitting.
If None (default), will ask the user.

	disable max_queue_len, set it to 0. None will allow override by (To) –

	default settings in the config file, and any positive integer will (the) –

	interpretted to be the maximum queue length. (be) –

	Returns

	self

	Return type

	Job

	
Job.get_keywords()

	Return a list of the keyword arguments used to make the job.

	
Job.set_keywords(kwds, replace=False)

	Set the job keywords, just updates self.kwds.

	Parameters

	
	kwds (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – Set of valid arguments.

	replace (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Overwrite the keword arguments instead of updating.

	
Job.wait()

	Block until job completes.

	Returns

	success – True if exitcode == 0, False if not, ‘disappeared’ if job lost from
queue.

	Return type

	bool [https://docs.python.org/3.6/library/functions.html#bool] or str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
Job.get(save=True, cleanup=None, delete_outfiles=None, del_no_save=None, raise_on_error=True)

	Block until job completed and return output of script/function.

By default saves all outputs to this class and deletes all intermediate
files.

	Parameters

	
	save (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Save all outputs to the class also (advised)

	cleanup (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Clean all intermediate files after job completes.

	delete_outfiles (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Clean output files after job completes.

	del_no_save (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Delete output files even if save is False

	raise_on_error (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If the returned output is an Exception, raise it.

	Returns

	Function output if Function, else STDOUT

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
Job.get_output(save=True, delete_file=None, update=True, raise_on_error=True)

	Get output of function or script.

This is the same as stdout for a script, or the function output for
a function.

By default, output file is kept unless delete_file is True or
self.clean_files is True.

	Parameters

	
	save (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Save the output to self.out, default True. Would be a good idea to
set to False if the output is huge.

	delete_file (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Delete the output file when getting

	update (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Update job info from queue first.

	raise_on_error (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If the returned output is an Exception, raise it.

	Returns

	output – The output of the script or function. Always a string if script.

	Return type

	anything

	
Job.get_stdout(save=True, delete_file=None, update=True)

	Get stdout of function or script, same for both.

By default, output file is kept unless delete_file is True or
self.clean_files is True.

Also sets self.start and self.end from the contents of STDOUT if
possible.

	Returns

	
	save (bool, optional) – Save the output to self.stdout, default True. Would be a good idea
to set to False if the output is huge.

	delete_file (bool, optional) – Delete the stdout file when getting

	update (bool, optional) – Update job info from queue first.

	Returns

	The contents of STDOUT, with runtime info and trailing newline
removed.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
Job.get_stderr(save=True, delete_file=None, update=True)

	Get stderr of function or script, same for both.

By default, output file is kept unless delete_file is True or
self.clean_files is True.

	Parameters

	
	save (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Save the output to self.stdout, default True. Would be a good idea
to set to False if the output is huge.

	delete_file (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Delete the stdout file when getting

	update (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Update job info from queue first.

	Returns

	The contents of STDERR, with trailing newline removed.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
Job.get_times(update=True, stdout=None)

	Get stdout of function or script, same for both.

Sets self.start and self.end from the contents of STDOUT if
possible.

	Parameters

	
	update (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Update job info from queue first.

	stdout (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – Pass existing stdout for use

	Returns

	
	start (datetime.datetime)

	end (datetime.datetime)

	
Job.get_exitcode(update=True, stdout=None)

	Try to get the exitcode.

	Parameters

	
	update (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Update job info from queue first.

	stdout (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – Pass existing stdout for use

	Returns

	exitcode

	Return type

	int [https://docs.python.org/3.6/library/functions.html#int]

	
Job.update(fetch_info=True)

	Update status from the queue.

	Parameters

	fetch_info (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Fetch basic job info if complete.

	Returns

	self

	Return type

	Job

	
Job.update_queue_info()

	Set (and return) queue_info from the queue even if done.

	
Job.fetch_outputs(save=True, delete_files=None, get_stats=True)

	Save all outputs in their current state. No return value.

This method does not wait for job completion, but merely gets the
outputs. To wait for job completion, use get() instead.

	Parameters

	
	save (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Save all outputs to the class also (advised)

	delete_files (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Delete the output files when getting, only used if save is True

	get_stats (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Try to get exitcode.

fyrd.submission_scripts

This module defines to classes that are used to build the actual jobs for submission,
including writing the files. Function is actually a child class of Script.

	
class fyrd.submission_scripts.Script(file_name, script)

	Bases: object [https://docs.python.org/3.6/library/functions.html#object]

A script string plus a file name.

Initialize the script and file name.

	
clean(delete_output=None)

	Delete any files made by us.

	
exists

	True if file is on disk, False if not.

	
write(overwrite=True)

	Write the script file.

	
class fyrd.submission_scripts.Function(file_name, function, args=None, kwargs=None, imports=None, syspaths=None, pickle_file=None, outfile=None)

	Bases: fyrd.submission_scripts.Script

A special Script used to run a function.

Create a function wrapper.

NOTE: Function submission will fail if the parent file’s code is not
wrapped in an if __main__ wrapper.

	Parameters

	
	file_name (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – A root name to the outfiles

	function (callable) – Function handle.

	args (tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple], optional) – Arguments to the function as a tuple.

	kwargs (dict [https://docs.python.org/3.6/library/stdtypes.html#dict], optional) – Named keyword arguments to pass in the function call

	imports (list [https://docs.python.org/3.6/library/stdtypes.html#list], optional) – A list of imports, if not provided, defaults to all current
imports, which may not work if you use complex imports. The list
can include the import call, or just be a name, e.g [‘from os
import path’, ‘sys’]

	syspaths (list [https://docs.python.org/3.6/library/stdtypes.html#list], optional) – Paths to be included in submitted function

	pickle_file (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – The file to hold the function.

	outfile (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – The file to hold the output.

	
clean(delete_output=False)

	Delete the input pickle file and any scripts.

	Parameters

	delete_output (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Delete the output pickle file too.

	
write(overwrite=True)

	Write the pickle file and call the parent Script write function.

fyrd.batch_systems

All batch systems are defined here.

fyrd.batch_systems functions

	
fyrd.batch_systems.get_cluster_environment(overwrite=False)

	Detect the local cluster environment and set MODE globally.

Detect the current batch system by looking for command line utilities.
Order is important here, so we hard code the batch system lookups.

Paths to files can also be set in the config file.

	Parameters

	overwrite (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – If True, run checks anyway, otherwise just accept MODE if it is
already set.

	Returns

	MODE

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
fyrd.batch_systems.check_queue(qtype=None)

	Check if both MODE and qtype are valid.

First checks the MODE global and autodetects its value, if that fails, no
other tests are done, the qtype argument is ignored.

After MODE is found to be a reasonable value, the queried queue is tested
for functionality. If qtype is defined, this queue is tested, else the
queue in MODE is tested.

Tests are defined per batch system.

	Parameters

	qtype (str [https://docs.python.org/3.6/library/stdtypes.html#str]) –

	Returns

	batch_system_functional

	Return type

	bool [https://docs.python.org/3.6/library/functions.html#bool]

	Raises

	ClusterError – If MODE or qtype is not in DEFINED_SYSTEMS

See also

	get_cluster_environment()

	Auto detect the batch environment

	get_batch_system()

	Return the batch system module

	
fyrd.batch_systems.get_batch_system(qtype=None)

	Return a batch_system module.

fyrd.batch_systems.options

All keyword arguments are defined in dictionaries in the
options.py file, alongside function to manage those dictionaries. Of
particular importance is option_help(), which can display all of the keyword
arguments as a string or a table. check_arguments() checks a dictionary to
make sure that the arguments are allowed (i.e. defined), it is called on all
keyword arguments in the package.

To see keywords, run fyrd keywords from the console or fyrd.option_help()
from a python session.

The way that option handling works in general, is that all hard-coded keyword
arguments must contain a dictionary entry for ‘torque’ and ‘slurm’, as well as a
type declaration. If the type is NoneType, then the option is assumed to be a
boolean option. If it has a type though, check_argument() attempts to cast the
type and specific idiosyncrasies are handled in this step, e.g. memory is converted
into an integer of MB. Once the arguments are sanitized format() is called on
the string held in either the ‘torque’ or the ‘slurm’ values, and the formatted
string is then used as an option. If the type is a list/tuple, the ‘sjoin’ and
‘tjoin’ dictionary keys must exist, and are used to handle joining.

The following two functions are used to manage this formatting step.

option_to_string() will take an option/value pair and return an appropriate
string that can be used in the current queue mode. If the option is not
implemented in the current mode, a debug message is printed to the console and
an empty string is returned.

options_to_string() is a wrapper around option_to_string() and can handle a
whole dictionary of arguments, it explicitly handle arguments that cannot be
managed using a simple string format.

	
fyrd.batch_systems.options.option_help(mode='string', qtype=None, tablefmt='simple')

	Print a sting to stdout displaying information on all options.

The possible run modes for this extension are:

	string

	Return a formatted string

	print

	Print the string to stdout

	list

	Return a simple list of keywords

	table

	Return a table of lists

	merged_table

	Combine all keywords into a single table

	Parameters

	
	mode ({'string', 'print', 'list', 'table', 'merged_table'}, optional) –

	qtype (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – If provided only return info on that queue type.

	tablefmt (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – A tabulate-style table format, one of:

'plain', 'simple', 'grid', 'pipe', 'orgtbl',
'rst', 'mediawiki', 'latex', 'latex_booktabs'

	Returns

	A formatted string

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
fyrd.batch_systems.options.sanitize_arguments(kwds)

	Run check_arguments, but return unmatched keywords as is.

	
fyrd.batch_systems.options.split_keywords(kwargs)

	Split a dictionary of keyword arguments into two dictionaries.

The first dictionary will contain valid arguments for fyrd, the second will
contain all others.

	Returns

	valid_args, other_args

	Return type

	dict [https://docs.python.org/3.6/library/stdtypes.html#dict]

	
fyrd.batch_systems.options.check_arguments(kwargs)

	Make sure all keywords are allowed.

Raises OptionsError on error, returns sanitized dictionary on success.

	Note: Checks in SYNONYMS if argument is not recognized, raises OptionsError

	if it is not found there either.

	
fyrd.batch_systems.options.options_to_string(option_dict, qtype=None)

	Return a multi-line string for job submission.

This function pre-parses options and then passes them to the
parse_strange_options function of each batch system, before using the
option_to_string function to parse the remaining options.

	Parameters

	
	option_dict (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – Dict in format {option: value} where value can be None. If value is
None, default used.

	qtype (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The defined batch system

	Returns

	
	parsed_options (str) – A multi-line string of parsed options

	runtime_options (list) – A list of parsed options to be used at submit time

	
fyrd.batch_systems.options.option_to_string(option, value=None, qtype=None)

	Return a string with an appropriate flag for slurm or torque.

	Parameters

	
	option (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – An allowed option definied in options.all_options

	value (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – A value for that option if required (if None, default used)

	qtype (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – One of the defined batch systems

	Returns

	A string with the appropriate flags for the active queue.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

fyrd.conf

fyrd.conf handles the config (~/.fyrd/config.txt) file and the profiles
(~/.fyrd/profiles.txt) file.

Profiles are combinations of keyword arguments
that can be called in any of the submission functions. Both the config and profiles
are just ConfigParser [https://docs.python.org/3/library/configparser.html]
objects, conf.py merely adds an abstraction layer on top of this to maintain
the integrity of the files.

config

The config has three sections (and no defaults):

	queue — sets options for handling the queue

	jobs — sets options for submitting jobs

	jobqueue — local option handling, will be removed in the future

For a complete reference, see the config documentation :
Configuration

Options can be managed with the get_option() and set_option() functions, but
it is actually easier to use the console script:

fyrd conf list
fyrd conf edit max_jobs 3000

	
fyrd.conf.get_option(section=None, key=None, default=None)

	Get a single key or section.

All args are optional, if they are missing, the parent section or entire
config will be returned.

	Parameters

	
	section (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The config section to use (e.g. queue), if None, all sections returned.

	key (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The config key to get (e.g. ‘max_jobs’), if None, whole section
returned.

	default – If the key does not exist, create it with this default value.

	Returns

	Option value if key exists, None if no key exists.

	Return type

	option_value

See also

	set_option()

	Set an option

	get_config()

	Get the entire config

	
fyrd.conf.set_option(section, key, value)

	Write a config key to the config file.

	Parameters

	
	section (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Section of the config file to use.

	key (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Key to add.

	value – Value to add for key.

	Returns

	

	Return type

	ConfigParser

	
fyrd.conf.delete(section, key)

	Delete a config item.

	Parameters

	
	section (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Section of config file.

	key (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Key to delete

	Returns

	

	Return type

	ConfigParger

	
fyrd.conf.load_config()

	Load config from the config file.

If any section or key from DEFAULTS is not present in the config, it is
added back, enforcing a minimal configuration.

	Returns

	

	Return type

	ConfigParser

	
fyrd.conf.write_config()

	Write the current config to CONFIG_FILE.

	
fyrd.conf.create_config(cnf=None, def_queue=None)

	Create an initial config file.

Gets all information from the file-wide DEFAULTS constant and overwrites
specific keys using the values in cnf.

This means that any records in the cnf dict that are not present in
DEFAULTS will be ignored, and any records that are absent will be
populated from DEFAULTS.

	Parameters

	
	cnf (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – A dictionary of config defaults.

	def_queue (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – A name for a queue to add to the default profile.

	
fyrd.conf.create_config_interactive(prompt=True)

	Interact with the user to create a new config.

Uses readline autocompletion to make setup easier.

	Parameters

	prompt (bool [https://docs.python.org/3.6/library/functions.html#bool]) – As for confirmation before beginning wizard.

profiles

Profiles are wrapped in a Profile() class to make attribute access easy, but
they are fundamentally just dictionaries of keyword arguments. They can be
created with cluster.conf.Profile(name, {keywds}) and then written to a file
with the write() method.

The easiest way to interact with profiles is not with class but with the
get_profile(), set_profile(), and del_profile() functions. These make it
very easy to go from a dictionary of keywords to a profile.

Profiles can then be called with the profile= keyword in any submission
function or Job class.

As with the config, profile management is the easiest and most stable when using
the console script:

fyrd profile list
fyrd profile add very_long walltime:120:00:00
fyrd profile edit default partition:normal cores:4 mem:10GB
fyrd profile delete small

fyrd.conf.Profile

	
class fyrd.conf.Profile(name, kwds)

	Bases: object [https://docs.python.org/3.6/library/functions.html#object]

A job submission profile. Just a thin wrapper around a dict.

	
name

	str

	
kwds

	dict

	
write : Write self to config file

	

Set up bare minimum attributes.

	Parameters

	
	name (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Name of the profile

	kwds (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – Dictionary of keyword arguments (will be validated).

	
write()

	Write self to config file.

	
fyrd.conf.set_profile(name, kwds, update=True)

	Write profile to config file.

	Parameters

	
	name (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The name of the profile to add/edit.

	kwds (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – Keyword arguments to add to the profile.

	update (bool [https://docs.python.org/3.6/library/functions.html#bool]) – Update the profile rather than overwriting it.

	
fyrd.conf.get_profile(profile=None, allow_none=True)

	Return a profile if it exists, if None, return all profiles.

Will return None if profile is supplied but does not exist.

	Parameters

	
	profile (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The name of a profile to search for.

	allow_none (bool [https://docs.python.org/3.6/library/functions.html#bool]) – If True, return None if no profile matches, otherwise raise a
ValueError.

	Returns

	The requested profile.

	Return type

	fyrd.conf.Profile

fyrd.helpers

The helpers are all high level functions that are not required for the library
but make difficult jobs easy to assist in the goal of trivially easy cluster
submission.

The functions in fyrd.basic below are different in that they
provide simple job submission and management, while the functions in
fyrd.helpers allow the submission of many jobs.

	
fyrd.helpers.jobify(name=None, profile=None, qtype=None, submit=True, **kwds)

	Decorator to make any function a job.

Will make any function return a Job object that will execute the function
on the cluster.

If submit is True, the job will be submitted when it is returned.

Usage:

@fyrd.jobify(name='my_job', profile='small', mem='8GB',
 time='00:10:00', imports=['from time import sleep'])
def do_something(file_path, iteration_count=24):
 for i in range(iteration_count):
 print(file_path + i)
 sleep(1)
 return file_path

job = do_something('my_file.txt')
out = job.get()

	Parameters

	
	name (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – Optional name of the job. If not defined, guessed. If a job of the same
name is already queued, an integer job number (not the queue number)
will be added, ie. <name>.1

	qtype (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – Override the default queue type

	profile (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – The name of a profile saved in the conf

	submit (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Submit the Job before returning it

	kwds – All other keywords are parsed into cluster keywords by the options
system. For available keywords see fyrd.option_help()

	Returns

	A Job class initialized with the decorated function.

	Return type

	fyrd.job.Job

Examples

>>> import fyrd
>>> @fyrd.jobify(name='test_job', mem='1GB')
... def test(string, iterations=4):
... """This does basically nothing!"""
... outstring = ""
... for i in range(iterations):
... outstring += "Version {0}: {1}".format(i, string)
... return outstring
>>> j = test('hi')
>>> j.get()
'Version 0: hiVersion 1: hiVersion 2: hiVersion 3: hiVersion 4: hi'

	
fyrd.helpers.parapply(jobs, df, func, args=(), profile=None, applymap=False, merge_axis=0, merge_apply=False, name='parapply', imports=None, direct=True, **kwds)

	Split a dataframe, run apply in parallel, return result.

This function will split a dataframe into however many pieces are requested
with the jobs argument, run apply in parallel by submitting the jobs to the
cluster, and then recombine the outputs.

If the ‘clean_files’ and ‘clean_outputs’ arguments are not passed, we
delete all intermediate files and output files by default.

This function will take any keyword arguments accepted by Job, which can
be found by running fyrd.options.option_help(). It also accepts any of
the keywords accepted by by pandas.DataFrame.apply(), found
here [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.apply.html]

	Parameters

	
	jobs (int [https://docs.python.org/3.6/library/functions.html#int]) – Number of pieces to split the dataframe into

	df (DataFrame) – Any pandas DataFrame

	args (tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple]) – Positional arguments to pass to the function, keyword arguments can
just be passed directly.

	profile (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – A fyrd cluster profile to use

	applymap (bool [https://docs.python.org/3.6/library/functions.html#bool]) – Run applymap() instead of apply()

	merge_axis (int [https://docs.python.org/3.6/library/functions.html#int]) – Which axis to merge on, 0 or 1, default is 1 as apply transposes
columns

	merge_apply (bool [https://docs.python.org/3.6/library/functions.html#bool]) – Apply the function on the merged dataframe also

	name (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – A prefix name for all of the jobs

	imports (list [https://docs.python.org/3.6/library/stdtypes.html#list]) – A list of imports in any format, e.g.
[‘import numpy’, ‘scipy’, ‘from numpy import mean’]

	direct (bool [https://docs.python.org/3.6/library/functions.html#bool]) – Whether to run the function directly or to return a Job. Default True.

	keyword arguments recognized by fyrd will be used for job (Any) –

	submission. –

	keyword arguments will be passed to DataFrame.apply()* (*Additional) –

	Returns

	A recombined DataFrame: concatenated version of original split
DataFrame

	Return type

	DataFrame

Example

>>> import numpy
>>> import pandas
>>> import fyrd
>>> df = pandas.DataFrame([[0, 1], [2, 6], [9, 24], [13, 76], [4, 12]])
>>> df['sum'] = fyrd.helpers.parapply(2, df, lambda x: x[0]+x[1], axis=1)
>>> df
 0 1 sum
 0 0 1 1
 1 2 6 8
 2 9 24 33
 3 13 76 89
 4 4 12 16

See also

	parapply_summary()

	Merge results of parapply using applied function

	splitrun()

	Run a command in parallel on a split file

	
fyrd.helpers.parapply_summary(jobs, df, func, args=(), profile=None, applymap=False, name='parapply', imports=None, direct=True, **kwds)

	Run parapply for a function with summary stats.

Instead of returning the concatenated result, merge the result using
the same function as was used during apply.

This works best for summary functions like .mean(), which do a linear
operation on a whole dataframe or series.

	Parameters

	
	jobs (int [https://docs.python.org/3.6/library/functions.html#int]) – Number of pieces to split the dataframe into

	df (DataFrame) – Any pandas DataFrame

	args (tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple]) – Positional arguments to pass to the function, keyword arguments can
just be passed directly.

	profile (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – A fyrd cluster profile to use

	applymap (bool [https://docs.python.org/3.6/library/functions.html#bool]) – Run applymap() instead of apply()

	merge_axis (int [https://docs.python.org/3.6/library/functions.html#int]) – Which axis to merge on, 0 or 1, default is 1 as apply transposes
columns

	merge_apply (bool [https://docs.python.org/3.6/library/functions.html#bool]) – Apply the function on the merged dataframe also

	name (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – A prefix name for all of the jobs

	imports (list [https://docs.python.org/3.6/library/stdtypes.html#list]) – A list of imports in any format, e.g.
[‘import numpy’, ‘scipy’, ‘from numpy import mean’]

	direct (bool [https://docs.python.org/3.6/library/functions.html#bool]) – Whether to run the function directly or to return a Job. Default True.

	keyword arguments recognized by fyrd will be used for job (Any) –

	submission. –

	keyword arguments will be passed to DataFrame.apply()* (*Additional) –

	Returns

	A recombined DataFrame

	Return type

	DataFrame

Example

>>> import numpy
>>> import pandas
>>> import fyrd
>>> df = pandas.DataFrame([[0, 1], [2, 6], [9, 24], [13, 76], [4, 12]])
>>> df = fyrd.helpers.parapply_summary(2, df, numpy.mean)
>>> df
0 6.083333
1 27.166667
dtype: float64

See also

	parapply()

	Run a command in parallel on a DataFrame without merging the

result()

	
fyrd.helpers.splitrun(jobs, infile, inheader, command, args=None, kwargs=None, name=None, qtype=None, profile=None, outfile=None, outheader=False, merge_func=None, direct=True, **kwds)

	Split a file, run command in parallel, return result.

This function will split a file into however many pieces are requested
with the jobs argument, and run command on each.

Accepts exactly the same arguments as the Job class, with the exception of
the first three and last four arguments, which are:

	the number of jobs

	the file to work on

	whether the input file has a header

	an optional output file

	whether the output file has a header

	an optional function to use to merge the resulting list, only used
if there is no outfile.

	whether to run directly or to return a Job. If direct is True, this
function will just run and thus block until complete, if direct is
False, the function will submit as a Job and return that Job.

Note: If command is a string, .format(file={file}) will be called on
it, where file is each split file. If command is a function, the there must
be an argument in either args or kwargs that contains {file}. It will be
replaced with the path to the file, again by the format command.

If outfile is specified, there must also be an ‘{outfile}’ line in any
script or an ‘{outfile}’ argument in either args or kwargs. When this
function completes, the file at outfile will contain the concatenated
output files of all of the jobs.

If the ‘clean_files’ and ‘clean_outputs’ arguments are not passed, we
delete all intermediate files and output files by default.

The intermediate files will be stored in the ‘scriptpath’ directory.

Any header line is kept at the top of the file.

Primary return value varies and is decided in this order:

	If outfile:

	the absolute path to that file

	If merge_func:

	the result of merge_func(list), where list is the list of outputs.

	Else:

	a list of results

If direct is False, this function returns a fyrd.job.Job object which
will return the results described above on get().

	Parameters

	
	jobs (int [https://docs.python.org/3.6/library/functions.html#int]) – Number of pieces to split the dataframe into

	infile (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The path to the file to be split.

	inheader (bool [https://docs.python.org/3.6/library/functions.html#bool]) – Does the input file have a header?

	command (function/str) – The command or function to execute.

	args (tuple/dict) – Optional arguments to add to command, particularly useful for
functions.

	kwargs (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – Optional keyword arguments to pass to the command, only used for
functions.

	name (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Optional name of the job. If not defined, guessed. If a job of the same
name is already queued, an integer job number (not the queue number)
will be added, ie. <name>.1

	qtype (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Override the default queue type

	profile (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The name of a profile saved in the conf

	outfile (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The path to the expected output file.

	outheader (bool [https://docs.python.org/3.6/library/functions.html#bool]) – Does the input outfile have a header?

	merge_func (function) – An optional function used to merge the output list if there is no
outfile.

	direct (bool [https://docs.python.org/3.6/library/functions.html#bool]) – Whether to run the function directly or to return a Job. Default True.

	other keywords are parsed into cluster keywords by the options (*All) –

	For available keywords see fyrd.option_help() * (system.) –

	Returns

	See description above

	Return type

	Varies

fyrd.basic

This module holds high level functions to make job submission easy, allowing the user
to skip multiple steps and to avoid using the Job class directly.

submit(), make_job(), and make_job_file() all create Job objects in the
background and allow users to submit jobs. All of these functions accept the exact
same arguments as the Job class does, and all of them return a Job object.

submit_file() is different, it simply submits a pre-formed job file, either one that
has been written by this software or by any other method. The function makes no attempt
to fix arguments to allow submission on multiple clusters, it just submits the file.

clean() takes a list of job objects and runs the clean() method on all of them,
clean_dir() uses known directory and suffix information to clean out all job files
from any directory.

	
fyrd.basic.submit()

	Submit a script to the cluster.

	Parameters

	
	command (function/str) – The command or function to execute.

	args (tuple/dict, optional) – Optional arguments to add to command, particularly useful for
functions.

	kwargs (dict [https://docs.python.org/3.6/library/stdtypes.html#dict], optional) – Optional keyword arguments to pass to the command, only used for
functions.

	name (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – Optional name of the job. If not defined, guessed. If a job of the
same name is already queued, an integer job number (not the queue
number) will be added, ie. <name>.1

	qtype (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – Override the default queue type

	profile (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – The name of a profile saved in the conf

	queue (fyrd.queue.Queue, optional) – An already initiated Queue class to use.

	kwds – All other keywords are parsed into cluster keywords by the options
system. For available keywords see fyrd.option_help()

	Returns

	

	Return type

	Job object

	
fyrd.basic.make_job()

	Make a job compatible with the chosen cluster but do not submit.

	Parameters

	
	command (function/str) – The command or function to execute.

	args (tuple/dict, optional) – Optional arguments to add to command, particularly useful for
functions.

	kwargs (dict [https://docs.python.org/3.6/library/stdtypes.html#dict], optional) – Optional keyword arguments to pass to the command, only used for
functions.

	name (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – Optional name of the job. If not defined, guessed. If a job of the
same name is already queued, an integer job number (not the queue
number) will be added, ie. <name>.1

	qtype (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – Override the default queue type

	profile (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – The name of a profile saved in the conf

	queue (fyrd.queue.Queue, optional) – An already initiated Queue class to use.

	kwds – All other keywords are parsed into cluster keywords by the options
system. For available keywords see fyrd.option_help()

	Returns

	

	Return type

	Job object

	
fyrd.basic.make_job_file()

	Make a job file compatible with the chosen cluster.

	Parameters

	
	command (function/str) – The command or function to execute.

	args (tuple/dict, optional) – Optional arguments to add to command, particularly useful for
functions.

	kwargs (dict [https://docs.python.org/3.6/library/stdtypes.html#dict], optional) – Optional keyword arguments to pass to the command, only used for
functions.

	name (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – Optional name of the job. If not defined, guessed. If a job of the
same name is already queued, an integer job number (not the queue
number) will be added, ie. <name>.1

	qtype (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – Override the default queue type

	profile (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – The name of a profile saved in the conf

	queue (fyrd.queue.Queue, optional) – An already initiated Queue class to use.

	kwds – All other keywords are parsed into cluster keywords by the options
system. For available keywords see fyrd.option_help()

	Returns

	Path to job file

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
fyrd.basic.submit_file()

	Submit an existing job file to the cluster.

This function is independent of the Job object and just submits a file
using a cluster appropriate method.

	Parameters

	
	script_file (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The path to the file to submit

	dependencies (str [https://docs.python.org/3.6/library/stdtypes.html#str] or list of strings, optional) – A job number or list of job numbers to depend on

	qtype (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – The name of the queue system to use, auto-detected if not given.

	submit_args (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – A dictionary of keyword arguments for the submission script.

	Returns

	job_number

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
fyrd.basic.clean()

	Delete all files in jobs list or single Job object.

	Parameters

	
	jobs (fyrd.job.Job or list of fyrd.job.Job) – Job objects to clean

	clean_outputs (bool [https://docs.python.org/3.6/library/functions.html#bool]) – Also clean outputs.

	
fyrd.basic.clean_dir()

	Delete all files made by this module in directory.

	CAUTION: The clean() function will delete EVERY file with

	
	extensions matching those these::

	.<suffix>.err
.<suffix>.out
.<suffix>.out.func.pickle
.<suffix>.sbatch & .<suffix>.script for slurm mode
.<suffix>.qsub for torque mode
.<suffix>.job for local mode
_func.<suffix>.py
_func.<suffix>.py.pickle.in
_func.<suffix>.py.pickle.out

Note

This function will change in the future to use batch system
defined paths.

	Parameters

	
	directory (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The directory to run in, defaults to the current directory.

	suffix (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Override the default suffix.

	qtype (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Only run on files of this qtype

	confirm (bool [https://docs.python.org/3.6/library/functions.html#bool]) – Ask the user before deleting the files

	delete_outputs (bool [https://docs.python.org/3.6/library/functions.html#bool]) – Delete all output files too.

	Returns

	A set of deleted files

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list]

fyrd.run

A library of useful functions used throughout the fyrd package.

These include functions to handle data, format outputs, handle file opening,
run commands, check file extensions, get user input, and search and format
imports.

These functions are not intended to be accessed directly and so documentation
is limited.

	
exception fyrd.run.CommandError

	Bases: Exception [https://docs.python.org/3.6/library/exceptions.html#Exception]

A custom exception.

	
class fyrd.run.CustomFormatter(prog, indent_increment=2, max_help_position=24, width=None)

	Bases: argparse.ArgumentDefaultsHelpFormatter [https://docs.python.org/3.6/library/argparse.html#argparse.ArgumentDefaultsHelpFormatter], argparse.RawDescriptionHelpFormatter [https://docs.python.org/3.6/library/argparse.html#argparse.RawDescriptionHelpFormatter]

Custom argparse formatting.

	
fyrd.run.block_read(files, size=65536)

	Iterate through a file by blocks.

	
fyrd.run.check_pid(pid)

	Check For the existence of a unix pid.

	
fyrd.run.cmd(command, args=None, stdout=None, stderr=None, tries=1)

	Run command and return status, output, stderr.

	Parameters

	
	command (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Path to executable.

	args (tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple], optional) – Tuple of arguments.

	stdout (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – File or open file like object to write STDOUT to.

	stderr (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – File or open file like object to write STDERR to.

	tries (int [https://docs.python.org/3.6/library/functions.html#int], optional) – Number of times to try to execute. 1+

	Returns

	
	exit_code (int)

	STDOUT (str)

	STDERR (str)

	
fyrd.run.cmd_or_file(string)

	If string is a file, return the contents, else return the string.

	Parameters

	string (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Path to a file or any other string

	Returns

	script – Either the contents of the file if string is a file or just the
contents of string.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
fyrd.run.count_lines(infile, force_blocks=False)

	Return the line count of a file as quickly as possible.

Uses wc if avaialable, otherwise does a rapid read.

	
fyrd.run.exp_file(infile)

	Return an expanded path to a file.

	
fyrd.run.export_globals(function)

	Add a function’s globals to the current globals.

	
fyrd.run.export_imports(function, kwds)

	Get imports from a function and from kwds.

Also sets globals and adds path to module to sys path.

	Parameters

	
	function (callable) – A function handle

	kwds (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – A dictionary of keyword arguments

	Returns

	imports + sys.path.append for module path

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list]

	
fyrd.run.export_run(function, args, kwargs)

	Execute a function after first exporting all imports.

	
fyrd.run.file_getter(file_strings, variables, extra_vars=None, max_count=None)

	Get a list of files and variable values using the search string.

The file strings can contain standard unix glob (like *) and variable
containing strings in the form {name}.

For example, a file_string of {dir}/*.txt will match every file that
ends in .txt in every directory relative to the current path.

The result for a directory name test with two files named 1.txt and 2.txt
is a list of:

[(('dir/1.txt'), {'dir': 'test'}),
 (('dir/2.txt'), {'dir': 'test'})]

This is repeated for every file_string in file_strings, and the following
tests are done:

	All file_strings must result in identical numbers of files

	All variables must have only a single value in every file string

If there are multiple file_strings, they are added to the result x in
order, but the dictionary remains the same as variables must be shared. If
multiple file_strings are provided the results are combined by alphabetical
order.

	Parameters

	
	file_strings (list of str) – List of search strings, e.g. */*, */*.txt, {dir}/*.txt or
{dir}/{file}.txt

	variables (list of str) – List of variables to look for

	extra_vars (list of str, optional) – A list of additional variables specified in a very precise format:

new_var:orig_var:regex:sub_str

or

new_var:value

The orig_var must correspond to a variable in variables. var will be
generated by running re.sub(regex, sub_str, string) where string is
the result of orig_var for the given file set

	max_count (int [https://docs.python.org/3.6/library/functions.html#int], optional) – Max number of file_strings to parse, default is all.

	Returns

	A list of files. Each list item will be a two-item tuple of
(files, variables). Files will be a tuple with the same length as
max_count, or file_strings if max_count is None. Variables will be
a dictionary of all variables and extra_vars for this file set. e.g.:

[((file1, dir1, file2), {var1: val, var2: val})]

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list]

	Raises

	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – Raised if any of the above tests are not met.

	
fyrd.run.file_type(infile)

	Return file type after stripping gz or bz2.

	
fyrd.run.get_all_imports(function, kwds, prot=False)

	Get all imports from a function and from kwds.

	Parameters

	
	function (callable) – A function handle

	kwds (dict [https://docs.python.org/3.6/library/stdtypes.html#dict]) – A dictionary of keyword arguments

	prot (bool [https://docs.python.org/3.6/library/functions.html#bool]) – Wrap all import in try statement

	Returns

	Imports

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list]

	
fyrd.run.get_function_path(function)

	Return path to module defining a function if it exists.

	
fyrd.run.get_imports(function, mode='string')

	Build a list of potentially useful imports from a function handle.

Gets:

	All modules from globals()

	All modules from the function’s globals()

	All functions from the function’s globals()

Modes:

	string:

	Return a list of strings formatted as unprotected import calls

	prot:

	Similar to string, but with try..except blocks

	list:

	Return two lists: (import name, module name) for modules and (import
name, function name, module name) for functions

	Parameters

	
	function (callable) – A function handle

	mode (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – A string corresponding to one of the above modes

	Returns

	

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] or list [https://docs.python.org/3.6/library/stdtypes.html#list]

	
fyrd.run.get_input(message, valid_answers=None, default=None)

	Get input from the command line and check answers.

Allows input to work with python 2/3

	Parameters

	
	message (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – A message to print, an additional space will be added.

	valid_answers (list [https://docs.python.org/3.6/library/stdtypes.html#list]) – A list of answers to accept, if None, ignored. Case insensitive. There
is one special option here: ‘yesno’, this allows all case insensitive
variations of y/n/yes/no.

	default (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – The default answer.

	Returns

	response

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
fyrd.run.get_pbar(iterable, name=None, unit=None, **kwargs)

	Return a tqdm progress bar iterable.

If progressbar is set to False in the config, will not be shown.

	
fyrd.run.get_yesno(message, default=None)

	Get yes/no answer from user.

	Parameters

	
	message (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – A message to print, an additional space will be added.

	default ({'y', 'n'}, optional) – One of {‘y’, ‘n’}, the default if the user gives no answer. If None,
answer forced.

	Returns

	True on yes, False on no

	Return type

	bool [https://docs.python.org/3.6/library/functions.html#bool]

	
fyrd.run.import_function(function, mode='string')

	Return an import string for the function.

Attempts to resolve the parent module also, if the parent module is a file,
ie it isn’t __main__, the import string will include a call to
sys.path.append to ensure the module is importable.

If this function isn’t defined by a module, returns an empty string.

	Parameters

	mode ({'string', 'list'}, optional) – string/list, return as a unified string or a list.

	
fyrd.run.indent(string, prefix=' ')

	Replicate python3’s textwrap.indent for python2.

	Parameters

	
	string (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Any string.

	prefix (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – What to indent with.

	Returns

	Indented string

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str]

	
fyrd.run.is_exc(x)

	Check if x is the output of sys.exc_info().

	Returns

	True if matched the output of sys.exc_info().

	Return type

	bool [https://docs.python.org/3.6/library/functions.html#bool]

	
fyrd.run.is_exe(fpath)

	Return True is fpath is executable.

	
fyrd.run.is_file_type(infile, types)

	Return True if infile is one of types.

	Parameters

	
	infile (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Any file name

	types (list [https://docs.python.org/3.6/library/stdtypes.html#list]) – String or list/tuple of strings (e.g [‘bed’, ‘gtf’])

	Returns

	is_file_type

	Return type

	bool [https://docs.python.org/3.6/library/functions.html#bool]

	
fyrd.run.listify(iterable)

	Try to force any iterable into a list sensibly.

	
fyrd.run.merge_lists(lists)

	Turn a list of lists into a single list.

	
fyrd.run.normalize_imports(imports, prot=True)

	Take a heterogenous list of imports and normalize it.

	Parameters

	
	imports (list [https://docs.python.org/3.6/library/stdtypes.html#list]) – A list of strings, formatted differently.

	prot (bool [https://docs.python.org/3.6/library/functions.html#bool]) – Protect imports with try..except blocks

	Returns

	A list of strings that can be used for imports

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list]

	
fyrd.run.open_zipped(infile, mode='r')

	Open a regular, gzipped, or bz2 file.

If infile is a file handle or text device, it is returned without
changes.

	Returns

	

	Return type

	text mode file handle.

	
fyrd.run.opt_split(opt, split_on)

	Split options by chars in split_on, merge all into single list.

	Parameters

	
	opt (list [https://docs.python.org/3.6/library/stdtypes.html#list]) – A list of strings, can be a single string.

	split_on (list [https://docs.python.org/3.6/library/stdtypes.html#list]) – A list of characters to use to split the options.

	Returns

	A single merged list of split options, uniqueness guaranteed, order
not.

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list]

	
fyrd.run.parse_glob(string, get_vars=None)

	Return a list of files that match a simple regex glob.

	Parameters

	
	string (str [https://docs.python.org/3.6/library/stdtypes.html#str]) –

	get_vars (list [https://docs.python.org/3.6/library/stdtypes.html#list]) – A list of variable names to search for. The string must contain these
variables in the form {variable}. These variables will be temporarily
replaced with a * and then run through glob.glob to generate a list
of files. This list is then parsed to create the output.

	Returns

	Keys are all files that match the string, values are None if get_vars
is not passed. If get_vars is passed, the values are dictionaries
of {‘variable’: ‘result’}. e.g. for {name}.txt and hi.txt:

{hi.txt: {name: 'hi'}}

	Return type

	dict [https://docs.python.org/3.6/library/stdtypes.html#dict]

	Raises

	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – If blank or numeric variable names are used or if get_vars returns
multiple different names for a file.

	
fyrd.run.replace_argument(args, find_string, replace_string, error=True)

	Replace find_string with replace string in a tuple or dict.

If dict, the values are replaced, not the keys.

Note: args can also be a list, in which case the first item is assumed
to be a tuple, and the second a dictionary

	Parameters

	
	args (list/tuple/dict) – Tuple or dict of args

	find_string (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – A string to search for

	replace_string (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – A string to replace with

	error (bool [https://docs.python.org/3.6/library/functions.html#bool]) – Raise ValueError if replacement fails

	Returns

	

	Return type

	The same object as was passed, with alterations made.

	
fyrd.run.split_file(infile, parts, outpath='', keep_header=False)

	Split a file in parts and return a list of paths.

Note

Linux specific (uses wc).

If has_header is True, the top line is stripped off the infile prior to
splitting and assumed to be the header.

	Parameters

	
	outpath (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – The directory to save the split files.

	keep_header (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – Add the header line to the top of every file.

	Returns

	Paths to split files.

	Return type

	list [https://docs.python.org/3.6/library/stdtypes.html#list]

	
fyrd.run.string_getter(string)

	Parse a string for {}, {#}, and {string}.

	Parameters

	string (str [https://docs.python.org/3.6/library/stdtypes.html#str]) –

	Returns

	
	ints (set) – A set of ints containing all {#} values

	vrs (set) – A set of {string} values

	Raises

	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – If both {} and {#} are passed

	
fyrd.run.syspath_fmt(syspaths)

	Take a list of paths and return a sys of sys.path.append strings.

	
fyrd.run.update_syspaths(function, kwds=None)

	Add function path to ‘syspaths’ in kwds.

	
fyrd.run.which(program)

	Replicate the UNIX which command.

	Taken verbatim from:

	stackoverflow.com/questions/377017/test-if-executable-exists-in-python

	Parameters

	program (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – Name of executable to test.

	Returns

	Path to the program or None on failure.

	Return type

	str [https://docs.python.org/3.6/library/stdtypes.html#str] or None

	
fyrd.run.write_iterable(iterable, outfile)

	Write all elements of iterable to outfile.

fyrd.logme

This is a package I wrote myself and keep using because I like it. It provides
syslog style leveled logging (e.g. ‘debug’->’info’->’warn’->’error’->’critical’)
and it implements colors and timestamped messages.

The minimum print level can be set module wide at runtime by changing
cluster.logme.MIN_LEVEL.

	
fyrd.logme.log(message, level='info', logfile=None, also_write=None, min_level=None, kind=None)

	Print a string to logfile.

Levels display as:

verbose: <timestamp> VERBOSE -->
debug: <timestamp> DEBUG -->
info: <timestamp> INFO -->
warn: <timestamp> WARNING -->
error: <timestamp> ERROR -->
critical: <timestamp> CRITICAL -->

	Parameters

	
	message (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – The message to print.

	logfile (file or logging object, optional) – Optional file to log to, defaults to STDERR. Can provide a logging
object

	level ({'debug', 'info', 'warn', 'error', 'normal'}, optional) – Will only print if level > MIN_LEVEL

	also_write ({'stdout', 'stderr'}, optional) – Print to STDOUT or STDERR also.
These only have an effect if the output is not already set to the same
device.

	min_level (str [https://docs.python.org/3.6/library/stdtypes.html#str], deprecated) – Retained for backwards compatibility, min_level should be set using the
logme.MIN_LEVEL constant.

	kind (str [https://docs.python.org/3.6/library/stdtypes.html#str], deprecated) – synonym for level, kept to retain backwards compatibility

Logging with timestamps and optional log files.

Print a timestamped message to a logfile, STDERR, or STDOUT.

If STDERR or STDOUT are used, colored flags are added. Colored flags are INFO,
WARNINING, ERROR, or CRITICAL.

It is possible to write to both logfile and STDOUT/STDERR using the also_write
argument.

If level is ‘error’ or ‘critical’, error is written to STDERR unless also_write
== -1

MIN_LEVEL can also be provided, logs will only print if vlevel > MIN_LEVEL.
Level order: critical>error>warn>info>debug>verbose

Usage:

import logme as lm
lm.log("Screw up!", <outfile>,
 level='debug'|'info'|'warn'|'error'|'normal',
 also_write='stderr'|'stdout')

Example:

lm.log('Hi')
Prints: 20160223 11:46:24.969 | INFO --> Hi
lm.log('Hi', level='debug')
Prints nothing
lm.MIN_LEVEL = 'debug'
lm.log('Hi', level='debug')
Prints: 20160223 11:46:24.969 | DEBUG --> Hi

Note: Uses terminal colors and STDERR, not compatible with non-unix systems

	
fyrd.logme.log(message, level='info', logfile=None, also_write=None, min_level=None, kind=None)

	Print a string to logfile.

Levels display as:

verbose: <timestamp> VERBOSE -->
debug: <timestamp> DEBUG -->
info: <timestamp> INFO -->
warn: <timestamp> WARNING -->
error: <timestamp> ERROR -->
critical: <timestamp> CRITICAL -->

	Parameters

	
	message (str [https://docs.python.org/3.6/library/stdtypes.html#str], optional) – The message to print.

	logfile (file or logging object, optional) – Optional file to log to, defaults to STDERR. Can provide a logging
object

	level ({'debug', 'info', 'warn', 'error', 'normal'}, optional) – Will only print if level > MIN_LEVEL

	also_write ({'stdout', 'stderr'}, optional) – Print to STDOUT or STDERR also.
These only have an effect if the output is not already set to the same
device.

	min_level (str [https://docs.python.org/3.6/library/stdtypes.html#str], deprecated) – Retained for backwards compatibility, min_level should be set using the
logme.MIN_LEVEL constant.

	kind (str [https://docs.python.org/3.6/library/stdtypes.html#str], deprecated) – synonym for level, kept to retain backwards compatibility

Change Log

Version 0.6.211

This version adds bugfixes and stability over version 0.6.2a1.

Version 0.6.2a1

This version brings a major overhaul to the structure of the code, while leaving the
API mostly intact.

Major Changes

	Batch system definitions now fully modular and are contained in the fyrd.batch_systems
package. options.py has also been moved into this package, which allows any programmer
to add a new batch system definition to fyrd by just editing the contents of that small
subpackaged

	Updated console script to allow running arbitrary shell scripts on the console with
fyrd run or submitting any number of existing job files using fyrd sub. Added the
new alias scripts frun and fsub for those new modes also. Both new modes will accept
the --wait argument, meaning that they will block until the jobs complete.

	Documentation overhauled to update API and add instructions on creating a new batch system,
these instructions are duplicated in the README within the batch_systems package folder.

	Local support temporarily removed. It didn’t work very well, and it broke the new
batch system structure, I hope to add it back again shortly.

	Full support for array job parsing for both torque and slurm. We now create on job entry
for each array job child, instead of for each array job. To manage this, the
fyrd.queue.Queue.QueueJob class was moved to fyrd.queue.QueueJob and split to add a
child class, fyrd.queue.QueueChild. All array jobs not have one fyrd.queue.QueueJob
job, plus one fyrd.queue.QueueChild job for each of their children, which are stored
in the children dictionary in the fyrd.queue.QueueJob class.

	Added a get method to the fyrd.queue.Queue class to allow a user to get outputs from
a list of jobs, loops continuously through the jobs so that jobs are not lost.

	Added tqdm [https://pypi.python.org/pypi/tqdm] as a requirement and enabled progressbars
in multi-job wait and get

Minor Changes

	Updated the documentation to include this changelog, which will only contain change information
for version 0.6.2a1 onwards.

	Added additional tests to cover the new changes as well as generally increase test suite
coverage.

	Several small bug fixes

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 fyrd	

 	
 	
 fyrd.logme	

 	
 	
 fyrd.run	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

A

 	
 	active_job_count (fyrd.queue.Queue attribute), [1]

 	
 	args (fyrd.Job attribute)

 	array_job (fyrd.queue.QueueJob attribute)

B

 	
 	bad (fyrd.queue.Queue attribute)

 	
 	block_read() (in module fyrd.run)

C

 	
 	can_submit (fyrd.queue.Queue attribute), [1]

 	check_arguments() (in module fyrd.batch_systems.options)

 	check_dependencies() (fyrd.queue.Queue method)

 	check_pid() (in module fyrd.run)

 	check_queue() (in module fyrd.batch_systems)

 	children (fyrd.queue.QueueJob attribute)

 	clean() (fyrd.Job method)

 	(fyrd.job.Job method)

 	(fyrd.submission_scripts.Function method)

 	(fyrd.submission_scripts.Script method)

 	(in module fyrd.basic)

 	
 	clean_dir() (in module fyrd.basic)

 	clean_files (fyrd.Job attribute)

 	clean_outputs (fyrd.Job attribute)

 	cmd() (in module fyrd.run)

 	cmd_or_file() (in module fyrd.run)

 	command (fyrd.Job attribute)

 	CommandError

 	count_lines() (in module fyrd.run)

 	create_config() (in module fyrd.conf)

 	create_config_interactive() (in module fyrd.conf)

 	CustomFormatter (class in fyrd.run)

D

 	
 	delete() (in module fyrd.conf)

 	dependencies (fyrd.Job attribute)

 	
 	disappeared (fyrd.queue.QueueChild attribute)

 	(fyrd.queue.QueueJob attribute)

 	done (fyrd.Job attribute)

E

 	
 	end (fyrd.Job attribute)

 	exists (fyrd.submission_scripts.Script attribute)

 	exitcode (fyrd.Job attribute)

 	(fyrd.queue.QueueChild attribute)

 	(fyrd.queue.QueueJob attribute)

 	
 	exp_file() (in module fyrd.run)

 	export_globals() (in module fyrd.run)

 	export_imports() (in module fyrd.run)

 	export_run() (in module fyrd.run)

F

 	
 	fetch_outputs() (fyrd.job.Job method)

 	file_getter() (in module fyrd.run)

 	file_type() (in module fyrd.run)

 	files (fyrd.Job attribute)

 	
 	finished (fyrd.queue.Queue attribute)

 	Function (class in fyrd.submission_scripts)

 	fyrd.logme (module)

 	fyrd.run (module)

G

 	
 	gen_scripts() (fyrd.Job method)

 	(fyrd.job.Job method)

 	get() (fyrd.Job method)

 	(fyrd.job.Job method)

 	(fyrd.queue.Queue method), [1]

 	get_all_imports() (in module fyrd.run)

 	get_batch_system() (in module fyrd.batch_systems)

 	get_cluster_environment() (in module fyrd.batch_systems)

 	get_exitcode() (fyrd.job.Job method)

 	get_function_path() (in module fyrd.run)

 	get_imports() (in module fyrd.run)

 	
 	get_input() (in module fyrd.run)

 	get_jobs() (fyrd.queue.Queue method), [1]

 	get_keywords() (fyrd.job.Job method)

 	get_option() (in module fyrd.conf)

 	get_output() (fyrd.job.Job method)

 	get_pbar() (in module fyrd.run)

 	get_profile() (in module fyrd.conf)

 	get_stderr() (fyrd.job.Job method)

 	get_stdout() (fyrd.job.Job method)

 	get_times() (fyrd.job.Job method)

 	get_user_jobs() (fyrd.queue.Queue method), [1]

 	get_yesno() (in module fyrd.run)

I

 	
 	id (fyrd.Job attribute)

 	(fyrd.queue.QueueChild attribute)

 	(fyrd.queue.QueueJob attribute)

 	import_function() (in module fyrd.run)

 	indent() (in module fyrd.run)

 	
 	initialize() (fyrd.Job method)

 	(fyrd.job.Job method)

 	is_exc() (in module fyrd.run)

 	is_exe() (in module fyrd.run)

 	is_file_type() (in module fyrd.run)

J

 	
 	Job (class in fyrd)

 	job_states (fyrd.queue.Queue attribute), [1]

 	
 	jobify() (in module fyrd.helpers)

 	jobs (fyrd.queue.Queue attribute)

K

 	
 	kill() (fyrd.Job method)

 	kwargs (fyrd.Job attribute)

 	
 	kwds (fyrd.conf.Profile attribute)

 	(fyrd.Job attribute)

L

 	
 	listify() (in module fyrd.run)

 	
 	load_config() (in module fyrd.conf)

 	log() (in module fyrd.logme), [1]

M

 	
 	make_job() (in module fyrd.basic)

 	make_job_file() (in module fyrd.basic)

 	
 	max_jobs (fyrd.queue.Queue attribute)

 	merge_lists() (in module fyrd.run)

 	modules (fyrd.Job attribute)

N

 	
 	name (fyrd.conf.Profile attribute)

 	(fyrd.Job attribute)

 	(fyrd.queue.QueueChild attribute)

 	(fyrd.queue.QueueJob attribute)

 	
 	nodes (fyrd.Job attribute)

 	(fyrd.queue.QueueChild attribute)

 	(fyrd.queue.QueueJob attribute)

 	normalize_imports() (in module fyrd.run)

O

 	
 	open_zipped() (in module fyrd.run)

 	opt_split() (in module fyrd.run)

 	option_help() (in module fyrd.batch_systems.options)

 	option_to_string() (in module fyrd.batch_systems.options)

 	
 	options_to_string() (in module fyrd.batch_systems.options)

 	out (fyrd.Job attribute)

 	owner (fyrd.queue.QueueChild attribute)

 	(fyrd.queue.QueueJob attribute)

P

 	
 	parapply() (in module fyrd.helpers)

 	parapply_summary() (in module fyrd.helpers)

 	
 	parent (fyrd.queue.QueueChild attribute)

 	parse_glob() (in module fyrd.run)

 	Profile (class in fyrd.conf)

Q

 	
 	Queue (class in fyrd.queue)

 	queue (fyrd.queue.QueueChild attribute)

 	(fyrd.queue.QueueJob attribute)

 	
 	QueueChild (class in fyrd.queue)

 	QueueError

 	QueueJob (class in fyrd.queue)

R

 	
 	replace_argument() (in module fyrd.run)

 	resubmit() (fyrd.Job method)

 	(fyrd.job.Job method)

 	
 	running (fyrd.Job attribute)

 	runtime (fyrd.Job attribute)

S

 	
 	sanitize_arguments() (in module fyrd.batch_systems.options)

 	Script (class in fyrd.submission_scripts)

 	scrub() (fyrd.Job method)

 	(fyrd.job.Job method)

 	set_keywords() (fyrd.job.Job method)

 	set_option() (in module fyrd.conf)

 	set_profile() (in module fyrd.conf)

 	split_file() (in module fyrd.run)

 	split_keywords() (in module fyrd.batch_systems.options)

 	splitrun() (in module fyrd.helpers)

 	start (fyrd.Job attribute)

 	state (fyrd.Job attribute)

 	(fyrd.queue.QueueChild attribute)

 	(fyrd.queue.QueueJob attribute)

 	
 	stderr (fyrd.Job attribute)

 	stdout (fyrd.Job attribute)

 	string_getter() (in module fyrd.run)

 	submit() (fyrd.Job method)

 	(fyrd.job.Job method)

 	(in module fyrd.basic)

 	submit_args (fyrd.Job attribute)

 	submit_file() (in module fyrd.basic)

 	submit_time (fyrd.Job attribute)

 	submitted (fyrd.Job attribute)

 	syspath_fmt() (in module fyrd.run)

T

 	
 	test_job_in_queue() (fyrd.queue.Queue method)

 	
 	threads (fyrd.queue.QueueChild attribute)

 	(fyrd.queue.QueueJob attribute)

U

 	
 	update() (fyrd.Job method)

 	(fyrd.job.Job method)

 	(fyrd.queue.Queue method), [1]

 	
 	update_queue_info() (fyrd.job.Job method)

 	update_syspaths() (in module fyrd.run)

 	users (fyrd.queue.Queue attribute)

W

 	
 	wait() (fyrd.Job method)

 	(fyrd.job.Job method)

 	(fyrd.queue.Queue method), [1]

 	wait_to_submit() (fyrd.queue.Queue method), [1]

 	which() (in module fyrd.run)

 	write() (fyrd.conf.Profile method)

 	(fyrd.Job method)

 	(fyrd.job.Job method)

 	(fyrd.submission_scripts.Function method)

 	(fyrd.submission_scripts.Script method)

 	
 	write_config() (in module fyrd.conf)

 	write_iterable() (in module fyrd.run)

 	written (fyrd.Job attribute)

depends
clean_files
clean_outputs
cores
modules
syspaths
scriptpath
outpath
runpath
suffix
outfile
errfile
imports
nodes
features
qos
time
mem
partition
account
export
begin

Common: Used in every mode

	Option

	Description

	Type

	Default

	depends

	A job or list of jobs to depend on

	list

	None

	clean_files

	Auto clean script files when fetching outputs

	bool

	None

	clean_outputs

	Auto clean output files when fetching outputs

	bool

	None

	cores

	Number of cores to use for the job

	int

	1

	modules

	Modules to load with the module load command

	list

	None

	syspaths

	Paths to add to _sys.path for submitted functions

	list

	None

	scriptpath

	Folder to write cluster script files to, must be accessible to the compute nodes.

	str

	.

	outpath

	Folder to write cluster output files to, must be accessible to the compute nodes.

	str

	.

	runpath

	The working directory for the job

	str

	.

	suffix

	A suffix to append to job files (e.g. job.suffix.qsub)

	str

	cluster

	outfile

	File to write STDOUT to

	str

	None

	errfile

	File to write STDERR to

	str

	None

Func: Used for function calls

	Option

	Description

	Type

	Default

	imports

	Imports to be used in function calls (e.g. sys, os)

	list

	None

Cluster: Options that work in both slurm and torque

	Option

	Description

	Type

	Default

	nodes

	Number of nodes to request

	int

	1

	features

	A comma-separated list of node features to require

	list

	None

	qos

	A quality of service to require

	str

	None

	time

	Walltime in HH:MM:SS

	str

	12:00:00

	mem

	Memory to use in MB (e.g. 4000)

	[‘int’, ‘str’]

	4000

	partition

	The partition/queue to run in (e.g. local/batch)

	str

	None

	account

	Account to be charged

	str

	None

	export

	Comma separated list of environmental variables to export

	str

	None

Slurm: Used for slurm only

	Option

	Description

	Type

	Default

	begin

	Start after this much time

	str

	None

Synonyms

	Synonym

	Option

	depend

	depends

	dependency

	depends

	dependencies

	depends

	stdout

	outfile

	stderr

	errfile

	queue

	partition

	memory

	mem

	cpus

	cores

	threads

	cores

	walltime

	time

	delete_files

	clean_files

	delete_outputs

	clean_outputs

	filedir

	scriptpath

	filepath

	scriptpath

	dir

	runpath

	path

	runpath

	paths

	syspaths

	syspath

	syspaths

	scriptdir

	scriptpath

	cleanfiles

	clean_files

	delfiles

	clean_files

	cleanouts

	clean_outputs

	delouts

	clean_outputs

	deloutputs

	clean_outputs

	cleanoutputs

	clean_outputs

Keyword Arguments

To make submission easier, this module defines a number of keyword arguments in
the options.py file that can be used for all submission and Job() functions.
These include things like ‘cores’ and ‘nodes’ and ‘mem’.

The following is a complete list of arguments that can be used in this version

depends
clean_files
clean_outputs
cores
modules
syspaths
scriptpath
outpath
runpath
suffix
outfile
errfile
imports
nodes
features
qos
time
mem
partition
account
export
begin

Note: Type is enforced, any provided argument must match that python type
(automatic conversion is attempted), the default is just a recommendation and is
not currently used. These arguments are passed like regular arguments to the
submission and Job() functions, eg:

Job(nodes=1, cores=4, mem='20MB')

This will be interpretted correctly on any system. If torque or slurm are not
available, any cluster arguments will be ignored. The module will attempt to
honor the cores request, but if it exceeds the maximum number of cores on the
local machine, then the request will be trimmed accordingly (i.e. a 50 core
request will become 8 cores on an 8 core machine).

Adding your own keywords

There are many more options available for torque and slurm, to add your own,
edit the options.py file, and look for CLUSTER_OPTS (or TORQUE/SLURM if your
keyword option is only availble on one system). Add your option using the same
format as is present in that file. The format is:

('name', {'slurm': '--option-str={}', 'torque': '--torque-option={}',
 'help': 'This is an option!', 'type': str, 'default': None})

You can also add list options, but they must include ‘sjoin’ and ‘tjoin’ keys to
define how to merge the list for slurm and torque, or you must write custom
option handling code in fyrd.options.options_to_string(). For an
excellent example of both approaches included in a single option, see the
‘features’ keyword above.

Fyrd’s Documentation

Python job submission on torque and slurm clusters with dependency tracking.

[image: fyrd cluster logo— a Saxon shield remeniscent of those used in fyrds]
 [https://fyrd.readthedocs.org]Allows simple job submission with dependency tracking and queue waiting on
either torque, slurm, or locally with the multiprocessing module. It uses simple
techniques to avoid overwhelming the queue and to catch bugs on the fly.

It is routinely tested on Mac OS and Linux with slurm and torque clusters, or in
the absence of a cluster, on Python versions 2.7.10, 2.7.11, 2.7.12, 3.3.0, 3.4.0,
3.5.2, 3.6.2, and 3.7-dev. The full test suite is available in the tests folder.

Fyrd is pronounced ‘feared’ (sort of), it is an Anglo-Saxon term for an army,
particularly an army of freemen (in this case an army of compute nodes). The
logo is based on a Saxon shield commonly used by these groups. This software
was formerly known as ‘Python Cluster’.

The code is hosted at github:
https://github.com/MikeDacre/fyrd

To install, use PyPI [https://pypi.python.org/pypi/fyrd]:

pip install fyrd
fyrd conf init

Contents:

	Getting Started
	Simple Job Submission

	Functions
	Possible Infinate Recursion Error

	Using the Jobify Decorator

	File Submission

	Keywords

	Profiles

	Configuration

	Keyword Arguments
	Adding your own keywords

	Console Scripts
	fyrd
	Emailing

	Examples

	All Options

	Aliases

	Advanced Usage
	The Job Class
	Script File Handling

	Job Output Handling and Retrieval

	Job Files

	Helpers
	Decorator

	Pandas

	Running on a split file

	Queue Management

	Config

	Logging

	Adding Batch Systems
	Options
	Batch Script

	Constants

	Functions

	Summary

	API Reference
	fyrd.queue
	fyrd.queue.Queue

	fyrd.queue Jobs

	fyrd.queue.QueueError

	fyrd.job
	fyrd.job.Job

	fyrd.submission_scripts

	fyrd.batch_systems
	fyrd.batch_systems functions

	fyrd.batch_systems.options

	fyrd.conf
	config

	profiles

	fyrd.helpers

	fyrd.basic

	fyrd.run

	fyrd.logme

	Change Log
	Version 0.6.211

	Version 0.6.2a1
	Major Changes

	Minor Changes

 _static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_images/ns7Wnzv.png
fyrd

nav.xhtml

 Table of Contents

 		
 Fyrd’s Documentation

 		
 Getting Started

 		
 Simple Job Submission

 		
 Functions

 		
 Possible Infinate Recursion Error

 		
 Using the Jobify Decorator

 		
 File Submission

 		
 Keywords

 		
 Profiles

 		
 Configuration

 		
 Keyword Arguments

 		
 Common: Used in every mode

 		
 Func: Used for function calls

 		
 Cluster: Options that work in both slurm and torque

 		
 Slurm: Used for slurm only

 		
 Synonyms

 		
 Adding your own keywords

 		
 Console Scripts

 		
 fyrd

 		
 Emailing

 		
 Examples

 		
 All Options

 		
 Aliases

 		
 Advanced Usage

 		
 The Job Class

 		
 Script File Handling

 		
 Job Output Handling and Retrieval

 		
 Job Files

 		
 Helpers

 		
 Decorator

 		
 Pandas

 		
 Running on a split file

 		
 Queue Management

 		
 Config

 		
 Logging

 		
 Adding Batch Systems

 		
 Options

 		
 Batch Script

 		
 Constants

 		
 Functions

 		
 Summary

 		
 API Reference

 		
 fyrd.queue

 		
 fyrd.queue.Queue

 		
 fyrd.queue Jobs

 		
 fyrd.queue.QueueError

 		
 fyrd.job

 		
 fyrd.job.Job

 		
 fyrd.submission_scripts

 		
 fyrd.batch_systems

 		
 fyrd.batch_systems functions

 		
 fyrd.batch_systems.options

 		
 fyrd.conf

 		
 config

 		
 profiles

 		
 fyrd.helpers

 		
 fyrd.basic

 		
 fyrd.run

 		
 fyrd.logme

 		
 Change Log

 		
 Version 0.6.211

 		
 Version 0.6.2a1

 		
 Major Changes

 		
 Minor Changes

 		
 Indices and tables

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

