

Unit Tests for your Network

Any developer worth their salt tests their software. The benefits are many:

	Exercise the code

	Reduce ambiguity by stating the desired behaviors twice (in the
implementation, in the tests, and maybe even a third time in the
documentation)

	Enable code refactoring without changing expected behavior

With fwunit, you can do the same for security policies on your network.

Contents

	Principle of Operation

	Installation

	Processing Policies
	Configuration File

	Application Maps

	Supported Policy Types
	Amazon EC2 Security Groups

	Juniper SRX

	Policy Combiner

	Querying

	Diffing

	Writing Tests
	Example

	Loading Rules

	IPs and IPSets

	Tests

	Utility Methods

	Implementation Notes
	IP Objects

	Rules

	Loading Source Objects

	Using Source Objects

Principle of Operation

Testing policies is a two-part operation: first fetch and process the data from
all of the applicable devices, constructing a set of rules. Then run the
tests against the rules.

This package handles the first part entirely, and provides a set of utility
functions you can use in your tests. You can write tests using whatever Python
testing framework you like. We recommend nose [http://nose.readthedocs.org/].

Installation

To install, set up a Python virtualenv [https://virtualenv.pypa.io/] and then run

pip install fwunit[srx,aws]

where the bit in brackets lists the systems you’d like to process (see Supported Policy Types).

Processing Policies

To gather data about your network flows, you will need to define one or more “sources” in a configuration file.
Each source describes a set of flow configurations for fwunit to convert into its internal representation and store.
For example, you might define one source for each distinct firewall in your organization, or for each distinct AWS account.

You’ll then run fwunit in the directory containing the configuration file, and it will process the policies from each source and write them to disk, ready for analysis.

You can pass one or more source names to fwunit to only process those sources.
Otherwise it processes all sources, ordered by their dependencies.

Configuration File

The fwunit command processes a YAML-formatted configuration file describing a set of “sources” of rule data.
Each top-level key describes a source, and must have a type field giving the type of data to be read – see “Supported Systems”, above.

aws_releng:
 type: aws
 output: aws_releng.json
 dynamic_subnets: [build, test, try, build.servo, bb]
 regions: [us-east-1, us-west-1, us-west-2]

Each must also have an output field giving the filename to write the generated rules to (relative to the configuration file).

The source may optionally have a require field giving a list of other sources which should be processed first.

Any additional fields are passed to the policy-type plugin.
See the documentation of those plugins for more information.

Application Maps

Each policy type comes with its own way of naming applications: strings,
protocol/port numbers, etc.

An “application map” is used to map these type-specific names to common names.
This is invaluable if you are combining policies from multiple types, e.g., AWS
and SRX.

To set this up, add an application-map key to the source configuration, with
a mapping from type name to common name. For example:

Note that you cannot combine multiple applications into one using an
application map, as this might result in overlapping rules.

Supported Policy Types

fwunit can read policies from several sources:

	Amazon EC2 Security Groups

	Juniper SRX

	Policy Combiner

Amazon EC2 Security Groups

Setup

Install fwunit with the aws tag:

pip install fwunit[aws]

Set up your ~/.boto with an account that has access to EC2 and VPC
administrative information.

In your source configuration, include dynamic_subnets listing the names or
id’s of all dynamic subnets (see below). Also include a regions field
listing the regions in which you have hosts.

You can include the credentials for an IAM user in the configuration. If this
is omitted, boto’s normal credential search process will apply, including
searching ~/.boto and instance role credentials.

my_aws_stuff:
 type: aws
 output: my_aws_stuff.pkl
 dynamic_subnets: [workers]
 regions: [us-east-1, us-west-1]
 credentials:
 access_key: "ACCESS KEY"
 secret_key: "SECRET KEY"

Security Policy

The user accessing Amazon should have the following security policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeInstances",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups"
],
 "Resource": "*"
 }
]
}

Assumptions

This processing makes some assumptions about your EC2 layout. These worked for
us in Mozilla Releng, but may not work for you.

	Network ACLs are not in use

	All traffic is contained in subnets in one or more VPCs.

	Each subnet is either per-host or dynamic, as described below.

	All traffic from unoccupied IPs in per-host subnets is implicitly permitted.

	Subnets with the same name are configured identically. Such subnets are
often configured to achieve AZ/region separation.

The Release Engineering AWS environment contains two types of instances, which
always appear in different subnets. Long-lived instances sit at a single IP
for a long time, acting like traditional servers. The subnets holding such
instances are considered “per-host” subnets, and the destination IPs for
fwunit rules are determined by examining the IP addresses and security groups
of the instances in the subnets. All traffic to IPs not assigned to an
instance is implicitly denied.

The instances that perform build, test, and release tasks are transient,
created and destroyed as economics and load warrant. Subnets containing such
instances are considered “dynamic”, and a security group that applies to any
instance in the subnet is assumed to apply to the subnet’s entire CIDR block.
This means that these subnets must contain at least one active host.

Juniper SRX

This source type uses SSH with a username and password to connect to a Juniper SRX firewall.
It only runs ‘show’ commands, so read-only access is adequate.

Setup

Install fwunit with the srx tag:

pip install fwunit[aws]

Add a source to your fwunit.yaml looking like this:

myfirewall:
 type: srx
 output: myfirewall.pkl
 firewall: fw1.releng.scl3.mozilla.com
 ssh_username: fwunit
 ssh_password: sekr!t

The firewall config gives a hostname (or IP) of the firewall that accepts SSH connections.
ssh_username and ssh_password are the credentials for the account.

The process of downloading and processing policies can be very slow, depending on the complexity of your policies.

Assumptions

This processing makes the following assumptions about your network

	Rule IPs are limited by the to- and from-zones of the original policy, so
given a “from any” policy with from-zone ABC, the resulting rule’s src
will be ABC’s IP space, not 0.0.0.0/0. Zone spaces are determined from the
route table, and thus assume symmetrical forwarding.

	All directly-connected networks are considered to permit all traffic within
those networks, on the assumption that the network is an open L2 subnet.

	Policies allowing application “any” are expanded to include every
application mentioned in any policy.

Policy Combiner

A large organization will have multiple policy sources, perhaps in different
regions or of different types. Before you can write tests and reason about the
overall flows, these must be combined into a single rule set.

In most cases, each policy source has a set of IP addresses for which it is
responsible for controlling access. It controls both incoming and outgoing
traffic in this space, but does not see traffic between addresses not in this
space.

To combine policy sources, create a combine source, requiring the sources it
combines. Give the IP space for each source, and specify an output file:

enterprise:
 type: combine
 require: [dca, nyc, ord]
 address_spaces:
 dca: [10.10.0.0/16, 10.15.0.0/14]
 ord: 192.168.0.0/24
 nyc: 172.16.1.0/24

Assumptions

	Traffic is only filtered at the source and destination

	Any traffic beteween IPs not in any defined address space is forbidden (more
likely, such traffic is not interesting)

Querying

Aside from writing unit tests, you can query against a rule source with fwunit-query.

For example:

fwunit-query enterprise permitted 10.10.1.1 192.168.1.1 ssh
Flow permitted

See the script’s --help for more detail.

Diffing

Two compare two rulesets, use fwunit-diff.
For example:

$ fwunit-diff yesterday.json my-network
+ ssh IPSet([IP('172.16.3.0/24')]) -> IPSet([IP('10.90.110.0/23')])

The two sources for comparison can be the names of sources defined in fwunit.yaml, or filenames (e.g., to backup copies).

Writing Tests

Flow tests are just like software unit tests: they make assertions about the state of the system under test.
In the case of flow tests, that means asserting that traffic can, or cannot, flow between particular systems.

Here’s how to write flow tests.

Example

The following might be in a file named test_puppet.py.

from fwunit import TestContext
from fwunit import IP, IPSet

tc = TestContext('my-network')

hosts

internal_network = IPSet([IP('192.168.1.0/24'), IP('192.168.13.0/24')])
external_network = IPSet([IP('0.0.0.0/0')]) - internal_network
puppetmasters = IPSet([IP(ip) for ip in
 '192.168.13.45',
 '192.168.13.50',
])

tests

"""
Puppetmasters serve puppet catalogs and data to clients over 'puppet',
'http', and 'https'. All hosts in the internal network should have access.
"""

def test_puppetmaster_access():
 """The entire internal_network can access the puppet masters."""
 for app in 'puppet', 'http', 'https':
 tc.assertPermits(internal_network, puppetmasters, app)

def test_puppetmaster_no_other_apps():
 """Access to puppetmasters is limited to puppet, http, and https"""
 tc.assertAllApps(IPSet([IP('0.0.0.0/0')]), puppetmasters,
 ['puppet', 'http', 'https'])

def test_puppetmaster_limited():
 """The exteernal networks cannot access the puppet masters."""
 for app in 'puppet', 'http', 'https':
 tc.assertDenies(external_network, puppetmasters, app)

Running this test is as simple as

$ nosetests test_puppet.py

Loading Rules

Before you can test anything, you’ll need to load the rules created with the fwunit command into memory.
It’s safe to do this individually in each test script, as the results are cached.

from fwunit import TestContext

tc = TestContext('source-name')

The TestContext class uses fwunit.yaml in the current directory to look up the proper source file for the given source name.

IPs and IPSets

The IP and IPSet classes come from IPy [https://pypi.python.org/pypi/IPy/], with minor changes.

The IP class represents a single IP or CIDR range:

from fwunit import IP
server = IP('10.11.12.33')
subnet = IP('10.11.12.0/23')

When you need to reason about a non-contiguous set of addresses, you need an IPSet.
This is really just a list of IP instances, but it will remove duplicates, collapse adjacent IPs, and so on.

from fwunit import IP, IPSet
db_subnets = IPSet([IP('10.11.12.0/23'), IP('10.12.12.0/23')])

In general, tests expeect IPSets, but you can pass IP instances or even bare strings and they will be converted appropriately.

Tests

Once you have the rules loaded, you can start writing test methods:

internal_network = IPSet([IP('192.168.1.0/24'), IP('192.168.13.0/24')])

puppetmasters = IPSet([IP(ip) for ip in
 '192.168.13.45',
 '192.168.13.50',
])

def test_puppetmaster_access():
 for app in 'puppet', 'http', 'https':
 tc.assertPermits(internal_network, puppetmasters, app)

Utility Methods

The TestContext class provides a number of useful functions for testing.
Each method logs verbosely, so test failures should have plenty of data for debugging.

	
class funit.analysis.testcontext.TestContext(source_name)

	

	Parameters:	source_name – fwunit source from which to load rules

	
assertDenies(src, dst, app)

	

	Parameters:	
	src – source IPs

	dst – destination IPs

	apps (list or string) – application names

Assert that traffic is denied from any given source IP to any given destination IP for all given applications.

	
assertPermits(src, dst, apps)

	

	Parameters:	
	src – source IPs

	dst – destination IPs

	apps (list or string) – application names

Assert that all given applications are allowed from any given source IP to any given destination IP.

Note that assertDenies and assertPermits are not quite opposites:
if application traffic is allowed between some IP pairs, but denied between others, then both methods will raise AssertionError.

	
sourcesFor(dst, app, ignore_sources=None)

	

	Parameters:	
	dst – destination IPs

	app – application

	ignore_sources – source IPs to ignore

Return an IPSet with all sources for traffic to any IP in dst on
application app, ignoring flows from ignore_sources.

This is useful for assertions of the form “access to X is only allowed from Y and Z”.

	
allApps(src, dst, debug=False)

	

	Parameters:	
	src – source IPs

	dst – destination IPs

	debug – if True, log the full list of matching flows

Return a set of applications with access form src to dst.

This is useful for verifying that access between two sets of hosts is limited to a short list of applications.

Note that if any application is allowed from src to dst, this method will return set(['any']) rather than enumerating the (infinite) set of allowed applications.

	
assertAllApps(src, dst, apps, debug=False)

	:param src source IPs
:param dst: destination IPs
:param apps: expected list of applications
:param debug: if True, log the full list of matching flows

Verify that the set of applications with access from any host in src to any host in dst is apps.

This is useful for verifying that other tests have covered all of the open applications.
The same warning as for allApps() applies here for rules allowing any application.

Implementation Notes

IP Objects

This tool uses IPy [https://pypi.python.org/pypi/IPy/] to handle IP addresses, ranges, and sets.
However, it extends that functionality to include some additional methods for IPSets as well as an IPPairs class to efficiently represent sets of IP pairs.

All of these classes can be imported directly from fwunit.

Rules

The output of the processing step is a JSON-formatted object.
The rules key gives a list of rule objects, each of which has keys

	src - a list of source IP ranges

	dst - a list of destination IP ranges

	app - the name of the permitted application

	name - the name of the rule

The rules are normalized as follows (and this is what consumes most of the time in processing):

	For a given source and destination IP and application, exactly 0 or 1 rules
match; stated differently, there’s no need to consider rules in order.

	If traffic matches a rule, it is permitted. If no rule matches, it is denied.

	Policies allowing any application are represented by explicit rules for each known application, with the addition of rules with application ‘@@other’ to represent the unknown applications.

Loading Source Objects

Rule sets are embedded in Source objects, which provide a set of useful methods for analysis.
In a testing environment, rule sets are loaded via TestContext; this section describes access to rules within fwunit itself.

To get a source object, you will first need a config, which can be retrieved from load_config():

	
fwunit.analysis.config.load_config(filename="fwunit.yaml")

	

	Parameters:	filename – the configuration filename to load

	Returns:	a config object

Load a configuration file.
As a side-effect, this function chdir’s to the configuration directory.

The function operates on the assumption that a single process will only ever reference one configuration, and thus caches the configuration after the first call.
Subsequent calls with the same filename will return the same object.
Subsequent calls with a different filename will raise an exception.

With the config object in hand, call load_source():

	
fwunit.analysis.sources.load_source(config, source)

	

	Parameters:	
	config – a config object

	source – the name of the source to load

	Returns:	a source object

	Return type:	Source

Load the ruleset for the given source.
The source parameter can be a source name from the configuration, or a filename.

Rulesets are cached globally to the process.

Using Source Objects

	
class fwunit.analysis.sources.Source

	The data from a particular source in fwunit.yaml, along with some analysis methods.

	
rulesForApp(app):

	

	Parameters:	app – application name

	Returns:	list of rules

Get the rules for the given app, or if no such app is known, for @@other.

	
rulesDeny(src, dst, apps)

	

	Parameters:	
	src – source IPs

	dst – destination IPs

	apps (list or string) – application names

Returns True if the rules deny all traffic from src to dst via all given apps; otherwise False.

	
rulesPermit(src, dst, apps)

	

	Parameters:	
	src – source IPs

	dst – destination IPs

	apps (list or string) – application names

Returns True if the rules allow all traffic from src to dst via all given apps; otherwise False.

Note that rulesdeny(..) is not the same as not rulesPermit(..): if some – but not all – traffic is permitted from src to dst, then both methods will return False.

	
allApps(src, dst, debug=False)

	

	Parameters:	
	src – source IPs

	dst – destination IPs

	debug – if True, log the full list of matching flows

See allApps().

	
sourcesFor(dst, app, ignore_sources=None)

	

	Parameters:	
	dst – destination IPs

	app – application

	ignore_sources – source IPs to ignore

See sourcesFor().

Index

 A
 | F
 | R
 | S

A

 	
 	allApps() (funit.analysis.testcontext.TestContext method)

 	(fwunit.analysis.sources.Source method)

 	
 	assertAllApps() (funit.analysis.testcontext.TestContext method)

 	assertDenies() (funit.analysis.testcontext.TestContext method)

 	assertPermits() (funit.analysis.testcontext.TestContext method)

F

 	
 	funit.analysis.testcontext.TestContext (built-in class)

 	fwunit.analysis.config.load_config() (built-in function)

 	
 	fwunit.analysis.sources.load_source() (built-in function)

 	fwunit.analysis.sources.Source (built-in class)

R

 	
 	rulesDeny() (fwunit.analysis.sources.Source method)

 	
 	rulesPermit() (fwunit.analysis.sources.Source method)

S

 	
 	sourcesFor() (funit.analysis.testcontext.TestContext method)

 	(fwunit.analysis.sources.Source method)

 _static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

_static/file.png

nav.xhtml

 Table of Contents

 		Unit Tests for your Network

 		Principle of Operation

 		Installation

 		Processing Policies

 		Configuration File

 		Application Maps

 		Supported Policy Types

 		Amazon EC2 Security Groups

 		Setup

 		Security Policy

 		Assumptions

 		Juniper SRX

 		Setup

 		Assumptions

 		Policy Combiner

 		Assumptions

 		Querying

 		Diffing

 		Writing Tests

 		Example

 		Loading Rules

 		IPs and IPSets

 		Tests

 		Utility Methods

 		Implementation Notes

 		IP Objects

 		Rules

 		Loading Source Objects

 		Using Source Objects

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

