
Fuzzinator Documentation
Release 18.3.1

Renata Hodovan, Akos Kiss

Mar 31, 2018





Quick Start

1 Introduction 3

2 Tutorial 5

3 Fuzzinator Core: package fuzzinator 9

4 SUT Calls: package fuzzinator.call 15

5 Fuzzers: package fuzzinator.fuzzer 23

6 Test Case Reducers: package fuzzinator.reduce 29

7 SUT Updaters: package fuzzinator.update 31

8 Release Notes 33

9 Versioning and Releasing 37

10 Licensing 39

Python Module Index 41

i



ii



Fuzzinator Documentation, Release 18.3.1

Random Testing Framework

Quick Start 1



Fuzzinator Documentation, Release 18.3.1

2 Quick Start



CHAPTER 1

Introduction

Fuzzinator is a fuzzing framework that helps you to automate tasks usually needed during a fuzz session:

• run your favorite test generator and feed the test cases to the system-under-test,

• catch and save the unique issues,

• reduce the failing test cases,

• ease the reporting of issues in bug trackers (e.g., Bugzilla or GitHub),

• regularly update SUTs if needed, and

• schedule multiple SUTs and generators without overloading your workstation.

All the above features are fully customizable either by writing a simple config file or by implementing Python snippets
to cover special needs. Check out some slides about Fuzzinator for a general overview, or see the Tutorial for a detailed
walk-through on the config files.

To help tracking the progress of the fuzzing, Fuzzinator provides two interfaces:

• an interactive TUI (supported on Linux and Mac OS X) that gives a continuously updated overview about the
currently running tasks, statistics about the efficacy of the test generators, and the found issues (and also supports
reporting them); and

• a dump-mode (supported on every platform) that displays the news on line-based consoles.

Although Fuzzinator itself doesn’t come with test generators (except for an example random character sequence gen-
erator), you can find a list of useful generators in the wiki.

1.1 Requirements

• Python >= 3.4

• pip and setuptools Python packages (the latter is automatically installed by pip)

• MongoDB (either local installation or access to remote database)

3

http://www.slideshare.net/hodovanrenata/fuzzinator-in-bug-we-trust
https://github.com/renatahodovan/fuzzinator/wiki
https://www.python.org
https://pip.pypa.io
https://www.mongodb.com


Fuzzinator Documentation, Release 18.3.1

1.2 Install

The quick way:

pip install fuzzinator

Alternatively, by cloning the project and running setuptools:

python setup.py install

1.3 Usage

A common form of Fuzzinator’s usage:

fuzzinator --tui -U <path/to/the/config.ini>

1.4 Compatibility

Fuzzinator was tested on:

• Linux (Ubuntu 14.04 / 15.10 / 16.04)

• Mac OS X (OS X El Capitan - 10.11).

1.5 Acknowledgements

The authors are immensely grateful to Dr. Heinz Doofenshmirtz for the continuous inspiration.

4 Chapter 1. Introduction



CHAPTER 2

Tutorial

Fuzzinator is a framework helping you to deal with the common fuzzing tasks, like running fuzz jobs, updating the
targets, and reducing the inputs that induced failures. The figure below shows a high-level overview of the components
of the framework.

The red line represents an API boundary. Everything below it is part of the core infrastructure, while boxes above it
are user-defined. However, you don’t (necessarily) need to write a single line of code to describe your needs, since
Fuzzinator can be configured through configuration ini files and it comes with several built-in building blocks that
cover the most common scenarios and can be used out of the box.

In the next paragraphs, we will use the JerryScript project as our running example and we will incrementally build a
configuration file to setup a fuzzing infrastructure for it. We will start from an absolute minimum configuration that

5

https://github.com/Samsung/jerryscript


Fuzzinator Documentation, Release 18.3.1

will be extended step-by-step.

Although, the examples cover only a small subset of the provided building blocks, you can find the full list in the API
Reference (under sub-packages with descriptive names). If none of them fits your needs, then you can still write your
own snippet . . . or submit a feature request ;-)

2.1 Minimum Configuration

Let’s start with the minimum configuration example that defines one SUT with fuzzinator.call.
StdinSubprocessCall, expecting input from stdin and one test generator with fuzzinator.fuzzer.
RandomContent that simply produces random strings.

# Sections starting with 'sut.' prefix define how target applications (a.k.a.,
# system-under-test or SUT) will be handled. The string after 'sut.' will be
# used as the identifier of the target. In this example, we deal with
# JerryScript.
[sut.jerry]
# StdinSubprocessCall will execute the target and return an issue dictionary if
# the target exits with a non-zero code.
call=fuzzinator.call.StdinSubprocessCall

# Define parameters expected by StdinSubprocessCall.
[sut.jerry.call]
# 'command' defines how SUT has to be executed.
command=./build/bin/jerry -
# Directory where 'command' has to be run.
cwd=</path/to/jerryscript/root/directory>

# Sections starting with 'fuzz.' prefix bind SUTs and test case generators.
[fuzz.jerry-with-random]
# Specify the SUT by referencing the appropriate config section.
sut=sut.jerry
# Specify the fuzzer by referring a Python callable.
fuzzer=fuzzinator.fuzzer.RandomContent

2.2 Fine Tuning SUT Calls

Now, if you would like to fine-tune error detection to do more than simply checking for a non-zero exit-code, then you
can use two built-in solutions (or, again, you can implement your own version):

• fuzzinator.call.ExitCodeFilter for keeping issues only if the SUT exited with specific exit codes,
and

• fuzzinator.call.RegexFilter for keeping issues only if the SUT printed messages on either stdout
or stderr that matches some specific patterns.

We can extend the original example as follows:

[sut.jerry]
# ... define filters ...
# Properties named as 'call.decorate(N)' are Python decorators that can access
# the input & output of the wrapped methods (in this case, of
# StdinSubprocessCall) and can modify them. Here, they are used to filter the
# output issues. If decorators expect parameters, then they have to be defined
# in parameter sections named as 'sut.<SUT_NAME>.call.decorate(N)'.

6 Chapter 2. Tutorial

https://github.com/renatahodovan/fuzzinator/issues


Fuzzinator Documentation, Release 18.3.1

call.decorate(0)=fuzzinator.call.ExitCodeFilter
call.decorate(1)=fuzzinator.call.RegexFilter

# Parameter section for ExitCodeFilter.
[sut.jerry.call.decorate(0)]
exit_codes=[132, 129]

# Parameter section for RegexFilter.
[sut.jerry.call.decorate(1)]
stderr=["(?P<msg>Assertion '.*' failed )at (?P<file>[^(]+)[(](?P<path>[^)]+)[)]:(?P
→˓<line>[0-9]+)",

"(?P<msg>Unreachable control path )at (?P<file>[^(]+)[(](?P<path>[^)]+)[)]:(?P
→˓<line>[0-9]+)"]

However, issues not only can be filtered but also extended with arbitrary information that helps describing the circum-
stances of the failure. This extension can also happen with the above shown decorator approach. The next example
shows how platform, git version, and ID information can be added using:

• fuzzinator.call.PlatformInfoDecorator adds an extra 'platform' field to the issue dictio-
nary, filled with OS information,

• fuzzinator.call.SubprocessPropertyDecorator adds a user-defined field with the output of a
user-defined script, and

• fuzzinator.call.UniqueIdDecorator combines existing fields into an ID to help detect whether an
issue is unique or a duplicate of an already known one.

[sut.jerry]
# .. extend issue with platform information ..
call.decorate(2)=fuzzinator.call.PlatformInfoDecorator
# .. extend issue with user-defined information ..
call.decorate(3)=fuzzinator.call.SubprocessPropertyDecorator
# .. add an id to the issue ..
call.decorate(4)=fuzzinator.call.UniqueIdDecorator

# *No* parameter section for the 2nd decorator as it needs none.

# Parameter section for the 3rd decorator.
[sut.jerry.call.decorate(3)]
# .. extend issue dictionary with a version field ..
property=version
# .. the value of version field is filled with the output of the next command ..
command=git rev-parse --short HEAD
# .. directory where 'command' has to be run (no need to copy the value of 'cwd'
# from the 'sut.jerry.call' section verbatim, extended interpolation syntax can
# help to reuse options) ..
cwd=${sut.jerry.call:cwd}

# Parameter section for the 4th decorator.
[sut.jerry.call.decorate(4)]
# .. compose the new id field from the msg and path fields previously found by
# RegexFilter ..
properties=["msg", "path"]

2.2. Fine Tuning SUT Calls 7



Fuzzinator Documentation, Release 18.3.1

2.3 Updating SUTs and Reducing Tests

Similarly to the above, we can have control over SUT update and test reduce jobs as well. The following final example
uses built-in building blocks again:

• fuzzinator.update.TimestampUpdateCondition for triggering the update based on the last mod-
ification time of the target binary,

• fuzzinator.update.SubprocessUpdate for updating the target via a script, and

• fuzzinator.reduce.Picire for reducing the size of test cases with Picire.

[sut.jerry]
# ... define update ...
update_condition=fuzzinator.update.TimestampUpdateCondition
update=fuzzinator.update.SubprocessUpdate
# ... define reduction ...
reduce=fuzzinator.reduce.Picire

# Parameter section for fuzzinator.update.TimestampUpdateCondition.
[sut.jerry.update_condition]
# Update SUT in every 12 hours.
age=12:00:00
path=${sut.jerry.call:cwd}/build/bin/jerry

# Parameter section for fuzzinator.update.SubprocessUpdate.
[sut.jerry.update]
# Script to execute to update.
command=git pull origin master &&

./tools/build.py --debug --clean
# Directory where 'command' has to be run.
cwd=${sut.jerry.call:cwd}

2.4 Etc. . .

There is more, e.g.:

• SUTs can take their input from files instead of stdin.

• Reducers are highly parametrizable.

• Test reduce jobs can deviate from fuzz jobs in the way their SUT is called.

• Fuzzers can be decorated the same way as SUT calls.

• Etc. . .

More complex configuration files are available in the examples/configs directory of the project (e.g., for WebKit,
too).

8 Chapter 2. Tutorial

https://github.com/renatahodovan/picire
https://webkit.org


CHAPTER 3

Fuzzinator Core: package fuzzinator

3.1 class Controller

class fuzzinator.Controller(config)
Fuzzinator’s main controller that orchestrates a fuzz session by scheduling all related activities (e.g., keeps
SUTs up-to-date, runs fuzzers and feeds test cases to SUTs, or minimizes failure inducing test cases) . All
configuration options of the framework must be encapsulated in a configparser.ConfigParser object.

The following config sections and options are recognized:

• Section fuzzinator: Global settings of the framework.

– Option work_dir: Work directory for temporary files. (Optional, default: ~/.fuzzinator)

– Option db_uri: URI to a MongoDB database to store found issues and execution statistics. (Op-
tional, default: mongodb://localhost/fuzzinator)

– Option cost_budget: (Optional, default: number of cpus)

• Sections sut.NAME: Definitions of a SUT named NAME

– Option call: Fully qualified name of a python callable that must accept a test keyword argument
representing the input to the SUT and must return a dictionary object if the input triggered an issue in
the SUT, or None otherwise. The returned issue dictionary (if any) should contain an 'id' field that
equals for issues that are not considered unique. (Mandatory)

See package fuzzinator.call for potential callables.

– Option cost: (Optional, default: 1)

– Option reduce: Fully qualified name of a python callable that must accept issue, sut_call,
sut_call_kwargs, listener, ident, work_dir keyword arguments representing an issue
to be reduced (and various other potentially needed objects), and must return a tuple consisting of a
reduced test case for the issue (or None if the issue’s current test case could not be reduced) and a (po-
tentially empty) list of new issues that were discovered during test case reduction (if any). (Optional,
no reduction for this SUT if option is missing.)

See package fuzzinator.reduce for potential callables.

9

https://docs.python.org/3/library/configparser.html#configparser.ConfigParser


Fuzzinator Documentation, Release 18.3.1

– Option reduce_call: Fully qualified name of a python callable that acts as the SUT’s call option
during test case reduction. (Optional, default: the value of option call)

See package fuzzinator.call for potential callables.

– Option reduce_cost: (Optional, default: the value of option cost)

– Option update_condition: Fully qualified name of a python callable that must return True if
and only if the SUT should be updated. (Optional, SUT is never updated if option is missing.)

See package fuzzinator.update for potential callables.

– Option update: Fully qualified name of a python callable that should perform the update of the SUT.
(Optional, SUT is never updated if option is missing.)

See package fuzzinator.update for potential callables.

• Sections fuzz.NAME: Definitions of a fuzz job named NAME

– Option sut: Name of the SUT section that describes the subject of this fuzz job. (Mandatory)

– Option fuzzer: Fully qualified name of a python callable that must accept and index keyword
argument representing a running counter in the fuzz job and must return a test input (or None, which
signals that the fuzzer is “exhausted” and cannot generate more test cases in this fuzz job). The
semantics of the generated test input is not restricted by the framework, it is up to the configuration
to ensure that the SUT of the fuzz job can deal with the tests generated by the fuzzer of the fuzz job.
(Mandatory)

See package fuzzinator.fuzzer for potential callables.

– Option batch: Number of times the fuzzer is requested to generate a new test and the SUT is called
with it. (Optional, default: 1)

– Option instances: Number of instances of this fuzz job allowed to run in parallel. (Optional,
default: inf)

• Callable options can be implemented as functions or classes with __call__method (the latter are instan-
tiated first to get a callable object). Both constructor calls (if any) and the “real” calls can be given keyword
arguments. These arguments have to be specified in sections (sut|fuzz).NAME.OPT[.init] with
appropriate names (where the .init sections stand for the constructor arguments).

• All callables can be decorated according to python semantics. The decorators must be callable classes
themselves and have to be specified in options OPT.decorate(N) with fully qualified name. Multiple
decorators can be applied to a callable OPT, their order is specified by an integer index in parentheses.
Keyword arguments to be passed to the decorators have to be listed in sections (sut|fuzz).NAME.
OPT.decorate(N).

See packages fuzzinator.call and fuzzinator.fuzzer for potential decorators.

Parameters config (configparser.ConfigParser) – the configuration options of the fuzz
session.

Variables listener (fuzzinator.ListenerManager) – a listener manager object that is
called on various events during the fuzz session.

run(*, max_cycles=None)
Start the fuzz session.

Parameters max_cycles (int) – maximum number to iterate through the fuzz jobs defined
in the configuration (defaults to inf).

10 Chapter 3. Fuzzinator Core: package fuzzinator

https://docs.python.org/3/library/configparser.html#configparser.ConfigParser
https://docs.python.org/3/library/functions.html#int


Fuzzinator Documentation, Release 18.3.1

3.2 class EmailListener

class fuzzinator.EmailListener(event, param_name, from_address, to_address, subject, content,
smtp_host, smtp_port)

EventListener subclass that can be used to send e-mail notification about various events.

Parameters

• event – The name of the event to send notification about.

• param_name – The name of the event’s parameter containing the information to send.

• from_address – E-mail address to send notifications from.

• to_address – Target e-mail address to send the notification to.

• subject – Subject of the e-mail (it may contain placeholders, that will be filled by param-
eter information).

• content – Content of the e-mail (it may contain placeholders, that will be filled by pa-
rameter information).

• smtp_host – Host of the smtp server to send e-mails from.

• smtp_port – Port of the smtp server to send e-mails from.

send_mail(data)
Send e-mail with the provided data.

Parameters data – Information to fill subject and content fields with.

3.3 class EventListener

class fuzzinator.EventListener
A no-op base class for listeners that can get notified by fuzzinator.Controller on various events of a
fuzz sessions.

Note: Subclasses should be aware that some notification methods may be called from subprocesses.

activate_job(ident)
Invoked when a previously instantiated job is activated (started).

Parameters ident (int) – unique identifier of the activated job.

invalid_issue(issue)
Invoked when an issue seems invalid.

Parameters issue (dict) – the issue object that did not pass re-validation (listener is free to
decide how to react, an option is to remove the issue from the database).

job_progress(ident, progress)
Invoked when an activated job makes progress.

Parameters

• ident (int) – unique identifier of the progressing job.

• progress (int) – for fuzz jobs, this is the number of already generated tests (number
between 0 and the job’s batch size); for reduce jobs, this is the current size of the test case
being reduced (number between the original test size and 0).

3.2. class EmailListener 11

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


Fuzzinator Documentation, Release 18.3.1

new_fuzz_job(ident, fuzzer, sut, cost, batch)
Invoked when a new (still inactive) fuzz job is instantiated.

Parameters

• ident (int) – a unique identifier of the new fuzz job.

• fuzzer (str) – short name of the new fuzz job (name of the corresponding config
section without the “fuzz.” prefix).

• sut (str) – short name of the SUT of the new fuzz job (name of the corresponding config
section without the “sut.” prefix).

• cost (int) – cost associated with the new fuzz job.

• batch (int, float) – batch size of the new fuzz job, i.e., number of test cases re-
quested from the fuzzer (may be inf).

new_issue(issue)
Invoked when a new issue is found.

Parameters issue (dict) – the issue that was found (all relevant information - e.g., the SUT
that reported the issue, the test case that triggered the issue, the fuzzer that generated the test
case, the ID of the issue - is stored in appropriate properties of the issue).

new_reduce_job(ident, sut, cost, issue_id, size)
Invoked when a new (still inactive) reduce job is instantiated.

Parameters

• ident (int) – a unique identifier of the new reduce job.

• sut (str) – short name of the SUT used in the new reduce job (name of the corresponding
config section without the “sut.” prefix).

• cost (int) – cost associated with the new reduce job.

• issue_id (Any) – 'id' property of the issue to be reduced.

• size (int) – size of the test case associated with the issue to be reduced.

new_update_job(ident, sut)
Invoked when a new (still inactive) update job is instantiated.

Parameters

• ident (int) – a unique identifier of the new update job.

• sut (str) – short name of the SUT to be updated (name of the corresponding config
section without the “sut.” prefix).

remove_job(ident)
Invoked when an active job has finished.

Parameters ident (int) – unique identifier of the finished job.

update_fuzz_stat()
Invoked when statistics about fuzzers, SUTs, and issues (e.g., execution counts, crash counts, unique issue
counts) are updated in the framework’s database.

update_issue(issue)
Invoked when the status of an issue changed.

Parameters issue (dict) – the issue object that has changed.

12 Chapter 3. Fuzzinator Core: package fuzzinator

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict


Fuzzinator Documentation, Release 18.3.1

update_load(load)
Invoked when the framework’s load changes.

Parameters load (int) – number between 0 and controller’s capacity.

warning(msg)
Invoked on unexpected events.

Parameters msg (str) – a string representation of the problem.

3.4 class ListenerManager

class fuzzinator.ListenerManager(listeners=None)
Class that registers listeners to various events and executes all of them when the event has triggered.

Parameters listeners – List of listener objects.

add(listener)
Register a new listener in the manager.

Parameters listener – The new listener to register.

3.4. class ListenerManager 13

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


Fuzzinator Documentation, Release 18.3.1

14 Chapter 3. Fuzzinator Core: package fuzzinator



CHAPTER 4

SUT Calls: package fuzzinator.call

4.1 class AnonymizeDecorator

class fuzzinator.call.AnonymizeDecorator(*args, **kwargs)
Decorator for SUT calls to anonymize issue properties.

Mandatory parameter of the decorator:

• old_text: text to replace in issue properties.

Optional parameters of the decorator:

• new_text: text to replace ‘old_text’ with (empty string by default).

• properties: array of properties to anonymize (anonymize all properties by default).

Example configuration snippet:

[sut.foo]
call=fuzzinator.call.StdinSubprocessCall
call.decorate(0)=fuzzinator.call.AnonymizeDecorator

[sut.foo.call]
command=/home/alice/foo/bin/foo -

[sut.foo.call.decorate(0)]
old_text=/home/alice/foo
new_text=FOO_ROOT
properties=["stdout", "stderr"]

4.2 class ExitCodeFilter

class fuzzinator.call.ExitCodeFilter(*args, **kwargs)
Decorator filter for SUT calls that return issues with 'exit_code' property.

15



Fuzzinator Documentation, Release 18.3.1

Mandatory parameter of the decorator:

• exit_codes: if issue['exit_code'] is not in the array of exit_codes, the issue is filtered out.

The issues that are not filtered out are not changed in any way.

Example configuration snippet:

[sut.foo]
call=fuzzinator.call.StdinSubprocessCall
call.decorate(0)=fuzzinator.call.ExitCodeFilter

[sut.foo.call]
command=/home/alice/foo/bin/foo -

[sut.foo.call.decorate(0)]
exit_codes=[139]

4.3 class FileReaderDecorator

class fuzzinator.call.FileReaderDecorator(*args, **kwargs)
Decorator for SUTs that take input as a file path: saves the content of the failing test case.

Moreover, the issue (if any) is also extended with the new 'filename' property containing the name of the
test case (as received in the test argument).

Example configuration snippet:

[sut.foo]
call=fuzzinator.call.SubprocessCall
call.decorate(0)=fuzzinator.call.FileReaderDecorator

[sut.foo.call]
# assuming that foo takes one file as input specified on command line
command=/home/alice/foo/bin/foo {test}

4.4 class FileWriterDecorator

class fuzzinator.call.FileWriterDecorator(*args, **kwargs)
Decorator for SUTs that take input from a file: writes the test input to a temporary file and replaces the test input
with the name of that file.

Mandatory parameter of the decorator:

• filename: path pattern for the temporary file, which may contain the substring {uid} as a placeholder
for a unique string (replaced by the decorator).

The issue returned by the decorated SUT (if any) is extended with the new 'filename' property containing
the name of the generated file (although the file itself is removed).

Example configuration snippet:

[sut.foo]
call=fuzzinator.call.SubprocessCall
call.decorate(0)=fuzzionator.call.FileWriterDecorator

16 Chapter 4. SUT Calls: package fuzzinator.call



Fuzzinator Documentation, Release 18.3.1

[sut.foo.call]
# assuming that foo takes one file as input specified on command line
command=/home/alice/foo/bin/foo {test}

[sut.foo.call.decorate(0)]
filename=${fuzzinator:work_dir}/test-{uid}.txt

4.5 class GdbBacktraceDecorator

class fuzzinator.call.GdbBacktraceDecorator(*args, **kwargs)
Decorator for subprocess-based SUT calls with file input to extend issues with 'backtrace' property.

Mandatory parameter of the decorator:

• command: string to pass to GDB as a command to run (all occurrences of {test} in the string are
replaced by the actual name of the test file).

Optional parameters of the decorator:

• cwd: if not None, change working directory before GDB/command invocation.

• env: if not None, a dictionary of variable names-values to update the environment with.

The new 'backtrace' issue property will contain the result of GDB’s bt command after the halt of the SUT.

Example configuration snippet:

[sut.foo]
call=fuzzinator.call.SubprocessCall
call.decorate(0)=fuzzinator.call.GdbBacktraceDecorator

[sut.foo.call]
# assuming that {test} is something that can be interpreted by foo as
# command line argument
command=./bin/foo {test}
cwd=/home/alice/foo
env={"BAR": "1"}

[sut.foo.call.decorate(0)]
command=${sut.foo.call:command}
cwd=${sut.foo.call:cwd}
env={"BAR": "1", "BAZ": "1"}

4.6 class LldbBacktraceDecorator

class fuzzinator.call.LldbBacktraceDecorator(*args, **kwargs)
Decorator for subprocess-based SUT calls with file input to extend issues with 'backtrace' property.

Mandatory parameter of the decorator:

• command: string to pass to Lldb as a command to run (all occurrences of {test} in the string are
replaced by the actual name of the test file).

Optional parameters of the decorator:

• cwd: if not None, change working directory before Lldb/command invocation.

4.5. class GdbBacktraceDecorator 17



Fuzzinator Documentation, Release 18.3.1

• env: if not None, a dictionary of variable names-values to update the environment with.

• timeout: timeout (in seconds) to wait between two lldb commands (integer number, 1 by default).

The new 'backtrace' issue property will contain the result of Lldb’s bt command after the halt of the SUT.

Example configuration snippet:

[sut.foo]
call=fuzzinator.call.SubprocessCall
call.decorate(0)=fuzzinator.call.LldbBacktraceDecorator

[sut.foo.call]
# assuming that {test} is something that can be interpreted by foo as
# command line argument
command=./bin/foo {test}
cwd=/home/alice/foo
env={"BAR": "1"}

[sut.foo.call.decorate(0)]
command=${sut.foo.call:command}
cwd=${sut.foo.call:cwd}
env={"BAR": "1", "BAZ": "1"}

4.7 class PlatformInfoDecorator

class fuzzinator.call.PlatformInfoDecorator(*args, **kwargs)
Decorator for SUT calls to extend issues with 'platform' property.

The new 'platform' issue property will contain the result of Python’s platform.platform.

Example configuration snippet:

[sut.foo]
#call=...
call.decorate(0)=fuzzinator.call.PlatformInfoDecorator

4.8 class RegexFilter

class fuzzinator.call.RegexFilter(*args, **kwargs)
Decorator filter for SUT calls to recognise patterns in the returned issue dictionaries.

Optional parameters of the decorator:

• key: array of patterns to match against issue[key] (note that ‘key’ can be arbitrary, and multiple
different keys can be given to the decorator).

If none of the patterns matches on any of the fields, the issue is filtered out. The issues that are not filtered out
are extended with keys-values from the named groups of the matching regex pattern.

Example configuration snippet:

[sut.foo]
call=fuzzinator.call.StdinSubprocessCall
call.decorate(0)=fuzzinator.call.RegexFilter

18 Chapter 4. SUT Calls: package fuzzinator.call

https://docs.python.org/3/library/platform.html#platform.platform


Fuzzinator Documentation, Release 18.3.1

[sut.foo.call]
command=/home/alice/foo/bin/foo -

[sut.foo.call.decorate(0)]
stderr=["(?P<file>[^:]+):(?P<line>[0-9]+): (?P<func>[^:]+): (?P<msg>
→˓Assertion `.*' failed)"]
backtrace=["#[0-9]+ +0x[0-9a-f]+ in (?P<path>[^ ]+) .*? at (?P<file>[^
→˓:]+):(?P<line>[0-9]+)"]

4.9 function StdinSubprocessCall

fuzzinator.call.StdinSubprocessCall(command, cwd=None, env=None, no_exit_code=None,
test=None, timeout=None, **kwargs)

Subprocess invocation-based call of a SUT that takes a test input on its stdin stream.

Mandatory parameter of the SUT call:

• command: string to pass to the child shell as a command to run.

Optional parameters of the SUT call:

• cwd: if not None, change working directory before the command invocation.

• env: if not None, a dictionary of variable names-values to update the environment with.

• no_exit_code: makes possible to force issue creation regardless of the exit code.

• timeout: run subprocess with timeout.

Result of the SUT call:

• If the child process exits with 0 exit code, no issue is returned.

• Otherwise, an issue with 'exit_code', 'stdout', and 'stderr' properties is returned.

Example configuration snippet:

[sut.foo]
call=fuzzinator.call.StdinSubprocessCall

[sut.foo.call]
command=./bin/foo -
cwd=/home/alice/foo
env={"BAR": "1"}

4.10 class StreamMonitoredSubprocessCall

class fuzzinator.call.StreamMonitoredSubprocessCall(command, cwd=None,
env=None, end_patterns=None,
timeout=None, **kwargs)

Note: Not available on platforms without fcntl support (e.g., Windows).

4.9. function StdinSubprocessCall 19



Fuzzinator Documentation, Release 18.3.1

4.11 function SubprocessCall

fuzzinator.call.SubprocessCall(command, cwd=None, env=None, no_exit_code=None,
test=None, timeout=None, **kwargs)

Subprocess invocation-based call of a SUT that takes test input on its command line. (See fuzzinator.
call.FileWriterDecorator for SUTs that take input from a file.)

Mandatory parameter of the SUT call:

• command: string to pass to the child shell as a command to run (all occurrences of {test} in the string
are replaced by the actual test input).

Optional parameters of the SUT call:

• cwd: if not None, change working directory before the command invocation.

• env: if not None, a dictionary of variable names-values to update the environment with.

• no_exit_code: makes possible to force issue creation regardless of the exit code.

• timeout: run subprocess with timeout.

Result of the SUT call:

• If the child process exits with 0 exit code, no issue is returned.

• Otherwise, an issue with 'exit_code', 'stdout', and 'stderr' properties is returned.

Example configuration snippet:

[sut.foo]
call=fuzzinator.call.SubprocessCall

[sut.foo.call]
# assuming that {test} is something that can be interpreted by foo as
# command line argument
command=./bin/foo {test}
cwd=/home/alice/foo
env={"BAR": "1"}

4.12 class SubprocessPropertyDecorator

class fuzzinator.call.SubprocessPropertyDecorator(*args, **kwargs)
Decorator for SUT calls to extend issues with an arbitrary property where the value is the output of a shell
subprocess.

Mandatory parameters of the decorator:

• property: name of the property to extend the issue with.

• command: string to pass to the child shell as a command to run.

Optional parameters of the decorator:

• cwd: if not None, change working directory before the command invocation.

• env: if not None, a dictionary of variable names-values to update the environment with.

• timeout: run subprocess with timeout.

Example configuration snippet:

20 Chapter 4. SUT Calls: package fuzzinator.call



Fuzzinator Documentation, Release 18.3.1

[sut.foo]
call=fuzzinator.call.StdinSubprocessCall
call.decorate(0)=fuzzinator.call.SubprocessPropertyDecorator

[sut.foo.call]
command=./bin/foo -
cwd=/home/alice/foo

[sut.foo.call.decorate(0)]
property=version
command=git rev-parse --short HEAD
cwd=${sut.foo.call:cwd}
env={"GIT_FLUSH": "1"}

4.13 class TestRunnerSubprocessCall

class fuzzinator.call.TestRunnerSubprocessCall(command, cwd=None, env=None,
end_texts=None, init_wait=None,
timeout_per_test=None, **kwargs)

Note: Not available on platforms without fcntl support (e.g., Windows).

4.14 class UniqueIdDecorator

class fuzzinator.call.UniqueIdDecorator(*args, **kwargs)
Decorator for SUT calls to extend issues with 'id' property.

Mandatory parameter of the decorator:

• properties: array of issue property names, which are concatenated (separated by a space) to form the
new 'id' property.

Example configuration snippet:

[sut.foo]
call=fuzzinator.call.StdinSubprocessCall
call.decorate(0)=fuzzinator.call.RegexFilter
call.decorate(1)=fuzzinator.call.UniqueIdDecorator

[sut.foo.call]
command=/home/alice/foo/bin/foo -

[sut.foo.call.decorate(0)]
stderr=[": (?P<file>[^:]+):(?P<line>[0-9]+): (?P<func>[^:]+): (?P<msg>
→˓Assertion `.*' failed)"]

[sut.foo.call.decorate(1)]
properties=["msg", "file", "func"]

4.13. class TestRunnerSubprocessCall 21



Fuzzinator Documentation, Release 18.3.1

22 Chapter 4. SUT Calls: package fuzzinator.call



CHAPTER 5

Fuzzers: package fuzzinator.fuzzer

5.1 class AFLRunner

class fuzzinator.fuzzer.AFLRunner(afl_fuzz, input, output, sut_command, cwd=None,
env=None, timeout=None, dictionary=None, mas-
ter_name=None, slave_name=None, **kwargs)

Wrapper around AFL to be executed continuously in a subprocess. The findings of AFL are periodically checked
and any new test cases are returned as test inputs to the SUT. (Thus, all AFL findings are processed, extended,
and filtered by any and all SUT decorators, uniqueness is determined, etc.)

For AFL, it is best not to run multiple instances in parallel.

Mandatory parameters of the fuzzer:

• afl_fuzz: path to the AFL fuzzer tool.

• sut_command: the string to append to the command string used to invoke AFL, probably the same
string that is used for fuzzinator.call.SubprocessCall’s command parameter (the {test}
substring is automatically replaced with the @@ input file placeholder used by AFL).

• input: the directory of initial test cases for AFL.

• output: the directory that will store the findings of AFL (all occurrences of {uid} in the string are
replaced by an identifier unique to this fuzz job).

Optional parameters of the fuzzer:

• cwd: if not None, change working directory before invoking AFL.

• env: if not None, a dictionary of variable names-values to update the environment with (AFL_NO_UI=1
will be added automatically to suppress AFL’s own UI).

• timeout: if not None, pass its value as the -t timeout parameter to AFL.

• dictionary: if not None, pass its value as the -x dictionary parameter to AFL.

• master_name: the name of the master fuzzer instance which will perform deterministic checks.

23



Fuzzinator Documentation, Release 18.3.1

• slave_name: the name of a slave fuzzer instance which will proceed to random tweaks. For further
details check: https://github.com/mirrorer/afl/blob/master/docs/parallel_fuzzing.txt

Example configuration snippet:

[sut.foo]
call=fuzzinator.call.SubprocessCall

[sut.foo.call]
command=./bin/foo {test}
cwd=/home/alice/foo
env={"BAR": "1"}

[fuzz.foo-with-afl]
sut=sut.foo
fuzzer=fuzzinator.fuzzer.AFLRunner
batch=inf
instances=1

[fuzz.foo-with-afl.fuzzer.init]
afl_fuzz=/home/alice/afl/afl-fuzz
sut_command=${sut.foo.call:command}
cwd=${sut.foo.call:cwd}
env=${sut.foo.call:env}
input=/home/alice/foo-inputs
output=${fuzzinator:work_dir}/afl-output/{uid}

5.2 class ByteFlipDecorator

class fuzzinator.fuzzer.ByteFlipDecorator(*args, **kwargs)
Decorator to add extra random byte flips to fuzzer results.

Mandatory parameter of the decorator:

• frequency: the length of the test divided by this integer number gives the number of bytes flipped.

Optional parameters of the decorator:

• min_byte: minimum value for the flipped bytes (integer number, 32 by default, the smallest ASCII code
of the printable characters).

• max_byte: maximum value for the flipped bytes (integer number, 126 by default, the largest ASCII code
of the printable characters).

Example configuration snippet:

[sut.foo]
# see fuzzinator.call.*

[fuzz.foo-with-flips]
sut=sut.foo
fuzzer=fuzzinator.fuzzer.ListDirectory
fuzzer.decorate(0)=fuzzinator.fuzzer.ByteFlipDecorator
batch=inf

[fuzz.foo-with-flips.fuzzer.init]
outdir=/home/alice/foo-old-bugs/

24 Chapter 5. Fuzzers: package fuzzinator.fuzzer

https://github.com/mirrorer/afl/blob/master/docs/parallel_fuzzing.txt


Fuzzinator Documentation, Release 18.3.1

[fuzz.foo-with-flips.fuzzer.decorate(0)]
frequency=100
min_byte=0
max_byte=255

5.3 class FileWriterDecorator

class fuzzinator.fuzzer.FileWriterDecorator(filename)
Decorator for fuzzers that create str or bytes-like output. The decorator writes the test input to a temporary file
and replaces the output with the name of that file.

Mandatory parameter of the decorator:

• filename: path pattern for the temporary file, which may contain the substring {uid} as a placeholder
for a unique string (replaced by the decorator).

Example configuration snippet:

[sut.foo]
# see fuzzinator.call.*

[fuzz.foo-with-random]
sut=sut.foo
fuzzer=fuzzinator.fuzzer.RandomContent
fuzzer.decorate(0)=fuzzionator.fuzzer.FileWriterDecorator

[fuzz.foo-with-random.fuzzer.decorate(0)]
filename=${fuzzinator:work_dir}/test-{uid}.txt

5.4 class ListDirectory

class fuzzinator.fuzzer.ListDirectory(pattern, contents=’True’, **kwargs)
A simple test generator to iterate through existing files in a directory and return their contents one by one. Useful
for re-testing previously discovered issues.

Since the fuzzer starts iterating from the beginning of the directory in every fuzz job, there is no gain in running
multiple instances of this fuzzer in parallel. Because of the same reason, the fuzzer should be left running in the
same fuzz job batch until all the files of the directory are processed.

Mandatory parameter of the fuzzer:

• pattern: shell-like pattern to the test files.

Optional parameter of the fuzzer:

• contents: if it’s true then the content of the files will be returned instead of their path (boolean
value, True by default).

Example configuration snippet:

[sut.foo]
# see fuzzinator.call.*

[fuzz.foo-with-oldbugs]
sut=sut.foo

5.3. class FileWriterDecorator 25



Fuzzinator Documentation, Release 18.3.1

fuzzer=fuzzinator.fuzzer.ListDirectory
instances=1
batch=inf

[fuzz.foo-with-oldbugs.fuzzer.init]
pattern=/home/alice/foo-old-bugs/**/*.js

5.5 function RandomContent

fuzzinator.fuzzer.RandomContent(*, min_length=’1’, max_length=’1’, **kwargs)
Example fuzzer to generate strings of random length from random ASCII uppercase letters and decimal digits.

Optional parameters of the fuzzer:

• min_length: minimum length of the string to generate (integer number, 1 by default)

• max_length: maximum length of the string to generate (integer number, 1 by default)

Example configuration snippet:

[sut.foo]
# see fuzzinator.call.*

[fuzz.foo-with-random]
sut=sut.foo
fuzzer=fuzzinator.fuzzer.RandomContent
batch=100

[fuzz.foo-with-random.fuzzer]
min_length=100
max_length=1000

5.6 class SubprocessRunner

class fuzzinator.fuzzer.SubprocessRunner(outdir, command, cwd=None, env=None, time-
out=None, contents=’True’, **kwargs)

Wrapper around a fuzzer that is available as an executable and can generate its test cases as file(s) in a directory.
First, the external executable is invoked as a subprocess, and once it has finished, the contents of the generated
files are returned one by one.

Mandatory parameters of the fuzzer:

• command: string to pass to the child shell as a command to run (all occurrences of {uid} in the string
are replaced by an identifier unique to this fuzz job).

• outdir: path to the directory containing the files generated by the external fuzzer (all occurrences of
{uid} in the path are replaced by the same identifier as described at the command parameter).

Optional parameters of the fuzzer:

• cwd: if not None, change working directory before the command invocation.

• env: if not None, a dictionary of variable names-values to update the environment with.

• timeout: run subprocess with timeout.

26 Chapter 5. Fuzzers: package fuzzinator.fuzzer



Fuzzinator Documentation, Release 18.3.1

• contents: if it’s true then the content of the files will be returned instead of their path (boolean
value, True by default).

Example configuration snippet:

[sut.foo]
# see fuzzinator.call.*

[fuzz.foo-with-bar]
sut=sut.foo
fuzzer=fuzzinator.fuzzer.SubprocessRunner
batch=50

[fuzz.foo-with-bar.fuzzer.init]
outdir=${fuzzinator:work_dir}/bar/{uid}
command=barfuzzer -n ${fuzz.foo-with-bar:batch} -o ${outdir}

5.7 class TornadoDecorator

class fuzzinator.fuzzer.TornadoDecorator(port, **kwargs)
Decorator for fuzzers to transport generated content through http. The decorator starts a Tornado server at the
start of the fuzz job and returns a http url as test input. The SUT is expected to access the returned url and the
decorated fuzzer is invoked on every GET access to that url. The response to the GET contains the generated test
input prepended by a html meta tag to force continuous reloads in the SUT (or a window.close() javascript
content to force stopping the SUT if the decorated fuzzer cannot generate more tests). Useful for transporting
fuzz tests to browser SUTs.

Mandatory parameter of the fuzzer decorator:

• port: first port to start binding the started http server to (keeps incrementing until a free port is found).

Example configuration snippet:

[sut.foo]
# assuming that foo expects a http url as input, which it tries to access
# afterwards

[fuzz.foo-with-bar-over-http]
sut=sut.foo
#fuzzer=...
fuzzer.decorate(0)=fuzzinator.fuzzer.TornadoDecorator
batch=5

[fuzz.foo-with-bar-over-http.fuzzer.decorate(0)]
port=8000

5.7. class TornadoDecorator 27



Fuzzinator Documentation, Release 18.3.1

28 Chapter 5. Fuzzers: package fuzzinator.fuzzer



CHAPTER 6

Test Case Reducers: package fuzzinator.reduce

6.1 function Picire

fuzzinator.reduce.Picire(sut_call, sut_call_kwargs, listener, ident, issue, work_dir, parallel=False,
combine_loops=False, split_method=’zeller’, subset_first=True, sub-
set_iterator=’forward’, complement_iterator=’forward’, jobs=4,
max_utilization=100, encoding=None, atom=’both’, granularity=2,
cache_class=’ContentCache’, cleanup=True, **kwargs)

Test case reducer based on the Picire Parallel Delta Debugging Framework.

Optional parameters of the reducer:

• parallel, combine_loops, split_method, subset_first, subset_iterator,
complement_iterator, jobs, max_utilization, encoding, atom, granularity,
cache_class, cleanup

Refer to https://github.com/renatahodovan/picire for configuring Picire.

Note: This reducer is capable of detecting new issues found during the test reduction (if any).

Example configuration snippet:

[sut.foo]
#call=...
cost=1
reduce=fuzzinator.reduce.Picire
reduce_cost=4

[sut.foo.reduce]
parallel=True
jobs=4
subset_iterator=skip

29

https://github.com/renatahodovan/picire


Fuzzinator Documentation, Release 18.3.1

6.2 function Picireny

fuzzinator.reduce.Picireny(sut_call, sut_call_kwargs, listener, ident, issue, work_dir,
hddmin=None, parallel=False, combine_loops=False,
split_method=’zeller’, subset_first=True, subset_iterator=’forward’,
complement_iterator=’forward’, jobs=4, max_utilization=100,
encoding=None, antlr=None, format=None, grammar=None,
start=None, replacements=None, lang=’python’, hdd_star=True,
flatten_recursion=False, squeeze_tree=True, skip_unremovable=True,
skip_whitespace=False, build_hidden_tokens=False, granularity=2,
cache_class=’ContentCache’, cleanup=True, **kwargs)

Test case reducer based on the Picireny Hierarchical Delta Debugging Framework.

Mandatory parameters of the reducer:

• Either format or grammar and start must be defined.

Optional parameters of the reducer:

• hddmin, parallel, combine_loops, split_method, subset_first, subset_iterator,
complement_iterator, jobs, max_utilization, encoding, antlr, format, grammar,
start, replacements, lang, hdd_star, flatten_recursion, squeeze_tree,
skip_unremovable, skip_whitespace, build_hidden_tokens, granularity,
cache_class, cleanup

Refer to https://github.com/renatahodovan/picireny for configuring Picireny.

Note: This reducer is capable of detecting new issues found during the test reduction (if any).

Example configuration snippet:

[sut.foo]
#call=...
cost=1
reduce=fuzzinator.reduce.Picireny
reduce_cost=4

[sut.foo.reduce]
hddmin=full
grammar=/home/alice/grammars-v4/HTMLParser.g4 /home/alice/grammars-v4/
→˓HTMLLexer.g4
start=htmlDocument
parallel=True
jobs=4
subset_iterator=skip

30 Chapter 6. Test Case Reducers: package fuzzinator.reduce

https://github.com/renatahodovan/picireny


CHAPTER 7

SUT Updaters: package fuzzinator.update

7.1 function SubprocessUpdate

fuzzinator.update.SubprocessUpdate(command, cwd=None, env=None, timeout=None)
Subprocess invocation-based SUT update.

Mandatory parameter of the SUT update:

• command: string to pass to the child shell as a command to run.

Optional parameters of the SUT update:

• cwd: if not None, change working directory before the command invocation.

• env: if not None, a dictionary of variable names-values to update the environment with.

• timeout: run subprocess with timeout.

Example configuration snippet:

[sut.foo]
update=fuzzinator.update.SubprocessUpdate
#update_condition=... is needed to trigger the update

[sut.foo.update]
command=git pull && make
cwd=/home/alice/foo
env={"BAR": "1"}

7.2 function TimestampUpdateCondition

fuzzinator.update.TimestampUpdateCondition(path, age)
File timestamp-based SUT update condition.

Mandatory parameters of the SUT update condition:

31



Fuzzinator Documentation, Release 18.3.1

• path: path to a file or directory to check for its last modification time.

• age: maximum allowed age of path given in [days:][hours:][minutes:]seconds format.

Result of the SUT update condition:

• Returns True if path does not exist or is older than age.

Example configuration snippet:

[sut.foo]
update_condition=fuzzinator.update.TimestampUpdateCondition
#update=... will be triggered if file timestamp is too old

[sut.foo.update_condition]
path=/home/alice/foo/bin/foo
age=7:00:00:00

32 Chapter 7. SUT Updaters: package fuzzinator.update



CHAPTER 8

Release Notes

8.1 18.3.1

Summary of changes:

• Fixed the way package metadata is accessed to ensure wheel compatibility.

8.2 18.3

Summary of changes:

• New features in the framework:

– Support for issue (re-)validation with a new job type (validate).

– Support for user-defined event listeners.

• Numerous new building blocks in the framework:

– fuzzinator.EmailListener: support for sending emails about events, e.g., new issues.

– fuzzinator.tracker.MonorailReport: support for the Monorail issue tracking system.

– fuzzinator.call.LldbBacktraceDecorator: support for backtrace info via LLDB.

– fuzzinator.fuzzer.ByteFlipDecorator: support for adding extra random byte flips to fuzzer
results.

– fuzzinator.fuzzer.FileWriterDecorator: support for writing fuzzer results to files.

– fuzzinator.call.FileReaderDecorator: support for extracting fuzzer results from files.

• Building blocks with extended or changed functionality:

– fuzzinator.call.SubprocessCall and .StdinSubprocessCall can accept 0 exit code as
an issue.

33



Fuzzinator Documentation, Release 18.3.1

– fuzzinator.call.StreamRegexFilter has been renamed to .RegexFilter to enable arbi-
trary filtering of issues, and can match multiple patterns.

– fuzzinator.call.StreamMonitoredSubprocessCall regex patterns are multiline.

– fuzzinator.fuzzer.AFLRunner supports AFL’s master and slave concepts.

– fuzzinator.fuzzer.ListDirectory works with a glob pattern instead of a simple directory
name to collect test cases.

– fuzzinator.fuzzer.SubprocessRunner and .ListDirectory can work both as file content
generators and as file path generators.

– fuzzinator.update.TimestampUpdateCondition supports time intervals longer than 24
hours.

– All Popen-based subprocess-executing building blocks (fuzzinator.call.
StdinSubprocessCall, .StreamMonitoredSubprocessCall, .SubprocessCall,
.SubprocessPropertyDecorator, .TestRunnerSubprocessCall, fuzzinator.
fuzzer.SubprocessRunner, and fuzzinator.update.SubprocessUpdate) have timeout
support and avoid shell invocation.

– fuzzinator.reduce.Picire has been updated to use Picire 18.1.

– fuzzinator.reduce.Picireny has been updated to use Picireny 18.2.

– All reporters (fuzzinator.tracker.MonorailReport, .BugzillaReport, .
GithubReport) have been changed to use format string syntax ({key}) instead of template syntax
($key) in their report templates, and all handle missing keys gracefully.

• TUI improvements:

– Support for simpler custom color schemes.

– More convenient bug report editor.

– Support for both text and binary copying of test cases to the clipboard.

– Support for declaring bug duplicates manually.

– New and improved dialogs (about dialog, closing of dialogs).

– Improved event handling (responsivity, updated issues, invalid issues).

• General usability improvements:

– More flexible configuration format enabling config sections to be split across multiple files, and keys to
have no value.

– Support for command line arguments specified in list files to help with config file fragments.

– Useful command line argument aliases and new arguments (appearance, verbosity, Python interpreter lim-
its, fuzz session length).

• Under-the-hood improvements:

– Improved logging.

– Added testing infrastructure: unit testing of SUT calls, fuzzers, and SUT updaters via tox; continuous
testing via Travis and AppVeyor CI services.

– Added documentation: out-of-sources tutorial and auto-generated API docs via Sphinx; online documen-
tation hosting on Read-the-Docs.

– Various bug fixes and refactorings (in core components, in building blocks, and in user interfaces).

34 Chapter 8. Release Notes



Fuzzinator Documentation, Release 18.3.1

8.3 16.10

First public release of the Fuzzinator Random Testing Framework.

Summary of main features:

• Core scheduler/controller of fuzzing-related jobs (update, fuzz, reduce).

• MongoDB-based issue repository.

• Extensible framework with predefined building blocks for invoking SUTs, detecting issues, and determining
uniqueness; for generating test cases and transporting them to SUTs; for minimizing issue-triggering tests; and
for keeping SUTs under development up-to-date.

• Configurability via INI files.

• CLI and Urwid-based TUI.

8.3. 16.10 35



Fuzzinator Documentation, Release 18.3.1

36 Chapter 8. Release Notes



CHAPTER 9

Versioning and Releasing

9.1 Version Scheme

The project uses a date-based version scheme conforming to PEP440. The identifiers of official releases follow the
“YY.MM” form (e.g., “16.10” for the version released on October, 2016), while development versions between two
releases append an “r” suffix to the identifier of the last official release (e.g., “16.10r” for snapshots that contain
changes on top of the “16.10” release).

(Alpha, beta, RC, and dev release version identifiers are not planned as of yet, as they would require the knowledge of
the release date of the next offical release in advance - however, the project follows the “it will be released when it’s
ready, whenever that is” ideology.)

9.2 Commits in the Repository

For any official release, there should be exactly one commit in the repository that makes the project identify itself as
the released version, and that commit should also be tagged with the version ID. Thus, the first commit after a release
has to be a bump to an “r”-suffixed snapshot version.

9.3 Release Steps

The release of a new version happens along the following steps.

# name the new version and add release notes
echo "YY.MM" > fuzzinator/VERSION
nano RELNOTES.rst

# create a commit for the release, tag it, and push it to the public
# repository
git add fuzzinator/VERSION RELNOTES.rst
git commit -m "YY.MM release"

37

https://www.python.org/dev/peps/pep-0440/


Fuzzinator Documentation, Release 18.3.1

git tag YY.MM
git push origin master YY.MM

# upload the release to PyPI
python setup.py sdist upload -r pypi

Before landing anything in the repository after a release, the version should be bumped.

echo "YY.MMr" > fuzzinator/VERSION
git add fuzzinator/VERSION
git commit -m "Change to post-release version YY.MMr"
git push origin master

38 Chapter 9. Versioning and Releasing



CHAPTER 10

Licensing

Copyright (c) 2016-2018 Renata Hodovan, Akos Kiss. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

39



Fuzzinator Documentation, Release 18.3.1

40 Chapter 10. Licensing



Python Module Index

f
fuzzinator, 9
fuzzinator.call, 15
fuzzinator.fuzzer, 23
fuzzinator.reduce, 29
fuzzinator.update, 31

41



Fuzzinator Documentation, Release 18.3.1

42 Python Module Index



Index

A
activate_job() (fuzzinator.EventListener method), 11
add() (fuzzinator.ListenerManager method), 13
AFLRunner (class in fuzzinator.fuzzer), 23
AnonymizeDecorator (class in fuzzinator.call), 15

B
ByteFlipDecorator (class in fuzzinator.fuzzer), 24

C
Controller (class in fuzzinator), 9

E
EmailListener (class in fuzzinator), 10
EventListener (class in fuzzinator), 11
ExitCodeFilter (class in fuzzinator.call), 15

F
FileReaderDecorator (class in fuzzinator.call), 16
FileWriterDecorator (class in fuzzinator.call), 16
FileWriterDecorator (class in fuzzinator.fuzzer), 25
fuzzinator (module), 9
fuzzinator.call (module), 15
fuzzinator.fuzzer (module), 23
fuzzinator.reduce (module), 29
fuzzinator.update (module), 31

G
GdbBacktraceDecorator (class in fuzzinator.call), 17

I
invalid_issue() (fuzzinator.EventListener method), 11

J
job_progress() (fuzzinator.EventListener method), 11

L
ListDirectory (class in fuzzinator.fuzzer), 25

ListenerManager (class in fuzzinator), 13
LldbBacktraceDecorator (class in fuzzinator.call), 17

N
new_fuzz_job() (fuzzinator.EventListener method), 11
new_issue() (fuzzinator.EventListener method), 12
new_reduce_job() (fuzzinator.EventListener method), 12
new_update_job() (fuzzinator.EventListener method), 12

P
Picire() (in module fuzzinator.reduce), 29
Picireny() (in module fuzzinator.reduce), 29
PlatformInfoDecorator (class in fuzzinator.call), 18

R
RandomContent() (in module fuzzinator.fuzzer), 26
RegexFilter (class in fuzzinator.call), 18
remove_job() (fuzzinator.EventListener method), 12
run() (fuzzinator.Controller method), 10

S
send_mail() (fuzzinator.EmailListener method), 11
StdinSubprocessCall() (in module fuzzinator.call), 19
StreamMonitoredSubprocessCall (class in fuzzina-

tor.call), 19
SubprocessCall() (in module fuzzinator.call), 19
SubprocessPropertyDecorator (class in fuzzinator.call),

20
SubprocessRunner (class in fuzzinator.fuzzer), 26
SubprocessUpdate() (in module fuzzinator.update), 31

T
TestRunnerSubprocessCall (class in fuzzinator.call), 21
TimestampUpdateCondition() (in module fuzzina-

tor.update), 31
TornadoDecorator (class in fuzzinator.fuzzer), 27

U
UniqueIdDecorator (class in fuzzinator.call), 21

43



Fuzzinator Documentation, Release 18.3.1

update_fuzz_stat() (fuzzinator.EventListener method), 12
update_issue() (fuzzinator.EventListener method), 12
update_load() (fuzzinator.EventListener method), 12

W
warning() (fuzzinator.EventListener method), 13

44 Index


	Introduction
	Tutorial
	Fuzzinator Core: package fuzzinator
	SUT Calls: package fuzzinator.call
	Fuzzers: package fuzzinator.fuzzer
	Test Case Reducers: package fuzzinator.reduce
	SUT Updaters: package fuzzinator.update
	Release Notes
	Versioning and Releasing
	Licensing
	Python Module Index

