

Welcome to Funday Anyday Roulette’s documentation!

Funday Anyday Roulette [http://fundayroulette.com/] is a site that gives you
a random Funday Monday to play. These docs mostly concern folks
wanting to either work on the site or using the API.

Contents:

	Getting Involved
	Installing

	Contributing

	Code Style

	API

Indices and tables

	Index

	Module Index

	Search Page

Getting Involved

Installing

Funday Roulette is a pretty standard Django application. If you are familiar
with Django development you should be right at home.

First you’ll need to clone the code base using git:

git clone https://github.com/wraithan/funday.git

Then set up a virtualenv [http://virtualenv.org/] and then after activating
it (see virtualenv link if you don’t know what I am talking about), install the
dependencies for funday:

pip install -r requirements.txt

After that you’ll set up the database, run migrations, and import a base set of
data:

./manage.py syncdb
./manage.py migrate
./manage.py loaddata funday_monday_import

Now it is simple as running the server and checking that things work:

./manage.py runserver

Contributing

All development is done on github in the official repo: wraithan/funday [https://github.com/wraithan/funday] please direct pull requests and issues
there.

Before starting work on something please make sure it is an issue in the issue
tracker [https://github.com/wraithan/funday/issues]. When you are done
writing your patch please put fixes #1 in your commit message (replacing 1
with the issue that your commit fixes) then send a pull request.

I can emphasize this part enough: please do not delete your fork until the pull
request has been closed. If it hasn’t been closed and you delete you fork, I
can’t pull down your code to test it before merging which means I very likely
wont merge your code.

Code Style

I follow pep8 [http://www.python.org/dev/peps/pep-0008/] and pyflakes [https://crate.io/packages/pyflakes/0.5.0/] closely. If you’d like to check
to see if your code is ready for you to send a pull request please install
fabric then run:

fab style_check

It will tell you where you have made mistakes, or it will just exit normally
after running pep8 and pyflakes.

On top of those two, I prefer to have imports grouped in the following way:

python imports
import os

library imports
from django.db import models

local package imports
from anyday.core import views

Within the groupings the imports should be alphabetized.

API

This is a Tastypie [http://tastypieapi.org/] based API, as such in
interacting with it you can use their documentation for that: Interacting with
Tastypie [http://django-tastypie.readthedocs.org/en/latest/interacting.html]. Below are
the current points in the API.

	
GET /api/v1/funday/

	List of all Funday objects.

Example Request

GET /api/v1/funday/ HTTP/1.1
Host: fundayroulette.com
Accept: application/json

Example Response

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Vary: Accept

{
 "meta": {
 "limit": 20,
 "next": "/api/v1/funday/?offset=20&limit=20&format=json",
 "offset": 0,
 "previous": null,
 "total_count": 1
 },
 "objects": [
 {
 "created": "2012-09-13T06:08:54.151000",
 "description": "The constraint is that the Zerg player is forbidden to make any Queens.",
 "game_type": "individual",
 "id": 1,
 "modified": "2012-09-14T10:02:42.453000",
 "name": "No Queens!",
 "protoss": false,
 "resource_uri": "/api/v1/funday/1/",
 "terran": false,
 "video": "http://day9.tv/d/Day9/day9-daily-183-funday-monday-no-queens/",
 "zerg": true
 },
]
}

	
GET /api/v1/funday/<id>/

	Details for an individual Funday object.

Example Request

GET /api/v1/funday/1/ HTTP/1.1
Host: fundayroulette.com
Accept: application/json

Example Response

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Vary: Accept

{
 "created": "2012-09-13T06:08:54.151000",
 "description": "The constraint is that the Zerg player is forbidden to make any Queens.",
 "game_type": "individual",
 "id": 1,
 "modified": "2012-09-14T10:02:42.453000",
 "name": "No Queens!",
 "protoss": false,
 "resource_uri": "/api/v1/funday/1/",
 "terran": false,
 "video": "http://day9.tv/d/Day9/day9-daily-183-funday-monday-no-queens/",
 "zerg": true
}

	
GET /api/v1/funday/random/

	Details for a random Funday object.

Example Request

GET /api/v1/funday/random/ HTTP/1.1
Host: fundayroulette.com
Accept: application/json

Example Response

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Vary: Accept

{
 "created": "2012-09-13T07:29:45.214000",
 "description": "At the beginning of your game, you must name three Units. For the rest of the game, you may only make those three Units (and workers/buildings, of course).",
 "game_type": "individual",
 "id": 16,
 "modified": "2012-09-13T07:29:45.215000",
 "name": "Count to Three",
 "protoss": true,
 "resource_uri": "/api/v1/funday/16/",
 "terran": true,
 "video":
 "http://day9.tv/d/Day9/day9-daily-284-funday-monday-count-to-three-encore/",
 "zerg": true
}

 HTTP Routing Table

 /api

 		 	

 		
 /api	

 	
 	
 GET /api/v1/funday/	

 	
 	
 GET /api/v1/funday/<id>/	

 	
 	
 GET /api/v1/funday/random/	

Index

Funday Monday

Funday Monday is something that Day[9] [http://day9.tv/] invented a few years
ago. The idea is to play StarCraft 2 with some interesting constraint. Day[9]
would then ask his viewers to send in replays of themselves playing with those
constraints. After picking the most interesting and funnest he would broadcast
them on his stream both pointing out the hilarity as well as things we can learn
from what has manifested while the player was constrained.

 nav.xhtml

 Table of Contents

 		Welcome to Funday Anyday Roulette's documentation!

 		Getting Involved

 		Installing

 		Contributing

 		Code Style

 		API

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_static/down-pressed.png

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/minus.png

_static/file.png

