

OSSFS

OSSFS is a PyFilesystem interface [https://docs.pyfilesystem.org/en/latest/reference/base.html] to
AliCloud OSS cloud storage.

As a PyFilesystem concrete class, OSSFS allows you to work with OSS in the
same as any other supported filesystem.

Installing

OSSFS may be installed from pip with the following command:

pip install fs-ossfs

This will install the most recent stable version.

Alternatively, if you want the cutting edge code, you can check out
the GitHub repos at https://github.com/go-choppy/fs.ossfs

Opening an OSS Filesystem

There are two options for constructing a ossfs instance. The simplest way
is with an opener, which is a simple URL like syntax. Here is an example:

from fs import open_fs
ossfs = open_fs('oss://mybucket/')

For more granular control, you may import the OSSFS class and construct
it explicitly:

from fs_ossfs import OSSFS
ossfs = OSSFS('mybucket')

OSSFS Constructor

	
class fs_ossfs.OSSFS(bucket_name, dir_path='/', oss_access_key_id=None, oss_secret_access_key=None, oss_session_token=None, endpoint_url=None, region=None, delimiter='/', strict=True, cache_control=None, acl=None, upload_args=None, download_args=None)

	Construct an AliCloud OSS filesystem for PyFilesystem [https://pyfilesystem.org]

	Arguments:

	bucket_name (str): The OSS bucket name.
dir_path (str): The root directory within the OSS Bucket. Defaults to "/"
oss_access_key_id (str): The access key, or None to read the key from standard configuration files.
oss_secret_access_key (str): The secret key, or None to read the key from standard configuration files.
endpoint_url (str): Alternative endpoint url (None to use default).
oss_session_token (str):
region (str): Optional OSS region.
delimiter (str): The delimiter to separate folders, defaults to a forward slash.
strict (bool): When True (default) OSSFS will follow the PyFilesystem specification exactly. Set to False to disable validation of destination paths which may speed up uploads / downloads.
cache_control (str): Sets the ‘Cache-Control’ header for uploads.
acl (str): Sets the Access Control List header for uploads.
upload_args (dict): A dictionary for additional upload arguments. See https://boto3.readthedocs.io/en/latest/reference/services/s3.html#S3.Object.put for details.
download_args (dict): Dictionary of extra arguments passed to the OSS client.

	
copy(src_path, dst_path, overwrite=False)

	Copy file contents from src_path to dst_path.

	Arguments:

	src_path (str): Path of source file.
dst_path (str): Path to destination file.
overwrite (bool): If True, overwrite the destination file

if it exists (defaults to False).

	Raises:

	
	fs.errors.DestinationExists: If dst_path exists,

	and overwrite is False.

	fs.errors.ResourceNotFound: If a parent directory of

	dst_path does not exist.

	
download(path, file, chunk_size=None, **options)

	Copies a file from the filesystem to a file-like object.

This may be more efficient that opening and copying files
manually if the filesystem supplies an optimized method.

	Arguments:

	path (str): Path to a resource.
file (file-like): A file-like object open for writing in

binary mode.

	chunk_size (int, optional): Number of bytes to read at a

	time, if a simple copy is used, or None to use
sensible default.

	**options: Implementation specific options required to open

	the source file.

Note that the file object file will not be closed by this
method. Take care to close it after this method completes
(ideally with a context manager).

	Example:

	>>> with open('starwars.mov', 'wb') as write_file:
... my_fs.download('/movies/starwars.mov', write_file)

	
exists(path)

	Check if a path maps to a resource.

	Arguments:

	path (str): Path to a resource.

	Returns:

	bool: True if a resource exists at the given path.

	
getinfo(path, namespaces=None)

	Get information about a resource on a filesystem.

	Arguments:

	path (str): A path to a resource on the filesystem.
namespaces (list, optional): Info namespaces to query

(defaults to [basic]).

	Returns:

	~fs.info.Info: resource information object.

For more information regarding resource information, see info.

	
geturl(path, purpose='download')

	Get the URL to a given resource.

	Parameters:

	path (str): A path on the filesystem
purpose (str): A short string that indicates which URL

to retrieve for the given path (if there is more than
one). The default is 'download', which should return
a URL that serves the file. Other filesystems may support
other values for purpose.

	Returns:

	str: a URL.

	Raises:

	fs.errors.NoURL: If the path does not map to a URL.

	
isdir(path)

	Check if a path maps to an existing directory.

	Parameters:

	path (str): A path on the filesystem.

	Returns:

	bool: True if path maps to a directory.

	
isempty(path)

	Check if a directory is empty.

A directory is considered empty when it does not contain
any file or any directory.

	Parameters:

	path (str): A path to a directory on the filesystem.

	Returns:

	bool: True if the directory is empty.

	Raises:

	errors.DirectoryExpected: If path is not a directory.
errors.ResourceNotFound: If path does not exist.

	
listdir(path)

	Get a list of the resource names in a directory.

This method will return a list of the resources in a directory.
A resource is a file, directory, or one of the other types
defined in ~fs.ResourceType.

	Arguments:

	path (str): A path to a directory on the filesystem

	Returns:

	list: list of names, relative to path.

	Raises:

	fs.errors.DirectoryExpected: If path is not a directory.
fs.errors.ResourceNotFound: If path does not exist.

	
makedir(path, permissions=None, recreate=False)

	Make a directory.

	Arguments:

	path (str): Path to directory from root.
permissions (~fs.permissions.Permissions, optional): a

Permissions instance, or None to use default.

	recreate (bool): Set to True to avoid raising an error if

	the directory already exists (defaults to False).

	Returns:

	~fs.subfs.SubFS: a filesystem whose root is the new directory.

	Raises:

	fs.errors.DirectoryExists: If the path already exists.
fs.errors.ResourceNotFound: If the path is not found.

	
move(src_path, dst_path, overwrite=False)

	Move a file from src_path to dst_path.

	Arguments:

	src_path (str): A path on the filesystem to move.
dst_path (str): A path on the filesystem where the source

file will be written to.

	overwrite (bool): If True, destination path will be

	overwritten if it exists.

	Raises:

	
	fs.errors.FileExpected: If src_path maps to a

	directory instead of a file.

	fs.errors.DestinationExists: If dst_path exists,

	and overwrite is False.

	fs.errors.ResourceNotFound: If a parent directory of

	dst_path does not exist.

	
openbin(path, mode='r', buffering=-1, **options)

	Open a binary file-like object.

	Arguments:

	path (str): A path on the filesystem.
mode (str): Mode to open file (must be a valid non-text mode,

defaults to r). Since this method only opens binary files,
the b in the mode string is implied.

	buffering (int): Buffering policy (-1 to use default buffering,

	0 to disable buffering, or any positive integer to indicate
a buffer size).

	**options: keyword arguments for any additional information

	required by the filesystem (if any).

	Returns:

	io.IOBase: a file-like object.

	Raises:

	fs.errors.FileExpected: If the path is not a file.
fs.errors.FileExists: If the file exists, and exclusive mode

is specified (x in the mode).

fs.errors.ResourceNotFound: If the path does not exist.

	
readbytes(path)

	Get the contents of a file as bytes.

	Arguments:

	path (str): A path to a readable file on the filesystem.

	Returns:

	bytes: the file contents.

	Raises:

	fs.errors.ResourceNotFound: if path does not exist.

	
remove(path)

	Remove a file from the filesystem.

	Arguments:

	path (str): Path of the file to remove.

	Raises:

	fs.errors.FileExpected: If the path is a directory.
fs.errors.ResourceNotFound: If the path does not exist.

	
removedir(path)

	Remove a directory from the filesystem.

	Arguments:

	path (str): Path of the directory to remove.

	Raises:

	
	fs.errors.DirectoryNotEmpty: If the directory is not empty (

	see ~fs.base.FS.removetree for a way to remove the
directory contents.).

	fs.errors.DirectoryExpected: If the path does not refer to

	a directory.

	fs.errors.ResourceNotFound: If no resource exists at the

	given path.

	fs.errors.RemoveRootError: If an attempt is made to remove

	the root directory (i.e. '/')

	
scandir(path, namespaces=None, page=None)

	Get an iterator of resource info.

	Arguments:

	path (str): A path to a directory on the filesystem.
namespaces (list, optional): A list of namespaces to include

in the resource information, e.g. ['basic', 'access'].

	page (tuple, optional): May be a tuple of (<start>, <end>)

	indexes to return an iterator of a subset of the resource
info, or None to iterate over the entire directory.
Paging a directory scan may be necessary for very large
directories.

	Returns:

	~collections.abc.Iterator: an iterator of Info objects.

	Raises:

	fs.errors.DirectoryExpected: If path is not a directory.
fs.errors.ResourceNotFound: If path does not exist.

	
setinfo(path, info)

	Set info on a resource.

This method is the complement to ~fs.base.FS.getinfo
and is used to set info values on a resource.

	Arguments:

	path (str): Path to a resource on the filesystem.
info (dict): Dictionary of resource info.

	Raises:

	
	fs.errors.ResourceNotFound: If path does not exist

	on the filesystem

The info dict should be in the same format as the raw
info returned by getinfo(file).raw.

	Example:

	>>> details_info = {"details": {
... "modified": time.time()
... }}
>>> my_fs.setinfo('file.txt', details_info)

	
upload(path, file, chunk_size=None, **options)

	Set a file to the contents of a binary file object.

This method copies bytes from an open binary file to a file on
the filesystem. If the destination exists, it will first be
truncated.

	Arguments:

	path (str): A path on the filesystem.
file (io.IOBase): a file object open for reading in

binary mode.

	chunk_size (int, optional): Number of bytes to read at a

	time, if a simple copy is used, or None to use
sensible default.

	**options: Implementation specific options required to open

	the source file.

Note that the file object file will not be closed by this
method. Take care to close it after this method completes
(ideally with a context manager).

	Example:

	>>> with open('~/movies/starwars.mov', 'rb') as read_file:
... my_fs.upload('starwars.mov', read_file)

	
writebytes(path, contents)

	Copy binary data to a file.

	Arguments:

	path (str): Destination path on the filesystem.
contents (bytes): Data to be written.

	Raises:

	TypeError: if contents is not bytes.

Limitations

AliCloud OSS isn’t strictly speaking a filesystem, in that it contains
files, but doesn’t offer true directories. OSSFS follows the convention
of simulating directories by creating an object that ends in a forward
slash. For instance, if you create a file called “foo/bar”, OSSFS will
create an OSS object for the file called “foo/bar” and an
empty object called “foo/” which stores that fact that the “foo”
directory exists.

If you create all your files and directories with OSSFS, then you can
forget about how things are stored under the hood. Everything will work
as you expect. You may run in to problems if your data has been
uploaded without the use of OSSFS. For instance, if you create a
“foo/bar” object without a “foo/” object. If this occurs, then OSSFS
may give errors about directories not existing, where you would expect
them to be. The solution is to create an empty object for all
directories and subdirectories. Fortunately most tools will do this for
you, and it is probably only required of you upload your files manually.

Authentication

If you don’t supply any credentials, then OSSFS will use the access key
and secret key configured on your system. You may also specify when
creating the filesystem instance. Here’s how you would do that with an
opener:

ossfs = open_fs('oss://<access key>:<secret key>@mybucket')

Here’s how you specify credentials with the constructor:

ossfs = OSSFS(
 'mybucket'
 oss_access_key_id=<access key>,
 oss_secret_access_key=<secret key>
)

Note

AliCloud recommends against specifying credentials explicitly like
this in production.

OSS Info

You can retrieve OSS info via the oss namespace. Here’s an example:

>>> info = s.getinfo('foo', namespaces=['oss'])
>>> info.raw['oss']
{'metadata': {}, 'delete_marker': None, 'version_id': None, 'parts_count': None, 'accept_ranges': 'bytes', 'last_modified': 1501935315, 'content_length': 3, 'content_encoding': None, 'request_charged': None, 'replication_status': None, 'server_side_encryption': None, 'expires': None, 'restore': None, 'content_type': 'binary/octet-stream', 'sse_customer_key_md5': None, 'content_disposition': None, 'storage_class': None, 'expiration': None, 'missing_meta': None, 'content_language': None, 'ssekms_key_id': None, 'sse_customer_algorithm': None, 'e_tag': '"37b51d194a7513e45b56f6524f2d51f2"', 'website_redirect_location': None, 'cache_control': None}

URLs

You can use the geturl method to generate an externally accessible
URL from an OSS object. Here’s an example:

>>> ossfs.geturl('foo')

More Information

See the PyFilesystem Docs [https://docs.pyfilesystem.org] for documentation on the rest of the PyFilesystem interface.

Indices and tables

	Index

	Module Index

	Search Page

Index

 C
 | D
 | E
 | G
 | I
 | L
 | M
 | O
 | R
 | S
 | U
 | W

C

 	
 	copy() (fs_ossfs.OSSFS method)

D

 	
 	download() (fs_ossfs.OSSFS method)

E

 	
 	exists() (fs_ossfs.OSSFS method)

G

 	
 	getinfo() (fs_ossfs.OSSFS method)

 	
 	geturl() (fs_ossfs.OSSFS method)

I

 	
 	isdir() (fs_ossfs.OSSFS method)

 	
 	isempty() (fs_ossfs.OSSFS method)

L

 	
 	listdir() (fs_ossfs.OSSFS method)

M

 	
 	makedir() (fs_ossfs.OSSFS method)

 	
 	move() (fs_ossfs.OSSFS method)

O

 	
 	openbin() (fs_ossfs.OSSFS method)

 	
 	OSSFS (class in fs_ossfs)

R

 	
 	readbytes() (fs_ossfs.OSSFS method)

 	
 	remove() (fs_ossfs.OSSFS method)

 	removedir() (fs_ossfs.OSSFS method)

S

 	
 	scandir() (fs_ossfs.OSSFS method)

 	
 	setinfo() (fs_ossfs.OSSFS method)

U

 	
 	upload() (fs_ossfs.OSSFS method)

W

 	
 	writebytes() (fs_ossfs.OSSFS method)

 nav.xhtml

 Table of Contents

 		
 OSSFS

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

