

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	frog 1.0 documentation

Frog Media Server

Frog Media Server is a server-client solution for sharing and maintaining large collections of images and videos

Quickstart

Accessibility

[image: _images/acc_info.png]
First and foremost, Frog is easy to use and easy to add media files to. It has a straight forward API so integrating it into any other app or tool is trivial. Users can upload and view media instantly and the entire team benefits. For example, an artist could be working in Photoshop and simply hit a hotkey or panel button that would send a PNG and layered source PSD to Frog. The artist doesn’t have to break his workflow just to share images with the rest of the team.

Since Frog is web based, everyone can get to it wherever they are. The viewer is done in HTML5 canvas which makes it even more accessible as no plugins are required.

Visibility

[image: _images/vis_info.png]
One of the biggest problems I see in creative studios is that their media is usually hosted on a network drive somewhere and, if you’re lucky, organized in folders. Searching is slow, browsing is near impossible, and sharing is a nightmare. A major benefit with Frog is just having everything visible at one time. Being able to browse all media in one place makes discovery a snap. There is also a sense of progress as users can see a history of the project’s art over time.

Discovery

To find images or videos, there is a search bar at the top just as there should be. You can do full text searches or filter by tags. Adding or removing tags to an image or a group of images is dead simple with a nice drag and drop interface anyone can use. Users can quickly search and filter a set of images, then send that link to others. For example, you could have a set of filters for a certain artist and a specific character. Share that link and you’ll always have an up-to-date set of images meeting that criteria.

As mentioned before, when media is stored in a network folder, browsing is cumbersome. If Google has tought us anything, its that search is the only means of finding something when the number of items gets too large. No matter how organized a folder structure may be, search will always be faster and more accessible to users.

User Guide

The user guide is for those actually using an instllation of Frog. It goes over the UI and how to interact and add content.

	User Interface

	Search & Filter

	Tags

Adding Content

Adding content to Frog is as simple as dragging stuff from your desktop onto the site. It will upload and do any conversions neccessary and add them to the current Gallery. You can also click the Upload button on the toolbar at the top to bring up a familiar file selection dialog.

Admin Guide

	Installation

	Quickstart

	Server Setup

	Existing Django Project

	Troubleshooting

Developer Guide

	Introduction
	Response

	Views
	Gallery

	Piece

	Tag

	Comment

Frog Settings

Note

If you are installing Frog 1.0 from a previous version, please make sure you change any previous setting to the new ones below.

	
FROG_IMAGE_SIZE_CAP

	The maximum image size to allow for uploads. Anything larger will be scaled proportionally to fit into a square of this value.

Default is 5120

	
FROG_IMAGE_SMALL_SIZE

	This value determines what is considered a “small” version of the image

Default is 600

	
FROG_THUMB_SIZE

	The value to scale thumbnails down to

Default is 256

	
FROG_UNIQUE_ID

	A string to a module function that will be called to determine a unique value for the image. This will be used to find and overwrite existing images. The function should take two arguments, a path and user. The path arg will have as much of the filename as possible and the user arg will be a standard Django User instance. The default is

def uniqueid(path, user)
 username = 'Anonymous' if user.is_anonymous() else user.username
 return '%s_%s' % (username, os.path.split(path)[1])

	
FROG_PATH

	A path relative to our MEDIA_ROOT setting where Frog will store it’s image and video files

Default is ‘’

	
FROG_FFMPEG

	Absolute path to ffmpeg

	
FROG_SCRUB_DURATION

	If the video is less than this value, in seconds, then it will be converted so it can be scrubbed frame by frame. This is slower and takes longer but works well for animations.

Default is 60

	
FROG_FFMPEG_ARGS

	The argument string sent to ffmpeg to convert a video to a web compatible format. For advanced use only.

Default is -vcodec libx264 -b:v 2500k -acodec libvo_aacenc -b:a 56k -ac 2 -y

	
FROG_SCRUB_FFMPEG_ARGS

	The argument string sent to ffmpeg to convert a video to a scrubbable, web compatible format. For advanced use only.

Default is -vcodec libx264 -b:v 2500k -x264opts keyint=1:min-keyint=8 -acodec libvo_aacenc -b:a 56k -ac 2 -y

	
FROG_SITE_URL

	The absolute URL for the host. This is used in RSS feeds and comments to give absolute URLs to content

 Copyright 2013, Brett Dixon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	frog 1.0 documentation

User Interface

Frog has one main UI feature at the top of the browser and has dialogs for adding and removing tags and copying content to different galleries.

[image: ../_images/frogui.png]

Navigation

The navigation window will show a list of galleries and any sub galleries they contain. Next to each item there is an image and video count along with the description for the gallery. You will only be able to see Galleries you have perssion to see or own.

[image: ../_images/navigation.png]

Copy to Gallery

This will be how you create new galleries and copy or move content between them. If you’re creating a new gallery, simply fill in the field in the top section and all selected pieces will be added to the new gallery. If you want to copy or move pieces, choose the gallery from the bottom part of the dialog. Use the Move Items checkbox to move the pieces rather than copy them.

[image: ../_images/copy.png]

 Copyright 2013, Brett Dixon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	frog 1.0 documentation

Search & Filter

Searching and filtering is done by typing in your query into the search box at the top of Frog. It will autocomplete on known tags or you can just search for whatever you’d like.

[image: ../_images/search.png]

Advanced Search

By clicking the Filter button on the toolbar at the top, you’ll be able to do some more complicated searches. How this works is everything in each row is OR’ed together and the rows are AND’ed together. For example, say you wanted to find all images from Donetello or Michelangelo that was tagged with sculpture. You would put the two artists names in one row and the “sculpture” tag in the next. Sounds complicated, but it’s really easy to use.

[image: ../_images/search_adv.png]

 Copyright 2013, Brett Dixon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	frog 1.0 documentation

Tags

Tagging has been made pretty easy in Frog. You can select images and click the Edit Tags button or hit the TAB key to bring up the dialog. Here you’ll have three columns:

	Tags to add to all selected items

	Tags that are on at least one of the selected items

	Tags to remove from all selected items

You can type in the name of a new tag or it will autocomplete for existing ones. You can also drag the tags to the different columns for quick addition or removal.

[image: ../_images/tags.png]

 Copyright 2013, Brett Dixon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	frog 1.0 documentation

Installation

To install frog and many other python packages, you’ll want to start with distribute and pip. Pip makes installing python packages a snap.

Distribute & Pip

Installing Requests is simple with pip [http://www.pip-installer.org/]:

$ pip install django-frog

Get source on GitHub

You can always clone the repository on GitHub [https://github.com/theiviaxx/Frog].

You can either clone the public repository:

git clone git://github.com/theiviaxx/Frog.git

Download the tarball [https://github.com/theiviaxx/Frog/tarball/master]:

$ curl -OL https://github.com/theiviaxx/Frog.git

Or, download the zipball [https://github.com/theiviaxx/Frog/zipball/master]:

$ curl -OL https://github.com/theiviaxx/Frog/zipball/master

Once you have a copy of the source, you can embed it in your Python package,
or install it into your site-packages easily:

$ python setup.py install

 Copyright 2013, Brett Dixon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	frog 1.0 documentation

Quickstart

This guide is written for windows to get up and running within a few minutes, but is not at all ready for a production server. If you’re on linux, you should be able to follow the instructions below with minimal changes to get up and running.

Requirements

	Install Python 2.6 or later [http://python.org/download/]

	Install Pillow [https://pypi.python.org/pypi/Pillow/2.1.0#downloads]

	Install Frog

Start a project

First lets open a command line and:

> cd c:\\users\\brett
> python c:\\python27\\Scripts\\django-admin.py startproject dev
> cd dev
> mkdir static
> mkdir static\\frog
> copy C:\\python27\\lib\\site-packages\\frog\\static* static\\frog

Settings

Now we need to modify the default settings to include Frog and add some other stuff. The easiest thing to do is just copy and paste the settings file below and make the path changes to fit your machine. Edit the c:\Users\brett\dev\dev\settings.py file:

Django settings for dev project.
import os
APPROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))

DEBUG = True
TEMPLATE_DEBUG = DEBUG

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(APPROOT, 'frog.sqlite'),
 }
}

SITE_ID = 1

MEDIA_URL = 'http://127.0.0.1:8000/static/'
MEDIA_ROOT = os.path.join(APPROOT, 'static') + '\\'

ADMIN_MEDIA_PREFIX = '/static/admin/'
SECRET_KEY = 'secret'

TEMPLATE_LOADERS = (
 'django.template.loaders.filesystem.Loader',
 'django.template.loaders.app_directories.Loader',
)

TEMPLATE_CONTEXT_PROCESSORS = (
 "django.contrib.auth.context_processors.auth",
 "django.core.context_processors.debug",
 "django.core.context_processors.i18n",
 "django.core.context_processors.media",
 "django.core.context_processors.static",
 "django.core.context_processors.tz",
 "django.contrib.messages.context_processors.messages",
 "frog.context_processors.media",
)

MIDDLEWARE_CLASSES = (
 'django.middleware.common.CommonMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
)

ROOT_URLCONF = 'dev.urls'

INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'django.contrib.messages',
 'django.contrib.admin',
 'django.contrib.comments',
 'frog',
)

LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'handlers': {
 'console':{
 'level':'DEBUG',
 'class':'logging.StreamHandler',
 }
 },
 'loggers': {
 'django.request': {
 'handlers': ['console'],
 'level': 'ERROR',
 'propagate': True,
 },
 }
}

AUTHENTICATION_BACKENDS = (
 'frog.auth.SimpleAuthBackend',
)

FROG_FFMPEG = 'c:/ffmpeg/ffmpeg.exe'
FROG_SITE_URL = 'http://127.0.0.1:8000'

URLs

Next we have to add the Frog URLs so edit the c:\Users\brett\dev\dev\urls.py file:

from django.conf.urls import patterns, include, url
from django.conf import settings

from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns(
 '',
 url(r'^static/(?P<path>.*)$', 'django.views.static.serve', {
 'document_root': settings.MEDIA_ROOT,
 'show_indexes': True
 }),
 url(r'^media/(?P<path>.*)$', 'django.views.static.serve', {
 'document_root': settings.MEDIA_ROOT,
 'show_indexes': True
 }),
 url(r'^frog/', include('frog.urls')),

 url(r'^admin/', include(admin.site.urls)),
)

Start the Server

At the command line type in

> python manage.py syncdb
> python manage.py runserver

Now go to http://127.0.0.1:8000/frog

 Copyright 2013, Brett Dixon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	frog 1.0 documentation

Server Setup

This page will guide you through setting up a production server for a proper deployment. There are many giudes out the to get a full Python/Django stack going so this is not meant to be definitive. The point here is to get a webserver running that can handle the traffic you require. This guide assumes a server running Ubuntu 12.04, though as long as you can install or build the dependencies, and distro would work. I haven’t set up a production server using IIS, but I’m sure there are guides to getting python and Django running on it.

The Parts

At the time of this writing, a common flavor is to use nginx and gunicorn. Nginx will be your main server and will serve static content such as JavaScript and images, then pass on any requests to gunicorn that need to be handled by Django. This makes for fast handling of the large images Frog is meant to display and a lightweight system to maintain down the road. As for a database, I’ll be using MySQL, but I believe Postgres, or any other DB supported by Django’s ORM [https://docs.djangoproject.com/en/1.5/ref/databases/], would work as well.

	nginx [http://wiki.nginx.org/Main]

	gunicorn [http://gunicorn.org/]

	MySQL [http://www.mysql.com/]

Install Packages

Since Ubuntu 12.04 comes with python 2.7, we’ll just use that. We will need to install PIP and distribute though. I’ll assume we’ll be in /var/www.

PIP

$ curl http://python-distribute.org/distribute_setup.py | python
$ curl https://raw.github.com/pypa/pip/master/contrib/get-pip.py | python

virtualenv

This is optional. It will keep your python packages in a isolated dir and it helps to keep things organized if the server will be doing other things with python. If you don’t care, feel free to skip this and move on to :ref:`Install Packages`_.

$ pip install virtualenv
$ virtualenv dev
$ cd dev
$ source bin/activate

Now we need to install our python packages. Installing Frog will add what it needs.

$ pip install django-frog
$ pip install pillow

Make a folder for static files

$ mkdir /var/www/static
$ ln -s /usr/local/lib/python27/site-packages/frog/static /var/www/static/frog
$ mkdir /var/www/dev/migrations
$ touch /var/www/dev/migrations/__init__.py

Install MySQL

Ubuntu comes with MySQL 5, so no need to install anything further. We just need the python bindings:

$ apt-get install python-mysqldb

Next we just need to create a database and add a user. For this tutorial, I’ll use ‘frog’ as the database and ‘django’ as the user:

> mysql -u root -p
mysql> create database frog;
mysql> create user 'django'@'localhost' identified by 'django';
mysql> grant all on frog.* to 'django'@'localhost' identified by 'django';

Install Nginx

The idea here is that nginx will sit in front of everything. Nginx is a lightweight and fast webserver, though for this tutorial, we’ll just be using it to serve static files. So Nginx will redirect traffic to gunicorn when it’s a django request and just server the static files when not. Gunicorn will listen on port :8000 and Nginx on port :80.

$ sudo apt-get install nginx

Edit /etc/nginx/nginx.conf. You’ll only need to edit the server section of the default conf:

...
http {
 ...
 log_format main '$remote_addr - $remote_user [$time_local] "$request" '
 '$status $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$http_x_forwarded_for"';
 ...
 server {
 listen 80;
 server_name dev;
 access_log logs/www/dev.log main;

 client_max_body_size 512M;

 # serve django admin files
 # This location may differ based on your setup
 location /media {
 alias /usr/lib/python2.7/site-packages/django/contrib/admin;
 expires 30d;
 }

 # serve static files
 location /static {
 alias /var/www/static;
 expires 30d;
 }

 # pass requests for dynamic content
 location / {
 proxy_pass_header Server;
 proxy_set_header Host $http_host;
 proxy_redirect off;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Scheme $scheme;
 proxy_connect_timeout 10;
 proxy_read_timeout 10;
 proxy_pass http://127.0.0.1:8000/;
 }
 }
 ...
}
...

Install Gunicorn

Gunicorn will run all of the django/python stuff behind nginx. We’ll need to install it and then write a service script so we can start/stop/restart it quickly. Install gunicorn:

$ pip install gunicorn

Edit /var/www/dev/gunicorn.sh

#!/bin/bash
set -e
LOGFILE=/var/log/gunicorn/frog.log
LOGDIR=$(dirname $LOGFILE)
NUM_WORKERS=3
user/group to run as
USER=your_unix_user
GROUP=your_unix_group
cd /var/www/dev
test -d $LOGDIR || mkdir -p $LOGDIR
exec gunicorn dev.wsgi:application \
--user=$USER --group=$GROUP --log-level=debug \
--log-file=$LOGFILE 2>>$LOGFILE

Make it executable

chmod ug+x /var/www/dev/gunicorn.sh

Next create an Upstart service, /etc/init/gunicorn.conf

description "Frog Django instance"
start on runlevel [2345]
stop on runlevel [06]
respawn
respawn limit 10 5
exec /var/www/dev/gunicorn.sh

Make a symlink to init.d

sudo ln -s /lib/init/upstart-job /etc/init.d/gunicorn

Setup Django

Now we need to configure Django to include Frog and handle our requests. Edit /var/www/dev/dev/settings.py and make the following changes:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'NAME': 'frog',
 'USER': 'django',
 'PASSWORD': 'django',
 'HOST': '',
 'PORT': '',
 }
}
MEDIA_ROOT = '/var/www/static/'
MEDIA_URL = 'http://127.0.0.1/static/'
TEMPLATE_CONTEXT_PROCESSORS = (
 "django.contrib.auth.context_processors.auth",
 "django.core.context_processors.debug",
 "django.core.context_processors.i18n",
 "django.core.context_processors.media",
 "django.core.context_processors.static",
 "django.core.context_processors.tz",
 "django.contrib.messages.context_processors.messages",
 "frog.context_processors.media",
)
Needed for redirect
LOGIN_URL = '/frog'

INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'django.contrib.messages',
 'django.contrib.comments',
 'haystack',
 'django.contrib.admin',
 'frog',
 'south',
)
SOUTH_MIGRATION_MODULES = {
 'frog': 'migrations',
}

AUTHENTICATION_BACKENDS = ('frog.auth.SimpleAuthBackend',)
SESSION_COOKIE_AGE = 31556926 # 1 year

Now add the Frog URLs to /var/www/dev/dev/urls.py

...
url(r'^frog/', include('frog.urls')),
...

Start It

With everything in place, we just need to start it up and cross our fingers

service gunicorn start
service nginx start

Go to http://server and see if there’s a happy Django page

 Copyright 2013, Brett Dixon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	frog 1.0 documentation

Existing Django Project

If you already have a working Django project and you’d like to add Frog to it, please follow these steps

Migrations

Frog uses south to handle its model migrations. This probably wont come up often, if ever, but should you need to adjust the models, South will be invaluable. Under your project root:

$ mkdir migrations
$ touch migrations/__init__.py

Now all Frog’s model migrations will be stored here instead of in the site-packages folder.

Install Frog

First use pip to install Frog, it will depend on Django 1.5+ so it may upgrade your installation. Make sure you are prepared for that! Also, the paths below are for example only, please make any changes to fit your system.

$ pip install django-frog
$ ln -s /usr/local/lib/python27/site-packages/frog/static /var/www/static/frog

Settings

Edit your project setting.py file

INSTALLED_APPS = (
 ...
 'haystack', ## -- Haystack must come before admin
 'django.contrib.admin',
 'frog',
 ...
 'south',
)
SITE_URL = 'http://servername'
-- Used for creating new users
DOMAIN = 'yourdomain.com'
-- Path to ffmpeg for processing video
FFMPEG = 'path/to/ffmpeg'

SOUTH_MIGRATION_MODULES = {
 'frog': 'migrations',
}

TEMPLATE_CONTEXT_PROCESSORS = (
 "django.contrib.auth.context_processors.auth",
 "django.core.context_processors.debug",
 "django.core.context_processors.i18n",
 "django.core.context_processors.media",
 "django.core.context_processors.static",
 "django.core.context_processors.tz",
 "django.contrib.messages.context_processors.messages",
 "frog.context_processors.media",
)

Note that the following middlewares need to be enabled:

	django.contrib.sessions.middleware.SessionMiddleware

	django.middleware.csrf.CsrfViewMiddleware

	django.contrib.auth.middleware.AuthenticationMiddleware

	django.contrib.messages.middleware.MessageMiddleware

Also add the Frog URLs to your projects urls.py

...
url(r'^frog/', include('frog.urls')),
...

Database

Do an initial migration and create the tables to the Frog models

$ python manage.py schemamigration frog --initial
$ python manage.py migrate frog

That’s it, you should be able to go to http://server/frog

 Copyright 2013, Brett Dixon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	frog 1.0 documentation

Troubleshooting

 Copyright 2013, Brett Dixon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	frog 1.0 documentation

Introduction

Frog is a simple server/client setup and most of the work is done on the client. The server is simply a REST API [http://en.wikipedia.org/wiki/Representational_state_transfer] for the client(s) to work with. There are only a couple URLs which will render HTML, the rest will return a standardized JSON [http://www.json.org/] serialized response object.

Response

{
 "isSuccess": true, // Did the request succeed
 "isError": false, // Did the request fail
 "message": "", // A string relevent to the request result
 "values": [], // A list of objects. This will always contain the object in "value"
 "value": {} // An object. If the request was for a list, this will be the first
 member of the list
}

 Copyright 2013, Brett Dixon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	frog 1.0 documentation

Views

Gallery

Galleries are simply collections of pieces. They are displayed in order of creation and can share pieces between them. Galleries can have sub galleries that can old specific sets of images, then can be promoted to the parent Gallery.

Gallery API

GET / Lists the galleries currently visible by the current user
POST / Creates a gallery object
GET /id Gallery object if visible by the current user
PUT /id Adds image or video objects to the gallery
DELETE /id Removes image or video objects from the gallery
GET /filter Returns a filtered list of image and video objects

Piece

A piece is either an Image or a Video and is made abstract so you can add more asset types if you’d like. A piece represents one thumbnail in Frog.

Piece API

GET /image/id Returns a rendered page displaying the requested image
GET /video/id Returns a rendered page displaying the requested video
POST /image/id Add tags to an image object
POST /video/id Add tags to an video object
DELETE /image/id Flags the image as deleted in the database
DELETE /video/id Flags the video as deleted in the database

Tag

All objects are tagged. As your data set grows, hierarchial navigation becomes combersome and inefficient. Users will almost always resort to search of some sort.

Tag API

GET / Lists all tags
POST / Creates a Tag object
PUT / Adds tags to guids
DELETE / Removes tags from guids
GET /search Search tag list
GET /manage Renders a form for adding/removing tags
POST /manage Adds and removes tags from guids and commits data

Comment

Frog implements a basic comment system for each Piece.

Comment API

GET / Returns a rendered list of comments
GET /id Returns a serialized comment
POST /id Creates a comment for an object
PUT /id Updates the content of the comment

 Copyright 2013, Brett Dixon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	frog 1.0 documentation

 Python Module Index

 f

 			

 		
 f	

 	[image: -]
 	
 frog	

 	
 	
 frog.models	

 Copyright 2013, Brett Dixon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	frog 1.0 documentation

Index

 F

F

 	

 	frog.models (module)

 	FROG_FFMPEG (built-in variable)

 	FROG_FFMPEG_ARGS (built-in variable)

 	FROG_IMAGE_SIZE_CAP (built-in variable)

 	FROG_IMAGE_SMALL_SIZE (built-in variable)

 	FROG_PATH (built-in variable)

 	

 	FROG_SCRUB_DURATION (built-in variable)

 	FROG_SCRUB_FFMPEG_ARGS (built-in variable)

 	FROG_SITE_URL (built-in variable)

 	FROG_THUMB_SIZE (built-in variable)

 	FROG_UNIQUE_ID (built-in variable)

 Copyright 2013, Brett Dixon.
 Created using Sphinx 1.3.5.

 _static/copy.png
Copy to Gallery.

Copy images to a new Gallery:
New Gallry

Description:

Securiy Level: | Publc

Or choose an existing one:
Existing Gallry

Move Items?:

_images/navigation.png
(3¢ Novigation | @ Upload) EditTags 80 Manage + 7 Fiter

Galleries.

Tite Inages s Desarption

[main s

_images/tags.png
EdtTags

To Add Selection To Remove

Drag tags here to add them to These tags are on at least one Drag tags here to remove them
the current selection item of the current selection from the current selection

_static/comment-close.png

_static/up.png

_static/vis_info.png

_static/minus.png

_images/frogui.png
[rr— »

I B~ a

Tulips. Penguins Lighthouse
Artist: Bill Man (0] Artist: Bill Man (0] Artist: Bill Man

Jellyfish Hydrangeas
Artist: Bill Man (0] Artist: Bill Man

Desert Chrysanthemum
Artist: Bill Man (0] Artist: Bill Man

_images/search_adv.png
e e—

_images/vis_info.png

_images/search.png
& Search for: fl
® flower

Tulips penguins Lighthouse Koala Jellyt
Artist: Artist: Artist: Artist: Artis

_images/acc_info.png

search.html

 Navigation

 		
 index

 		
 modules |

 		frog 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Brett Dixon.
 Created using Sphinx 1.3.5.

_static/search.png
& Search for: fl
® flower

Tulips penguins Lighthouse Koala Jellyt
Artist: Artist: Artist: Artist: Artis

_static/frogui.png
[rr— »

I B~ a

Tulips. Penguins Lighthouse
Artist: Bill Man (0] Artist: Bill Man (0] Artist: Bill Man

Jellyfish Hydrangeas
Artist: Bill Man (0] Artist: Bill Man

Desert Chrysanthemum
Artist: Bill Man (0] Artist: Bill Man

_images/copy.png
Copy to Gallery.

Copy images to a new Gallery:
New Gallry

Description:

Securiy Level: | Publc

Or choose an existing one:
Existing Gallry

Move Items?:

_static/blizzard.png
ENTERTAINMENT

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/search_adv.png
e e—

_static/carbine.png

_static/acc_info.png

_static/down.png

_static/comment.png

_static/ccp.png
. .

_static/tags.png
EdtTags

To Add Selection To Remove

Drag tags here to add them to These tags are on at least one Drag tags here to remove them
the current selection item of the current selection from the current selection

_static/navigation.png
(3¢ Novigation | @ Upload) EditTags 80 Manage + 7 Fiter

Galleries.

Tite Inages s Desarption

[main s

_static/rad.png
[farReadyRtpawn’

