
Friendly Sam Documentation
Release 0.2.0

Rasmus Einarsson

June 15, 2015

Contents

1 Friendly Sam is friendly in a number of ways: 3

2 Contents: 5
2.1 How to install Friendly Sam . 5
2.2 For developers . 6
2.3 What Friendly Sam is for . 8
2.4 Variables and expressions . 10
2.5 Optimization problems . 14
2.6 Model basics: Parts and constraints . 16
2.7 Flow networks: Nodes and resources . 18
2.8 Example model . 21
2.9 API reference . 22

3 Indices and tables 111

i

ii

Friendly Sam Documentation, Release 0.2.0

Friendly Sam is a toolbox developed to formulate and solve optimization-based models of energy systems, but it
could be used for many other systems too. Friendly Sam is designed to produce readable and understandable model
specifications. It is developed with the Python ecosystem of scientific tools in mind and can be used together with
numpy, pandas, matplotlib and many of your other favorite tools.

Note: Friendly Sam is work in progress. Please post any questions or issues on the Issue Tracker.

Contents 1

https://github.com/sp-etx/friendlysam/issues

Friendly Sam Documentation, Release 0.2.0

2 Contents

CHAPTER 1

Friendly Sam is friendly in a number of ways:

Flows of resources The frien in friendly stands for flows of resources in energy system networks. With Friendly Sam,
we model power plants, energy storages, consumers and other components as nodes in a network, interconnected
by flows of “resources”. Resources is a common name for all the different flows you could model: district
heating and cooling, electric power, fuels, etc.

User-friendly Friendly Sam is user-friendly. Instead of a global namespace with variable names like
VHSTOLOADT, we use object-oriented code with descriptive names like model[“Heat storage
A”].accumulation(42). Your model becomes easier to write, understand and maintain.

Open source Friendly Sam is open source software, because we think it’s friendly and smart to collaborate. Friendly
Sam is released under LGPL v3 license. The source code is on GitHub.

3

https://www.gnu.org/licenses/lgpl.html
https://github.com/sp-etx/friendlysam

Friendly Sam Documentation, Release 0.2.0

4 Chapter 1. Friendly Sam is friendly in a number of ways:

CHAPTER 2

Contents:

2.1 How to install Friendly Sam

2.1.1 Get Python 3

Friendly Sam is developed in Python 3 (at the time of this writing, Python 3.4). Download and install it now, if you
haven’t already.

2.1.2 Use a virtual environment

It is highly recommended that you use a virtual environment. It’s not strictly necessary, but if you choose not to, there
is a risk that you will have conflicts between different versions of the packages that Friendly Sam and other Python
packages depend on. Google for python virtualenv if you want to learn more. If not, you can also do it the
way I do, using vex.

• If you are on Windows

1. Open a command prompt.

2. Make sure you have the latest setuptools by running pip install setuptools
--upgrade

3. Install vex by running pip install --user vex

4. Create a virtual environment named my_project_name and enter it by running vex -m
--python C:\Python34\python.exe my_project_name cmd

Now, whenever you want to use your virtual environment, open a command prompt and run vex
my_project_name cmd.

• If you are on Linux

Basically, you follow the instructions for Windows above but exchange
C:\Python34\python.exe for something more suitable, and then do vex
my_project_name bash instead. Also see the docs for vex if you have problems.

2.1.3 Install Friendly Sam

Assuming you have entered/activated your Python virtual environment, or wherever you want to install it, open a
command prompt/shell and run the command:

5

https://www.python.org/downloads/
https://pypi.python.org/pypi/vex
https://pypi.python.org/pypi/vex

Friendly Sam Documentation, Release 0.2.0

pip install friendlysam

Optional dependencies

If you want to add support for pandas related stuff, or for saving and loading models using dill, do one of:

pip install friendlysam[pandas]
pip install friendlysam[pickling]
pip install friendlysam[pandas,pickling]

2.2 For developers

2.2.1 Install in developer mode

If you are developing the source code of Friendly Sam, you probably want to install it in “develop” mode instead. This
has two benefits. First, you get some extra dependencies such as nose (testing package), sphinx (documentation
package) and twine and wheel (used for releasing), etc. Second, you won’t have to reinstall the package into your
Python site-packages directory every time you change something.

1. Get Python 3. (Note: If you are on Windows it might be convenient to use a ready-made distribution like
WinPython and skip step 5 below, but we can’t guarantee it will work.)

2. Download the source code

• Alternative 1: Download a zip file: https://github.com/sp-etx/friendlysam/archive/master.zip

• Alternative 2: If you know git, clone into the repository:

git clone https://github.com/sp-etx/friendlysam.git

3. You probably want to install Friendly Sam in a virtual environment. Create one and activate it before you take
the next step.

4. Now, to install Friendly Sam in develop mode, do this:

pip install -r develop.txt

Note: If you are on Windows, pip-installation of some packages will fail if you don’t have a compiler correctly
configured. One such example is NumPy. A simple way around it is to install binaries from Christoph Gohlke’s
website for the packages that throw errors when you do pip install -r develop.txt.

Let’s say you are on Windows and download an installer called something like
numpy-MKL-1.9.0.win-amd64-py3.4.exe. Don’t just run the file, because then it will be installed in
your “main” Python installation (usually at C:\Python34). Instead, do this:

1. Open a command prompt.

2. Go into your virtual environment (e.g. vex my_project_name cmd).

3. (option a) Do this if you have an .exe file:

easy_install numpy-MKL-1.9.0.win-amd64-py3.4.exe

3. (option b) Or, if you have a .whl file file, e.g. numpy-1.9.2+mkl-cp34-none-win_amd64.whl, do
this:

6 Chapter 2. Contents:

https://www.python.org/downloads/
https://winpython.github.io/
https://github.com/sp-etx/friendlysam/archive/master.zip
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/

Friendly Sam Documentation, Release 0.2.0

pip install numpy-1.9.2+mkl-cp34-none-win_amd64.whl

2.2.2 Make Sphinx documentation

The documentation for residues is made with Sphinx and hosted with Read the Docs. To parse nice, human-readable
docstrings, we use Napoleon.

• If you want to make a very minor change to the documentation, you can actually just edit the source, push to the
github repository and magically, the docs will update at readthedocs.org.

• However, if you want to edit the docs a lot, you probably want to make test builds on your own machine. In that
case, you need to learn about Sphinx. To build the docs, open a command prompt, go to friendlysam\docs
and run the command:

make html

The resulting HTML can be previewed under friendlysam\docs_build\index.html.

2.2.3 Run tests

Please run the tests before pushing to the master branch.

To run all the tests, including doctests in the source code and doctests in this documentation, go to the project root
directory and run:

nosetests --with-doctest --doctest-options=+ELLIPSIS

2.2.4 Releasing Friendly Sam

If Friendly Sam is installed in develop mode, you should already have twine (for secure communication with PyPI)
and wheel (for building wheel distribution files).

1. To put things on PyPI, you have to register on PyPI, and you should register on the test PyPI too:

https://pypi.python.org/pypi

https://testpypi.python.org/pypi

2. Make sure that your account is activated. You should get an email from PyPI.

3. Make sure you are added as a maintainer of the friendlysam repository at PyPI/testPyPI.

4. Create yourself a file called .pypirc and put it in your home directory. If you are on Windows,
the file path should be‘‘C:Usersyourusername.pypirc‘‘. Put the following content in it:

[distutils]
index-servers =

pypi
test

[pypi]
repository:https://pypi.python.org/pypi
username:your_pypi_username

[test]

2.2. For developers 7

http://sphinx-doc.org/latest/index.html
https://readthedocs.org/
http://sphinxcontrib-napoleon.readthedocs.org/en/latest/
http://read-the-docs.readthedocs.org/en/latest/webhooks.html
http://sphinx-doc.org
https://pypi.python.org/pypi/twine
https://pypi.python.org/pypi/wheel
https://pypi.python.org/pypi
https://testpypi.python.org/pypi

Friendly Sam Documentation, Release 0.2.0

repository:https://testpypi.python.org/pypi
username:your_testpypi_username

5. (Windows users) For Windows, there is a nice pypi.bat you can use.

To register info about the package on PyPI, first push to the PyPI test site:

pypi.bat register test

You will be asked for your PyPI test password. Make sure it turned out as you wanted.
Then do the real thing:

pypi.bat register pypi

To build and upload the distribution, do this:

pypi.bat upload test

Twine will upload to PyPI and ask you for username and password. Check on the test site
that everything is OK. You can also run pip install ... from the test repo to be
sure. Then upload the package to the real repo by running:

pypi.bat upload pypi

5. (Linux/Mac users) You can easily translate pypi.bat into a bash script. Please do so and con-
tribute it to the repository!

2.3 What Friendly Sam is for

2.3.1 Why build another tool?

There are a lot of different tools for optimization-based modeling. Why in the world do we need another one?

The short answer is this: Friendly Sam is a domain specific toolbox. For the type of models we work with, the model
code is shorter, more readable and easier to debug than it would be with many other tools. Furthermore, Friendly Sam
makes data handling and analysis easier. Because Friendly Sam is implemented in Python, we get access to all
our favorite Python tools for scientific computing and visualization, including Pandas, NumPy, SciPy, matplotlib, etc.
This is a strong advantage because the majority of our modeling work is preparing input data and analyzing results.

In the coming paragraphs we’ll explain more about what Friendly Sam is. And at end we’ll also say a few things
Friendly Sam is not.

2.3.2 Data handling is easier with Python

Friendly Sam was designed to simplify our work with optimization-based models of energy systems, so-called dispatch
models. This is a common type of model in research and in applied analysis of energy systems, based on the thought
that the operator(s) of an energy system always act so as to minimize the cost of delivering energy to customers, or
maybe (in a parallel universe) to minimize the carbon emissions, or some other objective function. A dispatch model is
usually formulated as a minimization problem: “Minimize the operation cost of this system in this time period, subject
to the technical and legal constraints of the system.”

There are a zillion different variants of such models, but many of them have in common that there is a lot of data going
in and out. Some examples of possible input data are prices for different forms of energy, demand profiles, technical

8 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

constraints, etc. The output data could be operation decisions, system costs, greenhouse gas emissions, and many other
things. Therefore, a large part of our modeling work is data handling: Reading and wrangling data files, transforming
and resampling input and output data, visualizing results, making statistical tests, etc.

Many optimization-based models are implemented using a generic optimization modeling language like GAMS,
AMPL, AIMMS or CMPL. These languages can be wonderful to work with when formulating models because they
are made specifically for optimization, and they are efficient in transforming your human-readable code into something
that can be understood by almost any optimization solver. However, the infrastructure for handling input and output
data in GAMS and AMPL is sub-optimal (pun intended). Anyone who implemented a large, complicated model in
one of those languages knows it’s not an easy ride to keep track of all the data going in and out, especially not if you
want to make a lot of similar runs with different parameter sets. I know several people who wrote their own tools
for getting inputs and outputs back and forth between GAMS and their favorite data crunching tool (Excel, Python,
MATLAB, R, etc).

When we started writing what would later become Friendly Sam, we chose Python because of the great ecosystem
of open source tools that come with it. We have paid specific attention to numpy, pandas, and matplotlib when
developing Friendly Sam. It’s not necessary to use these tools with Friendly Sam, but there is a great chance they
will make your life easier. What about optimization then? To formulate and solve the actual optimization problems,
we first used the Python API of the Gurobi optimizer. Gurobi’s Python API exposes a Variable class with overloaded
operators for addition, multiplication, etc, so you can make algebraic expressions for the optimization objective and
all the constraints in Python code. The Gurobi backend then translates these expression objects into a well-formed
optimization problem, solves the problem and delivers the solution back through the Python API so you never have to
leave Python. In Friendly Sam 1.0 we have created an abstraction layer to reduce the dependence on a certain solver
backend. We are now using PuLP to interact with the Gurobi and CBC solvers, but you never have to interact directly
with the backend, and it is not too hard to switch to another backend if we want to.

2.3.3 Domain specific toolbox

Friendly Sam is a Python library for formulating, running, and analyzing optimization-based models of energy sys-
tems.

In fact, it’s not only suitable for modeling energy systems, but also for other systems where you want to optimize flow
networks of physical or abstract quantities, be it energy carriers, money, solid waste, cargo deliveries, virtual water or
something else.

In principle, you are not even restricted to modeling systems with flow networks, because the optimization engine
behind Friendly Sam is exposed so you can formulate a large class of optimization problems. But if you want a
generic tool for formulating optimization problems you should probably check out other tools instead. In Python it’s
worth to look at CyLP, cvxpy, PuLP, and Pyomo. If you want a pure optimization language, look at GAMS, AMPL,
AIMMS or CMPL.

So although Friendly Sam can be used as a rather generic optimization modeling tool, it is domain specific in the
sense that it has vocabulary for energy systems and similar systems. We developed it specifically to help us formulate
dispatch models. In our energy system models, there are almost always balance equations for energy or materials, so
Friendly Sam contains definitions of things like FlowNetwork, Node and Cluster to simplify the formulation of
such constraints. And the Node class is a perfect starting point for modeling things like power plants, energy storages,
and other things you typically find in an energy system. Friendly Sam also has a simple formulation of a myopic
dispatch model of the type we often encounter in the academic literature on energy system modeling. If you use these
building blocks, you will have to think less about sign errors in balance equations and instead concentrate on what
your model really means.

Friendly Sam code is meant to be readable. For example, in a district heating model we can have instances
of Node subclasses, one named LinearCHP, another named HeatPump, etc. This makes perfect sense to
us, because the code is naturally structured similar to how we think about the energy system we are modeling.
When the underlying optimization problem is solved, we can query the state of the model objects with code like
heat_pump.consumption[’power’](time).

2.3. What Friendly Sam is for 9

Friendly Sam Documentation, Release 0.2.0

The code can also be easier to debug. When you have a bewildering error somewhere, it can be helpful to just eyeball
the constraints of your optimization problem, to see if you can spot the error. Friendly Sam makes this easier by
automatically naming constraints after their “owner”, for example the HeatPump instance we just mentioned. You
can also name variables and add descriptions to constraints. These features help you understand where things come
from when you are looking at a long list of constraints.

2.3.4 What Friendly Sam is not

First, we want to clarify that Friendly Sam is not “a model”. It is a toolbox we use to build models.

Second, Friendly Sam is not fool proof. It is entirely possible to make models that are stupid or wrong with Friendly
Sam. We have tried to design Friendly Sam to produce readable, understandable, debuggable models, and to make
idioms and conventions that help to avoid common errors. But having this tool is not an alternative to knowing and
understanding the optimization problems you are creating. Friendly Sam is a tool to help us focus on what is important,
rather than chasing indexing errors and how to formulate piecewise affine functions using special ordered sets.

Third, Friendly Sam is not primarily optimized for speed. If you want to solve a really big model fast, you are probably
better off with something like AMPL or GAMS, or maybe writing your own code in a compiled language. However, if
your model is moderately big you might get the job done faster with Friendly Sam because debugging, data handling,
analysis and visualization will be so much faster. In our experience, the development phase often consumes more time
and money than the computation phase, so development convenience is often more important than execution speed.

2.3.5 OK, let’s get started!

You are now ready to read about Variables and expressions.

Now that you know What Friendly Sam is for, let’s get started!

2.4 Variables and expressions

In Friendly Sam, each variable is an instance of the Variable class. Let’s create one:

>>> from friendlysam import Variable
>>> my_var = Variable('x')
>>> my_var
<friendlysam.opt.Variable at 0x...: x>
>>> print(my_var)
x

Variables can be added, multiplied, subtracted, and so on, to form expressions, including equalities and inequalities.

>>> expressions = [
... my_var * 2 + 1,
... (my_var + 1) * 2,
... my_var * 2 <= 3
...]
>>> for expr in expressions:
... expr
<friendlysam.opt.Add at 0x...>
<friendlysam.opt.Mul at 0x...>
<friendlysam.opt.LessEqual at 0x...>
>>>
>>> for expr in expressions:
... print(expr)

10 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

x * 2 + 1
(x + 1) * 2
x * 2 <= 3

Warning: The operator == is reserved for checking object similarity, just like we are used to in Python. To create
the relation “x equals y”, use Eq:

>>> from friendlysam import Eq
>>> my_var == 1
False
>>> print(Eq(my_var, 1))
x == 1

There is also a nice Sum operation you should use for large sums. Using the built-in sum() will create a deeply nested
and very inefficient tree of Add objects.

>>> from friendlysam import Sum
>>> many_terms = [my_var * i for i in range(100)]
>>> Sum(many_terms)
<friendlysam.opt.Sum at 0x...>
>>> sum(many_terms)
<friendlysam.opt.Add at 0x...>

2.4.1 Names don’t mean anything

In the example above, we named the Variable object ’x’. This is nothing more than a string attached to the object,
and it does not say anything about the identity of the variable. In principle you can have several Variable objects
with the same name, but that’s really confusing and should not be necessary.

>>> my_var = Variable('y')
>>> my_other_var = Variable('y')
>>> my_var == my_other_var
False
>>> print(my_var + my_other_var)
y + y

It is often a good idea to give your variables names you can recognize, because that simplifies debugging when you
want to inspect the expressions you have made with the variables. But if you don’t want to name variables you don’t
have to. The variables are then named automatically.

>>> Variable()
<friendlysam.opt.Variable at 0x...: x1>
>>> Variable()
<friendlysam.opt.Variable at 0x...: x2>

2.4.2 VariableCollection is like an indexed Variable

There is also a convenient class called VariableCollection. It is a sort of lazy dictionary, which creates variables
when you ask for them:

>>> from friendlysam import VariableCollection
>>> z = VariableCollection('z')
>>> z
<friendlysam.opt.VariableCollection at 0x...: z>

2.4. Variables and expressions 11

Friendly Sam Documentation, Release 0.2.0

>>> z(1)
<friendlysam.opt.Variable at 0x...: z(1)>
>>> z((1, 'a'))
<friendlysam.opt.Variable at 0x...: z((1, 'a'))>
>>> z(None)
<friendlysam.opt.Variable at 0x...: z(None)>

You can think of VariableCollection as an indexed variable, but all it really does is to create variables when
you call it, and then remember them.

The index must be hashable. For example, tuples are valid indices, but not lists:

>>> z((3, 1, 4))
<friendlysam.opt.Variable at 0x...: z((3, 1, 4))>
>>> z([3, 1, 4])
Traceback (most recent call last):
...
TypeError: unhashable type: 'list'

Variables can be named in a namespace, like this:

>>> from friendlysam import namespace
>>> with namespace('cheese'):
... cheese1 = Variable('gorgonzola')
... cheese2 = VariableCollection('ricotta')
...
>>> cheese1
<friendlysam.opt.Variable at 0x...: cheese.gorgonzola>
>>> cheese2
<friendlysam.opt.VariableCollection at 0x...: cheese.ricotta>

The namespace doesn’t affect the function of a variable in any way. It only prepends a string representation of whatever
object to the variable name, so you can also do things like this:

>>> with namespace(dict()):
... Variable('x')
...
<friendlysam.opt.Variable at 0x...: {}.x>

2.4.3 Variables can have values

You can assign a value to a variable. The variable will still work in expressions:

>>> x = Variable('x')
>>> x.value = 39
>>> expression = x + 3
>>> expression
<friendlysam.opt.Add at 0x...>
>>> print(expression)
x + 3

The difference is that you can now evaluate expressions. But note that the expression object is unchanged.

>>> float(expression)
42.0
>>> print(expression)
x + 3

12 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

You can change or delete the value:

>>> x.value = 0.5
>>> int(expression)
3
>>> float(expression)
3.5
>>> expression.value
3.5
>>> del x.value
>>> float(expression)
Traceback (most recent call last):
...
friendlysam.opt.NoValueError: cannot get a numeric value: x + 3 evaluates to x + 3

And it works for relations, too:

>>> x.value = 10
>>> (x <= 12).value
True

2.4.4 Expressions are immutable

Expressions are hashed by structure: If they do the same thing, they hash and compare equal. This also means they
are considered equal e.g. as dict keys.

>>> expr1 = x * 2
>>> expr2 = x * 2
>>> expr1 is expr2 # Different objects!
False
>>> expr1 == expr2 # But similar
True
>>> d = dict()
>>> d[expr1] = 'some value'
>>> d[expr2]
'some value'

Expressions are immutable, meaning that their state can never be changed. In the example above, expr1 == expr2
and that will always be true. Two expressions are interchangeable if (and only if) they compare equal. For any purpose,
in any situation, expr1 will always do the same thing as expr2.

However, as you saw above, the result of float(expr1)may vary depending on whether variables in the expression
have values. Let’s look a little bit closer:

>>> x.value = 3
>>> expression = x + 39
>>> float(expression)
42.0
>>> x.value = 100
>>> another_expression = x + 39
>>> expression == another_expression
True
>>> float(expression)
139.0
>>> float(another_expression)
139.0

This is pretty much analogous to a tuple of mutable objects. The tuple itself may never change, but its contents may:

2.4. Variables and expressions 13

Friendly Sam Documentation, Release 0.2.0

>>> a = [1, 2, 3]
>>> my_tuple = (a, 'something')
>>> my_tuple
([1, 2, 3], 'something')
>>> a[:] = ['changed'] # Only changing the contents of the list
>>> another_tuple = (a, 'something')
>>> my_tuple == another_tuple
True
>>> my_tuple
(['changed'], 'something')
>>> another_tuple
(['changed'], 'something')

2.4.5 Behind value is evaluate()

You might want to know what is happening behind the scenes when you ask for expression.value or
float(expression). In that case, check out the method evaluate().

2.5 Optimization problems

2.5.1 Creating a problem

We use Friendly Sam to formulate MILP problems. The optimization library could be extended to allow other types
of problems, too, but this is what is supported today.

Now, let’s begin with a full example of an optimization problem.

>>> import friendlysam as fs
>>>
>>> # Create the problem
>>> x = fs.VariableCollection('x')
>>> prob = fs.Problem()
>>> prob.objective = fs.Maximize(x(1) + x(2))
>>> prob.add(8 * x(1) + 4 * x(2) <= 11)
>>> prob.add(2 * x(1) + 4 * x(2) <= 5)
>>>
>>> # Get a solver and solve the problem
>>> solver = fs.get_solver()
>>> solution = solver.solve(prob)
>>> type(solution)
<class 'dict'>
>>> solution[x(1)]
1.0
>>> solution[x(2)]
0.75

The solver does not in any way affect the problem or the variables. It just reads the problem, solves it and handles
back a dict with your Variable objects as keys and their solutions as values.

If you set the value of some variables, those will be inserted into the problem before solving it:

>>> x(1).value = 0
>>> solution = solver.solve(prob)
>>> solution
{<friendlysam.opt.Variable at 0x...: x(2)>: 1.25}

14 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

>>> x(1) in solution
False

x(1) is not in the solution, because you already set its value, so it was handled like a number by the solver.

2.5.2 Debugging constraints

Now let’s add another constraint:

>>> x(1).value = 0
>>> prob.add(1 <= x(1))
>>> solver.solve(prob)
Traceback (most recent call last):
...
friendlysam.opt.ConstraintError: The expression in <Constraint: Ad hoc constraint> evaluates to False, so the problem is infeasible.

In this case it’s obvious why the problem could not be solved. But for argument’s sake, let’s say we didn’t know which
constraint was causing a problem. The error message was not too helpful, but the ConstraintError luckily also
contains a reference to the constraint that failed, so we can pick it out like this:

>>> try:
... solver.solve(prob)
... except fs.ConstraintError as e:
... failed_constraint = e.constraint
... print(repr(failed_constraint))
... print(repr(failed_constraint.expr))
... print(failed_constraint.expr)
... print(failed_constraint.desc)
... print(failed_constraint.origin)
...
<friendlysam.opt.Constraint at 0x...>
<friendlysam.opt.LessEqual at 0x...>
1 <= x(1)
Ad hoc constraint
None

OK, that’s helpful! We got the problematic constraint out. And there are a few things you should note.

1. The type of the failed constraint is friendlysam.opt.Constraint. It was automatically created when
we added a friendlysam.opt.LessEqual constraint to the problem, and its sole purpose is to wrap the
inequality 1 <= x(1) and to add some metadata.

2. The Constraint object contains the LessEqual object that we added to the problem.

3. The Constraint object contains also a description desc and a variable called origin which is supposed
to say something about where the constraint comes from.

Note: There is a quicker way of printing out some info about a constraint: long_description:

>>> print(failed_constraint.long_description)
<friendlysam.opt.Constraint at 0x...>
Description: Ad hoc constraint
Origin: None

If you want to make your model easier to debug, you can use Constraint instances with custom description and/or
origin, like in this stupid example:

2.5. Optimization problems 15

Friendly Sam Documentation, Release 0.2.0

>>> from friendlysam import Constraint
>>> def constr(var, parameter):
... return var / 42 >= parameter
>>> for i in range(5):
... expr = constr(x(i), i)
... origin = (constr, x(i), i)
... prob += Constraint(expr, desc='Some description', origin=origin)
...

2.5.3 Different ways to add constraints

Note: In the examples above, we added constraints like this:

>>> prob.add(8 * x(1) + 4 * x(2) <= 11)
>>> prob += Constraint(expr, desc='Some description', origin=origin)

These two methods are equivalent, so just choose the syntax you like best.

You can also send an iterable (even a generator), and the items in the iterable can also be iterables, e.g:

>>> prob += ([constr(x(i), i), constr(x(i+1), i)] for i in range(5))

See the documentation for add() for all the details.

2.5.4 Special ordered sets

Friendly Sam also supports special ordered sets. You specify them as a sort of constraint: Check out SOS1 and SOS2.

2.6 Model basics: Parts and constraints

2.6.1 Interconnected parts

Friendly Sam is made for optimization-based modeling of interconnected parts, producing and consuming various
resources. For example, an urban energy system may have grids for district heating, electric power, fossil gas, etc.
Consumers, producers, storages and other parts are connected to each other through these grids. To describe these
relations, Friendly Sam models make heavy use of the Part class and its subclasses like Node, FlowNetwork,
Cluster, Storage, etc. We will introduce these in due time, but first a few general things about Part.

2.6.2 Parts have indexed constraints

A Part typically represents something physical, like a heat consumer or a power grid. You can attach constraint
functions to parts. Constraint functions are probably easiest to explain with a concrete example:

>>> from friendlysam import Part, namespace, VariableCollection
>>> class ChocolateFactory(Part):
... def __init__(self):
... with namespace(self):
... self.output = VariableCollection('output')
... self.constraints += self.more_than_last
...
... def more_than_last(self, time):

16 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

... last = self.step_time(time, -1)

... return self.output(last) <= self.output(time)

...

OK, what happens above is the following: We define ChocolateFactory as a subclass of Part. Upon setup, in
__init__(), we add a constraint function called more_than_last, which defines the (admittedly bizarre) rule
that the factory may never decrease its output from one time step to the next.

In Friendly Sam’s vocabulary, the time argument in the example above is called an index. Our typical use case for
indexing is a discrete time model, where each hour, day, year, or whatever time period, is an index of the model, and
each constraint “belongs” to a time step just like in the silly example above.

Going back to the example, we can get the constraints out by making a ChocolateFactory instance and calling
constraints.make() with an index:

>>> chocolate_factory = ChocolateFactory() # Create an instance
>>> constraints = chocolate_factory.constraints.make(47)
>>> constraints
{<friendlysam.opt.Constraint at 0x...>}
>>> for c in constraints:
... print(c.expr)
...
ChocolateFactory0001.output(46) <= ChocolateFactory0001.output(47)

The result of constraints.make(47) is a set with one single constraint in it, saying that output at “time” 47
must be greater than or equal to output at “time” 46.

Note: In the example above, we wrote last = self.step_time(time, -1) instead of just last = t-1.
This is because Part has a bunch of nice functions to help out with time indexing. Read the API documenta-
tion for step_time(). Also check out times() and times_between(). For example, because we used
step_time(...), we can easily change the time representation of our chocolate factory like this:

>>> from pandas import Timestamp, Timedelta
>>> chocolate_factory.time_unit = Timedelta('6h')
>>> constraints = chocolate_factory.constraints.make(Timestamp('2015-06-10 18:00'))
>>> for c in constraints:
... print(c.expr)
...
ChocolateFactory0001.output(2015-06-10 12:00:00) <= ChocolateFactory0001.output(2015-06-10 18:00:00)

2.6.3 Advanced indexing

Indexing is really just a way to organize constraints in groups that belong together. When we have a whole bunch of
parts, to get all the constraints that belong together, we can do things like this:

>>> from itertools import chain
>>> parts = Part(), Part(), Part() # Put something more useful here...
>>> some_index = 'could be anything'
>>> constraints = set.union(*(p.constraints.make(some_index) for p in parts))

Indexing is typically used to represent time, but it is really up to you to decide what an index means, and what to use
as indices. We call it “index” rather than “time” because it is something more general than a representation of time. In
fact, any hashable object can be used as an index, so you can do all sorts of complicated things. Examples of indexing
can be found in the docs for step_time(). Also check out times() and times_between().

Friendly Sam currently has no mechanism for using constraint functions without indices. If you want to make a static
model and really don’t need indexing, then just use some common index like None or 0 for everything. (Or come up

2.6. Model basics: Parts and constraints 17

Friendly Sam Documentation, Release 0.2.0

with a better solution and discuss it with us on GitHub.)

In the next section Flow networks: Nodes and resources you will also see how indexing is used to represent time in
flow networks.

2.7 Flow networks: Nodes and resources

Note: This tutorial does not cover everything. To learn more, follow the links into the API reference for Node,
FlowNetwork, Cluster etc.

Friendly Sam makes it easy to formulate optimization problems with flow networks. Let’s begin with an example.

2.7.1 Nodes and balance constraints

An example

Custom types of nodes should typically be created by subclassing Node, like this:

>>> from friendlysam import Node, VariableCollection, namespace
>>> class PowerPlant(Node):
... def __init__(self):
... with namespace(self):
... x = VariableCollection('output')
... self.production['power'] = x
...
>>> class Consumer(Node):
... def __init__(self, demand):
... self.consumption['power'] = lambda time: demand[time]
...

We have now defined a PowerPlant class inheriting Node, and a Consumer class, also inheriting Node.
The power plant has its production[’power’] equal to a VariableCollection, and the consumer has
consumption[’power’] equal to the value found in the argument demand. Let’s create instances and test them:

>>> power_plant = PowerPlant()
>>> power_plant.production['power'](3)
<friendlysam.opt.Variable at 0x...: PowerPlant0001.output(3)>

>>> power_demand = [25, 30, 33, 29, 27]
>>> consumer = Consumer(power_demand)
>>> consumer.consumption['power'](3)
29

Now connect the two nodes:

>>> from friendlysam import FlowNetwork
>>> power_grid = FlowNetwork('power', name='Power grid')
>>> power_grid.connect(power_plant, consumer)
>>> power_grid.children == {power_plant, consumer}
True

The Consumer instance and the PowerPlant instance were added to the power grid, and can now be found as
children of the FlowNetwork.

Note: In this example, we use the key ’power’ in a few different places. Whatever we put as a key in a

18 Chapter 2. Contents:

https://github.com/sp-etx/friendlysam/issues

Friendly Sam Documentation, Release 0.2.0

production or consumption dictionary, or a similar place, is called a resource. You are not limited to strings
like ’power’ but could use any hashable type: numbers, tuples, most other objects, etc.

Balance constraints

Each Node has a pre-defined constraint function for balance constraints, so calling constraints.make() on the
nodes creates balance constraints. The dictionaries production and consumption are automatically included
in these balance constraints. The connect() call creates a flow between two nodes, and it adds this flow to the
appropriate outflows or inflows on those two nodes. Each Node can then formulate its own balance constraints:

>>> for part in [consumer, power_plant, power_grid]:
... for constraint in part.constraints.make(3):
... print(constraint.long_description)
... print(constraint.expr)
... print()
...
<friendlysam.opt.Constraint at 0x...>
Description: Balance constraint (resource=power)
Origin: CallTo(func=<bound method Consumer.balance_constraints of <Consumer at 0x...: Consumer0001>>, index=3, owner=<Consumer at 0x...: Consumer0001>)
Power grid.flow(PowerPlant0001-->Consumer0001)(3) == 29

<friendlysam.opt.Constraint at 0x...>
Description: Balance constraint (resource=power)
Origin: CallTo(func=<bound method PowerPlant.balance_constraints of ...>, index=3, owner=<PowerPlant at 0x...: PowerPlant0001>)
PowerPlant0001.output(3) == Power grid.flow(PowerPlant0001-->Consumer0001)(3)

How balance constraints are made

Here are a few simple rules for how balance constraints are made:

• Each Node has the five dictionaries consumption, production, accumulation, inflows, and
outflows.

• Whatever you decide to put as a key in any of these dictionaries is called a resource.

• For each resource present in any of the dictionaries, the Node produces balance constraints like this:

(sum of inflows) + production = consumption + accumulation + (sum of outflows)

• The constraints of the node are accessed by calling something like

>>> index = 3
>>> constraints = power_plant.constraints.make(index)

The index is passed on to the functions: production[resource](index),
consumption[resource](index), etc. In this way, indices always represent time when you are
working with nodes and flow networks. You can use any function or object as production[resource],
consumption[resource], etc, as long as it is callable.

Note: A Node instance will always produce balance constraints for each of its resources. Let’s
say we had not connected the PowerPlant instance to the consumer, then its balance constraint would be
PowerPlant0001.output(3) == 0. (Try it yourself!) In other words, flows of resources must always be
balanced in a Friendly Sam model. Noone may produce a resource like ’power’ if it has nowhere to go, and noone
can consume it unless there is a source.

2.7. Flow networks: Nodes and resources 19

Friendly Sam Documentation, Release 0.2.0

Custom names

Note: You can name your Node instances if you want something more personal than PowerPlant0001. Just set
the property name, for example in the __init__ function, like this:

>>> class CHPPlant(Node):
... def __init__(self, name=None):
... if name:
... self.name = name
... ...
>>> chp_plant = CHPPlant(name='Rya KVV')
>>> chp_plant.name == str(chp_plant) == 'Rya KVV'
True

2.7.2 FlowNetwork

A FlowNetwork essentially does two things: It creates the variable collections representing flows in the network,
and it modifies the inflows and outflows of nodes when you call connect().

Unidirectional by default

Connections are unidirectional, so when you connect(node1, node2) things can flow from node1 to node2.
Make the opposite connection if you want a bidirectional flow, or use this shorthand:

>>> power_grid.connect(power_plant, consumer, bidirectional=True)

Flow restrictions

To limit the flow between two nodes, get the flow VariableCollection and set its upper bound ub:

>>> flow = power_grid.get_flow(power_plant, consumer)
>>> flow
<friendlysam.opt.VariableCollection at 0x...: Power grid.flow(PowerPlant0001-->Consumer0001)>
>>> flow.ub = 40

2.7.3 Clusters and multi-area models

A cluster is fully connected

Sometimes we are not interested in making a full network model specifying all the flows between different nodes. The
Cluster class is a handy type of Node for that. It is a type of node that can contain other nodes, and it essentially
acts like a fully connected network, where all nodes are connected to all others.

When a Node is put in a Cluster, the child Nodewill no longer make balance constraints, and instead the Cluster
creates an aggregated balance constraint, summing up the production, consumption and accumulation of
its contained children.

>>> from friendlysam import Cluster
>>> power_plant = PowerPlant()
>>> consumer = Consumer(power_demand)
>>> power_cluster = Cluster(power_plant, consumer, resource='power', name='Power cluster')
>>> for part in power_cluster.descendants_and_self:

20 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

... for constraint in part.constraints.make(2):

... print(constraint.long_description)

... print(constraint.expr)

...
<friendlysam.opt.Constraint at 0x...>
Description: Balance constraint (resource=power)
Origin: CallTo(func=<bound method Cluster.balance_constraints ...>, index=2, owner=<Cluster at 0x...: Power cluster>)
PowerPlant0002.output(2) == 33

Multi-area models

A Cluster instance can be used like any other Node, for example in a FlowNetwork. This is a simple way of
making a multi-area model of, say, a district heating system. Let’s say the system has a few areas with significant flow
restrictions between them. Then create a flow network with interconnected clusters, something like this:

area_A = Cluster(*nodes_in_area_A, resource='heat')
area_B = Cluster(*nodes_in_area_B, resource='heat')
area_C = Cluster(*nodes_in_area_C, resource='heat')

heat_grid = FlowNetwork('heat')
heat_grid.connect(area_A, area_B, bidirectional=True, capacity=ab)
heat_grid.connect(area_A, area_C, bidirectional=True, capacity=ac)
heat_grid.connect(area_B, area_C, bidirectional=True, capacity=bc)

2.7.4 Time in flow networks

It is natural to think of indices like time periods: All the expressions for flows, production and consumption must add
up, for each index (time period). As shown in the examples above, the balance constraints for an index is called by
passing the index to production, consumption, outflows and inflows.

There is another dictionary which is always used in balance constraints: accumulation. It works just like the
dictionaries production and consumption. To learn more, read the API docs for Storage, and look at this
example:

>>> from friendlysam import Storage
>>> from pandas import Timestamp, Timedelta
>>> battery = Storage('power', name='Battery')
>>> battery.time_unit = Timedelta('3h')
>>> t = Timestamp('2015-06-10 18:00')
>>> print(battery.accumulation['power'](t))
Battery.volume(2015-06-10 21:00:00) - Battery.volume(2015-06-10 18:00:00)

2.8 Example model

To get a feeling for what’s possible with Friendly Sam, have a look at this example model:

https://github.com/sp-etx/example-model

2.8. Example model 21

https://github.com/sp-etx/example-model

Friendly Sam Documentation, Release 0.2.0

2.9 API reference

2.9.1 Variables

Variable([name, lb, ub, domain]) A variable to build expressions with.
VariableCollection([name]) A lazy collection of Variable instances.
Domain Domain of a variable.
namespace(name) Prefix variable names.

friendlysam.opt.Variable

class friendlysam.opt.Variable(name=None, lb=None, ub=None, domain=<Domain.real: 0>)
A variable to build expressions with.

Parameters

• name (str, optional) – A name of the variable. It has no relation to the identity of the
variable. Just a name used in string representations.

• lb (number, optional) – If supplied, a lower bound on the variable in optimization problems.
If not supplied, the variable is unbounded downwards.

• ub (number, optional) – If supplied, an upper bound on the variable in optimization prob-
lems. If not supplied, the variable is unbounded upwards.

• domain (any of the Domain values) – The domain of the variable, enforced in optimization
problems.

Note: The name, lb, ub and domain can also be set as attributes after creation.

>>> a = Variable('a')
>>> a.lb = 10
>>> a.Domain = Domain.integer

is equivalent to

>>> a = Variable('a', lb=10, domain=Domain.integer)

Examples

The namespace() context manager can be used to conveniently name groups of variables.

>>> with namespace('dimensions'):
... w = Variable('width')
... h = Variable('height')
...
>>> w.name, h.name
('dimensions.width', 'dimensions.height')

Variable.evaluate([replace, evaluators]) Evaluate a variable.
Variable.take_value(solution) Try setting the value of this variable from a dictionary.

22 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

friendlysam.opt.Variable.evaluate

Variable.evaluate(replace=None, evaluators=None)
Evaluate a variable.

See Operation.evaluate() for a general explanation of expression evaluation.

A Variable is evaluated with the following priority order:

1.If it has a value, that is returned.

2. Otherwise, if the variable is a key in the replace dictionary, the corresponding value is returned.

3.Otherwise, the variable itself is returned.

Parameters

• replace (dict, optional) – Replacements.

• evaluators (dict, optional) – Has no effect. Just included to be compatible with the
signature of Operation.evaluate().

Examples

>>> x = Variable('x')
>>> x.evaluate() == x
True
>>> x.evaluate({x: 5}) == 5
True

>>> x.value = -1
>>> x.evaluate() == -1
True
>>> x.evaluate({x: 5}) == -1 # .value goes first!
True

>>> del x.value
>>> x.value
Traceback (most recent call last):
...
friendlysam.opt.NoValueError

friendlysam.opt.Variable.take_value

Variable.take_value(solution)
Try setting the value of this variable from a dictionary.

Set self.value = solution[self] if possible.

Raises KeyError if ‘‘solution[self]‘‘ is not available. –

Variable.value Value property.
Variable.variables

2.9. API reference 23

Friendly Sam Documentation, Release 0.2.0

friendlysam.opt.Variable.value

Variable.value
Value property.

Warning: There is nothing stopping you from setting value to a value which is inconsistent with the
bounds and the domain of the variable.

friendlysam.opt.Variable.variables

Variable.variables

friendlysam.opt.VariableCollection

class friendlysam.opt.VariableCollection(name=None, **kwargs)
A lazy collection of Variable instances.

Use this class to create a family of variables. Variable instances are created as needed, and then kept in the
collection.

Parameters

• name (str, optional) – Name of the variable family.

• **kwargs (optional) – Passed on as keyword arguments to Variable constructor.

Examples

>>> x = VariableCollection('x')
>>> x
<friendlysam.opt.VariableCollection at 0x...: x>
>>> x(1)
<friendlysam.opt.Variable at 0x...: x(1)>

>>> x = VariableCollection('y', lb=0, domain=Domain.integer)
>>> x(1).lb
0
>>> x(1).domain
<Domain.integer: 1>

VariableCollection.__call__(index) Get a variable from the collection.

friendlysam.opt.VariableCollection.__call__

VariableCollection.__call__(index)
Get a variable from the collection.

A VariableCollection is callable. You call the object to get a Variable from the collection.

Parameters index (hashable object) – The index of the requested variable.

Returns

class:VariableCollection has not been called earlier with this index, creates a new Variable

24 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

instance and returns it.

If the index has been used before, the same Variable instance will be returned.

Return type If the

Examples

>>> x = VariableCollection('x')
>>> x
<friendlysam.opt.VariableCollection at 0x...: x>
>>> x(1)
<friendlysam.opt.Variable at 0x...: x(1)>

VariableCollection.domain Gets the domain of the contained variables.
VariableCollection.lb Gets the lower bound of the contained variables.
VariableCollection.ub Gets the upper bound of the contained variables.

friendlysam.opt.VariableCollection.domain

VariableCollection.domain
Gets the domain of the contained variables.

Warning: Gets the domain stored on the VariableCollection. The value on individual variables may have
been changed individually.

friendlysam.opt.VariableCollection.lb

VariableCollection.lb
Gets the lower bound of the contained variables.

Warning: Gets the upper bound stored on the VariableCollection. The value on individual variables may
have been changed individually.

friendlysam.opt.VariableCollection.ub

VariableCollection.ub
Gets the upper bound of the contained variables.

Warning: Gets the upper bound stored on the VariableCollection. The value on individual variables may
have been changed individually.

friendlysam.opt.Domain

class friendlysam.opt.Domain
Domain of a variable.

Variable and VariableCollection support these domains passed in with the domain keyword argu-
ment of the constructor.

2.9. API reference 25

Friendly Sam Documentation, Release 0.2.0

Examples

>>> for d in Domain:
... print(d)
...
Domain.real
Domain.integer
Domain.binary

>>> s = get_solver()
>>> prob = Problem()
>>> x = Variable('x', domain=Domain.integer)
>>> prob.objective = Minimize(x)
>>> prob += (x >= 41.5)
>>> solution = s.solve(prob)
>>> solution[x] == 42
True

Domain.binary
Domain.integer
Domain.real

friendlysam.opt.Domain.binary

Domain.binary = <Domain.binary: 2>

friendlysam.opt.Domain.integer

Domain.integer = <Domain.integer: 1>

friendlysam.opt.Domain.real

Domain.real = <Domain.real: 0>

friendlysam.opt.namespace

friendlysam.opt.namespace(name)
Prefix variable names.

Examples

>>> with namespace('dimensions'):
... w = Variable('width')
... h = VariableCollection('heights')
...
>>> w
<friendlysam.opt.Variable at 0x...: dimensions.width>
>>> h(3)
<friendlysam.opt.Variable at 0x...: dimensions.heights(3)>

26 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

2.9.2 Expressions

Operation An operation on some arguments.
Add Addition operator.
Sub Subtraction operator.
Mul Subtraction operator.
Sum A sum of items.
dot(a, b) Make expression for the scalar product of two vectors.
Relation Base class for binary relations.
Less The relation “less than”.
LessEqual The relation “less than or equal to”.
Eq The relation “equals”.

friendlysam.opt.Operation

class friendlysam.opt.Operation
An operation on some arguments.

This is a base class. Concrete examples:

Arithmetic operations:

•Addition: Add

•Subtraction: Sub

•Multiplication: Mul

•Summation: Sum

Relations:

•Less than (<): Less

•Less or equal (<=): LessEqual

•Equals: Eq

Note: The Variable class and the arithmetic operation classes have overloaded operators which create
Operation instances. For example:

>>> x = Variable('x')
>>> isinstance(x * 2, Operation)
True
>>> x + 1
<friendlysam.opt.Add at 0x...>

Operation.create(*args) Classmethod to create a new object.
Operation.evaluate([replace, evaluators]) Evaluate the expression recursively.

friendlysam.opt.Operation.create

classmethod Operation.create(*args)
Classmethod to create a new object.

This method is the default evaluator function used in evaluate(). Usually you don’t want to use this function,

2.9. API reference 27

Friendly Sam Documentation, Release 0.2.0

but instead the constructor.

Parameters *args – The arguments the operation operates on.

Examples

>>> x = Variable('x')
>>> args = (2, x)
>>> Add.create(*args) == 2 + x
True
>>> LessEqual.create(*args) == (2 <= x)
True

friendlysam.opt.Operation.evaluate

Operation.evaluate(replace=None, evaluators=None)
Evaluate the expression recursively.

Evaluating an expression:

1. Get an evaluating function. If the class of the present expression is in the evaluators dict, use
that. Otherwise, take the create() classmethod of the present expression class.

2. Evaluate all the arguments. For each argument arg, first try to replace it by looking for
replace[arg]. If it’s not there, try to evaluate it by calling arg.evaluate() with the same
arguments supplied to this call. If arg.evaluate() is not present, leave the argument unchanged.

3.Run the evaluating function func(*evaluated_args) and return the result.

Parameters

• replace (dict, optional) – Replacements for arguments. Arguments matching keys will
be replaced by specified values.

• evaluators (dict, optional) – Evaluating functions to use instead of the default (which
is the create() classmethod of the argument’s class). An argument whose __class__
equals a key will be evaluated with the specified function.

Examples

>>> x = VariableCollection('x')
>>> expr = x(1) + x(2)
>>> print(expr.evaluate())
x(1) + x(2)
>>> expr.evaluate(replace={x(1): 10, x(2): 20})
<friendlysam.opt.Add at 0x...>
>>> print(_)
10 + 20
>>> expr.evaluate(replace={x(1): 10, x(2): 20}, evaluators=fs.CONCRETE_EVALUATORS)
30

Operation.args This property holds the arguments of the operation.
Operation.leaves The leaves of the expression tree.
Operation.value The concrete value of the expression, if possible.
Operation.variables This property gives all leaves which are instances of Variable.

28 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

friendlysam.opt.Operation.args

Operation.args
This property holds the arguments of the operation.

See also create().

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = x + y
>>> expr
<friendlysam.opt.Add at 0x...>
>>> expr.args == (x, y)
True

>>> (x + y) * 2
<friendlysam.opt.Mul at 0x...>
>>> _.args
(<friendlysam.opt.Add at 0x...>, 2)

friendlysam.opt.Operation.leaves

Operation.leaves
The leaves of the expression tree.

The leaves of an Operation are all the args which do not themselves have a leaves property.

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = (42 + x * y * 3.5) * 2
>>> expr.leaves == {42, x, y, 3.5, 2}
True

friendlysam.opt.Operation.value

Operation.value
The concrete value of the expression, if possible.

This property should only be used when you expect a concrete value. It is computed by calling evaluate()
with the evaluators argument set to CONCRETE_EVALUATORS. If the returned value is a number or
boolean, it is returned.

Raises :exc – NoValueError if the expression did not evaluate to a number or boolean.

friendlysam.opt.Operation.variables

Operation.variables
This property gives all leaves which are instances of Variable.

2.9. API reference 29

Friendly Sam Documentation, Release 0.2.0

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = (42 + x * y * 3.5) * 2
>>> expr.variables == {x, y}
True

friendlysam.opt.Add

class friendlysam.opt.Add
Addition operator.

See Operation for a general description of operations.

Parameters *args – Should be exactly two terms to add.

Examples

>>> x = VariableCollection('x')
>>> expr = x(1) + x(2)
>>> expr
<friendlysam.opt.Add at 0x...>
>>> expr == Add(x(1), x(2))
True
>>> x(1).value, x(2).value = 2, 3
>>> float(expr)
5.0

Add.create(*args) Classmethod to create a new object.
Add.evaluate([replace, evaluators]) Evaluate the expression recursively.

friendlysam.opt.Add.create

Add.create(*args)
Classmethod to create a new object.

This method is the default evaluator function used in evaluate(). Usually you don’t want to use this function,
but instead the constructor.

Parameters *args – The arguments the operation operates on.

Examples

>>> x = Variable('x')
>>> args = (2, x)
>>> Add.create(*args) == 2 + x
True
>>> LessEqual.create(*args) == (2 <= x)
True

30 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

friendlysam.opt.Add.evaluate

Add.evaluate(replace=None, evaluators=None)
Evaluate the expression recursively.

Evaluating an expression:

1. Get an evaluating function. If the class of the present expression is in the evaluators dict, use
that. Otherwise, take the create() classmethod of the present expression class.

2. Evaluate all the arguments. For each argument arg, first try to replace it by looking for
replace[arg]. If it’s not there, try to evaluate it by calling arg.evaluate() with the same
arguments supplied to this call. If arg.evaluate() is not present, leave the argument unchanged.

3.Run the evaluating function func(*evaluated_args) and return the result.

Parameters

• replace (dict, optional) – Replacements for arguments. Arguments matching keys will
be replaced by specified values.

• evaluators (dict, optional) – Evaluating functions to use instead of the default (which
is the create() classmethod of the argument’s class). An argument whose __class__
equals a key will be evaluated with the specified function.

Examples

>>> x = VariableCollection('x')
>>> expr = x(1) + x(2)
>>> print(expr.evaluate())
x(1) + x(2)
>>> expr.evaluate(replace={x(1): 10, x(2): 20})
<friendlysam.opt.Add at 0x...>
>>> print(_)
10 + 20
>>> expr.evaluate(replace={x(1): 10, x(2): 20}, evaluators=fs.CONCRETE_EVALUATORS)
30

Add.args This property holds the arguments of the operation.
Add.leaves The leaves of the expression tree.
Add.value The concrete value of the expression, if possible.
Add.variables This property gives all leaves which are instances of Variable.

friendlysam.opt.Add.args

Add.args
This property holds the arguments of the operation.

See also create().

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = x + y
>>> expr

2.9. API reference 31

Friendly Sam Documentation, Release 0.2.0

<friendlysam.opt.Add at 0x...>
>>> expr.args == (x, y)
True

>>> (x + y) * 2
<friendlysam.opt.Mul at 0x...>
>>> _.args
(<friendlysam.opt.Add at 0x...>, 2)

friendlysam.opt.Add.leaves

Add.leaves
The leaves of the expression tree.

The leaves of an Operation are all the args which do not themselves have a leaves property.

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = (42 + x * y * 3.5) * 2
>>> expr.leaves == {42, x, y, 3.5, 2}
True

friendlysam.opt.Add.value

Add.value
The concrete value of the expression, if possible.

This property should only be used when you expect a concrete value. It is computed by calling evaluate()
with the evaluators argument set to CONCRETE_EVALUATORS. If the returned value is a number or
boolean, it is returned.

Raises :exc – NoValueError if the expression did not evaluate to a number or boolean.

friendlysam.opt.Add.variables

Add.variables
This property gives all leaves which are instances of Variable.

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = (42 + x * y * 3.5) * 2
>>> expr.variables == {x, y}
True

friendlysam.opt.Sub

class friendlysam.opt.Sub
Subtraction operator.

32 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

See Operation for a general description of operations.

Parameters *args – Should be exactly two items to subtract.

Examples

>>> x = VariableCollection('x')
>>> expr = x(1) - x(2)
>>> expr
<friendlysam.opt.Sub at 0x...>
>>> expr == Sub(x(1), x(2))
True
>>> x(1).value, x(2).value = 2, 3
>>> float(expr)
-1.0

Sub.create(*args) Classmethod to create a new object.
Sub.evaluate([replace, evaluators]) Evaluate the expression recursively.

friendlysam.opt.Sub.create

Sub.create(*args)
Classmethod to create a new object.

This method is the default evaluator function used in evaluate(). Usually you don’t want to use this function,
but instead the constructor.

Parameters *args – The arguments the operation operates on.

Examples

>>> x = Variable('x')
>>> args = (2, x)
>>> Add.create(*args) == 2 + x
True
>>> LessEqual.create(*args) == (2 <= x)
True

friendlysam.opt.Sub.evaluate

Sub.evaluate(replace=None, evaluators=None)
Evaluate the expression recursively.

Evaluating an expression:

1. Get an evaluating function. If the class of the present expression is in the evaluators dict, use
that. Otherwise, take the create() classmethod of the present expression class.

2. Evaluate all the arguments. For each argument arg, first try to replace it by looking for
replace[arg]. If it’s not there, try to evaluate it by calling arg.evaluate() with the same
arguments supplied to this call. If arg.evaluate() is not present, leave the argument unchanged.

3.Run the evaluating function func(*evaluated_args) and return the result.

2.9. API reference 33

Friendly Sam Documentation, Release 0.2.0

Parameters

• replace (dict, optional) – Replacements for arguments. Arguments matching keys will
be replaced by specified values.

• evaluators (dict, optional) – Evaluating functions to use instead of the default (which
is the create() classmethod of the argument’s class). An argument whose __class__
equals a key will be evaluated with the specified function.

Examples

>>> x = VariableCollection('x')
>>> expr = x(1) + x(2)
>>> print(expr.evaluate())
x(1) + x(2)
>>> expr.evaluate(replace={x(1): 10, x(2): 20})
<friendlysam.opt.Add at 0x...>
>>> print(_)
10 + 20
>>> expr.evaluate(replace={x(1): 10, x(2): 20}, evaluators=fs.CONCRETE_EVALUATORS)
30

Sub.args This property holds the arguments of the operation.
Sub.leaves The leaves of the expression tree.
Sub.value The concrete value of the expression, if possible.
Sub.variables This property gives all leaves which are instances of Variable.

friendlysam.opt.Sub.args

Sub.args
This property holds the arguments of the operation.

See also create().

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = x + y
>>> expr
<friendlysam.opt.Add at 0x...>
>>> expr.args == (x, y)
True

>>> (x + y) * 2
<friendlysam.opt.Mul at 0x...>
>>> _.args
(<friendlysam.opt.Add at 0x...>, 2)

friendlysam.opt.Sub.leaves

Sub.leaves
The leaves of the expression tree.

34 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

The leaves of an Operation are all the args which do not themselves have a leaves property.

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = (42 + x * y * 3.5) * 2
>>> expr.leaves == {42, x, y, 3.5, 2}
True

friendlysam.opt.Sub.value

Sub.value
The concrete value of the expression, if possible.

This property should only be used when you expect a concrete value. It is computed by calling evaluate()
with the evaluators argument set to CONCRETE_EVALUATORS. If the returned value is a number or
boolean, it is returned.

Raises :exc – NoValueError if the expression did not evaluate to a number or boolean.

friendlysam.opt.Sub.variables

Sub.variables
This property gives all leaves which are instances of Variable.

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = (42 + x * y * 3.5) * 2
>>> expr.variables == {x, y}
True

friendlysam.opt.Mul

class friendlysam.opt.Mul
Subtraction operator.

See Operation for a general description of operations.

Parameters *args – Should be exactly two terms to multiply.

Examples

>>> x = VariableCollection('x')
>>> expr = x(1) * x(2)
>>> expr
<friendlysam.opt.Mul at 0x...>
>>> expr == Mul(x(1), x(2))
True
>>> x(1).value, x(2).value = 2, 3

2.9. API reference 35

Friendly Sam Documentation, Release 0.2.0

>>> float(expr)
6.0

Note: There is currently no division operator, but the operator / is overloaded such that x = a / b is
equivalent to x = a * (1/b). Hence, you can do simple things like

>>> print(x(1) / 4)
x(1) * 0.25

Mul.create(*args) Classmethod to create a new object.
Mul.evaluate([replace, evaluators]) Evaluate the expression recursively.

friendlysam.opt.Mul.create

Mul.create(*args)
Classmethod to create a new object.

This method is the default evaluator function used in evaluate(). Usually you don’t want to use this function,
but instead the constructor.

Parameters *args – The arguments the operation operates on.

Examples

>>> x = Variable('x')
>>> args = (2, x)
>>> Add.create(*args) == 2 + x
True
>>> LessEqual.create(*args) == (2 <= x)
True

friendlysam.opt.Mul.evaluate

Mul.evaluate(replace=None, evaluators=None)
Evaluate the expression recursively.

Evaluating an expression:

1. Get an evaluating function. If the class of the present expression is in the evaluators dict, use
that. Otherwise, take the create() classmethod of the present expression class.

2. Evaluate all the arguments. For each argument arg, first try to replace it by looking for
replace[arg]. If it’s not there, try to evaluate it by calling arg.evaluate() with the same
arguments supplied to this call. If arg.evaluate() is not present, leave the argument unchanged.

3.Run the evaluating function func(*evaluated_args) and return the result.

Parameters

• replace (dict, optional) – Replacements for arguments. Arguments matching keys will
be replaced by specified values.

36 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

• evaluators (dict, optional) – Evaluating functions to use instead of the default (which
is the create() classmethod of the argument’s class). An argument whose __class__
equals a key will be evaluated with the specified function.

Examples

>>> x = VariableCollection('x')
>>> expr = x(1) + x(2)
>>> print(expr.evaluate())
x(1) + x(2)
>>> expr.evaluate(replace={x(1): 10, x(2): 20})
<friendlysam.opt.Add at 0x...>
>>> print(_)
10 + 20
>>> expr.evaluate(replace={x(1): 10, x(2): 20}, evaluators=fs.CONCRETE_EVALUATORS)
30

Mul.args This property holds the arguments of the operation.
Mul.leaves The leaves of the expression tree.
Mul.value The concrete value of the expression, if possible.
Mul.variables This property gives all leaves which are instances of Variable.

friendlysam.opt.Mul.args

Mul.args
This property holds the arguments of the operation.

See also create().

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = x + y
>>> expr
<friendlysam.opt.Add at 0x...>
>>> expr.args == (x, y)
True

>>> (x + y) * 2
<friendlysam.opt.Mul at 0x...>
>>> _.args
(<friendlysam.opt.Add at 0x...>, 2)

friendlysam.opt.Mul.leaves

Mul.leaves
The leaves of the expression tree.

The leaves of an Operation are all the args which do not themselves have a leaves property.

2.9. API reference 37

Friendly Sam Documentation, Release 0.2.0

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = (42 + x * y * 3.5) * 2
>>> expr.leaves == {42, x, y, 3.5, 2}
True

friendlysam.opt.Mul.value

Mul.value
The concrete value of the expression, if possible.

This property should only be used when you expect a concrete value. It is computed by calling evaluate()
with the evaluators argument set to CONCRETE_EVALUATORS. If the returned value is a number or
boolean, it is returned.

Raises :exc – NoValueError if the expression did not evaluate to a number or boolean.

friendlysam.opt.Mul.variables

Mul.variables
This property gives all leaves which are instances of Variable.

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = (42 + x * y * 3.5) * 2
>>> expr.variables == {x, y}
True

friendlysam.opt.Sum

class friendlysam.opt.Sum
A sum of items.

See the base class Operation for a basic description of attributes and methods.

Examples

Note that the constructor takes an iterable of arguments, just like the built-in sum() function, but the class-
method create() takes a list of arguments, as follows.

>>> x = VariableCollection('x')
>>> terms = [x(i) for i in range(4)]
>>> Sum(terms) == Sum.create(*terms)
True

>>> s = Sum(terms)
>>> s.evaluate(evaluators={Sum: sum})
Traceback (most recent call last):
...
TypeError: sum expected at most 2 arguments, got 4

38 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

>>> s.evaluate(evaluators={Sum: lambda *args: sum(args)})
<friendlysam.opt.Add at 0x...>

Sum.create(*args) Classmethod to create a new Sum object.
Sum.evaluate([replace, evaluators]) Evaluate the expression recursively.

friendlysam.opt.Sum.create

classmethod Sum.create(*args)
Classmethod to create a new Sum object.

Note that create() has a different signature than the constructor. The constructor takes an iterable as only
argument, but create() takes a list of arguments.

Example

>>> x = VariableCollection('x')
>>> terms = [x(i) for i in range(4)]
>>> Sum(terms) == Sum.create(*terms)
True

friendlysam.opt.Sum.evaluate

Sum.evaluate(replace=None, evaluators=None)
Evaluate the expression recursively.

Evaluating an expression:

1. Get an evaluating function. If the class of the present expression is in the evaluators dict, use
that. Otherwise, take the create() classmethod of the present expression class.

2. Evaluate all the arguments. For each argument arg, first try to replace it by looking for
replace[arg]. If it’s not there, try to evaluate it by calling arg.evaluate() with the same
arguments supplied to this call. If arg.evaluate() is not present, leave the argument unchanged.

3.Run the evaluating function func(*evaluated_args) and return the result.

Parameters

• replace (dict, optional) – Replacements for arguments. Arguments matching keys will
be replaced by specified values.

• evaluators (dict, optional) – Evaluating functions to use instead of the default (which
is the create() classmethod of the argument’s class). An argument whose __class__
equals a key will be evaluated with the specified function.

Examples

>>> x = VariableCollection('x')
>>> expr = x(1) + x(2)
>>> print(expr.evaluate())
x(1) + x(2)
>>> expr.evaluate(replace={x(1): 10, x(2): 20})

2.9. API reference 39

Friendly Sam Documentation, Release 0.2.0

<friendlysam.opt.Add at 0x...>
>>> print(_)
10 + 20
>>> expr.evaluate(replace={x(1): 10, x(2): 20}, evaluators=fs.CONCRETE_EVALUATORS)
30

Sum.args This property holds the arguments of the operation.
Sum.leaves The leaves of the expression tree.
Sum.value The concrete value of the expression, if possible.
Sum.variables This property gives all leaves which are instances of Variable.

friendlysam.opt.Sum.args

Sum.args
This property holds the arguments of the operation.

See also create().

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = x + y
>>> expr
<friendlysam.opt.Add at 0x...>
>>> expr.args == (x, y)
True

>>> (x + y) * 2
<friendlysam.opt.Mul at 0x...>
>>> _.args
(<friendlysam.opt.Add at 0x...>, 2)

friendlysam.opt.Sum.leaves

Sum.leaves
The leaves of the expression tree.

The leaves of an Operation are all the args which do not themselves have a leaves property.

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = (42 + x * y * 3.5) * 2
>>> expr.leaves == {42, x, y, 3.5, 2}
True

friendlysam.opt.Sum.value

Sum.value
The concrete value of the expression, if possible.

40 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

This property should only be used when you expect a concrete value. It is computed by calling evaluate()
with the evaluators argument set to CONCRETE_EVALUATORS. If the returned value is a number or
boolean, it is returned.

Raises :exc – NoValueError if the expression did not evaluate to a number or boolean.

friendlysam.opt.Sum.variables

Sum.variables
This property gives all leaves which are instances of Variable.

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = (42 + x * y * 3.5) * 2
>>> expr.variables == {x, y}
True

friendlysam.opt.dot

friendlysam.opt.dot(a, b)
Make expression for the scalar product of two vectors.

dot(a, b) is equivalent to Sum(ai * bi for ai, bi in zip(a, b)).

Returns An expression.

Examples

>>> n = 10
>>> coefficients = (2 ** i for i in range(n))
>>> x = VariableCollection('x')
>>> vars = [x(i) for i in range(n)]
>>> dot(coefficients, vars)
<friendlysam.opt.Sum at 0x...>

friendlysam.opt.Relation

class friendlysam.opt.Relation
Base class for binary relations.

See child classes:

Less LessEqual Eq

Relation.create(*args) Classmethod to create a new object.
Relation.evaluate([replace, evaluators]) Evaluate the expression recursively.

2.9. API reference 41

Friendly Sam Documentation, Release 0.2.0

friendlysam.opt.Relation.create

Relation.create(*args)
Classmethod to create a new object.

This method is the default evaluator function used in evaluate(). Usually you don’t want to use this function,
but instead the constructor.

Parameters *args – The arguments the operation operates on.

Examples

>>> x = Variable('x')
>>> args = (2, x)
>>> Add.create(*args) == 2 + x
True
>>> LessEqual.create(*args) == (2 <= x)
True

friendlysam.opt.Relation.evaluate

Relation.evaluate(replace=None, evaluators=None)
Evaluate the expression recursively.

Evaluating an expression:

1. Get an evaluating function. If the class of the present expression is in the evaluators dict, use
that. Otherwise, take the create() classmethod of the present expression class.

2. Evaluate all the arguments. For each argument arg, first try to replace it by looking for
replace[arg]. If it’s not there, try to evaluate it by calling arg.evaluate() with the same
arguments supplied to this call. If arg.evaluate() is not present, leave the argument unchanged.

3.Run the evaluating function func(*evaluated_args) and return the result.

Parameters

• replace (dict, optional) – Replacements for arguments. Arguments matching keys will
be replaced by specified values.

• evaluators (dict, optional) – Evaluating functions to use instead of the default (which
is the create() classmethod of the argument’s class). An argument whose __class__
equals a key will be evaluated with the specified function.

Examples

>>> x = VariableCollection('x')
>>> expr = x(1) + x(2)
>>> print(expr.evaluate())
x(1) + x(2)
>>> expr.evaluate(replace={x(1): 10, x(2): 20})
<friendlysam.opt.Add at 0x...>
>>> print(_)
10 + 20
>>> expr.evaluate(replace={x(1): 10, x(2): 20}, evaluators=fs.CONCRETE_EVALUATORS)
30

42 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

Relation.args This property holds the arguments of the operation.
Relation.leaves The leaves of the expression tree.
Relation.value The concrete value of the expression, if possible.
Relation.variables This property gives all leaves which are instances of Variable.

friendlysam.opt.Relation.args

Relation.args
This property holds the arguments of the operation.

See also create().

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = x + y
>>> expr
<friendlysam.opt.Add at 0x...>
>>> expr.args == (x, y)
True

>>> (x + y) * 2
<friendlysam.opt.Mul at 0x...>
>>> _.args
(<friendlysam.opt.Add at 0x...>, 2)

friendlysam.opt.Relation.leaves

Relation.leaves
The leaves of the expression tree.

The leaves of an Operation are all the args which do not themselves have a leaves property.

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = (42 + x * y * 3.5) * 2
>>> expr.leaves == {42, x, y, 3.5, 2}
True

friendlysam.opt.Relation.value

Relation.value
The concrete value of the expression, if possible.

This property should only be used when you expect a concrete value. It is computed by calling evaluate()
with the evaluators argument set to CONCRETE_EVALUATORS. If the returned value is a number or
boolean, it is returned.

Raises :exc – NoValueError if the expression did not evaluate to a number or boolean.

2.9. API reference 43

Friendly Sam Documentation, Release 0.2.0

friendlysam.opt.Relation.variables

Relation.variables
This property gives all leaves which are instances of Variable.

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = (42 + x * y * 3.5) * 2
>>> expr.variables == {x, y}
True

friendlysam.opt.Less

class friendlysam.opt.Less
The relation “less than”.

Examples

>>> x = Variable('x')
>>> expr = (x < 1)
>>> expr
<friendlysam.opt.Less at 0x...>
>>> expr == Less(x, 1)
True
>>> x.value = 1
>>> expr.value
False

Note: There is no Greater class, but you can use the overloaded operator >.

>>> x > 1
<friendlysam.opt.Less at 0x...>
>>> print(_)
1 < x
>>> (x > 1) == (1 < x)
True

Less.create(*args) Classmethod to create a new object.
Less.evaluate([replace, evaluators]) Evaluate the expression recursively.

friendlysam.opt.Less.create

Less.create(*args)
Classmethod to create a new object.

This method is the default evaluator function used in evaluate(). Usually you don’t want to use this function,
but instead the constructor.

Parameters *args – The arguments the operation operates on.

44 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

Examples

>>> x = Variable('x')
>>> args = (2, x)
>>> Add.create(*args) == 2 + x
True
>>> LessEqual.create(*args) == (2 <= x)
True

friendlysam.opt.Less.evaluate

Less.evaluate(replace=None, evaluators=None)
Evaluate the expression recursively.

Evaluating an expression:

1. Get an evaluating function. If the class of the present expression is in the evaluators dict, use
that. Otherwise, take the create() classmethod of the present expression class.

2. Evaluate all the arguments. For each argument arg, first try to replace it by looking for
replace[arg]. If it’s not there, try to evaluate it by calling arg.evaluate() with the same
arguments supplied to this call. If arg.evaluate() is not present, leave the argument unchanged.

3.Run the evaluating function func(*evaluated_args) and return the result.

Parameters

• replace (dict, optional) – Replacements for arguments. Arguments matching keys will
be replaced by specified values.

• evaluators (dict, optional) – Evaluating functions to use instead of the default (which
is the create() classmethod of the argument’s class). An argument whose __class__
equals a key will be evaluated with the specified function.

Examples

>>> x = VariableCollection('x')
>>> expr = x(1) + x(2)
>>> print(expr.evaluate())
x(1) + x(2)
>>> expr.evaluate(replace={x(1): 10, x(2): 20})
<friendlysam.opt.Add at 0x...>
>>> print(_)
10 + 20
>>> expr.evaluate(replace={x(1): 10, x(2): 20}, evaluators=fs.CONCRETE_EVALUATORS)
30

Less.args This property holds the arguments of the operation.
Less.leaves The leaves of the expression tree.
Less.value The concrete value of the expression, if possible.
Less.variables This property gives all leaves which are instances of Variable.

2.9. API reference 45

Friendly Sam Documentation, Release 0.2.0

friendlysam.opt.Less.args

Less.args
This property holds the arguments of the operation.

See also create().

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = x + y
>>> expr
<friendlysam.opt.Add at 0x...>
>>> expr.args == (x, y)
True

>>> (x + y) * 2
<friendlysam.opt.Mul at 0x...>
>>> _.args
(<friendlysam.opt.Add at 0x...>, 2)

friendlysam.opt.Less.leaves

Less.leaves
The leaves of the expression tree.

The leaves of an Operation are all the args which do not themselves have a leaves property.

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = (42 + x * y * 3.5) * 2
>>> expr.leaves == {42, x, y, 3.5, 2}
True

friendlysam.opt.Less.value

Less.value
The concrete value of the expression, if possible.

This property should only be used when you expect a concrete value. It is computed by calling evaluate()
with the evaluators argument set to CONCRETE_EVALUATORS. If the returned value is a number or
boolean, it is returned.

Raises :exc – NoValueError if the expression did not evaluate to a number or boolean.

friendlysam.opt.Less.variables

Less.variables
This property gives all leaves which are instances of Variable.

46 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = (42 + x * y * 3.5) * 2
>>> expr.variables == {x, y}
True

friendlysam.opt.LessEqual

class friendlysam.opt.LessEqual
The relation “less than or equal to”.

Examples

>>> x = Variable('x')
>>> expr = (x <= 1)
>>> expr
<friendlysam.opt.LessEqual at 0x...>
>>> expr == LessEqual(x, 1)
True
>>> x.value = 1
>>> expr.value
True

Note: There is no GreaterEqual class, but you can use the overloaded operator >=.

>>> x >= 1
<friendlysam.opt.LessEqual at 0x...>
>>> print(_)
1 <= x
>>> (x >= 1) == (1 <= x)
True

LessEqual.create(*args) Classmethod to create a new object.
LessEqual.evaluate([replace, evaluators]) Evaluate the expression recursively.

friendlysam.opt.LessEqual.create

LessEqual.create(*args)
Classmethod to create a new object.

This method is the default evaluator function used in evaluate(). Usually you don’t want to use this function,
but instead the constructor.

Parameters *args – The arguments the operation operates on.

Examples

>>> x = Variable('x')
>>> args = (2, x)
>>> Add.create(*args) == 2 + x

2.9. API reference 47

Friendly Sam Documentation, Release 0.2.0

True
>>> LessEqual.create(*args) == (2 <= x)
True

friendlysam.opt.LessEqual.evaluate

LessEqual.evaluate(replace=None, evaluators=None)
Evaluate the expression recursively.

Evaluating an expression:

1. Get an evaluating function. If the class of the present expression is in the evaluators dict, use
that. Otherwise, take the create() classmethod of the present expression class.

2. Evaluate all the arguments. For each argument arg, first try to replace it by looking for
replace[arg]. If it’s not there, try to evaluate it by calling arg.evaluate() with the same
arguments supplied to this call. If arg.evaluate() is not present, leave the argument unchanged.

3.Run the evaluating function func(*evaluated_args) and return the result.

Parameters

• replace (dict, optional) – Replacements for arguments. Arguments matching keys will
be replaced by specified values.

• evaluators (dict, optional) – Evaluating functions to use instead of the default (which
is the create() classmethod of the argument’s class). An argument whose __class__
equals a key will be evaluated with the specified function.

Examples

>>> x = VariableCollection('x')
>>> expr = x(1) + x(2)
>>> print(expr.evaluate())
x(1) + x(2)
>>> expr.evaluate(replace={x(1): 10, x(2): 20})
<friendlysam.opt.Add at 0x...>
>>> print(_)
10 + 20
>>> expr.evaluate(replace={x(1): 10, x(2): 20}, evaluators=fs.CONCRETE_EVALUATORS)
30

LessEqual.args This property holds the arguments of the operation.
LessEqual.leaves The leaves of the expression tree.
LessEqual.value The concrete value of the expression, if possible.
LessEqual.variables This property gives all leaves which are instances of Variable.

friendlysam.opt.LessEqual.args

LessEqual.args
This property holds the arguments of the operation.

See also create().

48 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = x + y
>>> expr
<friendlysam.opt.Add at 0x...>
>>> expr.args == (x, y)
True

>>> (x + y) * 2
<friendlysam.opt.Mul at 0x...>
>>> _.args
(<friendlysam.opt.Add at 0x...>, 2)

friendlysam.opt.LessEqual.leaves

LessEqual.leaves
The leaves of the expression tree.

The leaves of an Operation are all the args which do not themselves have a leaves property.

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = (42 + x * y * 3.5) * 2
>>> expr.leaves == {42, x, y, 3.5, 2}
True

friendlysam.opt.LessEqual.value

LessEqual.value
The concrete value of the expression, if possible.

This property should only be used when you expect a concrete value. It is computed by calling evaluate()
with the evaluators argument set to CONCRETE_EVALUATORS. If the returned value is a number or
boolean, it is returned.

Raises :exc – NoValueError if the expression did not evaluate to a number or boolean.

friendlysam.opt.LessEqual.variables

LessEqual.variables
This property gives all leaves which are instances of Variable.

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = (42 + x * y * 3.5) * 2
>>> expr.variables == {x, y}
True

2.9. API reference 49

Friendly Sam Documentation, Release 0.2.0

friendlysam.opt.Eq

class friendlysam.opt.Eq
The relation “equals”.

Warning: The operator == is reserved for checking object similarity, just like we are used to in Python. To
create the relation “x equals y”, use Eq:

>>> from friendlysam import Eq
>>> my_var = Variable('x')
>>> my_var == 1
False
>>> print(Eq(my_var, 1))
x == 1

Examples

>>> x = Variable('x')
>>> x == 3 # Don't do this!
False

>>> equality = Eq(x, 3) # Do this instead.
>>> equality
<friendlysam.opt.Eq at 0x...>
>>> x.value = 3
>>> equality.value
True
>>> x.value = 4
>>> equality.value
False

Eq.create(*args) Classmethod to create a new object.
Eq.evaluate([replace, evaluators]) Evaluate the expression recursively.

friendlysam.opt.Eq.create

Eq.create(*args)
Classmethod to create a new object.

This method is the default evaluator function used in evaluate(). Usually you don’t want to use this function,
but instead the constructor.

Parameters *args – The arguments the operation operates on.

Examples

>>> x = Variable('x')
>>> args = (2, x)
>>> Add.create(*args) == 2 + x
True
>>> LessEqual.create(*args) == (2 <= x)
True

50 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

friendlysam.opt.Eq.evaluate

Eq.evaluate(replace=None, evaluators=None)
Evaluate the expression recursively.

Evaluating an expression:

1. Get an evaluating function. If the class of the present expression is in the evaluators dict, use
that. Otherwise, take the create() classmethod of the present expression class.

2. Evaluate all the arguments. For each argument arg, first try to replace it by looking for
replace[arg]. If it’s not there, try to evaluate it by calling arg.evaluate() with the same
arguments supplied to this call. If arg.evaluate() is not present, leave the argument unchanged.

3.Run the evaluating function func(*evaluated_args) and return the result.

Parameters

• replace (dict, optional) – Replacements for arguments. Arguments matching keys will
be replaced by specified values.

• evaluators (dict, optional) – Evaluating functions to use instead of the default (which
is the create() classmethod of the argument’s class). An argument whose __class__
equals a key will be evaluated with the specified function.

Examples

>>> x = VariableCollection('x')
>>> expr = x(1) + x(2)
>>> print(expr.evaluate())
x(1) + x(2)
>>> expr.evaluate(replace={x(1): 10, x(2): 20})
<friendlysam.opt.Add at 0x...>
>>> print(_)
10 + 20
>>> expr.evaluate(replace={x(1): 10, x(2): 20}, evaluators=fs.CONCRETE_EVALUATORS)
30

Eq.args This property holds the arguments of the operation.
Eq.leaves The leaves of the expression tree.
Eq.value The concrete value of the expression, if possible.
Eq.variables This property gives all leaves which are instances of Variable.

friendlysam.opt.Eq.args

Eq.args
This property holds the arguments of the operation.

See also create().

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = x + y
>>> expr

2.9. API reference 51

Friendly Sam Documentation, Release 0.2.0

<friendlysam.opt.Add at 0x...>
>>> expr.args == (x, y)
True

>>> (x + y) * 2
<friendlysam.opt.Mul at 0x...>
>>> _.args
(<friendlysam.opt.Add at 0x...>, 2)

friendlysam.opt.Eq.leaves

Eq.leaves
The leaves of the expression tree.

The leaves of an Operation are all the args which do not themselves have a leaves property.

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = (42 + x * y * 3.5) * 2
>>> expr.leaves == {42, x, y, 3.5, 2}
True

friendlysam.opt.Eq.value

Eq.value
The concrete value of the expression, if possible.

This property should only be used when you expect a concrete value. It is computed by calling evaluate()
with the evaluators argument set to CONCRETE_EVALUATORS. If the returned value is a number or
boolean, it is returned.

Raises :exc – NoValueError if the expression did not evaluate to a number or boolean.

friendlysam.opt.Eq.variables

Eq.variables
This property gives all leaves which are instances of Variable.

Examples

>>> x, y = Variable('x'), Variable('y')
>>> expr = (42 + x * y * 3.5) * 2
>>> expr.variables == {x, y}
True

2.9.3 Constraints and optimization

52 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

get_solver([engine, options]) Get a solver object.
Problem() An optimization problem.
Maximize(expr) A maximization objective.
Minimize(expr) A minimization objective.
Constraint(expr[, desc, origin]) An equality or inequality constraint.
SOS1(variables, **kwargs) Special ordered set, type 1
SOS2(variables, **kwargs) Special ordered set, type 2
piecewise_affine(points[, name]) Create a piecewise affine expression and constraints.
piecewise_affine_constraints(variables[, ...]) Constrains for a piecewise affine expression.

friendlysam.opt.get_solver

friendlysam.opt.get_solver(engine=’pulp’, options=None)
Get a solver object.

Parameters

• engine (str, optional) – Which engine to use.

• options (dict, optional) – Parameters to the engine constructor.

If engine == ’pulp’, the engine is created using PulpSolver(options). See
PulpSolver constructor for details.

friendlysam.opt.Problem

class friendlysam.opt.Problem
An optimization problem.

The problem class is essentially a container for an objective function and a set of constraints.

Examples

>>> x = VariableCollection('x')
>>> prob = Problem()
>>> prob.objective = Maximize(x(1) + x(2))
>>> prob.add(8 * x(1) + 4 * x(2) <= 11)
>>> prob.add(2 * x(1) + 4 * x(2) <= 5)
>>>
>>> # Get a solver and solve the problem
>>> solver = fs.get_solver()
>>> solution = solver.solve(prob)
>>> type(solution)
<class 'dict'>
>>> solution[x(1)]
1.0
>>> solution[x(2)]
0.75

Problem.add(*constraints) Add zero or more constraints to the problem.
Problem.variables_without_value() Get all Variable instances without value.

2.9. API reference 53

Friendly Sam Documentation, Release 0.2.0

friendlysam.opt.Problem.add

Problem.add(*constraints)
Add zero or more constraints to the problem.

Parameters *constraints – zero or more constraints or iterables of constraints. Each constraint
should be an instance of Relation, Constraint, SOS1 or SOS2.

Note: The syntax problem += constraints is equivalent to ‘‘problem.add(constraints).

Examples

>>> prob = Problem()
>>> x = VariableCollection('x')

>>> prob.add(8 * x(1) + 4 * x(2) <= 11)

>>> prob += Constraint(x(0) <= x(1), desc='Some description')

>>> prob += ([x(i) <= i, x(i+1) <= i] for i in range(5))

friendlysam.opt.Problem.variables_without_value

Problem.variables_without_value()
Get all Variable instances without value.

These are effectively the variables of the optimization problem.

Problem.constraints A set of constraints.
Problem.objective

friendlysam.opt.Problem.constraints

Problem.constraints
A set of constraints.

To add constraints, use Problem.add().

friendlysam.opt.Problem.objective

Problem.objective

friendlysam.opt.Maximize

class friendlysam.opt.Maximize(expr)
A maximization objective.

Parameters expr (expression or Variable instance) – An expression to maximize.

54 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

Examples

>>> x = VariableCollection('x')
>>> prob = Problem()
>>> prob.objective = Maximize(Sum(x(i) for i in range(50)))

Maximize.expr
Maximize.variables Read only property, shorthand for .expr.variables

friendlysam.opt.Maximize.expr

Maximize.expr = None

friendlysam.opt.Maximize.variables

Maximize.variables
Read only property, shorthand for .expr.variables

friendlysam.opt.Minimize

class friendlysam.opt.Minimize(expr)
A minimization objective.

Parameters expr (expression or Variable instance) – An expression to minimize.

Examples

>>> x = VariableCollection('x')
>>> prob = Problem()
>>> prob.objective = Minimize(Sum(x(i) for i in range(50)))

Minimize.expr
Minimize.variables Read only property, shorthand for .expr.variables

friendlysam.opt.Minimize.expr

Minimize.expr = None

friendlysam.opt.Minimize.variables

Minimize.variables
Read only property, shorthand for .expr.variables

2.9. API reference 55

Friendly Sam Documentation, Release 0.2.0

friendlysam.opt.Constraint

class friendlysam.opt.Constraint(expr, desc=None, origin=None)
An equality or inequality constraint.

This class is used to wrap a constraint expression and (optionally) add some metadata.

Parameters

• expr (Relation instance) – An equality or inequality.

• desc (str, optional) – A text describing the constraint.

• origin (anything, optional) – Some object describing where the constraint comes from.

Examples

>>> x = Variable('x')
>>> c = Constraint(x + 1 <= 2 * x, desc='Some text')
>>> print(c)
<Constraint: Some text>
>>> c.origin = 'randomly created'
>>> print(c)
<Constraint [randomly created]: Some text>
>>> print(c.expr)
x + 1 <= 2 * x

Constraint.desc A description of the constraint, for debugging.
Constraint.long_description A long, human-readable string representation of the constraint.
Constraint.origin The origin of the description.
Constraint.variables Read only property, shorthand for .expr.variables

friendlysam.opt.Constraint.desc

Constraint.desc
A description of the constraint, for debugging.

friendlysam.opt.Constraint.long_description

Constraint.long_description
A long, human-readable string representation of the constraint.

The description includes the repr() of the Constraint, the desc, and the origin.

It is broken into three lines.

friendlysam.opt.Constraint.origin

Constraint.origin
The origin of the description.

Can be any object. Supposed to indicate where the constraint comes from, for debugging.

56 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

friendlysam.opt.Constraint.variables

Constraint.variables
Read only property, shorthand for .expr.variables

friendlysam.opt.SOS1

class friendlysam.opt.SOS1(variables, **kwargs)
Special ordered set, type 1

An ordered set of variables, of which at most one may be nonzero.

Add a SOS1 instance to an optimization problem just like a Constraint to enforce this condition.

Parameters

• variables (sequence of Variable instances) – The variables in the ordered set. Must
be an ordered sequence (today list and tuple are allowed).

• desc (str, optional) – A text describing the constraint.

• origin (anything, optional) – Some object describing where the constraint comes from.

SOS1.desc A description of the constraint, for debugging.
SOS1.level A number indicating SOS1 (level=1) or SOS2 (level=2).
SOS1.origin The origin of the description.
SOS1.variables The ordered list of variables as a tuple.

friendlysam.opt.SOS1.desc

SOS1.desc
A description of the constraint, for debugging.

friendlysam.opt.SOS1.level

SOS1.level
A number indicating SOS1 (level=1) or SOS2 (level=2).

friendlysam.opt.SOS1.origin

SOS1.origin
The origin of the description.

Can be any object. Supposed to indicate where the constraint comes from, for debugging.

friendlysam.opt.SOS1.variables

SOS1.variables
The ordered list of variables as a tuple.

2.9. API reference 57

Friendly Sam Documentation, Release 0.2.0

friendlysam.opt.SOS2

class friendlysam.opt.SOS2(variables, **kwargs)
Special ordered set, type 2

An ordered set of variables, of which at most two may be nonzero. Any nonzero variables must be adjacent in
order.

Add a SOS2 instance to an optimization problem just like a Constraint to enforce this condition.

Parameters

• variables (sequence of Variable instances) – The variables in the ordered set. Must
be an ordered sequence (today list and tuple are allowed).

• desc (str, optional) – A text describing the constraint.

• origin (anything, optional) – Some object describing where the constraint comes from.

SOS2.desc A description of the constraint, for debugging.
SOS2.level A number indicating SOS1 (level=1) or SOS2 (level=2).
SOS2.origin The origin of the description.
SOS2.variables The ordered list of variables as a tuple.

friendlysam.opt.SOS2.desc

SOS2.desc
A description of the constraint, for debugging.

friendlysam.opt.SOS2.level

SOS2.level
A number indicating SOS1 (level=1) or SOS2 (level=2).

friendlysam.opt.SOS2.origin

SOS2.origin
The origin of the description.

Can be any object. Supposed to indicate where the constraint comes from, for debugging.

friendlysam.opt.SOS2.variables

SOS2.variables
The ordered list of variables as a tuple.

friendlysam.opt.piecewise_affine

friendlysam.opt.piecewise_affine(points, name=None)
Create a piecewise affine expression and constraints.

58 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

There are several ways to express piecewise affine functions in MILP problems. This function helps with one
of them, using SOS2 variables.

Definition:

𝑓(𝑥) is the linear interpolation of a data set (𝑥0, 𝑦0), (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛).

The 𝑥𝑖 are ordered: 𝑥0 ≤ 𝑥1 ≤ . . . ≤ 𝑥𝑛.

See http://en.wikipedia.org/wiki/Linear_interpolation

Parameters

• points (dict or sequence of pairs) – The 𝑥𝑖, 𝑦𝑖 pairs.

Alternative 1: Provide a dict, e.g. {x0: y0, x1: y1, ..., x_n: y_n}.

Alternative 2: Provide a sequence of pairs, e.g. [(x0, y0), (x1, y1), ...,
(xn, yn)]

The points are automatically sorted in increasing x_i.

• name (str, optional) – A name base for the variables.

Returns

(x, y, constraints)

x is an expression for the argument of the function.

y is an expression for the function value.

constraints is a set of SOS2 and Constraint instances that must be added to an opti-
mization problem to enforce the relation between x and y.

Examples

>>> points = {1: 30, 1.5: 20, 2: 40}
>>> x, y, constraints = fs.piecewise_affine(points, name='pwa_vars')
>>> prob = fs.Problem()
>>> prob.objective = fs.Minimize(y)
>>> prob.add(constraints)
>>> solution = get_solver().solve(prob)
>>> for var in x.variables:
... var.take_value(solution)
...
>>> float(x) == 1.5
True
>>> float(y) == 20
True

friendlysam.opt.piecewise_affine_constraints

friendlysam.opt.piecewise_affine_constraints(variables, include_lb=True)
Constrains for a piecewise affine expression.

For some variables 𝑥0, 𝑥1, . . . , 𝑥𝑛, this function creates

•A SOS2 constraint for the variables.

•A constraint that
∑︀𝑛

𝑖=0 𝑥𝑖 = 1.

2.9. API reference 59

http://en.wikipedia.org/wiki/Linear_interpolation

Friendly Sam Documentation, Release 0.2.0

•For each variable 𝑥𝑖, a constraint that 𝑥𝑖 ≥ 0.

It is used by piecewise_affine().

Parameters

• (sequence of (variables) – class:Variable instances)

• include_lb (boolean, optional) – If True (the default), lower bound constraints x[i]
>= 0 are created for the variables. Set to False if your variables already have lower
bounds >= 0 and you want to avoid a few redundant constraints.

Returns A set of SOS2 and Constraint instances.

Return type set

2.9.4 Models

Part([name]) A part of a model.
Node([name]) A node with balance constraints.
FlowNetwork(resource[, name]) Manages flows between nodes.
Cluster(*parts[, resource, name]) A node containing other nodes, fully connected.
Storage(resource[, capacity, maxchange, name]) Simple storage model.
ConstraintCollection(owner) Generates constraints from functions.

friendlysam.parts.Part

class friendlysam.parts.Part(name=None)
A part of a model.

End users probably primarily want to use the subclasses Node, FlowNetwork, etc.

The Part class serves several purposes:

1.Part has the attribute constraints.

2.A Part can contain other parts. Read more about

•add_part(), remove_part()

•parts()

•find()

•children, children_and_self, descendants, descendants_and_self

3.Part implements Friendly Sam’s time model. Read more about

•step_time()

•times() and iter_times()

•times_between() and iter_times_between()

Parameters name (str, optional) – The name of the part.

Examples

See Node for examples.

60 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

Part.add_part(part) Add a part to this part.
Part.find(name) Try to find a part by name.
Part.iter_times(start, *range_args) A generator yielding a sequence of times.
Part.iter_times_between(start, end) A generator yielding all times between two points.
Part.parts([depth, include_self]) Get contained parts, recursively.
Part.remove_part(part) Remove a part from this part.
Part.state_variables(index) The state variables of the part.
Part.step_time(index, num_steps) A function for stepping forward or backward in time.
Part.times(start, *range_args) Get a sequence of times.
Part.times_between(start, end) Get a tuple of all times between two points.

friendlysam.parts.Part.add_part

Part.add_part(part)
Add a part to this part.

Parameters part (Part or subclass instance) – The part to add.

Raises InsanityError – If the calling part is a descendant of the part to add. (This would
generate a cyclic relationship.)

friendlysam.parts.Part.find

Part.find(name)
Try to find a part by name.

Searches among descendants_and_self, comparing the name. If there is exactly one match, it is re-
turned.

Parameters name – The name to search for.

Returns attr:descendants_and_self.

Return type A part named name, if one exists among

Raises ValueError – If there is no match or several matches.

friendlysam.parts.Part.iter_times

Part.iter_times(start, *range_args)
A generator yielding a sequence of times.

See also: times(), iter_times_between(), times_between().

Equivalent to:

for num_steps in range(*range_args):
yield self.step_time(start, num_steps)

Parameters

• start (any object) – The index to start from.

• *range_args – Args exactly like for the built-in range().

2.9. API reference 61

Friendly Sam Documentation, Release 0.2.0

Examples

>>> part = Part()
>>> for t in part.iter_times(3, 5):
... print(t)
...
3
4
5
6
7
>>> for t in part.iter_times(0, -5, 1, 2):
... print(t)
...
-5
-3
-1

friendlysam.parts.Part.iter_times_between

Part.iter_times_between(start, end)
A generator yielding all times between two points.

See also: times_between(), iter_times(), times().

Takes one time step at a time from start while <= end.

Parameters

• start (any object) – The index to start from.

• end (any object) – The index to go to.

Note: This function only works if times are orderable, or specifically that the <= operator is implemented.

Examples

>>> from pandas import Timestamp, Timedelta
>>> part = Part()
>>> part.time_unit = Timedelta('7 days')
>>> start, end = Timestamp('2011-02-14'), Timestamp('2011-02-28')
>>> between = part.iter_times_between(start, end)
>>> next(between)
Timestamp('2011-02-14 00:00:00')
>>> next(between)
Timestamp('2011-02-21 00:00:00')
>>> next(between)
Timestamp('2011-02-28 00:00:00')

friendlysam.parts.Part.parts

Part.parts(depth=’inf’, include_self=True)
Get contained parts, recursively.

See also properties children, children_and_self, descendants, descendants_and_self.

62 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

Parameters

• depth (integer or ‘inf’, optional) – The recursion depth to search with. depth=1 searches
among the parts directly contained by this part. depth=2 among children and their children,
etc.

• include_self (boolean, optional) – Include this part in the results?

Returns A set of parts.

Examples

>>> child = Part(name='Baby')
>>> parent = Part(name='Mommy')
>>> parent.add_part(child)
>>> grandparent = Part('Granny')
>>> grandparent.add_part(parent)
>>> grandparent.children == {parent}
True
>>> grandparent.descendants == {parent, child}
True
>>> grandparent.descendants_and_self == {grandparent, parent, child}
True
>>> grandparent.parts(depth=1, include_self=False) == grandparent.children
True

friendlysam.parts.Part.remove_part

Part.remove_part(part)
Remove a part from this part.

Parameters p (Part or subclass instance) – The part to remove.

Raises KeyError – If the part is not there.

friendlysam.parts.Part.state_variables

Part.state_variables(index)
The state variables of the part.

Each subclass may define state_variables(), returning an iterable of the Varible instances that define
the state of the part at the specified index.

friendlysam.models.MyopicDispatchModel is an example of how it can be used.

Parameters index – The index of the state.

Examples

>>> from friendlysam import VariableCollection, Domain
>>> class ChocolateFactory(Node):
... def __init__(self):
... self.total = VariableCollection('total production')
... self.mc = VariableCollection('milk chocolate production')
... self.production['dark chocolate'] = lambda t: self.total(t) - self.mc(t)

2.9. API reference 63

Friendly Sam Documentation, Release 0.2.0

... self.production['milk chocolate'] = self.mc

...

... def state_variables(self, t):

... return (self.total, self.mc)

friendlysam.parts.Part.step_time

Part.step_time(index, num_steps)
A function for stepping forward or backward in time.

A Part (or subclass) instance may use any logic for stepping in time. To change time stepping, you may have
to change time_step or override step_time().

Parameters

• index (any object) – The index to step from.

• num_steps (int) – The number of steps to take.

Returns the new time, num_steps away from index.

Examples

If your model is indexed in evenly spaced integers, the default implementation is enough. A step is taken as
follows:

def step_time(self, index, num_steps):
return index + self.time_unit * num_steps

The default time_unit is 1, so time stepping is done by adding an integer.

>>> part = Part()
>>> part.step_time(3, -2)
1
>>> part.time_unit = 10
>>> part.step_time(3, 2)
23

Let’s assume your model is indexed with pandas.Timestamp in 2-hour increments, then it’s still sufficient
to change the time unit:

>>> from pandas import Timestamp, Timedelta
>>> part = Part()
>>> part.time_unit = Timedelta('2h')
>>> part.step_time(Timestamp('2015-06-10 16:00'), 1)
Timestamp('2015-06-10 18:00:00')
>>> part.step_time(Timestamp('2015-06-10 16:00'), -3)
Timestamp('2015-06-10 10:00:00')

If your model is indexed with something more complicated, you may have to change the step_time()
method. For example, assume a model is indexed with two-element tuples where the first element is an integer
representing time. Then override the step_time() as follows:

>>> def my_step_time(index, step):
... t, other = index
... t += step
... return (t, other)
...

64 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

>>> part = Part()
>>> part.step_time = my_step_time
>>> part.step_time((1, 'ABC'), 2)
(3, 'ABC')

friendlysam.parts.Part.times

Part.times(start, *range_args)
Get a sequence of times.

See also: iter_times(), iter_times_between(), times_between().

This works exactly like iter_times(), but returns a tuple.

Parameters

• start (any object) – The index to start from.

• *range_args – Args exactly like for the built-in range().

Examples

>>> part = Part()
>>> part.times(3, 5)
(3, 4, 5, 6, 7)
>>> part.times(0, -5, 1, 2)
(-5, -3, -1)

friendlysam.parts.Part.times_between

Part.times_between(start, end)
Get a tuple of all times between two points.

See also: times_between(), iter_times(), times().

Takes one time step at a time from start while <= end. This works exactly like
iter_times_between(), but returns a tuple.

Parameters

• start (any object) – The index to start from.

• end (any object) – The index to go to.

Note: This function only works if times are orderable, or specifically that the <= operator is implemented.

Examples

>>> from pandas import Timestamp, Timedelta
>>> part = Part()
>>> part.time_unit = Timedelta('7 days')
>>> start, end = Timestamp('2011-02-14'), Timestamp('2011-02-28')
>>> part.times_between(start, end)
(Timestamp('2011-02-14 00:00:00'), Timestamp('2011-02-21 00:00:00'), Timestamp('2011-02-28 00:00:00'))

2.9. API reference 65

Friendly Sam Documentation, Release 0.2.0

Part.children Parts in this part, excluding self.
Part.children_and_self Parts in this part, including self.
Part.constraints For defining and generating constraints.
Part.descendants All children, children of children, etc, excluding self.
Part.descendants_and_self All children, children of children, etc, including self.
Part.name A name for the object.
Part.time_unit The time unit used in step_time().

friendlysam.parts.Part.children

Part.children
Parts in this part, excluding self.

To add children, use add_part().

friendlysam.parts.Part.children_and_self

Part.children_and_self
Parts in this part, including self.

To add children, use add_part().

friendlysam.parts.Part.constraints

Part.constraints
For defining and generating constraints.

This is a ConstraintCollection instance. Add functions or iterables of functions to it. Each func-
tion should return a constraint or an iterable of constraints. (In this context, a constraint is Constraint,
Relation, SOS1 or SOS2.)

If a constraint function returns a Relation, it automatically packaged in a Constraint object and marked
with origin after creation. A constraint function may also return an iterable of constraints, even a generator.

All the added constraint functions are called when make() is called.

Examples

There are many ways to formulate constraint functions. Here is a wonderfully contrived example:

>>> from friendlysam.opt import VariableCollection, Constraint, Eq
>>> class MyNode(Node):
... def __init__(self, k):
... self.k = k
... self.var = VariableCollection('x')
... self.production['foo'] = self.var
... # += and .add() are just alternative syntaxes
... self.constraints.add(lambda t: self.var(t) >= k[t] - 1)
... self.constraints += self.constraint_func_1, self.constraint_func_2
... self.constraints.add(self.constraint_func_3)
...
... def constraint_func_1(self, t):
... return Constraint(

66 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

... self.var(t) <= self.k[t] * 2,

... desc='Some description')

...

... def constraint_func_2(self, t):

... constraints = []

... t_plus_1 = self.step_time(t, 1)

... constraints.append(self.var(t) <= self.k[t] * self.var(t_plus_1))

... constraints.append(self.var(t) >= self.k[t_plus_1] * self.var(t_plus_1))

... return constraints

...

... def constraint_func_3(self, t):

... for prev in self.times_between(0, t):

... expr = Eq(self.k[prev] * self.var(prev), self.k[t] * self.var(t))

... desc = 'Why make such a constraint? (k(t)={})'.format(self.k[t])

... yield Constraint(expr, desc=desc)

...
>>> my_k = {i: i ** 2.4 for i in range(100)}
>>> node = MyNode(my_k)
>>> constraints = node.constraints.make(20)
>>> len(constraints)
26

Constraints can also be added from “outside”:

>>> node.constraints += lambda index: node.production['foo'](index) >= index
>>> constraints = node.constraints.make(20)
>>> len(constraints)
27

friendlysam.parts.Part.descendants

Part.descendants
All children, children of children, etc, excluding self.

friendlysam.parts.Part.descendants_and_self

Part.descendants_and_self
All children, children of children, etc, including self.

friendlysam.parts.Part.name

Part.name
A name for the object.

The name is for debugging purposes. It has nothing to do with the identity of the object, so does not have to be
unique

friendlysam.parts.Part.time_unit

Part.time_unit
The time unit used in step_time().

The default value is 1.

2.9. API reference 67

Friendly Sam Documentation, Release 0.2.0

For more info, see step_time().

friendlysam.parts.Node

class friendlysam.parts.Node(name=None)
A node with balance constraints.

Suitable for modeling nodes in a flow network. A Node instance produces balance constraints for all
its resources. The dictionaries consumption, production, accumulation, inflows, and
outflows, are the basis for the balance constraints.

Parameters name (str, optional) – A name for the node.

Examples

>>> class PowerPlant(Node):
... def __init__(self, efficiency):
... with namespace(self):
... x = VariableCollection('output')
... self.production['power'] = x
... self.consumption['fuel'] = lambda t: x(t) / efficiency
...
>>> power_plant = PowerPlant(0.85)
>>> constraints = power_plant.constraints.make(42)
>>> constraints
{<friendlysam.opt.Constraint at 0x...>, <friendlysam.opt.Constraint at 0x...>}
>>> {c.desc for c in constraints} == {'Balance constraint (resource=power)',
... 'Balance constraint (resource=fuel)'}
True

Node.add_part(part) Add a part to this part.
Node.balance_constraints(index) Balance constraints for all resources.
Node.cluster(resource) Get a Cluster this node is in.
Node.find(name) Try to find a part by name.
Node.iter_times(start, *range_args) A generator yielding a sequence of times.
Node.iter_times_between(start, end) A generator yielding all times between two points.
Node.parts([depth, include_self]) Get contained parts, recursively.
Node.remove_part(part) Remove a part from this part.
Node.set_cluster(cluster) Add this node to a Cluster.
Node.state_variables(index) The state variables of the part.
Node.step_time(index, num_steps) A function for stepping forward or backward in time.
Node.times(start, *range_args) Get a sequence of times.
Node.times_between(start, end) Get a tuple of all times between two points.
Node.unset_cluster(cluster) Remove from a Cluster.

friendlysam.parts.Node.add_part

Node.add_part(part)
Add a part to this part.

Parameters part (Part or subclass instance) – The part to add.

Raises InsanityError – If the calling part is a descendant of the part to add. (This would
generate a cyclic relationship.)

68 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

friendlysam.parts.Node.balance_constraints

Node.balance_constraints(index)
Balance constraints for all resources.

Returns one constraint for each resource in resources, except for the resources for which this node is in a
Cluster.

Parameters index – The index to get the resources for.

Returns The balance constraints.

Return type set

friendlysam.parts.Node.cluster

Node.cluster(resource)
Get a Cluster this node is in.

Parameters resource – The Cluster.resource.

Returns The Cluster if this node is in a Cluster with Cluster.resource‘‘ == resource‘‘,
None otherwise.

Return type cluster

friendlysam.parts.Node.find

Node.find(name)
Try to find a part by name.

Searches among descendants_and_self, comparing the name. If there is exactly one match, it is re-
turned.

Parameters name – The name to search for.

Returns attr:descendants_and_self.

Return type A part named name, if one exists among

Raises ValueError – If there is no match or several matches.

friendlysam.parts.Node.iter_times

Node.iter_times(start, *range_args)
A generator yielding a sequence of times.

See also: times(), iter_times_between(), times_between().

Equivalent to:

for num_steps in range(*range_args):
yield self.step_time(start, num_steps)

Parameters

• start (any object) – The index to start from.

• *range_args – Args exactly like for the built-in range().

2.9. API reference 69

Friendly Sam Documentation, Release 0.2.0

Examples

>>> part = Part()
>>> for t in part.iter_times(3, 5):
... print(t)
...
3
4
5
6
7
>>> for t in part.iter_times(0, -5, 1, 2):
... print(t)
...
-5
-3
-1

friendlysam.parts.Node.iter_times_between

Node.iter_times_between(start, end)
A generator yielding all times between two points.

See also: times_between(), iter_times(), times().

Takes one time step at a time from start while <= end.

Parameters

• start (any object) – The index to start from.

• end (any object) – The index to go to.

Note: This function only works if times are orderable, or specifically that the <= operator is implemented.

Examples

>>> from pandas import Timestamp, Timedelta
>>> part = Part()
>>> part.time_unit = Timedelta('7 days')
>>> start, end = Timestamp('2011-02-14'), Timestamp('2011-02-28')
>>> between = part.iter_times_between(start, end)
>>> next(between)
Timestamp('2011-02-14 00:00:00')
>>> next(between)
Timestamp('2011-02-21 00:00:00')
>>> next(between)
Timestamp('2011-02-28 00:00:00')

friendlysam.parts.Node.parts

Node.parts(depth=’inf’, include_self=True)
Get contained parts, recursively.

See also properties children, children_and_self, descendants, descendants_and_self.

70 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

Parameters

• depth (integer or ‘inf’, optional) – The recursion depth to search with. depth=1 searches
among the parts directly contained by this part. depth=2 among children and their children,
etc.

• include_self (boolean, optional) – Include this part in the results?

Returns A set of parts.

Examples

>>> child = Part(name='Baby')
>>> parent = Part(name='Mommy')
>>> parent.add_part(child)
>>> grandparent = Part('Granny')
>>> grandparent.add_part(parent)
>>> grandparent.children == {parent}
True
>>> grandparent.descendants == {parent, child}
True
>>> grandparent.descendants_and_self == {grandparent, parent, child}
True
>>> grandparent.parts(depth=1, include_self=False) == grandparent.children
True

friendlysam.parts.Node.remove_part

Node.remove_part(part)
Remove a part from this part.

Parameters p (Part or subclass instance) – The part to remove.

Raises KeyError – If the part is not there.

friendlysam.parts.Node.set_cluster

Node.set_cluster(cluster)
Add this node to a Cluster.

You should probably use Cluster.add_part() instead.

Parameters cluster – The :node:‘Cluster‘ instance to add to.

friendlysam.parts.Node.state_variables

Node.state_variables(index)
The state variables of the part.

Each subclass may define state_variables(), returning an iterable of the Varible instances that define
the state of the part at the specified index.

friendlysam.models.MyopicDispatchModel is an example of how it can be used.

Parameters index – The index of the state.

2.9. API reference 71

Friendly Sam Documentation, Release 0.2.0

Examples

>>> from friendlysam import VariableCollection, Domain
>>> class ChocolateFactory(Node):
... def __init__(self):
... self.total = VariableCollection('total production')
... self.mc = VariableCollection('milk chocolate production')
... self.production['dark chocolate'] = lambda t: self.total(t) - self.mc(t)
... self.production['milk chocolate'] = self.mc
...
... def state_variables(self, t):
... return (self.total, self.mc)

friendlysam.parts.Node.step_time

Node.step_time(index, num_steps)
A function for stepping forward or backward in time.

A Part (or subclass) instance may use any logic for stepping in time. To change time stepping, you may have
to change time_step or override step_time().

Parameters

• index (any object) – The index to step from.

• num_steps (int) – The number of steps to take.

Returns the new time, num_steps away from index.

Examples

If your model is indexed in evenly spaced integers, the default implementation is enough. A step is taken as
follows:

def step_time(self, index, num_steps):
return index + self.time_unit * num_steps

The default time_unit is 1, so time stepping is done by adding an integer.

>>> part = Part()
>>> part.step_time(3, -2)
1
>>> part.time_unit = 10
>>> part.step_time(3, 2)
23

Let’s assume your model is indexed with pandas.Timestamp in 2-hour increments, then it’s still sufficient
to change the time unit:

>>> from pandas import Timestamp, Timedelta
>>> part = Part()
>>> part.time_unit = Timedelta('2h')
>>> part.step_time(Timestamp('2015-06-10 16:00'), 1)
Timestamp('2015-06-10 18:00:00')
>>> part.step_time(Timestamp('2015-06-10 16:00'), -3)
Timestamp('2015-06-10 10:00:00')

72 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

If your model is indexed with something more complicated, you may have to change the step_time()
method. For example, assume a model is indexed with two-element tuples where the first element is an integer
representing time. Then override the step_time() as follows:

>>> def my_step_time(index, step):
... t, other = index
... t += step
... return (t, other)
...
>>> part = Part()
>>> part.step_time = my_step_time
>>> part.step_time((1, 'ABC'), 2)
(3, 'ABC')

friendlysam.parts.Node.times

Node.times(start, *range_args)
Get a sequence of times.

See also: iter_times(), iter_times_between(), times_between().

This works exactly like iter_times(), but returns a tuple.

Parameters

• start (any object) – The index to start from.

• *range_args – Args exactly like for the built-in range().

Examples

>>> part = Part()
>>> part.times(3, 5)
(3, 4, 5, 6, 7)
>>> part.times(0, -5, 1, 2)
(-5, -3, -1)

friendlysam.parts.Node.times_between

Node.times_between(start, end)
Get a tuple of all times between two points.

See also: times_between(), iter_times(), times().

Takes one time step at a time from start while <= end. This works exactly like
iter_times_between(), but returns a tuple.

Parameters

• start (any object) – The index to start from.

• end (any object) – The index to go to.

Note: This function only works if times are orderable, or specifically that the <= operator is implemented.

2.9. API reference 73

Friendly Sam Documentation, Release 0.2.0

Examples

>>> from pandas import Timestamp, Timedelta
>>> part = Part()
>>> part.time_unit = Timedelta('7 days')
>>> start, end = Timestamp('2011-02-14'), Timestamp('2011-02-28')
>>> part.times_between(start, end)
(Timestamp('2011-02-14 00:00:00'), Timestamp('2011-02-21 00:00:00'), Timestamp('2011-02-28 00:00:00'))

friendlysam.parts.Node.unset_cluster

Node.unset_cluster(cluster)
Remove from a Cluster.

You should probably use Cluster.remove_part() instead.

Parameters cluster – The :node:‘Cluster‘ instance to remove from.

Node.accumulation A dictionary of accumulation functions.
Node.children Parts in this part, excluding self.
Node.children_and_self Parts in this part, including self.
Node.constraints For defining and generating constraints.
Node.consumption A dictionary of consumption functions.
Node.descendants All children, children of children, etc, excluding self.
Node.descendants_and_self All children, children of children, etc, including self.
Node.inflows A dictionary of sets of inflow functions.
Node.name A name for the object.
Node.outflows A dictionary of sets of outflow functions.
Node.production A dictionary of production functions.
Node.resources The set of resources this node handles.
Node.time_unit The time unit used in step_time().

friendlysam.parts.Node.accumulation

Node.accumulation
A dictionary of accumulation functions.

See consumption.

friendlysam.parts.Node.children

Node.children
Parts in this part, excluding self.

To add children, use add_part().

friendlysam.parts.Node.children_and_self

Node.children_and_self
Parts in this part, including self.

To add children, use add_part().

74 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

friendlysam.parts.Node.constraints

Node.constraints
For defining and generating constraints.

This is a ConstraintCollection instance. Add functions or iterables of functions to it. Each func-
tion should return a constraint or an iterable of constraints. (In this context, a constraint is Constraint,
Relation, SOS1 or SOS2.)

If a constraint function returns a Relation, it automatically packaged in a Constraint object and marked
with origin after creation. A constraint function may also return an iterable of constraints, even a generator.

All the added constraint functions are called when make() is called.

Examples

There are many ways to formulate constraint functions. Here is a wonderfully contrived example:

>>> from friendlysam.opt import VariableCollection, Constraint, Eq
>>> class MyNode(Node):
... def __init__(self, k):
... self.k = k
... self.var = VariableCollection('x')
... self.production['foo'] = self.var
... # += and .add() are just alternative syntaxes
... self.constraints.add(lambda t: self.var(t) >= k[t] - 1)
... self.constraints += self.constraint_func_1, self.constraint_func_2
... self.constraints.add(self.constraint_func_3)
...
... def constraint_func_1(self, t):
... return Constraint(
... self.var(t) <= self.k[t] * 2,
... desc='Some description')
...
... def constraint_func_2(self, t):
... constraints = []
... t_plus_1 = self.step_time(t, 1)
... constraints.append(self.var(t) <= self.k[t] * self.var(t_plus_1))
... constraints.append(self.var(t) >= self.k[t_plus_1] * self.var(t_plus_1))
... return constraints
...
... def constraint_func_3(self, t):
... for prev in self.times_between(0, t):
... expr = Eq(self.k[prev] * self.var(prev), self.k[t] * self.var(t))
... desc = 'Why make such a constraint? (k(t)={})'.format(self.k[t])
... yield Constraint(expr, desc=desc)
...
>>> my_k = {i: i ** 2.4 for i in range(100)}
>>> node = MyNode(my_k)
>>> constraints = node.constraints.make(20)
>>> len(constraints)
26

Constraints can also be added from “outside”:

>>> node.constraints += lambda index: node.production['foo'](index) >= index
>>> constraints = node.constraints.make(20)

2.9. API reference 75

Friendly Sam Documentation, Release 0.2.0

>>> len(constraints)
27

friendlysam.parts.Node.consumption

Node.consumption
A dictionary of consumption functions.

Each key in the dictionary is a resource, and the value is a function, taking one argument index, returning the
consumption at that index.

friendlysam.parts.Node.descendants

Node.descendants
All children, children of children, etc, excluding self.

friendlysam.parts.Node.descendants_and_self

Node.descendants_and_self
All children, children of children, etc, including self.

friendlysam.parts.Node.inflows

Node.inflows
A dictionary of sets of inflow functions.

Each key in the dictionary is a resource, and the corresponding value is a set. Each item in each set is a function,
taking one argument index, returning the an inflow of that resource at that index.

friendlysam.parts.Node.name

Node.name
A name for the object.

The name is for debugging purposes. It has nothing to do with the identity of the object, so does not have to be
unique

friendlysam.parts.Node.outflows

Node.outflows
A dictionary of sets of outflow functions.

Each key in the dictionary is a resource, and the corresponding value is a set. Each item in each set is a function,
taking one argument index, returning the an outflow of that resource at that index.

76 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

friendlysam.parts.Node.production

Node.production
A dictionary of production functions.

See consumption.

friendlysam.parts.Node.resources

Node.resources
The set of resources this node handles.

This is the set of all keys found in the following dictionaries:

•consumption

•production

•accumulation

•inflows

•outflows

friendlysam.parts.Node.time_unit

Node.time_unit
The time unit used in step_time().

The default value is 1.

For more info, see step_time().

friendlysam.parts.FlowNetwork

class friendlysam.parts.FlowNetwork(resource, name=None)
Manages flows between nodes.

FlowNetwork creates flow variables and can connect Node instances by changing their inflows and
outflows.

Parameters

• resource – The resource flowing in the network.

• name (str, optional) – The name of the network.

Examples

We create three nodes: A producer, a storage, and a consumer.

>>> producer = Node(name='producer')
>>> producer.production['R'] = VariableCollection('prod')
>>> consumer = Node(name='consumer')
>>> consumer.consumption['R'] = VariableCollection('cons')
>>> storage = Storage(resource='R', name='storage')

2.9. API reference 77

Friendly Sam Documentation, Release 0.2.0

Connect the producer to the storage, and the storage to the consumer.

>>> network = FlowNetwork(resource='R', name='network')
>>> network.connect(producer, storage)
>>> network.connect(storage, consumer)
>>> for part in [producer, consumer, storage]:
... for constr in part.constraints.make(5):
... print(constr.origin.owner)
... print(constr.expr)
... print()
...
producer
prod(5) == network.flow(producer-->storage)(5)

consumer
network.flow(storage-->consumer)(5) == cons(5)

storage
network.flow(producer-->storage)(5) == network.flow(storage-->consumer)(5) + storage.volume(6) - storage.volume(5)

FlowNetwork.add_part(part) Add a part to this part.
FlowNetwork.connect(n1, n2[, bidirectional, ...]) Connect two nodes.
FlowNetwork.find(name) Try to find a part by name.
FlowNetwork.get_flow(n1, n2) Get a flow between two nodes.
FlowNetwork.iter_times(start, *range_args) A generator yielding a sequence of times.
FlowNetwork.iter_times_between(start, end) A generator yielding all times between two points.
FlowNetwork.parts([depth, include_self]) Get contained parts, recursively.
FlowNetwork.remove_part(part)
FlowNetwork.state_variables(index) The state variables are all the flow variables.
FlowNetwork.step_time(index, num_steps) A function for stepping forward or backward in time.
FlowNetwork.times(start, *range_args) Get a sequence of times.
FlowNetwork.times_between(start, end) Get a tuple of all times between two points.

friendlysam.parts.FlowNetwork.add_part

FlowNetwork.add_part(part)
Add a part to this part.

Parameters part (Part or subclass instance) – The part to add.

Raises InsanityError – If the calling part is a descendant of the part to add. (This would
generate a cyclic relationship.)

friendlysam.parts.FlowNetwork.connect

FlowNetwork.connect(n1, n2, bidirectional=False, capacity=None)
Connect two nodes.

Creates a flow and adds it to n1.outflows[resource] and n2.inflows[resource], if it does not
already exist. Calling again makes no difference.

The flow must be nonnegative. For bidirectional flows, use bidirectional=True.

Parameters

• n1 – The node the flow goes from.

78 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

• n2 – The node the flow goes to.

• bidirectional (boolean, optional) – Create a two-way flow?

• capacity (float, optional) – The maximum amount that can flow between the nodes.
Creates an upper bound ub=capacity on the flow Variable for each index.

friendlysam.parts.FlowNetwork.find

FlowNetwork.find(name)
Try to find a part by name.

Searches among descendants_and_self, comparing the name. If there is exactly one match, it is re-
turned.

Parameters name – The name to search for.

Returns attr:descendants_and_self.

Return type A part named name, if one exists among

Raises ValueError – If there is no match or several matches.

friendlysam.parts.FlowNetwork.get_flow

FlowNetwork.get_flow(n1, n2)
Get a flow between two nodes.

Parameters

• n1 – The node the flow goes from.

• n2 – The node the flow goes to.

Returns a VariableCollection

Raises KeyError – If the flow does not exist.

friendlysam.parts.FlowNetwork.iter_times

FlowNetwork.iter_times(start, *range_args)
A generator yielding a sequence of times.

See also: times(), iter_times_between(), times_between().

Equivalent to:

for num_steps in range(*range_args):
yield self.step_time(start, num_steps)

Parameters

• start (any object) – The index to start from.

• *range_args – Args exactly like for the built-in range().

2.9. API reference 79

Friendly Sam Documentation, Release 0.2.0

Examples

>>> part = Part()
>>> for t in part.iter_times(3, 5):
... print(t)
...
3
4
5
6
7
>>> for t in part.iter_times(0, -5, 1, 2):
... print(t)
...
-5
-3
-1

friendlysam.parts.FlowNetwork.iter_times_between

FlowNetwork.iter_times_between(start, end)
A generator yielding all times between two points.

See also: times_between(), iter_times(), times().

Takes one time step at a time from start while <= end.

Parameters

• start (any object) – The index to start from.

• end (any object) – The index to go to.

Note: This function only works if times are orderable, or specifically that the <= operator is implemented.

Examples

>>> from pandas import Timestamp, Timedelta
>>> part = Part()
>>> part.time_unit = Timedelta('7 days')
>>> start, end = Timestamp('2011-02-14'), Timestamp('2011-02-28')
>>> between = part.iter_times_between(start, end)
>>> next(between)
Timestamp('2011-02-14 00:00:00')
>>> next(between)
Timestamp('2011-02-21 00:00:00')
>>> next(between)
Timestamp('2011-02-28 00:00:00')

friendlysam.parts.FlowNetwork.parts

FlowNetwork.parts(depth=’inf’, include_self=True)
Get contained parts, recursively.

See also properties children, children_and_self, descendants, descendants_and_self.

80 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

Parameters

• depth (integer or ‘inf’, optional) – The recursion depth to search with. depth=1 searches
among the parts directly contained by this part. depth=2 among children and their children,
etc.

• include_self (boolean, optional) – Include this part in the results?

Returns A set of parts.

Examples

>>> child = Part(name='Baby')
>>> parent = Part(name='Mommy')
>>> parent.add_part(child)
>>> grandparent = Part('Granny')
>>> grandparent.add_part(parent)
>>> grandparent.children == {parent}
True
>>> grandparent.descendants == {parent, child}
True
>>> grandparent.descendants_and_self == {grandparent, parent, child}
True
>>> grandparent.parts(depth=1, include_self=False) == grandparent.children
True

friendlysam.parts.FlowNetwork.remove_part

FlowNetwork.remove_part(part)

friendlysam.parts.FlowNetwork.state_variables

FlowNetwork.state_variables(index)
The state variables are all the flow variables.

friendlysam.parts.FlowNetwork.step_time

FlowNetwork.step_time(index, num_steps)
A function for stepping forward or backward in time.

A Part (or subclass) instance may use any logic for stepping in time. To change time stepping, you may have
to change time_step or override step_time().

Parameters

• index (any object) – The index to step from.

• num_steps (int) – The number of steps to take.

Returns the new time, num_steps away from index.

2.9. API reference 81

Friendly Sam Documentation, Release 0.2.0

Examples

If your model is indexed in evenly spaced integers, the default implementation is enough. A step is taken as
follows:

def step_time(self, index, num_steps):
return index + self.time_unit * num_steps

The default time_unit is 1, so time stepping is done by adding an integer.

>>> part = Part()
>>> part.step_time(3, -2)
1
>>> part.time_unit = 10
>>> part.step_time(3, 2)
23

Let’s assume your model is indexed with pandas.Timestamp in 2-hour increments, then it’s still sufficient
to change the time unit:

>>> from pandas import Timestamp, Timedelta
>>> part = Part()
>>> part.time_unit = Timedelta('2h')
>>> part.step_time(Timestamp('2015-06-10 16:00'), 1)
Timestamp('2015-06-10 18:00:00')
>>> part.step_time(Timestamp('2015-06-10 16:00'), -3)
Timestamp('2015-06-10 10:00:00')

If your model is indexed with something more complicated, you may have to change the step_time()
method. For example, assume a model is indexed with two-element tuples where the first element is an integer
representing time. Then override the step_time() as follows:

>>> def my_step_time(index, step):
... t, other = index
... t += step
... return (t, other)
...
>>> part = Part()
>>> part.step_time = my_step_time
>>> part.step_time((1, 'ABC'), 2)
(3, 'ABC')

friendlysam.parts.FlowNetwork.times

FlowNetwork.times(start, *range_args)
Get a sequence of times.

See also: iter_times(), iter_times_between(), times_between().

This works exactly like iter_times(), but returns a tuple.

Parameters

• start (any object) – The index to start from.

• *range_args – Args exactly like for the built-in range().

82 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

Examples

>>> part = Part()
>>> part.times(3, 5)
(3, 4, 5, 6, 7)
>>> part.times(0, -5, 1, 2)
(-5, -3, -1)

friendlysam.parts.FlowNetwork.times_between

FlowNetwork.times_between(start, end)
Get a tuple of all times between two points.

See also: times_between(), iter_times(), times().

Takes one time step at a time from start while <= end. This works exactly like
iter_times_between(), but returns a tuple.

Parameters

• start (any object) – The index to start from.

• end (any object) – The index to go to.

Note: This function only works if times are orderable, or specifically that the <= operator is implemented.

Examples

>>> from pandas import Timestamp, Timedelta
>>> part = Part()
>>> part.time_unit = Timedelta('7 days')
>>> start, end = Timestamp('2011-02-14'), Timestamp('2011-02-28')
>>> part.times_between(start, end)
(Timestamp('2011-02-14 00:00:00'), Timestamp('2011-02-21 00:00:00'), Timestamp('2011-02-28 00:00:00'))

FlowNetwork.children Parts in this part, excluding self.
FlowNetwork.children_and_self Parts in this part, including self.
FlowNetwork.constraints For defining and generating constraints.
FlowNetwork.descendants All children, children of children, etc, excluding self.
FlowNetwork.descendants_and_self All children, children of children, etc, including self.
FlowNetwork.graph A graph of all the flows.
FlowNetwork.name A name for the object.
FlowNetwork.time_unit The time unit used in step_time().

friendlysam.parts.FlowNetwork.children

FlowNetwork.children
Parts in this part, excluding self.

To add children, use add_part().

2.9. API reference 83

Friendly Sam Documentation, Release 0.2.0

friendlysam.parts.FlowNetwork.children_and_self

FlowNetwork.children_and_self
Parts in this part, including self.

To add children, use add_part().

friendlysam.parts.FlowNetwork.constraints

FlowNetwork.constraints
For defining and generating constraints.

This is a ConstraintCollection instance. Add functions or iterables of functions to it. Each func-
tion should return a constraint or an iterable of constraints. (In this context, a constraint is Constraint,
Relation, SOS1 or SOS2.)

If a constraint function returns a Relation, it automatically packaged in a Constraint object and marked
with origin after creation. A constraint function may also return an iterable of constraints, even a generator.

All the added constraint functions are called when make() is called.

Examples

There are many ways to formulate constraint functions. Here is a wonderfully contrived example:

>>> from friendlysam.opt import VariableCollection, Constraint, Eq
>>> class MyNode(Node):
... def __init__(self, k):
... self.k = k
... self.var = VariableCollection('x')
... self.production['foo'] = self.var
... # += and .add() are just alternative syntaxes
... self.constraints.add(lambda t: self.var(t) >= k[t] - 1)
... self.constraints += self.constraint_func_1, self.constraint_func_2
... self.constraints.add(self.constraint_func_3)
...
... def constraint_func_1(self, t):
... return Constraint(
... self.var(t) <= self.k[t] * 2,
... desc='Some description')
...
... def constraint_func_2(self, t):
... constraints = []
... t_plus_1 = self.step_time(t, 1)
... constraints.append(self.var(t) <= self.k[t] * self.var(t_plus_1))
... constraints.append(self.var(t) >= self.k[t_plus_1] * self.var(t_plus_1))
... return constraints
...
... def constraint_func_3(self, t):
... for prev in self.times_between(0, t):
... expr = Eq(self.k[prev] * self.var(prev), self.k[t] * self.var(t))
... desc = 'Why make such a constraint? (k(t)={})'.format(self.k[t])
... yield Constraint(expr, desc=desc)
...
>>> my_k = {i: i ** 2.4 for i in range(100)}
>>> node = MyNode(my_k)
>>> constraints = node.constraints.make(20)

84 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

>>> len(constraints)
26

Constraints can also be added from “outside”:

>>> node.constraints += lambda index: node.production['foo'](index) >= index
>>> constraints = node.constraints.make(20)
>>> len(constraints)
27

friendlysam.parts.FlowNetwork.descendants

FlowNetwork.descendants
All children, children of children, etc, excluding self.

friendlysam.parts.FlowNetwork.descendants_and_self

FlowNetwork.descendants_and_self
All children, children of children, etc, including self.

friendlysam.parts.FlowNetwork.graph

FlowNetwork.graph
A graph of all the flows.

Gets a NetworkX DiGraph representation of the graph of how nodes are connected. See
https://networkx.github.io/ for details.

The graph object is a copy of the internal graph, so changing it does not affect the FlowNetwork

Examples

>>> FlowNetwork('resource').graph
<networkx.classes.digraph.DiGraph object at 0x...>

friendlysam.parts.FlowNetwork.name

FlowNetwork.name
A name for the object.

The name is for debugging purposes. It has nothing to do with the identity of the object, so does not have to be
unique

friendlysam.parts.FlowNetwork.time_unit

FlowNetwork.time_unit
The time unit used in step_time().

The default value is 1.

For more info, see step_time().

2.9. API reference 85

https://networkx.github.io/

Friendly Sam Documentation, Release 0.2.0

friendlysam.parts.Cluster

class friendlysam.parts.Cluster(*parts, resource=None, name=None)
A node containing other nodes, fully connected.

A cluster is used to create a free flow of a resource R among a set of nodes. All children of a cluster get their
balance_constraints turned off for the resource R, and instead the cluster makes an aggregated balance
constraint for all the nodes. In this way, a Cluster is like a FlowNetwork for resource R where all the parts
are connected to one another.

Parameters

• *parts (optional) – Zero or more parts to put in the cluster.

• resource – The resource this cluster handles.

• name (optional) – A name for the cluster.

Examples

Let’s create three nodes:

>>> producer = Node(name='producer')
>>> producer.production['R'] = VariableCollection('prod')
>>> consumer = Node(name='consumer')
>>> consumer.consumption['R'] = VariableCollection('cons')
>>> storage = Storage(resource='R', name='storage')
>>> nodes = [consumer, producer, storage]

Now they all make a balance constraint at any given index:

>>> sum(len(n.constraints.make(5)) for n in nodes)
3

After clustering, they don’t make balance constraints:

>>> cluster = Cluster(*nodes, resource='R', name='cluster')
>>> sum(len(n.constraints.make(5)) for n in nodes) # They all make a balance constraint
0

But the Cluster does:

>>> for constr in cluster.constraints.make(5):
... print(constr.expr)
...
prod(5) == cons(5) + storage.volume(6) - storage.volume(5)

Cluster.add_part(part) Add a part to this cluster.
Cluster.balance_constraints(index) Balance constraints for all resources.
Cluster.cluster(resource) Get a Cluster this node is in.
Cluster.find(name) Try to find a part by name.
Cluster.iter_times(start, *range_args) A generator yielding a sequence of times.
Cluster.iter_times_between(start, end) A generator yielding all times between two points.
Cluster.parts([depth, include_self]) Get contained parts, recursively.
Cluster.remove_part(part) Remove a part from this part.
Cluster.set_cluster(cluster) Add this node to a Cluster.
Cluster.state_variables(index) Cluster does not have state variables.

Continued on next page

86 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

Table 2.46 – continued from previous page
Cluster.step_time(index, num_steps) A function for stepping forward or backward in time.
Cluster.times(start, *range_args) Get a sequence of times.
Cluster.times_between(start, end) Get a tuple of all times between two points.
Cluster.unset_cluster(cluster) Remove from a Cluster.

friendlysam.parts.Cluster.add_part

Cluster.add_part(part)
Add a part to this cluster.

Parameters part (Part or subclass instance) – The part to add.

Raises InsanityError – If the calling part is a descendant of the part to add. (This would
generate a cyclic relationship.)

friendlysam.parts.Cluster.balance_constraints

Cluster.balance_constraints(index)
Balance constraints for all resources.

Returns one constraint for each resource in resources, except for the resources for which this node is in a
Cluster.

Parameters index – The index to get the resources for.

Returns The balance constraints.

Return type set

friendlysam.parts.Cluster.cluster

Cluster.cluster(resource)
Get a Cluster this node is in.

Parameters resource – The Cluster.resource.

Returns The Cluster if this node is in a Cluster with Cluster.resource‘‘ == resource‘‘,
None otherwise.

Return type cluster

friendlysam.parts.Cluster.find

Cluster.find(name)
Try to find a part by name.

Searches among descendants_and_self, comparing the name. If there is exactly one match, it is re-
turned.

Parameters name – The name to search for.

Returns attr:descendants_and_self.

Return type A part named name, if one exists among

Raises ValueError – If there is no match or several matches.

2.9. API reference 87

Friendly Sam Documentation, Release 0.2.0

friendlysam.parts.Cluster.iter_times

Cluster.iter_times(start, *range_args)
A generator yielding a sequence of times.

See also: times(), iter_times_between(), times_between().

Equivalent to:

for num_steps in range(*range_args):
yield self.step_time(start, num_steps)

Parameters

• start (any object) – The index to start from.

• *range_args – Args exactly like for the built-in range().

Examples

>>> part = Part()
>>> for t in part.iter_times(3, 5):
... print(t)
...
3
4
5
6
7
>>> for t in part.iter_times(0, -5, 1, 2):
... print(t)
...
-5
-3
-1

friendlysam.parts.Cluster.iter_times_between

Cluster.iter_times_between(start, end)
A generator yielding all times between two points.

See also: times_between(), iter_times(), times().

Takes one time step at a time from start while <= end.

Parameters

• start (any object) – The index to start from.

• end (any object) – The index to go to.

Note: This function only works if times are orderable, or specifically that the <= operator is implemented.

88 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

Examples

>>> from pandas import Timestamp, Timedelta
>>> part = Part()
>>> part.time_unit = Timedelta('7 days')
>>> start, end = Timestamp('2011-02-14'), Timestamp('2011-02-28')
>>> between = part.iter_times_between(start, end)
>>> next(between)
Timestamp('2011-02-14 00:00:00')
>>> next(between)
Timestamp('2011-02-21 00:00:00')
>>> next(between)
Timestamp('2011-02-28 00:00:00')

friendlysam.parts.Cluster.parts

Cluster.parts(depth=’inf’, include_self=True)
Get contained parts, recursively.

See also properties children, children_and_self, descendants, descendants_and_self.

Parameters

• depth (integer or ‘inf’, optional) – The recursion depth to search with. depth=1 searches
among the parts directly contained by this part. depth=2 among children and their children,
etc.

• include_self (boolean, optional) – Include this part in the results?

Returns A set of parts.

Examples

>>> child = Part(name='Baby')
>>> parent = Part(name='Mommy')
>>> parent.add_part(child)
>>> grandparent = Part('Granny')
>>> grandparent.add_part(parent)
>>> grandparent.children == {parent}
True
>>> grandparent.descendants == {parent, child}
True
>>> grandparent.descendants_and_self == {grandparent, parent, child}
True
>>> grandparent.parts(depth=1, include_self=False) == grandparent.children
True

friendlysam.parts.Cluster.remove_part

Cluster.remove_part(part)
Remove a part from this part.

Parameters p (Part or subclass instance) – The part to remove.

Raises KeyError – If the part is not there.

2.9. API reference 89

Friendly Sam Documentation, Release 0.2.0

friendlysam.parts.Cluster.set_cluster

Cluster.set_cluster(cluster)
Add this node to a Cluster.

You should probably use Cluster.add_part() instead.

Parameters cluster – The :node:‘Cluster‘ instance to add to.

friendlysam.parts.Cluster.state_variables

Cluster.state_variables(index)
Cluster does not have state variables.

friendlysam.parts.Cluster.step_time

Cluster.step_time(index, num_steps)
A function for stepping forward or backward in time.

A Part (or subclass) instance may use any logic for stepping in time. To change time stepping, you may have
to change time_step or override step_time().

Parameters

• index (any object) – The index to step from.

• num_steps (int) – The number of steps to take.

Returns the new time, num_steps away from index.

Examples

If your model is indexed in evenly spaced integers, the default implementation is enough. A step is taken as
follows:

def step_time(self, index, num_steps):
return index + self.time_unit * num_steps

The default time_unit is 1, so time stepping is done by adding an integer.

>>> part = Part()
>>> part.step_time(3, -2)
1
>>> part.time_unit = 10
>>> part.step_time(3, 2)
23

Let’s assume your model is indexed with pandas.Timestamp in 2-hour increments, then it’s still sufficient
to change the time unit:

>>> from pandas import Timestamp, Timedelta
>>> part = Part()
>>> part.time_unit = Timedelta('2h')
>>> part.step_time(Timestamp('2015-06-10 16:00'), 1)
Timestamp('2015-06-10 18:00:00')
>>> part.step_time(Timestamp('2015-06-10 16:00'), -3)
Timestamp('2015-06-10 10:00:00')

90 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

If your model is indexed with something more complicated, you may have to change the step_time()
method. For example, assume a model is indexed with two-element tuples where the first element is an integer
representing time. Then override the step_time() as follows:

>>> def my_step_time(index, step):
... t, other = index
... t += step
... return (t, other)
...
>>> part = Part()
>>> part.step_time = my_step_time
>>> part.step_time((1, 'ABC'), 2)
(3, 'ABC')

friendlysam.parts.Cluster.times

Cluster.times(start, *range_args)
Get a sequence of times.

See also: iter_times(), iter_times_between(), times_between().

This works exactly like iter_times(), but returns a tuple.

Parameters

• start (any object) – The index to start from.

• *range_args – Args exactly like for the built-in range().

Examples

>>> part = Part()
>>> part.times(3, 5)
(3, 4, 5, 6, 7)
>>> part.times(0, -5, 1, 2)
(-5, -3, -1)

friendlysam.parts.Cluster.times_between

Cluster.times_between(start, end)
Get a tuple of all times between two points.

See also: times_between(), iter_times(), times().

Takes one time step at a time from start while <= end. This works exactly like
iter_times_between(), but returns a tuple.

Parameters

• start (any object) – The index to start from.

• end (any object) – The index to go to.

Note: This function only works if times are orderable, or specifically that the <= operator is implemented.

2.9. API reference 91

Friendly Sam Documentation, Release 0.2.0

Examples

>>> from pandas import Timestamp, Timedelta
>>> part = Part()
>>> part.time_unit = Timedelta('7 days')
>>> start, end = Timestamp('2011-02-14'), Timestamp('2011-02-28')
>>> part.times_between(start, end)
(Timestamp('2011-02-14 00:00:00'), Timestamp('2011-02-21 00:00:00'), Timestamp('2011-02-28 00:00:00'))

friendlysam.parts.Cluster.unset_cluster

Cluster.unset_cluster(cluster)
Remove from a Cluster.

You should probably use Cluster.remove_part() instead.

Parameters cluster – The :node:‘Cluster‘ instance to remove from.

Cluster.accumulation A dictionary of accumulation functions.
Cluster.children Parts in this part, excluding self.
Cluster.children_and_self Parts in this part, including self.
Cluster.constraints For defining and generating constraints.
Cluster.consumption A dictionary of consumption functions.
Cluster.descendants All children, children of children, etc, excluding self.
Cluster.descendants_and_self All children, children of children, etc, including self.
Cluster.inflows A dictionary of sets of inflow functions.
Cluster.name A name for the object.
Cluster.outflows A dictionary of sets of outflow functions.
Cluster.production A dictionary of production functions.
Cluster.resource The resource this cluster collects.
Cluster.resources The set of resources this node handles.
Cluster.time_unit The time unit used in step_time().

friendlysam.parts.Cluster.accumulation

Cluster.accumulation
A dictionary of accumulation functions.

See consumption.

friendlysam.parts.Cluster.children

Cluster.children
Parts in this part, excluding self.

To add children, use add_part().

friendlysam.parts.Cluster.children_and_self

Cluster.children_and_self
Parts in this part, including self.

92 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

To add children, use add_part().

friendlysam.parts.Cluster.constraints

Cluster.constraints
For defining and generating constraints.

This is a ConstraintCollection instance. Add functions or iterables of functions to it. Each func-
tion should return a constraint or an iterable of constraints. (In this context, a constraint is Constraint,
Relation, SOS1 or SOS2.)

If a constraint function returns a Relation, it automatically packaged in a Constraint object and marked
with origin after creation. A constraint function may also return an iterable of constraints, even a generator.

All the added constraint functions are called when make() is called.

Examples

There are many ways to formulate constraint functions. Here is a wonderfully contrived example:

>>> from friendlysam.opt import VariableCollection, Constraint, Eq
>>> class MyNode(Node):
... def __init__(self, k):
... self.k = k
... self.var = VariableCollection('x')
... self.production['foo'] = self.var
... # += and .add() are just alternative syntaxes
... self.constraints.add(lambda t: self.var(t) >= k[t] - 1)
... self.constraints += self.constraint_func_1, self.constraint_func_2
... self.constraints.add(self.constraint_func_3)
...
... def constraint_func_1(self, t):
... return Constraint(
... self.var(t) <= self.k[t] * 2,
... desc='Some description')
...
... def constraint_func_2(self, t):
... constraints = []
... t_plus_1 = self.step_time(t, 1)
... constraints.append(self.var(t) <= self.k[t] * self.var(t_plus_1))
... constraints.append(self.var(t) >= self.k[t_plus_1] * self.var(t_plus_1))
... return constraints
...
... def constraint_func_3(self, t):
... for prev in self.times_between(0, t):
... expr = Eq(self.k[prev] * self.var(prev), self.k[t] * self.var(t))
... desc = 'Why make such a constraint? (k(t)={})'.format(self.k[t])
... yield Constraint(expr, desc=desc)
...
>>> my_k = {i: i ** 2.4 for i in range(100)}
>>> node = MyNode(my_k)
>>> constraints = node.constraints.make(20)
>>> len(constraints)
26

Constraints can also be added from “outside”:

2.9. API reference 93

Friendly Sam Documentation, Release 0.2.0

>>> node.constraints += lambda index: node.production['foo'](index) >= index
>>> constraints = node.constraints.make(20)
>>> len(constraints)
27

friendlysam.parts.Cluster.consumption

Cluster.consumption
A dictionary of consumption functions.

Each key in the dictionary is a resource, and the value is a function, taking one argument index, returning the
consumption at that index.

friendlysam.parts.Cluster.descendants

Cluster.descendants
All children, children of children, etc, excluding self.

friendlysam.parts.Cluster.descendants_and_self

Cluster.descendants_and_self
All children, children of children, etc, including self.

friendlysam.parts.Cluster.inflows

Cluster.inflows
A dictionary of sets of inflow functions.

Each key in the dictionary is a resource, and the corresponding value is a set. Each item in each set is a function,
taking one argument index, returning the an inflow of that resource at that index.

friendlysam.parts.Cluster.name

Cluster.name
A name for the object.

The name is for debugging purposes. It has nothing to do with the identity of the object, so does not have to be
unique

friendlysam.parts.Cluster.outflows

Cluster.outflows
A dictionary of sets of outflow functions.

Each key in the dictionary is a resource, and the corresponding value is a set. Each item in each set is a function,
taking one argument index, returning the an outflow of that resource at that index.

94 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

friendlysam.parts.Cluster.production

Cluster.production
A dictionary of production functions.

See consumption.

friendlysam.parts.Cluster.resource

Cluster.resource
The resource this cluster collects. Read only.

friendlysam.parts.Cluster.resources

Cluster.resources
The set of resources this node handles.

This is the set of all keys found in the following dictionaries:

•consumption

•production

•accumulation

•inflows

•outflows

friendlysam.parts.Cluster.time_unit

Cluster.time_unit
The time unit used in step_time().

The default value is 1.

For more info, see step_time().

friendlysam.parts.Storage

class friendlysam.parts.Storage(resource, capacity=None, maxchange=None, name=None)
Simple storage model.

The storage has a volume function. It should be thought of as the volume at the beginning of a time step, such
that volume(t) + accumulation[resource](t) == volume(t+1), or more exactly,

>>> s = Storage('my_resource')
>>> t = 42
>>> t_plus_1 = s.step_time(t, 1)
>>> s.accumulation['my_resource'](t) == s.volume(t_plus_1) - s.volume(t)
True

Parameters

• resource – The resource to store.

2.9. API reference 95

Friendly Sam Documentation, Release 0.2.0

• capacity (float, optional) – The maximum amount that can be stored. If None (the
default), there is no limit.

• maxchange (float, optional) – The maxchange of the storage.

• name (str, optional) – The name of the node.

Examples

>>> from pandas import Timestamp, Timedelta
>>> battery = Storage('power', name='Battery')
>>> battery.time_unit = Timedelta('3h')
>>> t = Timestamp('2015-06-10 18:00')
>>> print(battery.accumulation['power'](t))
Battery.volume(2015-06-10 21:00:00) - Battery.volume(2015-06-10 18:00:00)

Storage.add_part(part) Add a part to this part.
Storage.balance_constraints(index) Balance constraints for all resources.
Storage.cluster(resource) Get a Cluster this node is in.
Storage.find(name) Try to find a part by name.
Storage.iter_times(start, *range_args) A generator yielding a sequence of times.
Storage.iter_times_between(start, end) A generator yielding all times between two points.
Storage.parts([depth, include_self]) Get contained parts, recursively.
Storage.remove_part(part) Remove a part from this part.
Storage.set_cluster(cluster) Add this node to a Cluster.
Storage.state_variables(index) The only state variable is volume (index).
Storage.step_time(index, num_steps) A function for stepping forward or backward in time.
Storage.times(start, *range_args) Get a sequence of times.
Storage.times_between(start, end) Get a tuple of all times between two points.
Storage.unset_cluster(cluster) Remove from a Cluster.

friendlysam.parts.Storage.add_part

Storage.add_part(part)
Add a part to this part.

Parameters part (Part or subclass instance) – The part to add.

Raises InsanityError – If the calling part is a descendant of the part to add. (This would
generate a cyclic relationship.)

friendlysam.parts.Storage.balance_constraints

Storage.balance_constraints(index)
Balance constraints for all resources.

Returns one constraint for each resource in resources, except for the resources for which this node is in a
Cluster.

Parameters index – The index to get the resources for.

Returns The balance constraints.

Return type set

96 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

friendlysam.parts.Storage.cluster

Storage.cluster(resource)
Get a Cluster this node is in.

Parameters resource – The Cluster.resource.

Returns The Cluster if this node is in a Cluster with Cluster.resource‘‘ == resource‘‘,
None otherwise.

Return type cluster

friendlysam.parts.Storage.find

Storage.find(name)
Try to find a part by name.

Searches among descendants_and_self, comparing the name. If there is exactly one match, it is re-
turned.

Parameters name – The name to search for.

Returns attr:descendants_and_self.

Return type A part named name, if one exists among

Raises ValueError – If there is no match or several matches.

friendlysam.parts.Storage.iter_times

Storage.iter_times(start, *range_args)
A generator yielding a sequence of times.

See also: times(), iter_times_between(), times_between().

Equivalent to:

for num_steps in range(*range_args):
yield self.step_time(start, num_steps)

Parameters

• start (any object) – The index to start from.

• *range_args – Args exactly like for the built-in range().

Examples

>>> part = Part()
>>> for t in part.iter_times(3, 5):
... print(t)
...
3
4
5
6
7

2.9. API reference 97

Friendly Sam Documentation, Release 0.2.0

>>> for t in part.iter_times(0, -5, 1, 2):
... print(t)
...
-5
-3
-1

friendlysam.parts.Storage.iter_times_between

Storage.iter_times_between(start, end)
A generator yielding all times between two points.

See also: times_between(), iter_times(), times().

Takes one time step at a time from start while <= end.

Parameters

• start (any object) – The index to start from.

• end (any object) – The index to go to.

Note: This function only works if times are orderable, or specifically that the <= operator is implemented.

Examples

>>> from pandas import Timestamp, Timedelta
>>> part = Part()
>>> part.time_unit = Timedelta('7 days')
>>> start, end = Timestamp('2011-02-14'), Timestamp('2011-02-28')
>>> between = part.iter_times_between(start, end)
>>> next(between)
Timestamp('2011-02-14 00:00:00')
>>> next(between)
Timestamp('2011-02-21 00:00:00')
>>> next(between)
Timestamp('2011-02-28 00:00:00')

friendlysam.parts.Storage.parts

Storage.parts(depth=’inf’, include_self=True)
Get contained parts, recursively.

See also properties children, children_and_self, descendants, descendants_and_self.

Parameters

• depth (integer or ‘inf’, optional) – The recursion depth to search with. depth=1 searches
among the parts directly contained by this part. depth=2 among children and their children,
etc.

• include_self (boolean, optional) – Include this part in the results?

Returns A set of parts.

98 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

Examples

>>> child = Part(name='Baby')
>>> parent = Part(name='Mommy')
>>> parent.add_part(child)
>>> grandparent = Part('Granny')
>>> grandparent.add_part(parent)
>>> grandparent.children == {parent}
True
>>> grandparent.descendants == {parent, child}
True
>>> grandparent.descendants_and_self == {grandparent, parent, child}
True
>>> grandparent.parts(depth=1, include_self=False) == grandparent.children
True

friendlysam.parts.Storage.remove_part

Storage.remove_part(part)
Remove a part from this part.

Parameters p (Part or subclass instance) – The part to remove.

Raises KeyError – If the part is not there.

friendlysam.parts.Storage.set_cluster

Storage.set_cluster(cluster)
Add this node to a Cluster.

You should probably use Cluster.add_part() instead.

Parameters cluster – The :node:‘Cluster‘ instance to add to.

friendlysam.parts.Storage.state_variables

Storage.state_variables(index)
The only state variable is volume (index).

friendlysam.parts.Storage.step_time

Storage.step_time(index, num_steps)
A function for stepping forward or backward in time.

A Part (or subclass) instance may use any logic for stepping in time. To change time stepping, you may have
to change time_step or override step_time().

Parameters

• index (any object) – The index to step from.

• num_steps (int) – The number of steps to take.

Returns the new time, num_steps away from index.

2.9. API reference 99

Friendly Sam Documentation, Release 0.2.0

Examples

If your model is indexed in evenly spaced integers, the default implementation is enough. A step is taken as
follows:

def step_time(self, index, num_steps):
return index + self.time_unit * num_steps

The default time_unit is 1, so time stepping is done by adding an integer.

>>> part = Part()
>>> part.step_time(3, -2)
1
>>> part.time_unit = 10
>>> part.step_time(3, 2)
23

Let’s assume your model is indexed with pandas.Timestamp in 2-hour increments, then it’s still sufficient
to change the time unit:

>>> from pandas import Timestamp, Timedelta
>>> part = Part()
>>> part.time_unit = Timedelta('2h')
>>> part.step_time(Timestamp('2015-06-10 16:00'), 1)
Timestamp('2015-06-10 18:00:00')
>>> part.step_time(Timestamp('2015-06-10 16:00'), -3)
Timestamp('2015-06-10 10:00:00')

If your model is indexed with something more complicated, you may have to change the step_time()
method. For example, assume a model is indexed with two-element tuples where the first element is an integer
representing time. Then override the step_time() as follows:

>>> def my_step_time(index, step):
... t, other = index
... t += step
... return (t, other)
...
>>> part = Part()
>>> part.step_time = my_step_time
>>> part.step_time((1, 'ABC'), 2)
(3, 'ABC')

friendlysam.parts.Storage.times

Storage.times(start, *range_args)
Get a sequence of times.

See also: iter_times(), iter_times_between(), times_between().

This works exactly like iter_times(), but returns a tuple.

Parameters

• start (any object) – The index to start from.

• *range_args – Args exactly like for the built-in range().

100 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

Examples

>>> part = Part()
>>> part.times(3, 5)
(3, 4, 5, 6, 7)
>>> part.times(0, -5, 1, 2)
(-5, -3, -1)

friendlysam.parts.Storage.times_between

Storage.times_between(start, end)
Get a tuple of all times between two points.

See also: times_between(), iter_times(), times().

Takes one time step at a time from start while <= end. This works exactly like
iter_times_between(), but returns a tuple.

Parameters

• start (any object) – The index to start from.

• end (any object) – The index to go to.

Note: This function only works if times are orderable, or specifically that the <= operator is implemented.

Examples

>>> from pandas import Timestamp, Timedelta
>>> part = Part()
>>> part.time_unit = Timedelta('7 days')
>>> start, end = Timestamp('2011-02-14'), Timestamp('2011-02-28')
>>> part.times_between(start, end)
(Timestamp('2011-02-14 00:00:00'), Timestamp('2011-02-21 00:00:00'), Timestamp('2011-02-28 00:00:00'))

friendlysam.parts.Storage.unset_cluster

Storage.unset_cluster(cluster)
Remove from a Cluster.

You should probably use Cluster.remove_part() instead.

Parameters cluster – The :node:‘Cluster‘ instance to remove from.

Storage.accumulation A dictionary of accumulation functions.
Storage.children Parts in this part, excluding self.
Storage.children_and_self Parts in this part, including self.
Storage.constraints For defining and generating constraints.
Storage.consumption A dictionary of consumption functions.
Storage.descendants All children, children of children, etc, excluding self.
Storage.descendants_and_self All children, children of children, etc, including self.
Storage.inflows A dictionary of sets of inflow functions.

Continued on next page

2.9. API reference 101

Friendly Sam Documentation, Release 0.2.0

Table 2.49 – continued from previous page
Storage.name A name for the object.
Storage.outflows A dictionary of sets of outflow functions.
Storage.production A dictionary of production functions.
Storage.resource The resource this storage stores.
Storage.resources The set of resources this node handles.
Storage.time_unit The time unit used in step_time().

friendlysam.parts.Storage.accumulation

Storage.accumulation
A dictionary of accumulation functions.

See consumption.

friendlysam.parts.Storage.children

Storage.children
Parts in this part, excluding self.

To add children, use add_part().

friendlysam.parts.Storage.children_and_self

Storage.children_and_self
Parts in this part, including self.

To add children, use add_part().

friendlysam.parts.Storage.constraints

Storage.constraints
For defining and generating constraints.

This is a ConstraintCollection instance. Add functions or iterables of functions to it. Each func-
tion should return a constraint or an iterable of constraints. (In this context, a constraint is Constraint,
Relation, SOS1 or SOS2.)

If a constraint function returns a Relation, it automatically packaged in a Constraint object and marked
with origin after creation. A constraint function may also return an iterable of constraints, even a generator.

All the added constraint functions are called when make() is called.

Examples

There are many ways to formulate constraint functions. Here is a wonderfully contrived example:

>>> from friendlysam.opt import VariableCollection, Constraint, Eq
>>> class MyNode(Node):
... def __init__(self, k):
... self.k = k
... self.var = VariableCollection('x')
... self.production['foo'] = self.var

102 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

... # += and .add() are just alternative syntaxes

... self.constraints.add(lambda t: self.var(t) >= k[t] - 1)

... self.constraints += self.constraint_func_1, self.constraint_func_2

... self.constraints.add(self.constraint_func_3)

...

... def constraint_func_1(self, t):

... return Constraint(

... self.var(t) <= self.k[t] * 2,

... desc='Some description')

...

... def constraint_func_2(self, t):

... constraints = []

... t_plus_1 = self.step_time(t, 1)

... constraints.append(self.var(t) <= self.k[t] * self.var(t_plus_1))

... constraints.append(self.var(t) >= self.k[t_plus_1] * self.var(t_plus_1))

... return constraints

...

... def constraint_func_3(self, t):

... for prev in self.times_between(0, t):

... expr = Eq(self.k[prev] * self.var(prev), self.k[t] * self.var(t))

... desc = 'Why make such a constraint? (k(t)={})'.format(self.k[t])

... yield Constraint(expr, desc=desc)

...
>>> my_k = {i: i ** 2.4 for i in range(100)}
>>> node = MyNode(my_k)
>>> constraints = node.constraints.make(20)
>>> len(constraints)
26

Constraints can also be added from “outside”:

>>> node.constraints += lambda index: node.production['foo'](index) >= index
>>> constraints = node.constraints.make(20)
>>> len(constraints)
27

friendlysam.parts.Storage.consumption

Storage.consumption
A dictionary of consumption functions.

Each key in the dictionary is a resource, and the value is a function, taking one argument index, returning the
consumption at that index.

friendlysam.parts.Storage.descendants

Storage.descendants
All children, children of children, etc, excluding self.

friendlysam.parts.Storage.descendants_and_self

Storage.descendants_and_self
All children, children of children, etc, including self.

2.9. API reference 103

Friendly Sam Documentation, Release 0.2.0

friendlysam.parts.Storage.inflows

Storage.inflows
A dictionary of sets of inflow functions.

Each key in the dictionary is a resource, and the corresponding value is a set. Each item in each set is a function,
taking one argument index, returning the an inflow of that resource at that index.

friendlysam.parts.Storage.name

Storage.name
A name for the object.

The name is for debugging purposes. It has nothing to do with the identity of the object, so does not have to be
unique

friendlysam.parts.Storage.outflows

Storage.outflows
A dictionary of sets of outflow functions.

Each key in the dictionary is a resource, and the corresponding value is a set. Each item in each set is a function,
taking one argument index, returning the an outflow of that resource at that index.

friendlysam.parts.Storage.production

Storage.production
A dictionary of production functions.

See consumption.

friendlysam.parts.Storage.resource

Storage.resource
The resource this storage stores. Read only.

friendlysam.parts.Storage.resources

Storage.resources
The set of resources this node handles.

This is the set of all keys found in the following dictionaries:

•consumption

•production

•accumulation

•inflows

•outflows

104 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

friendlysam.parts.Storage.time_unit

Storage.time_unit
The time unit used in step_time().

The default value is 1.

For more info, see step_time().

friendlysam.parts.ConstraintCollection

class friendlysam.parts.ConstraintCollection(owner)
Generates constraints from functions.

This class aggregates functions that generate constraints. It is primarily meant to be used as an attribute of the
Part class.

Add functions to it, functions that return constraints. Then call the make() with an index and receive the set of
all constraints generated by the contained functions with that index.

See docs for Part.constraints for details.

ConstraintCollection.add(addition) Add a constraint function, or an iterable of constraint functions.
ConstraintCollection.make(index) Create constraints from contained functions.

friendlysam.parts.ConstraintCollection.add

ConstraintCollection.add(addition)
Add a constraint function, or an iterable of constraint functions.

Parameters addition (callable or iterable of callables) – Constraint function(s) to add.

Examples

c = ConstraintCollection(owner) c.add(constraint_func) c.add([func1, func2])

c += constraint_func c += [func1, func2]

friendlysam.parts.ConstraintCollection.make

ConstraintCollection.make(index)
Create constraints from contained functions.

Parameters index – The index to call the constraint functions with.

Examples

c = ConstraintCollection(owner) c.add(func1) c += func2 # Alternative syntax. c(index) # Returns a set with all
the constraints from func1 and func2

MyopicDispatchModel([t0, horizon, step, ...]) docstring for MyopicDispatchModel

2.9. API reference 105

Friendly Sam Documentation, Release 0.2.0

friendlysam.models.MyopicDispatchModel

class friendlysam.models.MyopicDispatchModel(t0=None, horizon=None, step=None,
name=None, require_cost=True)

docstring for MyopicDispatchModel

MyopicDispatchModel.advance()
MyopicDispatchModel.cost(t)
MyopicDispatchModel.state_variables(t)

friendlysam.models.MyopicDispatchModel.advance

MyopicDispatchModel.advance()

friendlysam.models.MyopicDispatchModel.cost

MyopicDispatchModel.cost(t)

friendlysam.models.MyopicDispatchModel.state_variables

MyopicDispatchModel.state_variables(t)

MyopicDispatchModel.children Parts in this part, excluding self.
MyopicDispatchModel.children_and_self Parts in this part, including self.
MyopicDispatchModel.constraints For defining and generating constraints.
MyopicDispatchModel.descendants All children, children of children, etc, excluding self.
MyopicDispatchModel.descendants_and_self All children, children of children, etc, including self.
MyopicDispatchModel.name A name for the object.
MyopicDispatchModel.time_unit The time unit used in step_time().

friendlysam.models.MyopicDispatchModel.children

MyopicDispatchModel.children
Parts in this part, excluding self.

To add children, use add_part().

friendlysam.models.MyopicDispatchModel.children_and_self

MyopicDispatchModel.children_and_self
Parts in this part, including self.

To add children, use add_part().

friendlysam.models.MyopicDispatchModel.constraints

MyopicDispatchModel.constraints
For defining and generating constraints.

106 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

This is a ConstraintCollection instance. Add functions or iterables of functions to it. Each func-
tion should return a constraint or an iterable of constraints. (In this context, a constraint is Constraint,
Relation, SOS1 or SOS2.)

If a constraint function returns a Relation, it automatically packaged in a Constraint object and marked
with origin after creation. A constraint function may also return an iterable of constraints, even a generator.

All the added constraint functions are called when make() is called.

Examples

There are many ways to formulate constraint functions. Here is a wonderfully contrived example:

>>> from friendlysam.opt import VariableCollection, Constraint, Eq
>>> class MyNode(Node):
... def __init__(self, k):
... self.k = k
... self.var = VariableCollection('x')
... self.production['foo'] = self.var
... # += and .add() are just alternative syntaxes
... self.constraints.add(lambda t: self.var(t) >= k[t] - 1)
... self.constraints += self.constraint_func_1, self.constraint_func_2
... self.constraints.add(self.constraint_func_3)
...
... def constraint_func_1(self, t):
... return Constraint(
... self.var(t) <= self.k[t] * 2,
... desc='Some description')
...
... def constraint_func_2(self, t):
... constraints = []
... t_plus_1 = self.step_time(t, 1)
... constraints.append(self.var(t) <= self.k[t] * self.var(t_plus_1))
... constraints.append(self.var(t) >= self.k[t_plus_1] * self.var(t_plus_1))
... return constraints
...
... def constraint_func_3(self, t):
... for prev in self.times_between(0, t):
... expr = Eq(self.k[prev] * self.var(prev), self.k[t] * self.var(t))
... desc = 'Why make such a constraint? (k(t)={})'.format(self.k[t])
... yield Constraint(expr, desc=desc)
...
>>> my_k = {i: i ** 2.4 for i in range(100)}
>>> node = MyNode(my_k)
>>> constraints = node.constraints.make(20)
>>> len(constraints)
26

Constraints can also be added from “outside”:

>>> node.constraints += lambda index: node.production['foo'](index) >= index
>>> constraints = node.constraints.make(20)
>>> len(constraints)
27

2.9. API reference 107

Friendly Sam Documentation, Release 0.2.0

friendlysam.models.MyopicDispatchModel.descendants

MyopicDispatchModel.descendants
All children, children of children, etc, excluding self.

friendlysam.models.MyopicDispatchModel.descendants_and_self

MyopicDispatchModel.descendants_and_self
All children, children of children, etc, including self.

friendlysam.models.MyopicDispatchModel.name

MyopicDispatchModel.name
A name for the object.

The name is for debugging purposes. It has nothing to do with the identity of the object, so does not have to be
unique

friendlysam.models.MyopicDispatchModel.time_unit

MyopicDispatchModel.time_unit
The time unit used in step_time().

The default value is 1.

For more info, see step_time().

2.9.5 Utilities

get_list(func, indices) Get a list of function values at indices.
get_series(func, indices, **kwargs) Get a pandas Series of function values at indices.

friendlysam.util.get_list

friendlysam.util.get_list(func, indices)
Get a list of function values at indices.

Parameters

• func (callable) – The callable to get values from.

• indices (iterable) – An iterable of index values to pass to func.

Returns values as float

Return type list

Examples

>>> from friendlysam import Storage
>>> s = Storage('power', name='Battery')
>>> for i in range(5):

108 Chapter 2. Contents:

Friendly Sam Documentation, Release 0.2.0

... s.volume(i).value = i ** 2

...
>>> get_list(s.accumulation['power'], range(4))
[1.0, 3.0, 5.0, 7.0]

friendlysam.util.get_series

friendlysam.util.get_series(func, indices, **kwargs)
Get a pandas Series of function values at indices.

Equivalent to pandas.Series(index=indices, data=get_list(func, indices),

**kwargs).

Parameters

• func (callable) – The callable to get values from.

• indices (iterable) – An iterable of index values to pass to func.

Returns Values at indices.

Return type pandas.Series

Examples

>>> from friendlysam import Storage
>>> s = Storage('power', name='Battery')
>>> for i in range(5):
... s.volume(i).value = i ** 2
...
>>> get_series(s.accumulation['power'], range(4))
0 1
1 3
2 5
3 7
dtype: float64

2.9.6 Exceptions

ConstraintError(*args[, constraint]) Raised when there is something wrong with a Constraint.
NoValueError Raised when a variable or expression has no value.
SolverError A generic exception raised by a solver instance.

friendlysam.opt.ConstraintError

exception friendlysam.opt.ConstraintError(*args, constraint=None, **kwargs)
Raised when there is something wrong with a Constraint.

Parameters

• constraint (optional) – The constraint that caused the problem.

• *args – Passed on to parent exception constructor.

• **kwargs – Passed on to parent exception constructor.

2.9. API reference 109

Friendly Sam Documentation, Release 0.2.0

friendlysam.opt.NoValueError

exception friendlysam.opt.NoValueError
Raised when a variable or expression has no value.

friendlysam.opt.SolverError

exception friendlysam.opt.SolverError
A generic exception raised by a solver instance.

InsanityError Raised when a sanity check fails.

friendlysam.InsanityError

exception friendlysam.InsanityError
Raised when a sanity check fails.

110 Chapter 2. Contents:

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

111

Friendly Sam Documentation, Release 0.2.0

112 Chapter 3. Indices and tables

Index

Symbols
__call__() (friendlysam.opt.VariableCollection method),

24

A
accumulation (friendlysam.parts.Cluster attribute), 92
accumulation (friendlysam.parts.Node attribute), 74
accumulation (friendlysam.parts.Storage attribute), 102
Add (class in friendlysam.opt), 30
add() (friendlysam.opt.Problem method), 54
add() (friendlysam.parts.ConstraintCollection method),

105
add_part() (friendlysam.parts.Cluster method), 87
add_part() (friendlysam.parts.FlowNetwork method), 78
add_part() (friendlysam.parts.Node method), 68
add_part() (friendlysam.parts.Part method), 61
add_part() (friendlysam.parts.Storage method), 96
advance() (friendlysam.models.MyopicDispatchModel

method), 106
args (friendlysam.opt.Add attribute), 31
args (friendlysam.opt.Eq attribute), 51
args (friendlysam.opt.Less attribute), 46
args (friendlysam.opt.LessEqual attribute), 48
args (friendlysam.opt.Mul attribute), 37
args (friendlysam.opt.Operation attribute), 29
args (friendlysam.opt.Relation attribute), 43
args (friendlysam.opt.Sub attribute), 34
args (friendlysam.opt.Sum attribute), 40

B
balance_constraints() (friendlysam.parts.Cluster method),

87
balance_constraints() (friendlysam.parts.Node method),

69
balance_constraints() (friendlysam.parts.Storage

method), 96
binary (friendlysam.opt.Domain attribute), 26

C
children (friendlysam.models.MyopicDispatchModel at-

tribute), 106

children (friendlysam.parts.Cluster attribute), 92
children (friendlysam.parts.FlowNetwork attribute), 83
children (friendlysam.parts.Node attribute), 74
children (friendlysam.parts.Part attribute), 66
children (friendlysam.parts.Storage attribute), 102
children_and_self (friendlysam.models.MyopicDispatchModel

attribute), 106
children_and_self (friendlysam.parts.Cluster attribute),

92
children_and_self (friendlysam.parts.FlowNetwork at-

tribute), 84
children_and_self (friendlysam.parts.Node attribute), 74
children_and_self (friendlysam.parts.Part attribute), 66
children_and_self (friendlysam.parts.Storage attribute),

102
Cluster (class in friendlysam.parts), 86
cluster() (friendlysam.parts.Cluster method), 87
cluster() (friendlysam.parts.Node method), 69
cluster() (friendlysam.parts.Storage method), 97
connect() (friendlysam.parts.FlowNetwork method), 78
Constraint (class in friendlysam.opt), 56
ConstraintCollection (class in friendlysam.parts), 105
ConstraintError, 109
constraints (friendlysam.models.MyopicDispatchModel

attribute), 106
constraints (friendlysam.opt.Problem attribute), 54
constraints (friendlysam.parts.Cluster attribute), 93
constraints (friendlysam.parts.FlowNetwork attribute), 84
constraints (friendlysam.parts.Node attribute), 75
constraints (friendlysam.parts.Part attribute), 66
constraints (friendlysam.parts.Storage attribute), 102
consumption (friendlysam.parts.Cluster attribute), 94
consumption (friendlysam.parts.Node attribute), 76
consumption (friendlysam.parts.Storage attribute), 103
cost() (friendlysam.models.MyopicDispatchModel

method), 106
create() (friendlysam.opt.Add method), 30
create() (friendlysam.opt.Eq method), 50
create() (friendlysam.opt.Less method), 44
create() (friendlysam.opt.LessEqual method), 47
create() (friendlysam.opt.Mul method), 36

113

Friendly Sam Documentation, Release 0.2.0

create() (friendlysam.opt.Operation class method), 27
create() (friendlysam.opt.Relation method), 42
create() (friendlysam.opt.Sub method), 33
create() (friendlysam.opt.Sum class method), 39

D
desc (friendlysam.opt.Constraint attribute), 56
desc (friendlysam.opt.SOS1 attribute), 57
desc (friendlysam.opt.SOS2 attribute), 58
descendants (friendlysam.models.MyopicDispatchModel

attribute), 108
descendants (friendlysam.parts.Cluster attribute), 94
descendants (friendlysam.parts.FlowNetwork attribute),

85
descendants (friendlysam.parts.Node attribute), 76
descendants (friendlysam.parts.Part attribute), 67
descendants (friendlysam.parts.Storage attribute), 103
descendants_and_self (friendlysam.models.MyopicDispatchModel

attribute), 108
descendants_and_self (friendlysam.parts.Cluster at-

tribute), 94
descendants_and_self (friendlysam.parts.FlowNetwork

attribute), 85
descendants_and_self (friendlysam.parts.Node attribute),

76
descendants_and_self (friendlysam.parts.Part attribute),

67
descendants_and_self (friendlysam.parts.Storage at-

tribute), 103
Domain (class in friendlysam.opt), 25
domain (friendlysam.opt.VariableCollection attribute), 25
dot() (in module friendlysam.opt), 41

E
Eq (class in friendlysam.opt), 50
evaluate() (friendlysam.opt.Add method), 31
evaluate() (friendlysam.opt.Eq method), 51
evaluate() (friendlysam.opt.Less method), 45
evaluate() (friendlysam.opt.LessEqual method), 48
evaluate() (friendlysam.opt.Mul method), 36
evaluate() (friendlysam.opt.Operation method), 28
evaluate() (friendlysam.opt.Relation method), 42
evaluate() (friendlysam.opt.Sub method), 33
evaluate() (friendlysam.opt.Sum method), 39
evaluate() (friendlysam.opt.Variable method), 23
expr (friendlysam.opt.Maximize attribute), 55
expr (friendlysam.opt.Minimize attribute), 55

F
find() (friendlysam.parts.Cluster method), 87
find() (friendlysam.parts.FlowNetwork method), 79
find() (friendlysam.parts.Node method), 69
find() (friendlysam.parts.Part method), 61
find() (friendlysam.parts.Storage method), 97

FlowNetwork (class in friendlysam.parts), 77

G
get_flow() (friendlysam.parts.FlowNetwork method), 79
get_list() (in module friendlysam.util), 108
get_series() (in module friendlysam.util), 109
get_solver() (in module friendlysam.opt), 53
graph (friendlysam.parts.FlowNetwork attribute), 85

I
inflows (friendlysam.parts.Cluster attribute), 94
inflows (friendlysam.parts.Node attribute), 76
inflows (friendlysam.parts.Storage attribute), 104
InsanityError, 110
integer (friendlysam.opt.Domain attribute), 26
iter_times() (friendlysam.parts.Cluster method), 88
iter_times() (friendlysam.parts.FlowNetwork method), 79
iter_times() (friendlysam.parts.Node method), 69
iter_times() (friendlysam.parts.Part method), 61
iter_times() (friendlysam.parts.Storage method), 97
iter_times_between() (friendlysam.parts.Cluster method),

88
iter_times_between() (friendlysam.parts.FlowNetwork

method), 80
iter_times_between() (friendlysam.parts.Node method),

70
iter_times_between() (friendlysam.parts.Part method), 62
iter_times_between() (friendlysam.parts.Storage

method), 98

L
lb (friendlysam.opt.VariableCollection attribute), 25
leaves (friendlysam.opt.Add attribute), 32
leaves (friendlysam.opt.Eq attribute), 52
leaves (friendlysam.opt.Less attribute), 46
leaves (friendlysam.opt.LessEqual attribute), 49
leaves (friendlysam.opt.Mul attribute), 37
leaves (friendlysam.opt.Operation attribute), 29
leaves (friendlysam.opt.Relation attribute), 43
leaves (friendlysam.opt.Sub attribute), 34
leaves (friendlysam.opt.Sum attribute), 40
Less (class in friendlysam.opt), 44
LessEqual (class in friendlysam.opt), 47
level (friendlysam.opt.SOS1 attribute), 57
level (friendlysam.opt.SOS2 attribute), 58
long_description (friendlysam.opt.Constraint attribute),

56

M
make() (friendlysam.parts.ConstraintCollection method),

105
Maximize (class in friendlysam.opt), 54
Minimize (class in friendlysam.opt), 55
Mul (class in friendlysam.opt), 35

114 Index

Friendly Sam Documentation, Release 0.2.0

MyopicDispatchModel (class in friendlysam.models),
106

N
name (friendlysam.models.MyopicDispatchModel

attribute), 108
name (friendlysam.parts.Cluster attribute), 94
name (friendlysam.parts.FlowNetwork attribute), 85
name (friendlysam.parts.Node attribute), 76
name (friendlysam.parts.Part attribute), 67
name (friendlysam.parts.Storage attribute), 104
namespace() (in module friendlysam.opt), 26
Node (class in friendlysam.parts), 68
NoValueError, 110

O
objective (friendlysam.opt.Problem attribute), 54
Operation (class in friendlysam.opt), 27
origin (friendlysam.opt.Constraint attribute), 56
origin (friendlysam.opt.SOS1 attribute), 57
origin (friendlysam.opt.SOS2 attribute), 58
outflows (friendlysam.parts.Cluster attribute), 94
outflows (friendlysam.parts.Node attribute), 76
outflows (friendlysam.parts.Storage attribute), 104

P
Part (class in friendlysam.parts), 60
parts() (friendlysam.parts.Cluster method), 89
parts() (friendlysam.parts.FlowNetwork method), 80
parts() (friendlysam.parts.Node method), 70
parts() (friendlysam.parts.Part method), 62
parts() (friendlysam.parts.Storage method), 98
piecewise_affine() (in module friendlysam.opt), 58
piecewise_affine_constraints() (in module

friendlysam.opt), 59
Problem (class in friendlysam.opt), 53
production (friendlysam.parts.Cluster attribute), 95
production (friendlysam.parts.Node attribute), 77
production (friendlysam.parts.Storage attribute), 104

R
real (friendlysam.opt.Domain attribute), 26
Relation (class in friendlysam.opt), 41
remove_part() (friendlysam.parts.Cluster method), 89
remove_part() (friendlysam.parts.FlowNetwork method),

81
remove_part() (friendlysam.parts.Node method), 71
remove_part() (friendlysam.parts.Part method), 63
remove_part() (friendlysam.parts.Storage method), 99
resource (friendlysam.parts.Cluster attribute), 95
resource (friendlysam.parts.Storage attribute), 104
resources (friendlysam.parts.Cluster attribute), 95
resources (friendlysam.parts.Node attribute), 77
resources (friendlysam.parts.Storage attribute), 104

S
set_cluster() (friendlysam.parts.Cluster method), 90
set_cluster() (friendlysam.parts.Node method), 71
set_cluster() (friendlysam.parts.Storage method), 99
SolverError, 110
SOS1 (class in friendlysam.opt), 57
SOS2 (class in friendlysam.opt), 58
state_variables() (friendlysam.models.MyopicDispatchModel

method), 106
state_variables() (friendlysam.parts.Cluster method), 90
state_variables() (friendlysam.parts.FlowNetwork

method), 81
state_variables() (friendlysam.parts.Node method), 71
state_variables() (friendlysam.parts.Part method), 63
state_variables() (friendlysam.parts.Storage method), 99
step_time() (friendlysam.parts.Cluster method), 90
step_time() (friendlysam.parts.FlowNetwork method), 81
step_time() (friendlysam.parts.Node method), 72
step_time() (friendlysam.parts.Part method), 64
step_time() (friendlysam.parts.Storage method), 99
Storage (class in friendlysam.parts), 95
Sub (class in friendlysam.opt), 32
Sum (class in friendlysam.opt), 38

T
take_value() (friendlysam.opt.Variable method), 23
time_unit (friendlysam.models.MyopicDispatchModel

attribute), 108
time_unit (friendlysam.parts.Cluster attribute), 95
time_unit (friendlysam.parts.FlowNetwork attribute), 85
time_unit (friendlysam.parts.Node attribute), 77
time_unit (friendlysam.parts.Part attribute), 67
time_unit (friendlysam.parts.Storage attribute), 105
times() (friendlysam.parts.Cluster method), 91
times() (friendlysam.parts.FlowNetwork method), 82
times() (friendlysam.parts.Node method), 73
times() (friendlysam.parts.Part method), 65
times() (friendlysam.parts.Storage method), 100
times_between() (friendlysam.parts.Cluster method), 91
times_between() (friendlysam.parts.FlowNetwork

method), 83
times_between() (friendlysam.parts.Node method), 73
times_between() (friendlysam.parts.Part method), 65
times_between() (friendlysam.parts.Storage method), 101

U
ub (friendlysam.opt.VariableCollection attribute), 25
unset_cluster() (friendlysam.parts.Cluster method), 92
unset_cluster() (friendlysam.parts.Node method), 74
unset_cluster() (friendlysam.parts.Storage method), 101

V
value (friendlysam.opt.Add attribute), 32

Index 115

Friendly Sam Documentation, Release 0.2.0

value (friendlysam.opt.Eq attribute), 52
value (friendlysam.opt.Less attribute), 46
value (friendlysam.opt.LessEqual attribute), 49
value (friendlysam.opt.Mul attribute), 38
value (friendlysam.opt.Operation attribute), 29
value (friendlysam.opt.Relation attribute), 43
value (friendlysam.opt.Sub attribute), 35
value (friendlysam.opt.Sum attribute), 40
value (friendlysam.opt.Variable attribute), 24
Variable (class in friendlysam.opt), 22
VariableCollection (class in friendlysam.opt), 24
variables (friendlysam.opt.Add attribute), 32
variables (friendlysam.opt.Constraint attribute), 57
variables (friendlysam.opt.Eq attribute), 52
variables (friendlysam.opt.Less attribute), 46
variables (friendlysam.opt.LessEqual attribute), 49
variables (friendlysam.opt.Maximize attribute), 55
variables (friendlysam.opt.Minimize attribute), 55
variables (friendlysam.opt.Mul attribute), 38
variables (friendlysam.opt.Operation attribute), 29
variables (friendlysam.opt.Relation attribute), 44
variables (friendlysam.opt.SOS1 attribute), 57
variables (friendlysam.opt.SOS2 attribute), 58
variables (friendlysam.opt.Sub attribute), 35
variables (friendlysam.opt.Sum attribute), 41
variables (friendlysam.opt.Variable attribute), 24
variables_without_value() (friendlysam.opt.Problem

method), 54

116 Index

	Friendly Sam is friendly in a number of ways:
	Contents:
	How to install Friendly Sam
	For developers
	What Friendly Sam is for
	Variables and expressions
	Optimization problems
	Model basics: Parts and constraints
	Flow networks: Nodes and resources
	Example model
	API reference

	Indices and tables

