
FRETBursts Documentation
Release 0.7.1+0.gc51b

Antonino Ingargiola

Sep 20, 2022

CONTENTS

1 Getting started 3

2 FRETBursts Release Notes 7

3 FRETBursts Reference Manual 13

Bibliography 89

Python Module Index 91

Index 93

i

ii

FRETBursts Documentation, Release 0.7.1+0.gc51b

FRETBursts is an open-source python package for burst analysis of freely-diffusing single-molecule FRET data for
single and multi-spot experiments. FRETBursts supports both single-laser and dual-laser alternated excitation (ALEX
and PAX) as well as ns-ALEX (or PIE).

We provide well-tested implementations of state-of-the-art algorithms for confocal smFRET analysis. We focus on
computational reproducibility, by using Jupyter notebook based interfaces.

Please send questions or report issue on GitHub.

CONTENTS 1

https://en.wikipedia.org/wiki/Single-molecule_FRET
https://doi.org/10.1073/pnas.0401690101
https://doi.org/10.1007/s00249-007-0133-7
https://doi.org/10.1073/pnas.0508584102
https://doi.org/10.1529/biophysj.105.064766
http://jupyter.org/
https://github.com/OpenSMFS/FRETBursts/issues

FRETBursts Documentation, Release 0.7.1+0.gc51b

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

1.1 Getting started for the absolute python beginner

Before running FRETBursts you need to install a python distribution that includes the Jupyter/IPython Notebook ap-
plication.

You can find a quick guide for installing the software and running your first notebook here:

•

Once you are able start Jupyter Notebook application and open a notebook you can move to the next section.

1.1.1 Installing FRETBursts

To install FRETBursts, make sure you close Jupyter Notebook, then type the following commands in a terminal (i.e.
cmd on Windows or Terminal on OSX):

conda install fretbursts -c conda-forge

The installation should take a few seconds. If you notice any error please report it by opening a new issue on the
FRETBursts GitHub Issues.

1.1.2 Running FRETBursts tutorial notebook

Download the ZIP file of FRETBursts notebooks and extract it inside a folder accessible by the Jupyter Notebook App.

Next, in the new Jupyter Notebook Dashboard click on the folder containing the FRETBursts notebooks.

For first time users, we recommend to start from the notebook:

• FRETBursts - us-ALEX smFRET burst analysis

and follow the instructions therein.

Remember, to run the notebooks step-by-step (one cell a time) keep pressing shift + enter. To run the entire notebook
in a single step click on menu Cell -> Run All.

For more info how to run/edit a notebook see .

3

https://github.com/OpenSMFS/FRETBursts/issues
https://github.com/OpenSMFS/FRETBursts_notebooks/archive/master.zip
http://nbviewer.ipython.org/urls/raw.github.com/OpenSMFS/FRETBursts_notebooks/master/notebooks/FRETBursts%2520-%2520us-ALEX%2520smFRET%2520burst%2520analysis.ipynb

FRETBursts Documentation, Release 0.7.1+0.gc51b

1.2 FRETBursts Installation

FRETBursts can be installed as a standard python package either via conda or PIP (see below). Being written in python,
FRETBursts runs on OS X, Windows and Linux.

For updates on the latest FRETBursts version please refer to the Release Notes (What’s new?).

1.2.1 Installing latest stable version

The preferred way to to install and keep FRETBursts updated is through conda, a package manager used by Anaconda
scientific python distribution. If you haven’t done it already, please install the python3 version of Continuum Anaconda
distribution (legacy python 2.7 works at the moment but it will be discontinued soon). Then, you can install or upgrade
FRETBursts with:

conda install fretbursts -c conda-forge

After the installation, it is recommended that you download and run the FRETBursts notebooks to get familiar with the
workflow. If you don’t know what a Jupyter Notebooks is and how to launch it please see:

• Jupyter/IPython Notebook Quick Start Guide

See also the FRETBursts documentation section: Running FRETBursts.

1.2.2 Alternative methods: using PIP

Users that prefer using PIP, have to make sure that all the non-pure python dependencies are properly installed (i.e.
numpy, scipy, pandas, matplotlib, pyqt, pytables), then use the usual:

pip install fretbursts --upgrade

The previous command installs or upgrades FRETBursts to the latest stable release.

1.2.3 Install FRETBursts in a stand-alone environment

For reproducibiltity, it is better to install FRETBursts in a dedicated environment. The instructions below create a new
conda environment with python 3.7:

First, add the conda-forge channel containing the fretbursts (do it only once after installing Anaconda):

conda config --append channels conda-forge

Then create a new conda environment with python 3.7 and FRETbursts:

conda create -n py37-fb python=3.7 fretbursts
conda activate py37-fb
conda install pyqt # optional
pip install pybroom # optional
python -m ipykernel install --user --name py37-fb --display-name "Python 3.7 (FB)"

The last command installs the jupyter kernel so that you can use the new environment from jupyter notebooks.

This method allows to easily backup and reinstall a working environment, or install it on a different machine (with
same OS). This is useful for replicating an environment on multiple machine, for recovering from a broken anaconda
installation or for reproducibility of published results.

4 Chapter 1. Getting started

https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://github.com/OpenSMFS/FRETBursts_notebooks/archive/master.zip
http://jupyter-notebook-beginner-guide.readthedocs.org/en/latest/
https://pypi.python.org/pypi/pip
https://ipython.readthedocs.io/en/latest/install/kernel_install.html

FRETBursts Documentation, Release 0.7.1+0.gc51b

More info:

• Using conda environments

• Managing conda channels

• Installing a jupyter kernel

1.2.4 Install latest development version

As a rule, all new development takes place on separate “feature branches”. The master branch should always be stable
and releasable. The advantage of installing from the master branch is that you can get updates without waiting for a
formal release. If there are some errors you can always roll back to the latest released version to get your job done.
Since you have the full version down to the commit level printed in the notebook you will know which version works
and which does not.

You can install the latest development version directly from GitHub with:

pip install git+git://github.com/OpenSMFS/FRETBursts.git

Note: Note that the previous command fails if git is not installed.

Alternatively you can do an “editable” installation, i.e. executing FRETBursts from the source folder. In this case,
modifications in the source files are immediately available on the next FRETBursts import. To do so, clone FRETBursts
and install it as follows:

git clone https://github.com/OpenSMFS/FRETBursts.git
cd FRETBursts
pip install -e .

It is recommended that you install cython before FRETBursts so that the optimized C routines are installed as well.
Also, make sure you have lmfit and seaborn installed before running FRETBursts.

1.3 Running FRETBursts

After installation, FRETBursts can be imported with:

from fretbursts import *

that will also import numpy (as np) and matplolib.pyplot (as plt). This is the syntax used throughout the tutorials.

Alternatively, you can import FRETBursts in its own namespace (which is cleaner):

import fretbursts as fb

To get started with FRETBursts it is recommended that you download the FRETBursts notebooks that contains live
tutorials ready to run and modify.

1.3. Running FRETBursts 5

https://conda.io/docs/using/envs.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-channels.html
https://ipython.readthedocs.io/en/latest/install/kernel_install.html
http://git-scm.com/
http://cython.org/
https://github.com/OpenSMFS/FRETBursts_notebooks/archive/master.zip

FRETBursts Documentation, Release 0.7.1+0.gc51b

1.3.1 Why a notebook-based workflow

Jupyter Notebooks is the recommended environment to perform interactive analysis with FRETBursts.

The FRETBursts tutorials are Jupyter notebooks and, typically, a new analysis is performed by copying and modifying
an existing notebook.

The FRETBursts notebooks display and store the exact FRETBursts version (including the revision) used in the execu-
tion. Saving the software revision together with analysis commands and results allows long term reproducibility and
provides a lightweight approach for regression testing.

For more information on installing and first steps with Jupyter Notebook see:

• Jupyter/IPython Notebook Quick Start Guide

1.4 FRETBursts Dependencies

For documentation purposes, this is the list of dependencies to run FRETBursts:

• Python 3.6+

• Numpy 1.6+

• Scipy 0.17+

• Matplotlib 3+, with QT4 backend (either PyQT4 or PySide) or QT5.

• PyTables 3.x. To load/save the Photon-HDF5.

• lmfit 0.9.3+, used for flexible histogram fitting.

• Jupyter environment: notebook, ipython, ipywidgets.

• Pandas, for nice table representation and exporting data.

If you want to compile the cython extensions (optional) you also need:

• cython 0.20 or newer.

• a C compiler

For developing FRETBursts you should also install

• sphinx 1.3+ (we use napoleon extension) to build this documentation.

• pytest to execute the unit tests.

Note that, unless you know what you are doing, you should never install these dependencies manually. Use a scientific
python distribution like Continuum Anaconda instead.

6 Chapter 1. Getting started

http://jupyter.org/
https://github.com/OpenSMFS/FRETBursts_notebooks
https://jupyter-notebook-beginner-guide.readthedocs.org
https://store.continuum.io/cshop/anaconda/

CHAPTER

TWO

FRETBURSTS RELEASE NOTES

2.1 Version 0.7.1

• Require Python 3.6+. Python 2.7 is not supported anymore.

• Fix deprecation warning when plotting timetraces. Now matplotlib 3+ is required.

• Fix error loading Photon-HDF5 files with polarization data (issue)

• More fixes for PIE file with polarization, thanks to Christian Gebhardt for reporting the problem and suggesting
solutions (issue)

• Passing list of strings to loader.photon_hdf5() loads each file into the same data object as an excitation spot.

• dplot function keyword argument i=None now plots concatenated data from all excitation spots. Does not apply
to trace-based plots

• Fitter attributes relating to fit values now have parallel attributes ending in _totwhich are for concatentated data
across all spots.

2.2 Version 0.7 (Jul. 2018)

To update to the latest FRETBursts version type conda install fretbursts -c conda-forge. For more detailed
instructions see Getting Started.

Exporting:

• Export photon burst data to pandas DataFrame (function bext.burst_photons)

Loading:

• Support for Photon-HDF5 0.5 and validation during loading

• Add function to load SM files acquired with 1-laser (96d39b)

• Support smFRET-1color measurements from “generic” Photon-HDF5 (ab87e8)

• Faster loading of nsALEX data when ondisk=True (a6b343)

• Add support for loading polarization and split data as “spectral” (a5b7d6, c73188)

Analysis:

• Background computation improvements: more robust, faster, better error messages (4fbf33, 7a3c17, 5a68d0,)

Other:

• New documentation theme (docs live at the same address fretbursts.readthedocs.io)

7

https://github.com/OpenSMFS/FRETBursts/issues/18
https://github.com/OpenSMFS/FRETBursts/issues/25
https://fretbursts.readthedocs.io/en/latest/plugins.html?highlight=burst_photons#fretbursts.burstlib_ext.burst_photons
https://github.com/OpenSMFS/FRETBursts/commit/96d39bb9c53c3a1f8dbf190410c2b1bad092f875
https://github.com/OpenSMFS/FRETBursts/commit/ab87e8108e16ce6440fd57224e62b2ba96cc14a2
https://github.com/OpenSMFS/FRETBursts/commit/a6b343a0bc8e946cc1b4229a8c12f57bf95e598b
https://github.com/OpenSMFS/FRETBursts/commit/a5b7d61f5d53ce65f3b9d9d9e8a50e891a968abf
https://github.com/OpenSMFS/FRETBursts/commit/c731881ee25d287835ef9f3a3459740b2e62e6d5
https://github.com/OpenSMFS/FRETBursts/commit/4fbf333e148df4663890277af1475f82400c83d5
https://github.com/OpenSMFS/FRETBursts/commit/7a3c17d450c9010f4ef0faf4c774a3d4fca85367
https://github.com/OpenSMFS/FRETBursts/commit/5a68d096fa6b61dd4dec7ffb4437d68a9f77869d
https://fretbursts.readthedocs.io

FRETBursts Documentation, Release 0.7.1+0.gc51b

• A myriad of small improvements and bug and regression fixes (see git log for details)

2.3 Version 0.6.5 (Aug. 2017)

This is a minor release with an important bug fix for histograms plots and other tweaks mostly for PAX. New “short
notebooks” for common tasks have also been added.

Bug fixes:

• Fix histograms offset by half bin when using matplotlib 2.x. (see commit d3102e).

• Fix BurstsGap giving an error when being sliced (see #62).

Other changes:

• Kinetics: better handling of time_zero in moving_window functions (see c25b68).

• Multispot: Add argument skip_ch to Data.collapse and to dplot.

• Plots: use vmin=1 by default in alex_jointplot and hexbin_alex.

• PAX: rewrote burst size and correction factors to be more clear and general (see Data.burst_sizes_pax_ich)

• Plots: spread burst labels to reduce overlapping when plotting burst info with timetrace. See the new example
notebook for timetrace plotting.

• New notebooks:
– Example - Plotting timetraces with bursts

– Example - Selecting FRET populations

– Example - FRET histogram fitting

2.4 Version 0.6.4 (Jul. 2017)

This release adds support for periodic acceptor excitation (PAX) measurements. PAX is similar to s-ALEX, with the
difference that only the A laser is alternated (see references [pax] and [48spot]). There are also a few minor bug fixes
and better support for 48-spot data.

To update to the latest version type conda install fretbursts -c conda-forge. For installation instructions
see Getting Started.

The list of changes include:

• Added PAX support

• Workaround for a numpy.histogram issue when input contains NaNs

• bext.burst_data(): bugfix, add tests and improve handling of multispot data

• Added apionly argument to init_notebook() for setting up the notebook plots without changing any plot
style (see 958824).

• Support “empty” channels in multispot data.

• Improve plots for 48-spot data.

• Refactoring of alex_jointplot.

8 Chapter 2. FRETBursts Release Notes

https://doi.org/10.5281/zenodo.848292
https://github.com/OpenSMFS/FRETBursts/commit/d3102e65e5c79c7a95c357d7d55ee273dc3ce87f
https://github.com/tritemio/FRETBursts/pull/64
https://github.com/OpenSMFS/FRETBursts/commit/c25b682a191a72fe2a6835d49bafc47acd57bc36
https://github.com/OpenSMFS/FRETBursts/blob/master/notebooks/Example%20-%20Plotting%20timetraces%20with%20bursts.ipynb
https://github.com/OpenSMFS/FRETBursts/blob/master/notebooks/Example%20-%20Selecting%20FRET%20populations.ipynb
https://github.com/OpenSMFS/FRETBursts/blob/master/notebooks/Example%20-%20FRET%20histogram%20fitting.ipynb
https://doi.org/10.5281/zenodo.825897
https://github.com/numpy/numpy/issues/7503
https://github.com/OpenSMFS/FRETBursts/commit/958824123152fd618d6811153bfbed64722fffd7

FRETBursts Documentation, Release 0.7.1+0.gc51b

– Allow using custom Data fields for E and S in alex_jointplot.

– Remove rarely used arguments

– Set axis limits by default

• Added a new notebook showing how to customize alex_jointplot plots.

• Improved normalization of exponential curve representing the fitted background in hist_bg (see Issue 61).
Many thanks to Danielis Rutkauskas for reporting the issue.

• Removed shortcut (underscore) syntax for single-spot. Code like d.E_ needs to be changed to d.E[0]. This
syntax was causing difficulties during developing new features for PAX. Please report if you would like for the
syntax to be reintroduced.

2.5 Version 0.6.3 (Apr. 2017)

A few more small fixes in this release. If you have any installation issue please report it on github.

• Import OpenFileDialog when FRETBursts is imported (as in versions < 0.6.2)

• Fix loading SM files with numpy 1.12

• Use phconvert to decode SM files

2.6 Version 0.6.2 (Apr. 2017)

This is a technical release that removes the hard dependency on QT and solves some installation issues due to QT
pinning on conda-forge.

2.7 Version 0.6.1 (Apr. 2017)

For this version of FRETBursts, conda packages are distributed for python 2.7, 3.5, 3.6 and numpy 1.11 and 1.12.
FRETBursts still works with python 3.4 but conda packages are not provided anymore. Python 2.7 is now deprecated.
Support for python 2.7 will be removed in a future version.

The current release includes the following changes:

• SangYoon Chung (@chungjjang80) found that the L argument in burst search was ignored and submitted a fix to
the problem in PR #57. Tests were added to avoid future regressions.

• Fix access to the deprecated background attributes (introduced in 0.6). See b850a5.

• Add plot wrapper for 16-ch data.

• Improved example notebook showing how to export burst data. See Exporting Burst Data.

• Re-enable background rate caching. See PR #53.

• Support Path objects as filename in loader.photon_hdf5(). See 201b5c.

• Improve Ph_sel string representation, added factory method Ph_sel.from_str and added new tests. See
3dc5f0.

2.5. Version 0.6.3 (Apr. 2017) 9

http://nbviewer.jupyter.org/github/tritemio/FRETBursts_notebooks/blob/master/notebooks/Example%20-%20Customize%20the%20us-ALEX%20histogram.ipynb
https://github.com/tritemio/FRETBursts/issues/61
https://doi.org/10.5281/zenodo.495817
https://doi.org/10.5281/zenodo.439688
https://github.com/tritemio/FRETBursts/pull/57
https://github.com/OpenSMFS/FRETBursts/commit/b850a595033c27cc66f8f4a748b1d0bf68366750
https://github.com/OpenSMFS/FRETBursts/blob/49a45dd815b40602c5e754a162c66a837bbd2477/notebooks/Example%20-%20Exporting%20Burst%20Data%20Including%20Timestamps.ipynb
https://github.com/tritemio/FRETBursts/pull/53
https://github.com/OpenSMFS/FRETBursts/commit/201b5c089eca0f0867ceb453c3c111c54a21704d
https://github.com/OpenSMFS/FRETBursts/commit/3dc5f078c678ca3c806f49b27223a2e1cd6df64a

FRETBursts Documentation, Release 0.7.1+0.gc51b

2.8 Version 0.6 (Jan. 2017)

• Improvements to the layout of 48-spot plots.

• Simplify background computation avoiding useless recomputations. This results in 3x speed increase in
background computation for measurement loaded with ondisk=True and 30% speed increase when using
ondisk=False. Now all background rates are stored in the dictionary Data.bg, while the mean background
rate in the dictionary Data.bg_mean. The old attributes Data.bg_* and Data.rate_* have been deprecated
and will be removed in a future release (see below).

• Fix loading files with ondisk=True. With this option timestamps are not kept in RAM but loaded spot-by-
spot when needed. This option has no effect on single-spot measurements but will save RAM in multi-spot
measurements.

• Add new plot functions hist_interphoton and hist_interphoton_single to plot the interphoton delay distribution. In
previous versions the function hist_bg (and hist_bg_single) did the same plot but required the background
to be fitted. hist_interphoton* do not require any prior background fit and also have a cleaner and improved
API.

• Detect and handle smFRET files (no ALEX) with counts not only in D or A channels (f0e33d).

• Better error message when a burst filtering function fails (c7826d).

2.8.1 Backward-incompatible changes

Effect on burst search

Version 0.6 introduced a small change in how the auto-threshold for background estimation is computed. This results in
slightly different background rates. As a consequence, burst searches setting a threshold as function of the background,
will set a slightly different threshold and will find different number of bursts. The difference is not dramatic, but can
result in slight numeric changes in estimated parameters.

Details of auto-threshold changes

The refactor included a change in how the background is computed when using tail_min_us='auto'. As before,
with this setting, the background is estimated iteratively in two steps. A first raw estimation with a fixed threshold
(250us), and second estimation with a threshold function of the rate computed in the first step. Before version 0.6,
the first step estimated a single rate for the whole measurement. Now the first-step estimation is performed in each
background period separately. As before, the second step computes the background separately in each background
period. This change was motivated by the need to simplify the internal logic of background estimation, and to increase
the computation efficiency and accuracy.

Background attributes

The background refactor resulted in an incompatible change in the Data.bg attribute. Users upgrading to version 0.6,
may need to replace Data.bg with Data.bg[Ph_sel('all')] in their notebooks. Note that no official FRETBursts
notebook was using Data.bg, so most users will not be affected.

10 Chapter 2. FRETBursts Release Notes

https://doi.org/10.5281/zenodo.239229
http://fretbursts.readthedocs.io/en/latest/plots.html#fretbursts.burst_plot.hist_interphoton
http://fretbursts.readthedocs.io/en/latest/plots.html#fretbursts.burst_plot.hist_interphoton_single
https://github.com/OpenSMFS/FRETBursts/commit/f0e33d855d6dfb31c89f282b249f80d845472124
https://github.com/OpenSMFS/FRETBursts/commit/c7826d5190a034578b1fdb9c4325f8fbfe2c01d4

FRETBursts Documentation, Release 0.7.1+0.gc51b

Compatibility layer

All the old background-related attributes (bg_dd, bg_ad, bg_da, bg_aa, rate_dd, rate_ad, rate_da, rate_aa, rate_m) are
still present but deprecated. The same data is now contained in the dictionaries Data.bg and Data.bg_mean. When
using the deprecated attributes, a message will indicate the new syntax. If you see the deprecation warning, please
update the notebook to avoid future errors.

Details of changed attributes

Before version 0.6, Data.bg contained background rates fitted for all-photons stream. Data.bg was a list of arrays:
one array per spot, one array element per background period. In version 0.6+, Data.bg contains the background rates
for all the fitted photon streams. Data.bg is now a dict using Ph_sel objects as keys. Each dict entry is a list of
array, one array per spot and one array element per background period. For more details please refer to the following
documentation Data.bg and Data.bg_mean.

2.9 Version 0.5.9 (Sep. 2016)

• Added support for pyqt and qt 5+.

• Fix burst selection with multispot data. See this commit.

There may still be some glitches when using the QT5 GUIs from the notebook, but installing (and importing) FRET-
Bursts does not require QT4 anymore (QT5 is the current default in anaconda). Please report any issue.

2.10 Version 0.5.7 (Sep. 2016)

Refactoring and expansion of gamma and beta corrections. Briefly, in all the places where corrected burst sizes are
being computed, we removed the gamma1 argument and added a flag donor_ref. Additionally, the values Data.S are
now beta corrected.

These changes affected several components as described below.

2.10.1 Data Class

• Methods Data.burst_sizes_ich and Data.burst_sizes now accept the arguments gamma, beta and
donor_ref. The argument gamma1 was removed. The two conventions of corrected burst sizes are chosen
with the boolean flag donor_ref. See the burst_sizes_ich docs for details.

• New method get_naa_corrected returns the array of naa burst counts corrected with the passed gamma and
beta values. Like for the burst size, the argument donor_ref selects the convention for the correction. See the
get_naa_corrected docs for details.

• A new Data attribute beta (default: 1) stores a beta value that is used to compute the corrected S. This value
is never implicitly used to compute corrected burst sizes or naa (for these a beta arguments needs to be passed
explicitly).

2.9. Version 0.5.9 (Sep. 2016) 11

https://github.com/OpenSMFS/FRETBursts/commit/f05e807cbd032e748580af9cc310585bcde97e40
http://fretbursts.readthedocs.io/en/latest/data_class.html?highlight=get_naa#fretbursts.burstlib.Data.burst_sizes_ich
http://fretbursts.readthedocs.io/en/latest/data_class.html?highlight=get_naa#fretbursts.burstlib.Data.get_naa_corrected

FRETBursts Documentation, Release 0.7.1+0.gc51b

2.10.2 Plot functions

Plot functions hist_size and hist_brightness accept the new arguments for corrected burst size (gamma, beta
and donor_ref).

2.10.3 Burst selection

Burst selection by size and naa accept the new arguments for corrected burst size (gamma, beta and donor_ref).

2.10.4 Burst Weights

Functions that accept weights don’t accept the gamma1 argument anymore, but they don’t (yet) support the arguments
donor_ref and beta. As a result, for the purpose of weighting, there is only one expression for corrected burst size
(na + gamma*nd), with the option to add naa but without beta correction.

All these changes are covered by unit tests.

2.10.5 Installation via conda-forge

Since version 0.5.6 we started distributing conda packages for FRETBursts through the conda-forge channel (a com-
munity supported repository, as opposed to a private channel we were using before). To install or update FRETBursts
you should now use:

conda install fretbursts -c conda-forge

Using the conda-forge channel simplifies our release process since their infrastructure automatically builds packages
for multiple platforms and python versions. Please report any issues in installing or upgrading FRETBursts on the
GitHub Issues page.

For more detailed installation instructions see the Getting Started documentation.

2.11 Version 0.5.6

For older release notes see GitHub Releases Page.

12 Chapter 2. FRETBursts Release Notes

https://conda-forge.github.io/
https://github.com/OpenSMFS/FRETBursts/issues
http://fretbursts.readthedocs.io/en/latest/getting_started.html
https://github.com/tritemio/FRETBursts/releases/

CHAPTER

THREE

FRETBURSTS REFERENCE MANUAL

Contents:

3.1 Loader functions

While FRETBursts can load data files from different file formats, we advocate using Photon-HDF5, a file format specif-
ically designed for freely-diffusing single-molecule spectroscopy data.

Photon-HDF5 files can be loaded with the function photon_hdf5(), regardless of the type of excitation or number of
spots.

Single-spot s-ALEX measurement stored in SM files can be loaded via the function usalex() and single-spot ns-
ALEX measurement stored in SPC files (Beckr & Hickl) can be loaded via the function nsalex(). To load data from
arbitrary format see Load data manually.

Note that regardless of the format, for alternated excitation data, after loading the data you need to apply the alternation
parameters using alex_apply_period(). After the parameters are applied you can proceed to background estimation
and burst search.

Contents

• Loader functions

– List of loader functions

– Load data manually

3.1.1 List of loader functions

The loader module contains functions to load each supported data format. The loader functions load data from a
specific format and return a new fretbursts.burstlib.Data() object containing the data.

This module contains the high-level function to load a data-file and to return a Data() object. The low-level functions
that perform the binary loading and preprocessing can be found in the dataload folder.

fretbursts.loader.alex_apply_period(d, delete_ph_t=True)
Apply the ALEX period definition set in D_ON and A_ON attributes.

This function works both for us-ALEX and ns-ALEX data.

Note that you first need to load the data in a variable d and then set the alternation parameters using d.
add(D_ON=..., A_ON=...).

13

http://photon-hdf5.org/

FRETBursts Documentation, Release 0.7.1+0.gc51b

The typical pattern for loading ALEX data is the following:

d = loader.photon_hdf5(fname=fname)
d.add(D_ON=(2850, 580), A_ON=(900, 2580))
alex_plot_alternation(d)

If the plot looks good, apply the alternation with:

loader.alex_apply_period(d)

Now d is ready for further processing such as background estimation, burst search, etc. . .

fretbursts.loader.nsalex(fname)
Load nsALEX data from a SPC file and return a Data() object.

This function returns a Data() object to which you need to apply an alternation selection before performing further
analysis (background estimation, burst search, etc.).

The pattern to load nsALEX data is the following:

d = loader.nsalex(fname=fname)
d.add(D_ON=(2850, 580), A_ON=(900, 2580))
alex_plot_alternation(d)

If the plot looks good apply the alternation with:

loader.alex_apply_period(d)

Now d is ready for further processing such as background estimation, burst search, etc. . .

fretbursts.loader.nsalex_apply_period(d, delete_ph_t=True)
Applies to the Data object d the alternation period previously set.

Note that you first need to load the data in a variable d and then set the alternation parameters using d.
add(D_ON=..., A_ON=...).

The typical pattern for loading ALEX data is the following:

d = loader.photon_hdf5(fname=fname)
d.add(D_ON=(2850, 580), A_ON=(900, 2580))
alex_plot_alternation(d)

If the plot looks good, apply the alternation with:

loader.alex_apply_period(d)

Now d is ready for further processing such as background estimation, burst search, etc. . .

See also: alex_apply_period().

fretbursts.loader.photon_hdf5(filename, ondisk=False, require_setup=True, validate=False,
fix_order=True)

Load a data file saved in Photon-HDF5 format version 0.3 or higher.

Photon-HDF5 is a format for a wide range of timestamp-based single molecule data. For more info please see:

http://photon-hdf5.org/

Parameters

14 Chapter 3. FRETBursts Reference Manual

http://photon-hdf5.org/

FRETBursts Documentation, Release 0.7.1+0.gc51b

• filename (str or pathlib.Path) – path of the data file to be loaded.

• ondisk (bool) – if True, do not load the timestamps in memory using instead references to
the HDF5 arrays. Default False.

• require_setup (bool) – if True (default) the input file need to have a setup group or won’t be
loaded. If False, accept files with missing setup group. Use False only for testing or DCR
files.

• validate (bool) – if True validate the Photon-HDF5 file on loading. If False skip any valida-
tion.

• fix_order (bool) – if True fix the order of photons so all are monotonically increaseing in
macrotime.

Returns
fretbursts.burstlib.Data object containing the data.

fretbursts.loader.sm_single_laser(fname)
Load SM files acquired using single-laser and 2 detectors.

fretbursts.loader.usalex(fname, leakage=0, gamma=1.0, header=None, BT=None)
Load usALEX data from a SM file and return a Data() object.

This function returns a Data() object to which you need to apply an alternation selection before performing further
analysis (background estimation, burst search, etc.).

The pattern to load usALEX data is the following:

d = loader.usalex(fname=fname)
d.add(D_ON=(2850, 580), A_ON=(900, 2580), alex_period=4000)
plot_alternation_hist(d)

If the plot looks good, apply the alternation with:

loader.alex_apply_period(d)

Now d is ready for further processing such as background estimation, burst search, etc. . .

fretbursts.loader.usalex_apply_period(d, delete_ph_t=True, remove_d_em_a_ex=False)
Applies to the Data object d the alternation period previously set.

Note that you first need to load the data in a variable d and then set the alternation parameters using d.
add(D_ON=..., A_ON=...).

The typical pattern for loading ALEX data is the following:

d = loader.photon_hdf5(fname=fname)
d.add(D_ON=(2850, 580), A_ON=(900, 2580))
alex_plot_alternation(d)

If the plot looks good, apply the alternation with:

loader.alex_apply_period(d)

Now d is ready for further processing such as background estimation, burst search, etc. . .

See also: alex_apply_period().

3.1. Loader functions 15

FRETBursts Documentation, Release 0.7.1+0.gc51b

3.1.2 Load data manually

In case the data is available in a format not directly supported by FRETBursts it is possible to manually create a
fretbursts.burstslib.Data object. For example, for non-ALEX smFRET data, two arrays of same length are
needed: the timestamps and the acceptor-mask. The timestamps need to be an int64 numpy array containing the
recorded photon timestamps in arbitrary units (usually dictated by the acquisition hardware clock period). The acceptor-
mask needs to be a numpy boolean array that is True when the corresponding timestamps comes from the acceptor
channel and False when it comes from the donor channel. Having these arrays a Data object can be manually created
with:

d = Data(ph_times_m=[timestamps], A_em=[acceptor_mask],
clk_p=10e-9, ALEX=False, nch=1, fname='file_name')

In the previous example, we set the timestamp unit (clk_p) to 10~ns and we specify that the data is not from an ALEX
measurement. Creating Data objects for ALEX and ns-ALEX measurements follows the same lines.

3.2 The “Data()” class

The Data class is the main container for smFRET measurements. It contains timestamps, detectors and all the results
of data processing such as background estimation, burst data, fitted FRET and so on.

The reference documentation of the class follows.

Contents

• The “Data()” class

– “Data()” class: description and attributes

– Summary information

– Analysis methods

– Burst corrections

∗ Correction factors

∗ Correction methods

– Burst selection methods

– Fitting methods

– Timestamp access methods

3.2.1 “Data()” class: description and attributes

A description of the Data class and its main attributes.

class fretbursts.burstlib.Data(leakage=0.0, gamma=1.0, dir_ex=0.0, **kwargs)
Container for all the information (timestamps, bursts) of a dataset.

Data() contains all the information of a dataset (name, timestamps, bursts, correction factors) and provides several
methods to perform analysis (background estimation, burst search, FRET fitting, etc. . .).

16 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

When loading a measurement file a Data() object is created by one of the loader functions in loaders.py. Data()
objects can be also created with Data.copy(), Data.fuse_bursts() or Data.select_bursts().

To add or delete data-attributes use .add() or .delete() methods. All the standard data-attributes are listed
below.

Note: Attributes of type “list” contain one element per channel. Each element, in turn, can be an array. For
example .ph_times_m[i] is the array of timestamps for channel i; or .nd[i] is the array of donor counts in
each burst for channel i.

Measurement attributes
fname

measurements file name

Type
string

nch

number of channels

Type
int

clk_p

clock period in seconds for timestamps in ph_times_m

Type
float

ph_times_m

list of timestamp arrays (int64). Each array contains all the timestamps (donor+acceptor) in one channel.

Type
list

A_em

list of boolean arrays marking acceptor timestamps. Each array is a boolean mask for the corresponding
ph_times_m array.

Type
list

leakage

leakage (or bleed-through) fraction. May be scalar or same size as nch.

Type
float or array of floats

gamma

gamma factor. May be scalar or same size as nch.

Type
float or array of floats

D_em

[ALEX-only] boolean mask for .ph_times_m[i] for donor emission

Type
list of boolean arrays

3.2. The “Data()” class 17

FRETBursts Documentation, Release 0.7.1+0.gc51b

D_ex, A_ex

[ALEX-only] boolean mask for .ph_times_m[i] during donor or acceptor excitation

Type
list of boolean arrays

D_ON, A_ON

[ALEX-only] start-end values for donor and acceptor excitation selection.

Type
2-element tuples of int

alex_period

[ALEX-only] duration of the alternation period in clock cycles.

Type
int

Background Attributes
The background is computed with Data.calc_bg() and is estimated in chunks of equal duration called back-
ground periods. Estimations are performed in each spot and photon stream. The following attributes contain the
estimated background rate.

bg

background rates for the different photon streams, channels and background periods. Keys are Ph_sel
objects and values are lists (one element per channel) of arrays (one element per background period) of
background rates.

Type
dict

bg_mean

mean background rates across the entire measurement for the different photon streams and channels. Keys
are Ph_sel objects and values are lists (one element per channel) of background rates.

Type
dict

nperiods

number of periods in which timestamps are split for background calculation, given per channel NOTE:
this is changed from previous versions, to support grouped experiments

Type
array

bg_fun

function used to compute the background rates

Type
function

Lim

each element of this list is a list of index pairs for .ph_times_m[i] for first and last photon in each period.

Type
list

Ph_p

each element in this list is a list of timestamps pairs for first and last photon of each period.

18 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

Type
list

bg_ph_sel

photon selection used by Lim and Ph_p. See fretbursts.ph_sel for details.

Type
Ph_sel object

Th_us

thresholds in us used to select the tail of the interphoton delay distribution. Keys are Ph_sel objects and
values are lists (one element per channel) of arrays (one element per background period).

Type
dict

Additionlly, there are a few deprecated attributes (bg_dd, bg_ad, bg_da, bg_aa, rate_dd, rate_ad, rate_da,
rate_aa and rate_m) which will be removed in a future version. Please use Data.bg and Data.bg_mean
instead.

Burst search parameters (user input)
These are the parameters used to perform the burst search (see burst_search()).

ph_sel

photon selection used for burst search. See fretbursts.ph_sel for details.

Type
Ph_sel object

m

number of consecutive timestamps used to compute the local rate during burst search

Type
int

L

min. number of photons for a burst to be identified and saved

Type
int

P

valid values [0..1]. Probability that a burst-start is due to a Poisson background. The employed Poisson
rate is the one computed by .calc_bg().

Type
float, probability

F

(F * background_rate) is the minimum rate for burst-start

Type
float

Burst search data (available after burst search)
When not specified, parameters marked as (list of arrays) contains arrays with one element per bursts. mburst
arrays contain one “row” per burst. TT arrays contain one element per period (see above: background attributes).

3.2. The “Data()” class 19

FRETBursts Documentation, Release 0.7.1+0.gc51b

mburst

list Bursts() one element per channel. See fretbursts.phtools.burstsearch.Bursts.

Type
list of Bursts objects

TT

list of arrays of T values (in sec.). A T value is the maximum delay between m photons to have a burst-start.
Each channels has an array of T values, one for each background “period” (see above).

Type
list of arrays

T

per-channel mean of TT

Type
array

nd, na

number of donor or acceptor photons during donor excitation in each burst

Type
list of arrays

nt

total number photons (nd+na+naa)

Type
list of arrays

naa

number of acceptor photons in each burst during acceptor excitation [ALEX only]
Type

list of arrays

nar

number of acceptor photons in each burst during donor excitation, not corrected for D-leakage and A-direct-
excitation. [PAX only]

Type
list of arrays

bp

time period for each burst. Same shape as nd. This is needed to identify the background rate for each burst.

Type
list of arrays

bg_bs

background rates used for threshold computation in burst search (is a reference to bg, bg_dd or bg_ad).

Type
list

fuse

if not None, the burst separation in ms below which bursts have been fused (see .fuse_bursts()).

Type
None or float

20 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

E

FRET efficiency value for each burst: E = na/(na + gamma*nd).

Type
list

S

stoichiometry value for each burst: S = (gamma*nd + na) /(gamma*nd + na + naa)

Type
list

3.2.2 Summary information

List of Data attributes and methods providing summary information on the measurement:

class fretbursts.burstlib.Data

time_max

The last recorded time in seconds.

time_min

The first recorded time in seconds.

ph_data_sizes

Array of total number of photons (ph-data) for each channel.

num_bursts

Array of number of bursts in each channel.

burst_sizes(gamma=1.0, add_naa=False, beta=1.0, donor_ref=True)
Return gamma corrected burst sizes for all the channel.

Compute burst sizes by calling, for each channel, burst_sizes_ich().

See burst_sizes_ich() for description of the arguments.

Returns
List of arrays of burst sizes, one array per channel.

burst_sizes_pax_ich(ich=0, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'), naa_aexonly=False,
naa_comp=False, na_comp=False, gamma=1.0, beta=1.0, donor_ref=True)

Return different definitions of PAX burst sizes for channel ich.

There are 4 basic “terms” corresponding to the 4 photon streams: nd, na, nda, naa. Which term is included
is defined by the ph_sel argument (by default all are included). The other arguments specify the various
corrections for each term.

Parameters
• ich (int) – the spot number, only relevant for multi-spot. In single-spot data there is only

one channel (ich=0) so this argument may be omitted. Default 0.

• gamma (float) – coefficient for gamma correction of burst sizes. Default: 1. For more info
see explanation above.

• beta (float) – beta correction factor used for the DAexAem term.

• donor_ref (bool) – True or False select different conventions for burst size correction. For
details see fretbursts.burstlib.Data.burst_sizes_ich().

3.2. The “Data()” class 21

FRETBursts Documentation, Release 0.7.1+0.gc51b

• ph_sel (Ph_sel object) – defines which terms are included in the burst size.

• na_comp (bool) – If True, multiply the na term by (1 + Wa/Wd), where Wa and Wd are
the D and A alternation durations (typically Wa/Wd = 1).

• naa_aexonly (bool) – if True, the naa term is corrected to include only A emission due to
A excitation. If False, the naa term includes all the counts in DAexAem. The naa term
also depends on the naa_comp argument.

• naa_comp (bool) – If True, multiply the naa term by (1 + Wa/Wd), where Wa and Wd
are the D and A alternation durations (typically Wa/Wd = 1). The naa term also depends
on the naa_aexonly argument.

Returns
Array of burst sizes for channel ich.

Examples
Burst sizes with all streams and no correction:

Data.burst_sizes_pax_ich(ph_sel=Ph_sel('all'))

𝐹𝐷𝑒𝑥𝐷𝑒𝑚
+ 𝐹𝐷𝐴𝑒𝑥𝐷𝑒𝑚

+ 𝐹𝐹𝑅𝐸𝑇 + 𝐹𝐷𝐴𝑒𝑥𝐴𝑒𝑚

Burst sizes with all streams and all corrections:

Data.burst_sizes_pax_ich(ph_sel=Ph_sel('all'), na_comp=True,
aa_aexonly=True, naa_comp=True)

𝛾(𝐹𝐷𝑒𝑥𝐷𝑒𝑚
+ 𝐹𝐷𝐴𝑒𝑥𝐷𝑒𝑚

) +

(︂
1 +

𝑊𝐴

𝑊𝐷

)︂
(𝐹𝐹𝑅𝐸𝑇 + (𝐹𝐷𝐴𝑒𝑥𝐴𝑒𝑚

− 𝐹𝐷𝑒𝑥𝐴𝑒𝑚
)𝛽−1)

See also:
Data.burst_sizes_ich()

burst_sizes_ich(ich=0, gamma=1.0, add_naa=False, beta=1.0, donor_ref=True)
Return gamma corrected burst sizes for channel ich.

If donor_ref == True (default) the gamma corrected burst size is computed according to:

1) nd + na / gamma

Otherwise, if donor_ref == False, the gamma corrected burst size is:

2) nd * gamma + na

With the definition (1) the corrected burst size is equal to the raw burst size for zero-FRET or D-only bursts
(that’s why is donor_ref). With the definition (2) the corrected burst size is equal to the raw burst size for
100%-FRET bursts.

In an ALEX measurement, use add_naa = True to add counts from AexAem stream to the returned burst
size. The argument gamma and beta are used to correctly scale naa so that it become commensurate with
the Dex corrected burst size. In particular, when using definition (1) (i.e. donor_ref = True), the total
burst size is:

22 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

(nd + na/gamma) + naa / (beta * gamma)

Conversely, when using definition (2) (donor_ref = False), the total burst size is:

(nd * gamma + na) + naa / beta

Parameters
• ich (int) – the spot number, only relevant for multi-spot. In single-spot data there is only

one channel (ich=0) so this argument may be omitted. Default 0.

• add_naa (boolean) – when True, add a term for AexAem photons when computing burst
size. Default False.

• gamma (float) – coefficient for gamma correction of burst sizes. Default: 1. For more info
see explanation above.

• beta (float) – beta correction factor used for the AexAem term of the burst size. Default
1. If add_naa = False or measurement is not ALEX this argument is ignored. For more
info see explanation above.

• donor_ref (bool) – select the convention for burst size correction. See details above in the
function description.

Returns
Array of burst sizes for channel ich.

burst_widths

List of arrays of burst duration in seconds. One array per channel.

ph_in_bursts_ich(ich=0, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'))
Return timestamps of photons inside bursts for channel ich.

Returns
Array of photon timestamps in channel ich and photon selection ph_sel that are inside any burst.

ph_in_bursts_mask_ich(ich=0, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'))
Return mask of all photons inside bursts for channel ich.

Returns
Boolean array for photons in channel ich and photon selection ph_sel that are inside any burst.

status(add='', noname=False)
Return a string with burst search, corrections and selection info.

name

last subfolder + file name with no extension.

Type
Measurement name

Name(add='')
Return short filename + status information.

3.2. The “Data()” class 23

FRETBursts Documentation, Release 0.7.1+0.gc51b

3.2.3 Analysis methods

The following methods perform background estimation, burst search and burst-data calculations:

• Data.calc_bg()

• Data.burst_search()

• Data.calc_fret()

• Data.calc_ph_num()

• Data.fuse_bursts()

• Data.calc_sbr()

• Data.calc_max_rate()

The methods documentation follows:

class fretbursts.burstlib.Data

calc_bg(fun, time_s=60, tail_min_us=500, F_bg=2, error_metrics=None, fit_allph=True)
Compute time-dependent background rates for all the channels.

Compute background rates for donor, acceptor and both detectors. The rates are computed every time_s
seconds, allowing to track possible variations during the measurement.

Parameters
• fun (function) – function for background estimation (example bg.exp_fit)

• time_s (float, seconds) – compute background each time_s seconds

• tail_min_us (float, tuple or string) – min threshold in us for photon waiting times to use
in background estimation. If float is the same threshold for ‘all’, DD, AD and AA photons
and for all the channels. If a 3 or 4 element tuple, each value is used for ‘all’, DD, AD or
AA photons, same value for all the channels. If ‘auto’, the threshold is computed for each
stream (‘all’, DD, DA, AA) and for each channel as bg_F * rate_ml0. rate_ml0 is an
initial estimation of the rate performed using bg.exp_fit() and a fixed threshold (default
250us).

• F_bg (float) – when tail_min_us is ‘auto’, is the factor by which the initial background
estimation if multiplied to compute the threshold.

• error_metrics (string) – Specifies the error metric to use. See fretbursts.
background.exp_fit() for more details.

• fit_allph (bool) – if True (default) the background for the all-photon is fitted. If False it is
computed as the sum of backgrounds in all the other streams.

The background estimation functions are defined in the module background (conventionally imported as
bg).

Example
Compute background with bg.exp_fit (inter-photon delays MLE tail fitting), every 30s, with automatic
tail-threshold:

d.calc_bg(bg.exp_fit, time_s=20, tail_min_us='auto')

24 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

Returns
None, all the results are saved in the object itself.

burst_search(L=None, m=10, F=6.0, P=None, min_rate_cps=None, ph_sel=Ph_sel(Dex='DAem',
Aex='DAem'), compact=False, index_allph=True, c=-1, computefret=True, max_rate=False,
dither=False, pure_python=False, verbose=False, mute=False, pax=False)

Performs a burst search with specified parameters.

This method performs a sliding-window burst search without binning the timestamps. The burst starts
when the rate of m photons is above a minimum rate, and stops when the rate falls below the threshold.
The result of the burst search is stored in the mburst attribute (a list of Bursts objects, one per channel)
containing start/stop times and indexes. By default, after burst search, this method computes donor and
acceptor counts, it applies burst corrections (background, leakage, etc. . .) and computes E (and S in case
of ALEX). You can skip these steps by passing computefret=False.

The minimum rate can be explicitly specified with the min_rate_cps argument, or computed as a function
of the background rate with the F argument.

Parameters
• m (int) – number of consecutive photons used to compute the photon rate. Typical values

5-20. Default 10.

• L (int or None) – minimum number of photons in burst. If None (default) L = m is used.

• F (float) – defines how many times higher than the background rate is the minimum rate
used for burst search (min rate = F * bg. rate), assuming that P = None (default).
Typical values are 3-9. Default 6.

• P (float) – threshold for burst detection expressed as a probability that a detected bursts is
not due to a Poisson background. If not None, P overrides F. Note that the background pro-
cess is experimentally super-Poisson so this probability is not physically very meaningful.
Using this argument is discouraged.

• min_rate_cps (float or list/array) – minimum rate in cps for burst start. If not None, it has
the precedence over P and F. If non-scalar, contains one rate per each multispot channel.
Typical values range from 20e3 to 100e3.

• ph_sel (Ph_sel object) – defines the “photon selection” (or stream) to be used for burst
search. Default: all photons. See fretbursts.ph_sel for details.

• compact (bool) – if True, a photon selection of only one excitation period is required and
the timestamps are “compacted” by removing the “gaps” between each excitation period.

• index_allph (bool) – if True (default), the indexes of burst start and stop (istart, istop)
are relative to the full timestamp array. If False, the indexes are relative to timestamps
selected by the ph_sel argument.

• c (float) – correction factor used in the rate vs time-lags relation. c affects the computa-
tion of the burst-search parameter T. When F is not None, T = (m - 1 - c) / (F *
bg_rate). When using min_rate_cps, T = (m - 1 - c) / min_rate_cps.

• computefret (bool) – if True (default) compute donor and acceptor counts, apply correc-
tions (background, leakage, direct excitation) and compute E (and S). If False, skip all these
steps and stop just after the initial burst search.

• max_rate (bool) – if True compute the max photon rate inside each burst using the same
m used for burst search. If False (default) skip this step.

• dither (bool) – if True applies dithering corrections to burst counts. Default False. See
Data.dither().

3.2. The “Data()” class 25

FRETBursts Documentation, Release 0.7.1+0.gc51b

• pure_python (bool) – if True, uses the pure python functions even when optimized Cython
functions are available.

• pax (bool) – this has effect only if measurement is PAX. In this case, when True computes
E using a PAX-enhanced formula: (2 na) / (2 na + nd + nda). Otherwise use the
usual usALEX formula: na / na + nd. Quantities nd/na are D/A burst counts during D
excitation period, while nda is D emission during A excitation period.

Note: when using P or F the background rates are needed, so .calc_bg()must be called before the burst
search.

Example
d.burst_search(m=10, F=6)

Returns
None, all the results are saved in the Data object.

calc_fret(count_ph=False, corrections=True, dither=False, mute=False, pure_python=False, pax=False)
Compute FRET (and stoichiometry if ALEX) for each burst.

This is an high-level functions that can be run after burst search. By default, it will count Donor and Accep-
tor photons, perform corrections (background, leakage), and compute gamma-corrected FRET efficiencies
(and stoichiometry if ALEX).

Parameters
• count_ph (bool) – if True (default), calls calc_ph_num() to counts Donor and Acceptor

photons in each bursts

• corrections (bool) – if True (default), applies background and bleed-through correction to
burst data

• dither (bool) – whether to apply dithering to burst size. Default False.

• mute (bool) – whether to mute all the printed output. Default False.

• pure_python (bool) – if True, uses the pure python functions even when the optimized
Cython functions are available.

• pax (bool) – this has effect only if measurement is PAX. In this case, when True computes
E using a PAX-enhanced formula: (2 na) / (2 na + nd + nda). Otherwise use the
usual usALEX formula: na / na + nd. Quantities nd/na are D/A burst counts during D
excitation period, while nda is D emission during A excitation period.

Returns
None, all the results are saved in the object.

calc_ph_num(alex_all=False, pure_python=False)
Computes number of D, A (and AA) photons in each burst.

Parameters
• alex_all (bool) – if True and self.ALEX is True, computes also the donor channel photons

during acceptor excitation (nda)

• pure_python (bool) – if True, uses the pure python functions even when the optimized
Cython functions are available.

26 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

Returns
Saves nd, na, nt (and eventually naa, nda) in self. Returns None.

fuse_bursts(ms=0, process=True, mute=False)
Return a new Data object with nearby bursts fused together.

Parameters
• ms (float) – fuse all burst separated by less than msmillisecs. If < 0 no burst is fused. Note

that with ms = 0, overlapping bursts are fused.

• process (bool) – if True (default), reprocess the burst data in the new object applying cor-
rections and computing FRET.

• mute (bool) – if True suppress any printed output.

calc_sbr(ph_sel=Ph_sel(Dex='DAem', Aex='DAem'), gamma=1.0)
Return Signal-to-Background Ratio (SBR) for each burst.

Parameters
• ph_sel (Ph_sel object) – object defining the photon selection for which to compute the sbr.

Changes the photons used for burst size and the corresponding background rate. Valid val-
ues here are Ph_sel(‘all’), Ph_sel(Dex=’Dem’), Ph_sel(Dex=’Aem’). See fretbursts.
ph_sel for details.

• gamma (float) – gamma value used to compute corrected burst size in the case ph_sel is
Ph_sel(‘all’). Ignored otherwise.

Returns
A list of arrays (one per channel) with one value per burst. The list is also saved in sbr
attribute.

calc_max_rate(m, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'), compact=False, c=1)
Compute the max m-photon rate reached in each burst.

Parameters
• m (int) – number of timestamps to use to compute the rate. As for burst search, typical

values are 5-20.

• ph_sel (Ph_sel object) – object defining the photon selection. See fretbursts.ph_sel
for details.

• c (float) – this parameter is used in the definition of the rate estimator which is
(m - 1 - c) / t[last] - t[first]. For more details see phtools.phrates.
mtuple_rates().

3.2.4 Burst corrections

Correction factors

The following are the various burst correction factors. They are Data properties, so setting their value automatically
updates all the burst quantities (including E and S).

class fretbursts.burstlib.Data

gamma

Gamma correction factor (compensates DexDem and DexAem unbalance).

3.2. The “Data()” class 27

FRETBursts Documentation, Release 0.7.1+0.gc51b

leakage

Spectral leakage (bleed-through) of D emission in the A channel.

dir_ex

Direct excitation correction factor.

chi_ch

Per-channel relative gamma factor.

Correction methods

List of Data methods used to apply burst corrections.

class fretbursts.burstlib.Data

background_correction(relax_nt=False, mute=False)
Apply background correction to burst sizes (nd, na,. . .)

leakage_correction(mute=False)
Apply leakage correction to burst sizes (nd, na,. . .)

dither(lsb=2, mute=False)
Add dithering (uniform random noise) to burst counts (nd, na,. . .).

The dithering amplitude is the range -0.5*lsb .. 0.5*lsb.

3.2.5 Burst selection methods

Data methods that allow to filter bursts according to different rules. See also Burst selection.

class fretbursts.burstlib.Data

select_bursts(filter_fun, negate=False, computefret=True, args=None, **kwargs)
Return an object with bursts filtered according to filter_fun.

This is the main method to select bursts according to different criteria. The selection rule is defined by
the selection function filter_fun. FRETBursts provides a several predefined selection functions see
Burst selection. New selection functions can be defined and passed to this method to implement arbitrary
selection rules.

Parameters
• filter_fun (function) – function used for burst selection

• negate (boolean) – If True, negates (i.e. take the complementary) of the selection returned
by filter_fun. Default False.

• computefret (boolean) – If True (default) recompute donor and acceptor counts, correc-
tions and FRET quantities (i.e. E, S) in the new returned object.

• args (tuple or None) – positional arguments for filter_fun()

kwargs:
Additional keyword arguments passed to filter_fun().

Returns
A new Data object containing only the selected bursts.

28 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

Note: In order to save RAM, the timestamp arrays (ph_times_m) of the new Data() points to the same
arrays of the original Data(). Conversely, all the bursts data (mburst, nd, na, etc. . .) are new distinct
objects.

select_bursts_mask(filter_fun, negate=False, return_str=False, args=None, **kwargs)
Returns mask arrays to select bursts according to filter_fun.

The function filter_fun is called to compute the mask arrays for each channel.

This method is useful when you want to apply a selection from one object to a second object. Otherwise
use Data.select_bursts().

Parameters
• filter_fun (function) – function used for burst selection

• negate (boolean) – If True, negates (i.e. take the complementary) of the selection returned
by filter_fun. Default False.

• return_str – if True return, for each channel, a tuple with a bool array and a string that can
be added to the measurement name to indicate the selection. If False returns only the bool
array. Default False.

• args (tuple or None) – positional arguments for filter_fun()

kwargs:
Additional keyword arguments passed to filter_fun().

Returns
A list of boolean arrays (one per channel) that define the burst selection. If return_str is
True returns a list of tuples, where each tuple is a bool array and a string.

See also:
Data.select_bursts(), Data.select_bursts_mask_apply()

select_bursts_mask_apply(masks, computefret=True, str_sel='')
Returns a new Data object with bursts selected according to masks.

This method select bursts using a list of boolean arrays as input. Since the user needs to create the boolean
arrays first, this method is useful when experimenting with new selection criteria that don’t have a dedicated
selection function. Usually, however, it is easier to select bursts through Data.select_bursts() (using
a selection function).

Parameters
• masks (list of arrays) – each element in this list is a boolean array that selects bursts in a

channel.

• computefret (boolean) – If True (default) recompute donor and acceptor counts, correc-
tions and FRET quantities (i.e. E, S) in the new returned object.

Returns
A new Data object containing only the selected bursts.

Note: In order to save RAM, the timestamp arrays (ph_times_m) of the new Data() points to the same
arrays of the original Data(). Conversely, all the bursts data (mburst, nd, na, etc. . .) are new distinct
objects.

3.2. The “Data()” class 29

FRETBursts Documentation, Release 0.7.1+0.gc51b

See also:
Data.select_bursts(), Data.select_mask()

3.2.6 Fitting methods

Some fitting methods for burst data. Note that E and S histogram fitting with generic models is now handled with the
new fitting framework.

class fretbursts.burstlib.Data

fit_E_generic(E1=-1, E2=2, fit_fun=<function two_gaussian_fit_hist>, weights=None, gamma=1.0,
**fit_kwargs)

Fit E in each channel with fit_fun using burst in [E1,E2] range. All the fitting functions are defined in
fretbursts.fit.gaussian_fitting.

Parameters
• weights (string or None) – specifies the type of weights If not None weightswill be passed

to fret_fit.get_weights(). weights can be not-None only when using fit functions
that accept weights (the ones ending in _hist or _EM)

• gamma (float) – passed to fret_fit.get_weights() to compute weights

All the additional arguments are passed to fit_fun. For example p0 or mu_fix can be passed (see fit.
gaussian_fitting for details).

Note: Use this method for CDF/PDF or hist fitting. For EM fitting use fit_E_two_gauss_EM().

fit_E_m(E1=-1, E2=2, weights='size', gamma=1.0)
Fit E in each channel with the mean using bursts in [E1,E2] range.

Note: This two fitting are equivalent (but the first is much faster):

fit_E_m(weights='size')
fit_E_minimize(kind='E_size', weights='sqrt')

However fit_E_minimize() does not provide a model curve.

fit_E_ML_poiss(E1=-1, E2=2, method=1, **kwargs)
ML fit for E modeling size ~ Poisson, using bursts in [E1,E2] range.

fit_E_minimize(kind='slope', E1=-1, E2=2, **kwargs)
Fit E using method kind (‘slope’ or ‘E_size’) and bursts in [E1,E2] If kind is ‘slope’ the fit function is
fret_fit.fit_E_slope() If kind is ‘E_size’ the fit function is fret_fit.fit_E_E_size() Additional arguments in
kwargs are passed to the fit function.

fit_E_two_gauss_EM(fit_func=<function two_gaussian_fit_EM>, weights='size', gamma=1.0, **kwargs)
Fit the E population to a Gaussian mixture model using EM method. Additional arguments in kwargs are
passed to the fit_func().

30 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

3.2.7 Timestamp access methods

The following methods are used to access (or iterate over) the arrays of timestamps (for different photon streams),
timestamps masks and burst data.

• Data.get_ph_times()

• Data.ph_in_bursts_ich()

• Data.ph_in_bursts_mask_ich()

• Data.iter_ph_times()

• Data.get_ph_mask()

• Data.iter_ph_masks()

• Data.iter_bursts_ph()

• Data.expand()

• Data.copy()

• Data.slice_ph()

The methods documentation follows:

class fretbursts.burstlib.Data

get_ph_times(ich=0, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'), compact=False)
Returns the timestamps array for channel ich.

This method always returns in-memory arrays, even when ph_times_m is a disk-backed list of arrays.

Parameters
• ph_sel (Ph_sel object) – object defining the photon selection. See fretbursts.ph_sel

for details.

• compact (bool) – if True, a photon selection of only one excitation period is required and
the timestamps are “compacted” by removing the “gaps” between each excitation period.

iter_ph_times(ph_sel=Ph_sel(Dex='DAem', Aex='DAem'), compact=False)
Iterator that returns the arrays of timestamps in .ph_times_m.

Parameters
Same arguments as :meth:`get_ph_mask` except for `ich`.

get_ph_mask(ich=0, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'))
Returns a mask for ph_sel photons in channel ich.

The masks are either boolean arrays or slices (full or empty). In both cases they can be used to index the
timestamps of the corresponding channel.

Parameters
ph_sel (Ph_sel object) – object defining the photon selection. See fretbursts.ph_sel for
details.

iter_ph_masks(ph_sel=Ph_sel(Dex='DAem', Aex='DAem'))
Iterator returning masks for ph_sel photons.

Parameters
ph_sel (Ph_sel object) – object defining the photon selection. See fretbursts.ph_sel for
details.

3.2. The “Data()” class 31

FRETBursts Documentation, Release 0.7.1+0.gc51b

iter_bursts_ph(ich=0)
Iterate over (start, stop) indexes to slice photons for each burst.

ph_in_bursts_ich(ich=0, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'))
Return timestamps of photons inside bursts for channel ich.

Returns
Array of photon timestamps in channel ich and photon selection ph_sel that are inside any burst.

ph_in_bursts_mask_ich(ich=0, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'))
Return mask of all photons inside bursts for channel ich.

Returns
Boolean array for photons in channel ich and photon selection ph_sel that are inside any burst.

expand(ich=0, alex_naa=False, width=False)
Return per-burst D and A sizes (nd, na) and their background counts.

This method returns for each bursts the corrected signal counts and background counts in donor and acceptor
channels. Optionally, the burst width is also returned.

Parameters
• ich (int) – channel for the bursts (can be not 0 only in multi-spot)

• alex_naa (bool) – if True and self.ALEX, returns burst sizes and background also for ac-
ceptor photons during accept. excitation

• width (bool) – whether return the burst duration (in seconds).

Returns
List of arrays – nd, na, donor bg, acceptor bg. If alex_naa is True returns: nd, na, naa, bg_d,
bg_a, bg_aa. If width is True returns the bursts duration (in sec.) as last element.

copy(mute=False)
Copy data in a new object. All arrays copied except for ph_times_m

slice_ph(time_s1=0, time_s2=None, s='slice')
Return a new Data object with ph in [time_s1,`time_s2`] (seconds)

If ALEX, this method must be called right after fretbursts.loader.alex_apply_periods() (with
delete_ph_t=True) and before any background estimation or burst search.

3.3 Photon selections

In this module we define the class Ph_sel used to specify a “selection” of a sub-set of photons/timestamps (i.e. all-
photons, Donor-excitation-period photons, etc. . .).

A photon selection is one of the base photon streams or a combination of them. Base photon streams are photon from
the donor (or acceptor) emission channel detected during the donor (or acceptor) excitation period. For non-ALEX
data there is only the donor excitation period.

The following table shows base photon streams for smFRET data (non-ALEX):

Photon selection Syntax
D-emission Ph_sel(Dex='Dem')
A-emission Ph_sel(Dex='Aem')

32 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

and for ALEX data:

Photon selection Syntax
D-emission during D-excitation Ph_sel(Dex='Dem')
A-emission during D-excitation Ph_sel(Dex='Aem')
D-emission during A-excitation Ph_sel(Aex='Dem')
A-emission during A-excitation Ph_sel(Aex='Aem')

Additionally, all the photons can be selected with Ph_sel('all') (that is a shortcut for Ph_sel(Dex='DAem',
Aex='DAem').

Examples
• Ph_sel(Dex='DAem', Aex='DAem') or Ph_sel('all') select all photons.

• Ph_sel(Dex='DAem') selects only donor and acceptor photons emitted during donor excitation. These are all
the photons for non-ALEX data.

• Ph_sel(Dex='Aem', Aex='Aem') selects all the photons detected from the acceptor-emission channel.

The documentation for the Ph_sel class follows.

class fretbursts.ph_sel.Ph_sel(Dex=None, Aex=None)
Class that describes a selection of photons.

This class takes two arguments Dex and Aex. Valid values for the arguments are the strings ‘DAem’, ‘Dem’, ‘Aem’
or None. These values select, respectively, donor+acceptor, donor-only, acceptor-only or no photons during an
excitation period (Dex or Aex).

The class must be called with at least one keyword argument or using the string ‘all’ as the only argument. Calling
Ph_sel('all') is equivalent to Ph_sel(Dex='DAem', Aex='DAem'). Not specifying a keyword argument
is equivalent to setting it to None.

3.4 Background estimation

3.4.1 background.py

Routines to compute the background from an array of timestamps. This module is normally imported as bg when
fretbursts is imported.

The important functions are exp_fit() and exp_cdf_fit() that provide two (fast) algorithms to estimate the back-
ground without binning. These functions are not usually called directly but passed to Data.calc_bg() to compute
the background of a measurement.

See also exp_hist_fit() for background estimation using an histogram fit.

fretbursts.background.exp_fit(ph, tail_min_us=None, clk_p=1.25e-08, error_metrics=None)
Return a background rate using the MLE of mean waiting-times.

Compute the background rate, selecting waiting-times (delays) larger than a minimum threshold.

This function performs a Maximum Likelihood (ML) fit. For exponentially-distributed waiting-times this is the
empirical mean.

Parameters

3.4. Background estimation 33

FRETBursts Documentation, Release 0.7.1+0.gc51b

• ph (array) – timestamps array from which to extract the background

• tail_min_us (float) – minimum waiting-time in micro-secs

• clk_p (float) – clock period for timestamps in ph

• error_metrics (string or None) – Valid values are ‘KS’ or ‘CM’. ‘KS’ (Kolmogorov-Smirnov
statistics) computes the error as the max of deviation of the empirical CDF from the fitted
CDF. ‘CM’ (Crames-von Mises) uses the L^2 distance. If None, no error metric is computed
(returns None).

Returns
2-Tuple – Estimated background rate in cps, and a “quality of fit” index (the lower the better)
according to the chosen metric. If error_metrics==None, the returned “quality of fit” is None.

See also:
exp_cdf_fit(), exp_hist_fit()

fretbursts.background.exp_cdf_fit(ph, tail_min_us=None, clk_p=1.25e-08, error_metrics=None)
Return a background rate fitting the empirical CDF of waiting-times.

Compute the background rate, selecting waiting-times (delays) larger than a minimum threshold.

This function performs a least square fit of an exponential Cumulative Distribution Function (CDF) to the em-
pirical CDF of waiting-times.

Parameters
• ph (array) – timestamps array from which to extract the background

• tail_min_us (float) – minimum waiting-time in micro-secs

• clk_p (float) – clock period for timestamps in ph

• error_metrics (string or None) – Valid values are ‘KS’ or ‘CM’. ‘KS’ (Kolmogorov-Smirnov
statistics) computes the error as the max of deviation of the empirical CDF from the fitted
CDF. ‘CM’ (Crames-von Mises) uses the L^2 distance. If None, no error metric is computed
(returns None).

Returns
2-Tuple – Estimated background rate in cps, and a “quality of fit” index (the lower the better)
according to the chosen metric. If error_metrics==None, the returned “quality of fit” is None.

See also:
exp_fit(), exp_hist_fit()

fretbursts.background.exp_hist_fit(ph, tail_min_us, binw=5e-05, clk_p=1.25e-08, weights='hist_counts',
error_metrics=None)

Compute background rate with WLS histogram fit of waiting-times.

Compute the background rate, selecting waiting-times (delays) larger than a minimum threshold.

This function performs a Weighed Least Squares (WLS) fit of the histogram of waiting times to an exponential
decay.

Parameters
• ph (array) – timestamps array from which to extract the background

• tail_min_us (float) – minimum waiting-time in micro-secs

• binw (float) – bin width for waiting times, in seconds.

• clk_p (float) – clock period for timestamps in ph

34 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

• weights (None or string) – if None no weights is applied. if is ‘hist_counts’, each bin has a
weight equal to its counts if is ‘inv_hist_counts’, the weight is the inverse of the counts.

• error_metrics (string or None) – Valid values are ‘KS’ or ‘CM’. ‘KS’ (Kolmogorov-Smirnov
statistics) computes the error as the max of deviation of the empirical CDF from the fitted
CDF. ‘CM’ (Crames-von Mises) uses the L^2 distance. If None, no error metric is computed
(returns None).

Returns
2-Tuple – Estimated background rate in cps, and a “quality of fit” index (the lower the better)
according to the chosen metric. If error_metrics==None, the returned “quality of fit” is None.

See also:
exp_fit(), exp_cdf_fit()

3.4.2 Low-level background fit functions

Generic functions to fit exponential populations.

These functions can be used directly, or, in a typical FRETBursts workflow they are passed to higher level methods.

See also:

• Background estimation

fretbursts.fit.exp_fitting.expon_fit(s, s_min=0, offset=0.5, calc_residuals=True)
Fit sample s to an exponential distribution using the ML estimator.

This function computes the rate (Lambda) using the maximum likelihood (ML) estimator of the mean waiting-
time (Tau), that for an exponentially distributed sample is the sample-mean.

Parameters
• s (array) – array of exponetially-distributed samples

• s_min (float) – all samples < s_min are discarded (s_min must be >= 0).

• offset (float) – offset for computing the CDF. See get_ecdf().

• calc_residuals (bool) – if True compute the residuals of the fitted exponential versus the
empirical CDF.

Returns
A 4-tuple of the fitted rate (1/life-time), residuals array, residuals x-axis array, sample size after
threshold.

fretbursts.fit.exp_fitting.expon_fit_cdf(s, s_min=0, offset=0.5, calc_residuals=True)
Fit of an exponential model to the empirical CDF of s.

This function computes the rate (Lambda) fitting a line (linear regression) to the log of the empirical CDF.

Parameters
• s (array) – array of exponetially-distributed samples

• s_min (float) – all samples < s_min are discarded (s_min must be >= 0).

• offset (float) – offset for computing the CDF. See get_ecdf().

• calc_residuals (bool) – if True compute the residuals of the fitted exponential versus the
empirical CDF.

3.4. Background estimation 35

FRETBursts Documentation, Release 0.7.1+0.gc51b

Returns
A 4-tuple of the fitted rate (1/life-time), residuals array, residuals x-axis array, sample size after
threshold.

fretbursts.fit.exp_fitting.expon_fit_hist(s, bins, s_min=0, weights=None, offset=0.5,
calc_residuals=True)

Fit of an exponential model to the histogram of s using least squares.

Parameters
• s (array) – array of exponetially-distributed samples

• bins (float or array) – if float is the bin width, otherwise is the array of bin edges (passed to
numpy.histogram)

• s_min (float) – all samples < s_min are discarded (s_min must be >= 0).

• weights (None or string) – if None no weights is applied. if is ‘hist_counts’, each bin has a
weight equal to its counts if is ‘inv_hist_counts’, the weight is the inverse of the counts.

• offset (float) – offset for computing the CDF. See get_ecdf().

• calc_residuals (bool) – if True compute the residuals of the fitted exponential versus the
empirical CDF.

Returns
A 4-tuple of the fitted rate (1/life-time), residuals array, residuals x-axis array, sample size after
threshold.

fretbursts.fit.exp_fitting.get_ecdf(s, offset=0.5)
Return arrays (x, y) for the empirical CDF curve of sample s.

See the code for more info (is a one-liner!).

Parameters
• s (array of floats) – sample

• offset (float, default 0.5) – Offset to add to the y values of the CDF

Returns
(x, y) (tuple of arrays) – the x and y values of the empirical CDF

fretbursts.fit.exp_fitting.get_residuals(s, tau_fit, offset=0.5)
Returns residuals of sample s CDF vs an exponential CDF.

Parameters
• s (array of floats) – sample

• tau_fit (float) – mean waiting-time of the exponential distribution to use as reference

• offset (float) – Default 0.5. Offset to add to the empirical CDF. See get_ecdf() for details.

Returns
residuals (array) – residuals of empirical CDF compared with analytical CDF with time constant
tau_fit.

36 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

3.5 Burst selection

After performing a burst search is common to select bursts according to different criteria (burst size, FRET efficiency,
etc. . .).

In FRETBursts this can be easily accomplished using the method Data.select_bursts(). This method takes a
selection function as parameters. Data.select_bursts() returns a new Data object containing only the new sub-set
of bursts. A new selection can be applied to this new object as well. In this way, different selection criteria can be
freely combined in order to obtain a burst population satisfying arbitrary constrains.

FRETBursts provides a large number of selection functions. Moreover, creating a new selection function is extremely
simple, requiring (usually) 2-3 lines of code. You can take the functions in select_bursts.py as examples to create
your own selection rule.

In the next section we list all the selection functions. You may also want to check the Data methods that deal with
burst selection:

• Data.select_bursts()

• Data.select_bursts_mask()

• Data.select_bursts_mask_apply()

3.5.1 Selection functions

The module select_bursts defines functions to select bursts according to different criteria.

These functions are usually passed to Data.select_bursts(). For example:

ds = d.select_bursts(select_bursts.E, th1=0.2, th2=0.6)

returns a new object ds containing only the bursts of d that pass the specified selection criterium (E between 0.2 and
0.6 in this case).

fretbursts.select_bursts.E(d, ich=0, E1=-inf, E2=inf)
Select bursts with E between E1 and E2.

fretbursts.select_bursts.ES(d, ich=0, E1=-inf, E2=inf, S1=-inf, S2=inf, rect=True)
Select bursts with E between E1 and E2 and S between S1 and S2.

When rect is True the selection is rectangular otherwise is elliptical.

See also:
For plotting the ES region selected by (E1, E2, S1, S2, rect):

• fretbursts.burst_plot.plot_ES_selection()

fretbursts.select_bursts.ES_ellips(d, ich=0, E1=-1000.0, E2=1000.0, S1=-1000.0, S2=1000.0)
Select bursts with E-S inside an ellipsis inscribed in E1, E2, S1, S2.

fretbursts.select_bursts.ES_rect(d, ich=0, E1=-inf, E2=inf, S1=-inf, S2=inf)
Select bursts inside the rectangle defined by E1, E2, S1, S2.

fretbursts.select_bursts.brightness(d, ich=0, th1=0, th2=inf, add_naa=False, gamma=1, beta=1,
donor_ref=True)

Select bursts with size/width between th1 and th2 (cps).

3.5. Burst selection 37

FRETBursts Documentation, Release 0.7.1+0.gc51b

fretbursts.select_bursts.consecutive(d, ich=0, th1=0, th2=inf, kind='both')
Select consecutive bursts with th1 <= separation <= th2 (in sec.).

Parameters
kind (string) – valid values are ‘first’ to select the first burst of each pair, ‘second’ to select the
second burst of each pair and ‘both’ to select both bursts in each pair.

fretbursts.select_bursts.na(d, ich=0, th1=20, th2=inf)
Select bursts with (na >= th1) and (na <= th2).

fretbursts.select_bursts.na_bg(d, ich=0, F=5)
Select bursts with (na >= bg_ad*F).

fretbursts.select_bursts.na_bg_p(d, ich=0, P=0.05, F=1.0)
Select bursts w/ AD signal using P{F*BG>=na} < P.

fretbursts.select_bursts.naa(d, ich=0, th1=20, th2=inf, gamma=1.0, beta=1.0, donor_ref=True,
naa_comp=False, naa_aexonly=True)

Select bursts with (naa >= th1) and (naa <= th2).

The naa quantity can be optionally corrected using gamma and beta factors.

Parameters
• th1, th2 (floats) – lower (th1) and upper (th2) bounds for selecting naa. By default th2 =
inf (i.e. no upper limit).

• gamma, beta (floats) – arguments used to compute gamma- and beta-corrected burst sizes.
See fretbursts.burstlib.Data.burst_sizes_ich() for details.

• donor_ref (bool) – Select the convention for naa correction. If True (default), uses naa
/ (beta * gamma). Otherwise, uses naa / beta. It is suggested to use the same
donor_ref convention when combining Dex size and naa burst selections so that the
thresholds values of the two selections will be commensurable.

• na_comp (bool) – [PAX-only] If True, multiply the na term by (1 + Wa/Wd), where Wa
and Wd are the D and A alternation durations (typically Wa/Wd = 1).

• naa_aexonly (bool) – [PAX-only] if True, the naa term is corrected to include only A emis-
sion due to A excitation. If False, the naa term includes all the counts in DAexAem. The
naa term also depends on the naa_comp argument.

• naa_comp (bool) – [PAX-only] If True, multiplies the naa term by (1 + Wa/Wd) where
Wa and Wd are the D and A alternation durations (typically Wa/Wd = 1). The naa term also
depends on the naa_aexonly argument.

See also:

• fretbursts.burstlib.Data.burst_sizes_pax_ich().

fretbursts.select_bursts.naa_bg(d, ich=0, F=5)
Select bursts with (naa >= bg_aa*F).

fretbursts.select_bursts.naa_bg_p(d, ich=0, P=0.05, F=1.0)
Select bursts w/ AA signal using P{F*BG>=naa} < P.

fretbursts.select_bursts.nd(d, ich=0, th1=20, th2=inf)
Select bursts with (nd >= th1) and (nd <= th2).

38 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

fretbursts.select_bursts.nd_bg(d, ich=0, F=5)
Select bursts with (nd >= bg_dd*F).

fretbursts.select_bursts.nd_bg_p(d, ich=0, P=0.05, F=1.0)
Select bursts w/ DD signal using P{F*BG>=nd} < P.

fretbursts.select_bursts.nda_percentile(d, ich=0, q=50, low=False, gamma=1.0, add_naa=False)
Select bursts with SIZE >= q-percentile (or <= if low is True)

gamma and add_naa are passed to fretbursts.burstlib.Data.burst_sizes_ich() to compute the burst
size.

fretbursts.select_bursts.nt_bg(d, ich=0, F=5)
Select bursts with (nt >= bg*F).

fretbursts.select_bursts.nt_bg_p(d, ich=0, P=0.05, F=1.0)
Select bursts w/ signal using P{F*BG>=nt} < P.

fretbursts.select_bursts.peak_phrate(d, ich=0, th1=0, th2=inf)
Select bursts with peak phtotons rate between th1 and th2 (cps).

Note that this function requires to compute the peak photon rate first using fretbursts.burstlib.Data.
calc_max_rate().

fretbursts.select_bursts.period(d, ich=0, bp1=0, bp2=None)
Select bursts from period bp1 to period bp2 (included).

fretbursts.select_bursts.sbr(d, ich=0, th1=0, th2=inf)
Select bursts with SBR between th1 and th2.

fretbursts.select_bursts.single(d, ich=0, th=1)
Select bursts that are at least th millisec apart from the others.

fretbursts.select_bursts.size(d, ich=0, th1=20, th2=inf, add_naa=False, gamma=1.0, beta=1.0,
donor_ref=True, ph_sel=None, naa_aexonly=False, naa_comp=False,
na_comp=False)

Select bursts with burst sizes (i.e. counts) between th1 and th2.

The burst size is the number of photon in a burst. By default it includes all photons during donor excitation
(Dex). To add AexAem photons to the burst size use add_naa=True. If ph_sel is specified use a PAX-specific
definition of size as defined in fretbursts.burstlib.Data.burst_sizes_pax_ich().

Parameters
• d (Data object) – the object containing the measurement.

• ich (int) – the spot number, only relevant for multi-spot. In single-spot data there is only
CH-0 so this argument may be omitted. Default 0.

• th1, th2 (floats) – select bursts with th1 <= size <= th2. Default th2 = inf (i.e. no
upper limit).

• add_naa (boolean) – when True, add AexAem photons when computing burst burst size.
Default False.

• gamma, beta (floats) – arguments used to compute gamma- and beta-corrected burst sizes.
See fretbursts.burstlib.Data.burst_sizes_ich() for details.

• donor_ref (bool) – Select the convention for naa correction. See fretbursts.burstlib.
Data.burst_sizes_ich() for details.

3.5. Burst selection 39

FRETBursts Documentation, Release 0.7.1+0.gc51b

• ph_sel (Ph_sel object or None) – if not None, use PAX-specific burst size definition. ph_sel
defines which terms are included in the burst size.

• na_comp (bool) – [PAX-only] If True, multiply the na term by (1 + Wa/Wd), where Wa
and Wd are the D and A alternation durations (typically Wa/Wd = 1).

• naa_aexonly (bool) – [PAX-only] if True, the naa term is corrected to include only A emis-
sion due to A excitation. If False, the naa term includes all the counts in DAexAem. The
naa term also depends on the naa_comp argument.

• naa_comp (bool) – [PAX-only] If True, multiply the naa term by (1 + Wa/Wd) where Wa
and Wd are the D and A alternation durations (typically Wa/Wd = 1). The naa term also
depends on the naa_aexonly argument.

Returns
A tuple containing an array (the burst mask) and a string which briefly describes the selection.

See also:

• fretbursts.burstlib.Data.burst_sizes_ich().

• fretbursts.burstlib.Data.burst_sizes_pax_ich().

fretbursts.select_bursts.str_G(gamma, donor_ref)
A string indicating gamma value and convention for burst size correction.

fretbursts.select_bursts.time(d, ich=0, time_s1=0, time_s2=None)
Select the burst starting from time_s1 to time_s2 (in seconds).

fretbursts.select_bursts.topN_max_rate(d, ich=0, N=500)
Select N bursts with the highest max burst rate.

fretbursts.select_bursts.topN_nda(d, ich=0, N=500, gamma=1.0, add_naa=False)
Select the N biggest bursts in the channel.

gamma and add_naa are passed to fretbursts.burstlib.Data.burst_sizes_ich() to compute the burst
size.

fretbursts.select_bursts.topN_sbr(d, ich=0, N=200)
Select the top N bursts with highest SBR.

fretbursts.select_bursts.width(d, ich=0, th1=0.5, th2=inf)
Select bursts with (width >= th1) and (width <= th2), in ms.

3.6 Fit framework

This page contains only a general description of FRETBursts fitting functionalities. The content of this page is:

Contents

• Fit framework

– Overview

– Fitting E or S histograms

– Lmfit introduction

40 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

– Legacy Fit functions

For the reference documentation for fitting multi-channel histograms see:

3.6.1 MultiFitter reference documentation

This model provides a class for fitting multi-channel data (MultiFitter) and a series of predefined functions for
common models used to fit E or S histograms.

Contents

• MultiFitter reference documentation

– The MultiFitter class

– Model factory functions

– Utility functions

The MultiFitter class

class fretbursts.mfit.MultiFitter(data_list, skip_ch=None)
A class handling a list of 1-D datasets for histogramming, KDE, fitting.

This class takes a list of 1-D arrays of samples (such as E values per burst). The list contains one 1-D array for
each channel in a multispot experiment. In single-spot experiments the list contains only one array of samples.
For each dataset in the list, this class compute histograms, KDEs and fits (both histogram fit and KDE maximum).
The list of datasets is stored in the attribute data_list. The histograms can be fitted with an arbitrary model
(lmfit.Model). From KDEs the peak position in a range can be estimated.

Optionally weights can be assigned to each element in a dataset. To assign weights a user can assign the .
weights attribute with a list of arrays; corresponding arrays in .weights and .data_listmust have the same
size.

Alternatively a function returning the weights can be used. In this case, the method .set_weights_func allows
to set the function to be called to generate weights.

calc_kde(bandwidth=0.03, calc_tot=True)
Compute the list of kde functions and save it in .kde.

find_kde_max(x_kde, xmin=None, xmax=None, calc_tot=True)
Finds the peak position of kde functions between xmin and xmax.

Results are saved in the list .kde_max_pos.

fit_histogram(model=None, pdf=True, fit_tot=True, **fit_kwargs)
Fit the histogram of each channel using the same lmfit model.

A list of lmfit.Minimizer is stored in .fit_res. The fitted values for all the parameters and all the
channels are save in a Pandas DataFrame .params.

Parameters
• model (lmfit.Model object) – lmfit Model with all the parameters already initialized used

for fitting.

3.6. Fit framework 41

FRETBursts Documentation, Release 0.7.1+0.gc51b

• pdf (bool) – if True fit the normalized histogram (.hist_pdf) otherwise fit the raw counts
(.hist_counts).

• fit_kwargs (dict) – keyword arguments passed to model().fit.

• fit_tot (bool) – if True then fit the sum of the data as well

histogram(binwidth=0.03, bins=None, verbose=False, **kwargs)
Compute the histogram of the data for each channel.

If bins is None, binwidth determines the bins array (saved in self.hist_bins). If bins is not None,
binwidth is ignored and self.hist_binwidth is computed from self.hist_bins.

The kwargs and bins are passed to numpy.histogram.

set_weights_func(weight_func, weight_kwargs=None)
Setup of the function returning the weights for each data-set.

To compute the weights for each dataset the weight_func is called multiple times. Keys in
weight_kwargs are arguments of weight_func. Values in weight_kwargs are either scalars, in which
case they are passed to weight_func, or lists. When an argument is a list, only one element of the list is
passed each time.

Parameters
• weight_func (function) – function that returns the weights

• weight_kwargs (dict) – keyword arguments to be passed to weight_func.

Model factory functions

In this section you find the documentation for the factory-functions that return pre-initialized models for fitting E and
S data.

fretbursts.mfit.factory_gaussian(center=0.1, sigma=0.1, amplitude=1)
Return an lmfit Gaussian model that can be used to fit data.

Arguments are initial values for the model parameters.

Returns
An lmfit.Model object with all the parameters already initialized.

fretbursts.mfit.factory_asym_gaussian(center=0.1, sigma1=0.1, sigma2=0.1, amplitude=1)
Return a lmfit Asymmetric Gaussian model that can be used to fit data.

For the definition of asymmetric Gaussian see asym_gaussian(). Arguments are initial values for the model
parameters.

Returns
An lmfit.Model object with all the parameters already initialized.

fretbursts.mfit.factory_two_gaussians(add_bridge=False, p1_center=0.1, p2_center=0.9,
p1_sigma=0.03, p2_sigma=0.03)

Return a 2-Gaussian + (optional) bridge model that can fit data.

The optional “bridge” component (i.e. a plateau between the two peaks) is a function that is non-zero only
between p1_center and p2_center and is defined as:

br_amplitude * (1 - g(x, p1_center, p1_sigma) - g(x, p1_center, p2_sigma))

42 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

where g is a gaussian function with amplitude = 1 and br_amplitude is the height of the plateau and the only
additional parameter introduced by the bridge. Note that both centers and sigmas parameters in the bridge are the
same ones of the adjacent Gaussian peaks. Therefore a 2-Gaussian + bridge model has 7 free parameters: 3 for
each Gaussian and an additional one for the bridge. The bridge function is implemented in bridge_function().

Parameters
• p1_center, p2_center (float) – initial values for the centers of the two Gaussian components.

• p1_sigma, p2_sigma (float) – initial values for the sigmas of the two Gaussian components.

• add_bridge (bool) – if True adds a bridge function between the two gaussian peaks. If False
the model has only two Gaussians.

Returns
An lmfit.Model object with all the parameters already initialized.

fretbursts.mfit.factory_two_asym_gaussians(add_bridge=False, p1_center=0.1, p2_center=0.9,
p1_sigma=0.03, p2_sigma=0.03)

Return a 2-Asym-Gaussians + (optional) bridge model that can fit data.

The Asym-Gaussian function is asym_gaussian().

Parameters
add_bridge (bool) – if True adds a bridge function between the two gaussian peaks. If False the
model has only two Asym-Gaussians.

The other arguments are initial values for the model parameters.

Returns
An lmfit.Model object with all the parameters already initialized.

fretbursts.mfit.factory_three_gaussians(p1_center=0.0, p2_center=0.5, p3_center=1, sigma=0.05)
Return a 3-Gaussian model that can fit data.

The other arguments are initial values for the center for each Gaussian component plus an single sigma argu-
ment that is used as initial sigma for all the Gaussians. Note that during the fitting the sigma of each Gaussian is
varied independently.

Returns
An lmfit.Model object with all the parameters already initialized.

Utility functions

The following functions are utility functions used to build the the model functions (i.e. the “factory functions”) for the
fitting.

fretbursts.mfit.bridge_function(x, center1, center2, sigma1, sigma2, amplitude)
A “bridge” function, complementary of two gaussian peaks.

Let g be a Gaussian function (with amplitude = 1), the bridge function is defined as:

amplitude * (1 - g(x, center1, sigma1) - g(x, center2, sigma2))

for center1 < x < center2. The function is 0 otherwise.

Parameters
• x (array) – 1-D array for the independent variable

• center1 (float) – center of the first gaussian (left side)

3.6. Fit framework 43

FRETBursts Documentation, Release 0.7.1+0.gc51b

• center2 (float) – center of the second gaussian (right side)

• sigma1 (float) – sigma of the left-side gaussian

• sigma2 (float) – sigma of the right-side gaussian

• amplitude (float) – maximum (asymptotic) value of the bridge (plateau)

Returns
An array (same shape as x) with the function values.

fretbursts.mfit.asym_gaussian(x, center, sigma1, sigma2, amplitude)
A asymmetric gaussian function composed by two gaussian halves.

This function is composed from two gaussians joined at their peak, so that the left and right side decay with
different sigmas.

Parameters
• x (array) – 1-D array for the independent variable

• center (float) – function peak position

• sigma1 (float) – sigma of the left-side gaussian (for x < center)

• sigma2 (float) – sigma of the right-side gaussian (for x > center)

• amplitude (float) – maximum value reach for x = center.

Returns
An array (same shape as x) with the function values.

3.6.2 Overview

FRETBursts uses of the powerful lmfit library for most fittings (like E or S histogram fitting). Lmfit should be auto-
matically installed when installing FRETBursts, but in any case it is easily installable via pip install lmfit. For
more installation info see FRETBursts Installation.

FRETBursts requires lmfit version 0.8 or higher.

3.6.3 Fitting E or S histograms

The module fretbursts.mfit provides a class fretbursts.mfit.MultiFitter that allow to build histograms
and KDE on a multi-channel sample population (typically E or S values for each burst). The MultiFitter class can
find the max peak position of a KDE or fit the histogram with an arbitrary model. A set of predefined models is
provided to handle common cases. Sensible defaults are applied but the user can control every detail of the fit by
setting initial values, parameter bounds (min, max), algebraic constrains and so on. New models can be created by
composing simpler models (by using + operator). See the lmfit documentation for more info on how to define models
and composite models.

A convenience function fretbursts.burstlib_ext.burst_fitter() can be used to create a MultiFitter object
to fit either E or S. As an example let suppose having a measurement loaded in the variable d. To create a fitter object
and compute the FRET histogram we execute:

bext.burst_fitter(d) # Creates d.E_fitter
d.E_fitter.histogram() # Compute the histogram for all the channels

Now we fit the E histogram with a 2-Gaussians model:

44 Chapter 3. FRETBursts Reference Manual

http://lmfit.github.io/lmfit-py/
http://en.wikipedia.org/wiki/Kernel_density_estimation
http://lmfit.github.io/lmfit-py/model.html
http://lmfit.github.io/lmfit-py/model.html#composite-models-adding-or-multiplying-models

FRETBursts Documentation, Release 0.7.1+0.gc51b

d.E_fitter.fit_histogram(mfit.factory_two_gaussians)

And plot the histogram and the fitted model:

dplot(d, hist_fret, show_model=True)

More detailed example can be found in the tutorials in notebooks on us-ALEX analysis.

3.6.4 Lmfit introduction

Lmfit provides a simple and flexible interface for non-linear least squares and other minimization methods. All the
model parameters can be fixed/varied, have bounds (min, max) or constrained to an algebraic expression.

Moreover lmfit provides a Model class and a set of built-in models that allows to express curve-fitting problems in an
compact and expressive form. Basic models (such as a Gaussian peak) and be composed allowing an easy definitions
of a variety of models (2 or 3 Gaussians).

For more information refer to the official lmfit documentation.

3.6.5 Legacy Fit functions

A set of legacy functions used in versions of FRETBursts < 0.4 are defined in fretbursts/fit. This function are
retained for backward compatibility but should not be used in new analysis.

These are low-level (i.e. generic) fit functions to fit gaussian or exponential models.

Gaussian fitting

This module provides functions to fit gaussian distributions and gaussian distribution mixtures (2 components). These
functions can be used directly, or more often, in a typical FRETBursts workflow they are passed to higher level methods
like fretbursts.burstlib.Data.fit_E_generic().

Single Gaussian distribution fit:

• gaussian_fit_hist()

• gaussian_fit_cdf()

• gaussian_fit_pdf()

For 2-Gaussians fit we have the following models:

• two_gauss_mix_pdf(): PDF of 2-components Gaussians mixture

• two_gauss_mix_ab(): linear combination of 2 Gaussians

Main functions for mixture of 2 Gaussian distribution fit:

• two_gaussian_fit_hist() histogram fit using `leastsq`

• two_gaussian_fit_hist_min() histogram fit using `minimize`

• two_gaussian_fit_hist_min_ab() the same but using _ab model

• two_gaussian_fit_cdf() curve fit of the CDF

• two_gaussian_fit_EM() Expectation-Maximization fit

• two_gaussian_fit_EM_b() the same with boundaries

3.6. Fit framework 45

https://github.com/OpenSMFS/FRETBursts_notebooks
http://nbviewer.ipython.org/github/tritemio/FRETBursts_notebooks/blob/master/notebooks/FRETBursts%20-%20us-ALEX%20smFRET%20burst%20analysis.ipynb
http://lmfit.github.io/lmfit-py/

FRETBursts Documentation, Release 0.7.1+0.gc51b

Also, some functions to fit 2-D gaussian distributions and mixtures are implemented but not thoroughly tested.

The reference documentation for all the functions follows.

fretbursts.fit.gaussian_fitting.bound_check(val, bounds)
Returns val clipped inside the interval bounds.

fretbursts.fit.gaussian_fitting.gaussian2d_fit(sx, sy, guess=[0.5, 1])
2D-Gaussian fit of samples S using a fit to the empirical CDF.

fretbursts.fit.gaussian_fitting.gaussian_fit_cdf(s, mu0=0, sigma0=1, return_all=False,
**leastsq_kwargs)

Gaussian fit of samples s fitting the empirical CDF. Additional kwargs are passed to the leastsq() function. If
return_all=False then return only the fitted (mu,sigma) values If return_all=True (or full_output=True is passed
to leastsq) then the full output of leastsq and the histogram is returned.

fretbursts.fit.gaussian_fitting.gaussian_fit_curve(x, y, mu0=0, sigma0=1, a0=None,
return_all=False, **kwargs)

Gaussian fit of curve (x,y). If a0 is None then only (mu,sigma) are fitted (to a gaussian density). kwargs are
passed to the leastsq() function.

If return_all=False then return only the fitted (mu,sigma) values If return_all=True (or full_output=True is passed
to leastsq) then the full output of leastsq is returned.

fretbursts.fit.gaussian_fitting.gaussian_fit_hist(s, mu0=0, sigma0=1, a0=None, bins=array([-0.5,
-0.499, -0.498, ..., 1.497, 1.498, 1.499]),
return_all=False, leastsq_kwargs={},
weights=None, **kwargs)

Gaussian fit of samples s fitting the hist to a Gaussian function. If a0 is None then only (mu,sigma) are fitted (to
a gaussian density). kwargs are passed to the histogram function. If return_all=False then return only the fitted
(mu,sigma) values If return_all=True (or full_output=True is passed to leastsq) then the full output of leastsq and
the histogram is returned. weights optional weights for the histogram.

fretbursts.fit.gaussian_fitting.gaussian_fit_ml(s, mu_sigma_guess=[0.5, 1])
Gaussian fit of samples s using the Maximum Likelihood (ML method). Didactical, since scipy.stats.norm.fit()
implements the same method.

fretbursts.fit.gaussian_fitting.gaussian_fit_pdf(s, mu0=0, sigma0=1, a0=1, return_all=False,
leastsq_kwargs={}, **kwargs)

Gaussian fit of samples s using a fit to the empirical PDF. If a0 is None then only (mu,sigma) are fitted (to a
gaussian density). kwargs are passed to get_epdf(). If return_all=False then return only the fitted (mu,sigma)
values If return_all=True (or full_output=True is passed to leastsq) then the full output of leastsq and the PDF
curve is returned.

fretbursts.fit.gaussian_fitting.get_epdf(s, smooth=0, N=1000, smooth_pdf=False, smooth_cdf=True)
Compute the empirical PDF of the sample s.

If smooth > 0 then apply a gaussian filter with sigma=smooth. N is the number of points for interpolation of the
CDF on a uniform range.

fretbursts.fit.gaussian_fitting.normpdf(x, mu=0, sigma=1.0)
Return the normal pdf evaluated at x.

fretbursts.fit.gaussian_fitting.reorder_parameters(p)
Reorder 2-gauss mix params to have the 1st component with smaller mean.

fretbursts.fit.gaussian_fitting.reorder_parameters_ab(p)
Reorder 2-gauss mix params to have the 1st component with smaller mean.

46 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

fretbursts.fit.gaussian_fitting.two_gauss_mix_ab(x, p)
Mixture of two Gaussians with no area constrain.

fretbursts.fit.gaussian_fitting.two_gauss_mix_pdf(x, p)
PDF for the distribution of a mixture of two Gaussians.

fretbursts.fit.gaussian_fitting.two_gaussian2d_fit(sx, sy, guess=[0.5, 1])
2D-Gaussian fit of samples S using a fit to the empirical CDF.

fretbursts.fit.gaussian_fitting.two_gaussian_fit_EM(s, p0=[0, 0.1, 0.6, 0.1, 0.5], max_iter=300,
ptol=0.0001, fix_mu=[0, 0], fix_sig=[0, 0],
debug=False, weights=None)

Fit the sample s with two gaussians using Expectation Maximization.

This vesion allows to optionally fix mean or std. dev. of each component.

Parameters
• s (array) – population of samples to be fitted

• p0 (sequence-like) – initial parameters [mu0, sig0, mu1, sig1, a]

• bound (tuple of pairs) – sequence of (min, max) values that constrain the parameters. If min
or max are None, no boundary is set.

• ptol (float) – convergence condition. Relative max variation of any parameter.

• max_iter (int) – max number of iteration in case of non convergence.

• weights (array) – optional weigths, same size as s (for ex. 1/sigma^2 ~ nt).

Returns
Array of parameters for the 2-gaussians (5 elements)

fretbursts.fit.gaussian_fitting.two_gaussian_fit_EM_b(s, p0=[0, 0.1, 0.6, 0.1, 0.5], weights=None,
bounds=[(None, None), (None, None), (None,
None), (None, None), (None, None)],
max_iter=300, ptol=0.0001, debug=False)

Fit the sample s with two gaussians using Expectation Maximization.

This version allows setting boundaries for each parameter.

Parameters
• s (array) – population of samples to be fitted

• p0 (sequence-like) – initial parameters [mu0, sig0, mu1, sig1, a]

• bound (tuple of pairs) – sequence of (min, max) values that constrain the parameters. If min
or max are None, no boundary is set.

• ptol (float) – convergence condition. Relative max variation of any parameter.

• max_iter (int) – max number of iteration in case of non convergence.

• weights (array) – optional weigths, same size as s (for ex. 1/sigma^2 ~ nt).

Returns
Array of parameters for the 2-gaussians (5 elements)

fretbursts.fit.gaussian_fitting.two_gaussian_fit_KDE_curve(s, p0=[0, 0.1, 0.6, 0.1, 0.5],
weights=None, bandwidth=0.05,
x_pdf=None, debug=False,
method='SLSQP', bounds=None,
verbose=False, **kde_kwargs)

3.6. Fit framework 47

FRETBursts Documentation, Release 0.7.1+0.gc51b

Fit sample s with two gaussians using a KDE pdf approximation.

The 2-gaussian pdf is then curve-fitted to the KDE pdf.

Parameters
• s (array) – population of samples to be fitted

• p0 (sequence-like) – initial parameters [mu0, sig0, mu1, sig1, a]

• bandwidth (float) – bandwidth for the KDE algorithm

• method (string) – fit method, can be ‘leastsq’ or one of the methods accepted by scipy
minimize()

• bounds (None or 5-element list) – if not None, each element is a (min,max) pair of bounds
for the corresponding parameter. This argument can be used only with L-BFGS-B, TNC or
SLSQP methods. If bounds are used, parameters cannot be fixed

• x_pdf (array) – array on which the KDE PDF is evaluated and curve-fitted

• weights (array) – optional weigths, same size as s (for ex. 1/sigma^2 ~ nt).

• debug (bool) – if True performs more tests and print more info.

Additional kwargs are passed to scipy.stats.gaussian_kde().

Returns
Array of parameters for the 2-gaussians (5 elements)

fretbursts.fit.gaussian_fitting.two_gaussian_fit_cdf(s, p0=[0.0, 0.05, 0.6, 0.1, 0.5], fix_mu=[0, 0],
fix_sig=[0, 0])

Fit the sample s with two gaussians using a CDF fit.

Curve fit 2-gauss mixture Cumulative Distribution Function (CDF) to the empirical CDF for sample s.

Note that with a CDF fit no weighting is possible.

Parameters
• s (array) – population of samples to be fitted

• p0 (5-element list or array) – initial guess or parameters

• fix_mu (tuple of bools) – Whether to fix the mean of the gaussians

• fix_sig (tuple of bools) – Whether to fix the sigma of the gaussians

Returns
Array of parameters for the 2-gaussians (5 elements)

fretbursts.fit.gaussian_fitting.two_gaussian_fit_curve(x, y, p0, return_all=False, verbose=False,
**kwargs)

Fit a 2-gaussian mixture to the (x,y) curve. kwargs are passed to the leastsq() function.

If return_all=False then return only the fitted parameters If return_all=True then the full output of leastsq is
returned.

fretbursts.fit.gaussian_fitting.two_gaussian_fit_hist(s, bins=array([-0.5, -0.499, -0.498, ..., 1.497,
1.498, 1.499]), weights=None, p0=[0.2, 1,
0.8, 1, 0.3], fix_mu=[0, 0], fix_sig=[0, 0],
fix_a=False)

Fit the sample s with 2-gaussian mixture (histogram fit).

Uses scipy.optimize.leastsq function. Parameters can be fixed but cannot be constrained in an interval.

48 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

Parameters
• s (array) – population of samples to be fitted

• p0 (5-element list or array) – initial guess or parameters

• bins (int or array) – bins passed to np.histogram()

• weights (array) – optional weights passed to np.histogram()

• fix_a (tuple of bools) – Whether to fix the amplitude of the gaussians

• fix_mu (tuple of bools) – Whether to fix the mean of the gaussians

• fix_sig (tuple of bools) – Whether to fix the sigma of the gaussians

Returns
Array of parameters for the 2-gaussians (5 elements)

fretbursts.fit.gaussian_fitting.two_gaussian_fit_hist_min(s, bounds=None, method='L-BFGS-B',
bins=array([-0.5, -0.499, -0.498, ...,
1.497, 1.498, 1.499]), weights=None,
p0=[0.2, 1, 0.8, 1, 0.3], fix_mu=[0, 0],
fix_sig=[0, 0], fix_a=False,
verbose=False)

Fit the sample s with 2-gaussian mixture (histogram fit). [Bounded]

Uses scipy.optimize.minimize allowing constrained minimization.

Parameters
• s (array) – population of samples to be fitted

• method (string) – one of the methods accepted by scipy minimize()

• bounds (None or 5-element list) – if not None, each element is a (min,max) pair of bounds
for the corresponding parameter. This argument can be used only with L-BFGS-B, TNC or
SLSQP methods. If bounds are used, parameters cannot be fixed

• p0 (5-element list or array) – initial guess or parameters

• bins (int or array) – bins passed to np.histogram()

• weights (array) – optional weights passed to np.histogram()

• fix_a (tuple of bools) – Whether to fix the amplitude of the gaussians

• fix_mu (tuple of bools) – Whether to fix the mean of the gaussians

• fix_sig (tuple of bools) – Whether to fix the sigma of the gaussians

• verbose (boolean) – allows printing fit information

Returns
Array of parameters for the 2-gaussians (5 elements)

fretbursts.fit.gaussian_fitting.two_gaussian_fit_hist_min_ab(s, bounds=None,
method='L-BFGS-B',
bins=array([-0.5, -0.499, -0.498, ...,
1.497, 1.498, 1.499]),
weights=None, p0=[0.2, 1, 0.8, 1,
0.3], fix_mu=[0, 0], fix_sig=[0, 0],
fix_a=[0, 0], verbose=False)

Histogram fit of sample s with 2-gaussian functions.

3.6. Fit framework 49

FRETBursts Documentation, Release 0.7.1+0.gc51b

Uses scipy.optimize.minimize allowing constrained minimization. Also each parameter can be fixed.

The order of the parameters is: mu1, sigma1, a1, mu2, sigma2, a2.

Parameters
• s (array) – population of samples to be fitted

• method (string) – one of the methods accepted by scipy minimize()

• bounds (None or 6-element list) – if not None, each element is a (min,max) pair of bounds
for the corresponding parameter. This argument can be used only with L-BFGS-B, TNC or
SLSQP methods. If bounds are used, parameters cannot be fixed

• p0 (6-element list or array) – initial guess or parameters

• bins (int or array) – bins passed to np.histogram()

• weights (array) – optional weights passed to np.histogram()

• fix_a (tuple of bools) – Whether to fix the amplitude of the gaussians

• fix_mu (tuple of bools) – Whether to fix the mean of the gaussians

• fix_sig (tuple of bools) – Whether to fix the sigma of the gaussians

• verbose (boolean) – allows printing fit information

Returns
Array of parameters for the 2-gaussians (6 elements)

Exponential fitting

Generic functions to fit exponential populations.

These functions can be used directly, or, in a typical FRETBursts workflow they are passed to higher level methods.

See also:

• Background estimation

fretbursts.fit.exp_fitting.expon_fit(s, s_min=0, offset=0.5, calc_residuals=True)
Fit sample s to an exponential distribution using the ML estimator.

This function computes the rate (Lambda) using the maximum likelihood (ML) estimator of the mean waiting-
time (Tau), that for an exponentially distributed sample is the sample-mean.

Parameters
• s (array) – array of exponetially-distributed samples

• s_min (float) – all samples < s_min are discarded (s_min must be >= 0).

• offset (float) – offset for computing the CDF. See get_ecdf().

• calc_residuals (bool) – if True compute the residuals of the fitted exponential versus the
empirical CDF.

Returns
A 4-tuple of the fitted rate (1/life-time), residuals array, residuals x-axis array, sample size after
threshold.

50 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

fretbursts.fit.exp_fitting.expon_fit_cdf(s, s_min=0, offset=0.5, calc_residuals=True)
Fit of an exponential model to the empirical CDF of s.

This function computes the rate (Lambda) fitting a line (linear regression) to the log of the empirical CDF.

Parameters
• s (array) – array of exponetially-distributed samples

• s_min (float) – all samples < s_min are discarded (s_min must be >= 0).

• offset (float) – offset for computing the CDF. See get_ecdf().

• calc_residuals (bool) – if True compute the residuals of the fitted exponential versus the
empirical CDF.

Returns
A 4-tuple of the fitted rate (1/life-time), residuals array, residuals x-axis array, sample size after
threshold.

fretbursts.fit.exp_fitting.expon_fit_hist(s, bins, s_min=0, weights=None, offset=0.5,
calc_residuals=True)

Fit of an exponential model to the histogram of s using least squares.

Parameters
• s (array) – array of exponetially-distributed samples

• bins (float or array) – if float is the bin width, otherwise is the array of bin edges (passed to
numpy.histogram)

• s_min (float) – all samples < s_min are discarded (s_min must be >= 0).

• weights (None or string) – if None no weights is applied. if is ‘hist_counts’, each bin has a
weight equal to its counts if is ‘inv_hist_counts’, the weight is the inverse of the counts.

• offset (float) – offset for computing the CDF. See get_ecdf().

• calc_residuals (bool) – if True compute the residuals of the fitted exponential versus the
empirical CDF.

Returns
A 4-tuple of the fitted rate (1/life-time), residuals array, residuals x-axis array, sample size after
threshold.

fretbursts.fit.exp_fitting.get_ecdf(s, offset=0.5)
Return arrays (x, y) for the empirical CDF curve of sample s.

See the code for more info (is a one-liner!).

Parameters
• s (array of floats) – sample

• offset (float, default 0.5) – Offset to add to the y values of the CDF

Returns
(x, y) (tuple of arrays) – the x and y values of the empirical CDF

fretbursts.fit.exp_fitting.get_residuals(s, tau_fit, offset=0.5)
Returns residuals of sample s CDF vs an exponential CDF.

Parameters
• s (array of floats) – sample

3.6. Fit framework 51

FRETBursts Documentation, Release 0.7.1+0.gc51b

• tau_fit (float) – mean waiting-time of the exponential distribution to use as reference

• offset (float) – Default 0.5. Offset to add to the empirical CDF. See get_ecdf() for details.

Returns
residuals (array) – residuals of empirical CDF compared with analytical CDF with time constant
tau_fit.

3.7 Direct FRET fitting

See also Fit framework

This module contains functions for direct fitting of burst populations (FRET peaks) without passing through a FRET
histogram.

This module provides a standard interface for different fitting algorithms.

fretbursts.fret_fit.fit_E_E_size(nd, na, weights=None, gamma=1.0, gamma_correct=False)
Fit the E with least-square minimization of errors on burst E values.

fretbursts.fret_fit.fit_E_binom(nd, na, noprint=False, method='c', **kwargs)
Fit the E with MLE using binomial distribution. method (‘a’,’b’, or ‘c’) choose how to handle negative (nd,na)
values.

fretbursts.fret_fit.fit_E_cdf(nd, na, gamma=1.0, **kwargs)
Fit E using the CDF curve-fit (see gaussian_fit_cdf). No weights are possible with this method.

fretbursts.fret_fit.fit_E_hist(nd, na, gamma=1.0, **kwargs)
Fit E using the histogram curve-fit (see gaussian_fit_hist). You can specify weights that will be passed to the
histogram function.

fretbursts.fret_fit.fit_E_m(nd, na, weights=None, gamma=1.0, gamma_correct=False)
Fit the E with a weighted mean of burst E values.

fretbursts.fret_fit.fit_E_poisson_na(nd, na, bg_a, **kwargs)
Fit the E using MLE with na extracted from a Poisson.

fretbursts.fret_fit.fit_E_poisson_nd(nd, na, bg_d, **kwargs)
Fit the E using MLE with nd extracted from a Poisson.

fretbursts.fret_fit.fit_E_poisson_nt(nd, na, bg_a, **kwargs)
Fit the E using MLE with na extracted from a Poisson.

fretbursts.fret_fit.fit_E_slope(nd, na, weights=None, gamma=1.0)
Fit E with a least-squares fitting of slope on (nd,na) plane.

fretbursts.fret_fit.get_dist_euclid(nd, na, E_fit=None, slope=None)
Returns the euclidean distance of (nd,na) from a fit line. The fit line is specified by slope or by E_fit. Intercept
is always 0.

fretbursts.fret_fit.get_weights(nd, na, weights, naa=0, gamma=1.0, widths=None)
Return burst weights computed according to different criteria.

The burst size is computed as nd*gamma + na + naa.

Parameters
• nd, na, naa (1D arrays) – photon counts in each burst.

52 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

• gamma (float) – gamma factor used for corrected burst size.

• width (None array) – array of burst durations used when weights=’brightness’

• weights (string or None) – type of weights, possible weights are: ‘size’ burst size, ‘size_min’
burst size - min(burst size), ‘size2’ (burst size)^2, ‘sqrt’ sqrt(burst size), ‘inv_size’ 1/(burst
size), ‘inv_sqrt’ 1/sqrt(burst size), ‘cum_size’ CDF_of_burst_sizes(burst size), ‘cum_size2’
CDF_of_burst_sizes(burst size)^2, ‘brightness’ the burst size divided by the burst width. If
None returns uniform weights.

• widths (1D array) – bursts duration in seconds, needed only when weights = ‘brightness’.

Returns
1D array of weights, one element per burst.

fretbursts.fret_fit.log_likelihood_binom(E, nd, na)
Likelihood function for (nd,na) to be from a binom with p=E (no BG).

fretbursts.fret_fit.log_likelihood_poisson_na(E, nd, na, bg_a)
Likelihood function for na extracted from Poisson. nd, na BG corrected.

fretbursts.fret_fit.log_likelihood_poisson_nd(E, nd, na, bg_d)
Likelihood function for nd extracted from Poisson. nd, na BG corrected.

fretbursts.fret_fit.log_likelihood_poisson_nt(E, nd, na, bg_a)
Likelihood function for na extracted from Poisson. nd, na BG corrected.

fretbursts.fret_fit.sim_nd_na(E, N=1000, size_mean=100)
Simulate an exponential-size burst distribution with binomial (nd,na)

3.8 Plotting Data

Contents

• Plotting Data

– Timetrace and ratetrace plots

– 1D Histograms

∗ Bursts: ratiometric quantities

∗ Bursts: tail distributions

∗ Others

– ALEX plots

– Scatter plots

This module defines all the plotting functions for the fretbursts.burstlib.Data object.

The main plot function is dplot() that takes, as parameters, a Data() object and a 1-ch-plot-function and creates a
subplot for each channel.

The 1-ch plot functions are usually called through dplot but can also be called directly to make a single channel plot.

The 1-ch plot functions names all start with the plot type (timetrace, ratetrace, hist or scatter).

Example 1 - Plot the timetrace for all ch:

3.8. Plotting Data 53

FRETBursts Documentation, Release 0.7.1+0.gc51b

dplot(d, timetrace, scroll=True)

Example 2 - Plot a FRET histogramm for each ch with a fit overlay:

dplot(d, hist_fret, show_model=True)

For more examples refer to FRETBurst notebooks.

3.8.1 Timetrace and ratetrace plots

fretbursts.burst_plot.timetrace(d, i=0, binwidth=0.001, bins=None, tmin=0, tmax=200, bursts=False,
burst_picker=True, scroll=False, show_rate_th=True, F=None,
rate_th_style={'label': None}, show_aa=True, legend=False,
set_ax_limits=True, burst_color='#BBBBBB', plot_style=None)

Plot the timetraces (histogram) of photon timestamps.

Parameters
• d (Data object) – the measurement’s data to plot.

• i (int) – the channel to plot. Default 0.

• binwidth (float) – the bin width (seconds) of the timetrace histogram.

• bins (array or None) – If not None, defines the bin edges for the timetrace (overriding
binwidth). If None, binwidth is use to generate uniform bins.

• tmin, tmax (float) – min and max time (seconds) to include in the timetrace. Note that a
long time range and a small binwidth can require a significant amount of memory.

• bursts (bool) – if True, plot the burst start-stop times.

• burst_picker (bool) – if True, enable the ability to click on bursts to obtain burst info. This
function requires the matplotlib’s QT backend.

• scroll (bool) – if True, activate a scrolling bar to quickly scroll through the timetrace. This
function requires the matplotlib’s QT backend.

• show_rate_th (bool) – if True, plot the burst search threshold rate.

• F (bool) – if show_rate is True, show a rate F times larger than the background rate.

• rate_th_style (dict) – matplotlib style for the rate line.

• show_aa (bool) – if True, plot a timetrace for the AexAem photons. If False (default), plot
timetraces only for DexDem and DexAem streams.

• legend (bool) – whether to show the legend or not.

• set_ax_limits (bool) – if True, set the xlim to zoom on a small portion of timetrace. If False,
do not set the xlim, display the full timetrace.

• burst_color (string) – string containing the the HEX RGB color to use to highlight the burst
regions.

• plot_style (dict) – matplotlib’s style for the timetrace lines.

fretbursts.burst_plot.timetrace_single(d, i=0, binwidth=0.001, bins=None, tmin=0, tmax=200,
ph_sel=Ph_sel(Dex='DAem', Aex='DAem'), invert=False,
bursts=False, burst_picker=True, scroll=False, cache_bins=True,
plot_style=None, show_rate_th=True, F=None, rate_th_style={},
set_ax_limits=True, burst_color='#BBBBBB')

54 Chapter 3. FRETBursts Reference Manual

http://nbviewer.ipython.org/github/tritemio/FRETBursts_notebooks/tree/master/notebooks/

FRETBursts Documentation, Release 0.7.1+0.gc51b

Plot the timetrace (histogram) of timestamps for a photon selection.

See timetrace() to plot multiple photon selections (i.e. Donor and Acceptor photons) in one step.

fretbursts.burst_plot.ratetrace(d, i=0, m=None, max_num_ph=1000000.0, tmin=0, tmax=200,
bursts=False, burst_picker=True, scroll=False, show_rate_th=True,
F=None, rate_th_style={'label': None}, show_aa=True, legend=False,
set_ax_limits=True, burst_color='#BBBBBB')

Plot the rate timetraces of photon timestamps.

Parameters
• d (Data object) – the measurement’s data to plot.

• i (int) – the channel to plot. Default 0.

• max_num_ph (int) – Clip the rate timetrace after the max number of photons max_num_ph
is reached.

• tmin, tmax (float) – min and max time (seconds) to include in the timetrace. Note that a
long time range and a small binwidth can require a significant amount of memory.

• bursts (bool) – if True, plot the burst start-stop times.

• burst_picker (bool) – if True, enable the ability to click on bursts to obtain burst info. This
function requires the matplotlib’s QT backend.

• scroll (bool) – if True, activate a scrolling bar to quickly scroll through the timetrace. This
function requires the matplotlib’s QT backend.

• show_rate_th (bool) – if True, plot the burst search threshold rate.

• F (bool) – if show_rate is True, show a rate F times larger than the background rate.

• rate_th_style (dict) – matplotlib style for the rate line.

• show_aa (bool) – if True, plot a timetrace for the AexAem photons. If False (default), plot
timetraces only for DexDem and DexAem streams.

• legend (bool) – whether to show the legend or not.

• set_ax_limits (bool) – if True, set the xlim to zoom on a small portion of timetrace. If False,
do not set the xlim, display the full timetrace.

• burst_color (string) – string containing the the HEX RGB color to use to highlight the burst
regions.

fretbursts.burst_plot.ratetrace_single(d, i=0, m=None, max_num_ph=1000000.0, tmin=0, tmax=200,
ph_sel=Ph_sel(Dex='DAem', Aex='DAem'), invert=False,
bursts=False, burst_picker=True, scroll=False, plot_style={},
show_rate_th=True, F=None, rate_th_style={},
set_ax_limits=True, burst_color='#BBBBBB')

Plot the ratetrace of timestamps for a photon selection.

See ratetrace() to plot multiple photon selections (i.e. Donor and Acceptor photons) in one step.

fretbursts.burst_plot.timetrace_bg(d, i=0, nolegend=False, ncol=2, plot_style={}, show_da=False)
Timetrace of background rates.

fretbursts.burst_plot.timetrace_b_rate(d, i=0)
Timetrace of bursts-per-second in each period.

3.8. Plotting Data 55

FRETBursts Documentation, Release 0.7.1+0.gc51b

3.8.2 1D Histograms

Bursts: ratiometric quantities

fretbursts.burst_plot.hist_fret(d, i=0, ax=None, binwidth=0.03, bins=None, pdf=True, hist_style='bar',
weights=None, gamma=1.0, add_naa=False, show_fit_stats=False,
show_fit_value=False, fit_from='kde', show_kde=False, bandwidth=0.03,
show_kde_peak=False, show_model=False, show_model_peaks=True,
hist_bar_style=None, hist_plot_style=None, model_plot_style=None,
kde_plot_style=None, verbose=False)

Plot FRET histogram and KDE.

The most used argument is binwidth that sets the histogram bin width.

For detailed documentation see hist_burst_data().

fretbursts.burst_plot.hist_S(d, i=0, ax=None, binwidth=0.03, bins=None, pdf=True, hist_style='bar',
weights=None, gamma=1.0, add_naa=False, show_fit_stats=False,
show_fit_value=False, fit_from='kde', show_kde=False, bandwidth=0.03,
show_kde_peak=False, show_model=False, show_model_peaks=True,
hist_bar_style=None, hist_plot_style=None, model_plot_style=None,
kde_plot_style=None, verbose=False)

Plot S histogram and KDE.

The most used argument is binwidth that sets the histogram bin width.

For detailed documentation see hist_burst_data().

fretbursts.burst_plot.hist_burst_data(d, i=0, data_name='E', ax=None, binwidth=0.03, bins=None,
vertical=False, pdf=False, hist_style='bar', weights=None,
gamma=1.0, add_naa=False, show_fit_stats=False,
show_fit_value=False, fit_from='kde', show_kde=False,
bandwidth=0.03, show_kde_peak=False, show_model=False,
show_model_peaks=True, hist_bar_style=None,
hist_plot_style=None, model_plot_style=None,
kde_plot_style=None, verbose=False)

Plot burst_data (i.e. E, S, etc. . .) histogram and KDE.

This a generic function to plot histograms for any burst data. In particular this function is called by hist_fret()
and hist_S() to make E and S histograms respectively.

Histograms and KDE can be plotted on any Data variable after burst search. To show a model, a model must be
fitted first by calling d.E_fitter.fit_histogram(). To show the KDE peaks position, they must be computed
first with d.E_fitter.find_kde_max().

The arguments are shown below grouped in logical sections.

Generic arguments
Parameters

• data_name (string) – name of the burst data (i.e. ‘E’ or ‘S’)

• ax (None or matplotlib axis) – optional axis instance to plot in.

• vertical (bool) – if True the x axis is oriented vertically.

• verbose (bool) – if False, suppress any printed output.

Histogram arguments: control the histogram appearance

56 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

Parameters
• hist_style (string) – if ‘bar’ use a classical bar histogram, otherwise do a normal line plot of

bin counts vs bin centers

• bins (None or array) – if None the bins are computed according to binwidth. If not None
contains the arrays of bin edges and overrides binwidth.

• binwidth (float) – bin width for the histogram.

• pdf (bool) – if True, normalize the histogram to obtain a PDF.

• hist_bar_style (dict) – style dict for the histogram when hist_style == 'bar'.

• hist_plot_style (dict) – style dict for the histogram when hist_style != 'bar'.

Model arguments: control the model plot

Parameters
• show_model (bool) – if True shows the model fitted to the histogram

• model (lmfit.Model object or None) – lmfit Model used for histogram fitting. If None the
histogram is not fitted.

• show_model_peaks (bool) – if True marks the position of model peaks

• model_plot_style (dict) – style dict for the model plot

KDE arguments: control the KDE plot

Parameters
• show_kde (bool) – if True shows the KDE curve

• show_kde_peak (bool) – if True marks the position of the KDE peak

• bandwidth (float or None) – bandwidth used to compute the KDE If None the KDE is not
computed.

• kde_plot_style (dict) – style dict for the KDE curve

Weights arguments (weights are used to weight bursts according to their size, affecting histograms and KDEs).

Parameters
• weights (string or None) – kind of burst-size weights. See fretbursts.fret_fit.
get_weights().

• gamma (float) – gamma factor passed to get_weights().

• add_naa (bool) – if True adds naa to the burst size.

Fit text arguments: control how to print annotation with fit information.

Parameters
• fit_from (string) – determines how to obtain the fit value. If ‘kde’ the fit value is the KDE

peak. Otherwise it must be the name of a model parameter that will be used as fit value.

• show_fit_value (bool) – if True annotate the plot with fit value.

• show_fit_stats (bool) – if True annotate the figure with mean fit value and max deviation
across the channels (for multi-spot).

3.8. Plotting Data 57

FRETBursts Documentation, Release 0.7.1+0.gc51b

Bursts: tail distributions

fretbursts.burst_plot.hist_size(d, i=0, which='all', bins=(0, 600, 4), pdf=False, weights=None,
yscale='log', gamma=1, beta=1, donor_ref=True, add_naa=False,
ph_sel=None, naa_aexonly=False, naa_comp=False, na_comp=False,
vline=None, label_prefix=None, legend=True, color=None,
plot_style=None)

Plot histogram of “burst sizes”, according to different definitions.

Parameters
• d (Data) – Data object

• i (int) – channel index

• bins (array or None) – array of bin edges. If len(bins) == 3 then is interpreted as (start, stop,
step) values.

• which (string) – what photons to include in “size”. Valid values are ‘all’, ‘nd’, ‘na’, ‘naa’.
When ‘all’, sizes are computed with d.burst_sizes() (by default nd + na); ‘nd’, ‘na’, ‘naa’
get counts from d.nd, d.na, d.naa (respectively Dex-Dem, Dex-Aem, Aex-Aem).

• gamma, beta (floats) – factors used to compute the corrected burst size. Ignored when
which != ‘all’. See fretbursts.burstlib.Data.burst_sizes_ich().

• add_naa (bool) – if True, include naa to the total burst size.

• donor_ref (bool) – convention used for corrected burst size computation. See fretbursts.
burstlib.Data.burst_sizes_ich() for details.

• na_comp (bool) – [PAX-only] If True, multiply the na term by (1 + Wa/Wd), where Wa
and Wd are the D and A alternation durations (typically Wa/Wd = 1).

• naa_aexonly (bool) – [PAX-only] if True, the naa term is corrected to include only A emis-
sion due to A excitation. If False, the naa term includes all the counts in DAexAem. The
naa term also depends on the naa_comp argument.

• naa_comp (bool) – [PAX-only] If True, multiply the naa term by (1 + Wa/Wd) where Wa
and Wd are the D and A alternation durations (typically Wa/Wd = 1). The naa term also
depends on the naa_aexonly argument.

• label_prefix (string or None) – a custom prefix for the legend label.

• color (string or tuple or None) – matplotlib color used for the plot.

• pdf (bool) – if True, normalize the histogram to obtain a PDF.

• yscale (string) – ‘log’ or ‘linear’, sets the plot y scale.

• legend (bool) – if True add legend to plot

• plot_style (dict) – dict of matplotlib line style passed to plot.

• vline (float) – If not None, plot vertical line at the specified x position.

See also:

• fretbursts.burstlib.Data.burst_sizes_ich().

• fretbursts.burstlib.Data.burst_sizes_pax_ich().

58 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

fretbursts.burst_plot.hist_size_all(d, i=0, **kwargs)
Plot burst sizes for all the combinations of photons.

Calls hist_size() multiple times with different which parameters.

fretbursts.burst_plot.hist_width(d, i=0, bins=(0, 10, 0.025), pdf=True, weights=None, yscale='log',
color=None, plot_style=None, vline=None)

Plot histogram of burst durations.

Parameters
• d (Data) – Data object

• i (int) – channel index

• bins (array or None) – array of bin edges. If len(bins) == 3 then is interpreted as (start, stop,
step) values.

• pdf (bool) – if True, normalize the histogram to obtain a PDF.

• color (string or tuple or None) – matplotlib color used for the plot.

• yscale (string) – ‘log’ or ‘linear’, sets the plot y scale.

• plot_style (dict) – dict of matplotlib line style passed to plot.

• vline (float) – If not None, plot vertical line at the specified x position.

fretbursts.burst_plot.hist_brightness(d, i=0, bins=(0, 60, 1), pdf=True, weights=None, yscale='log',
gamma=1, add_naa=False, ph_sel=Ph_sel(Dex='DAem',
Aex='DAem'), beta=1.0, donor_ref=True, naa_aexonly=False,
naa_comp=False, na_comp=False, label_prefix=None,
color=None, plot_style=None, vline=None)

Plot histogram of burst brightness, i.e. burst size / duration.

Parameters
• d (Data) – Data object

• i (int) – channel index

• bins (array or None) – array of bin edges. If len(bins) == 3 then is interpreted as (start, stop,
step) values.

• gamma, beta (floats) – factors used to compute the corrected burst size. See fretbursts.
burstlib.Data.burst_sizes_ich().

• add_naa (bool) – if True, include naa to the total burst size.

• donor_ref (bool) – convention used for corrected burst size computation. See fretbursts.
burstlib.Data.burst_sizes_ich() for details.

• na_comp (bool) – [PAX-only] If True, multiply the na term by (1 + Wa/Wd), where Wa
and Wd are the D and A alternation durations (typically Wa/Wd = 1).

• naa_aexonly (bool) – [PAX-only] if True, the naa term is corrected to include only A emis-
sion due to A excitation. If False, the naa term includes all the counts in DAexAem. The
naa term also depends on the naa_comp argument.

• naa_comp (bool) – [PAX-only] If True, multiply the naa term by (1 + Wa/Wd) where Wa
and Wd are the D and A alternation durations (typically Wa/Wd = 1). The naa term also
depends on the naa_aexonly argument.

• label_prefix (string or None) – a custom prefix for the legend label.

3.8. Plotting Data 59

FRETBursts Documentation, Release 0.7.1+0.gc51b

• color (string or tuple or None) – matplotlib color used for the plot.

• pdf (bool) – if True, normalize the histogram to obtain a PDF.

• yscale (string) – ‘log’ or ‘linear’, sets the plot y scale.

• plot_style (dict) – dict of matplotlib line style passed to plot.

• vline (float) – If not None, plot vertical line at the specified x position.

fretbursts.burst_plot.hist_sbr(d, i=0, bins=(0, 30, 1), pdf=True, weights=None, color=None,
plot_style=None)

Histogram of per-burst Signal-to-Background Ratio (SBR).

fretbursts.burst_plot.hist_burst_phrate(d, i=0, bins=(0, 1000, 20), pdf=True, weights=None,
color=None, plot_style=None, vline=None)

Histogram of max photon rate in each burst.

Others

fretbursts.burst_plot.hist_interphoton_single(d, i=0, binwidth=0.0001, tmax=None, bins=None,
ph_sel=Ph_sel(Dex='DAem', Aex='DAem'),
period=None, yscale='log', xscale='linear', xunit='ms',
plot_style=None)

Plot histogram of interphoton delays for a single photon streams.

Parameters
• d (Data object) – the input data.

• i (int) – the channel for which the plot must be done. Default is 0. For single-spot data the
only valid value is 0.

• binwidth (float) – histogram bin width in seconds.

• tmax (float or None) – max timestamp delay in the histogram (seconds). If None (default),
uses the the max timestamp delay in the stream. If not None, the plotted histogram may be
further trimmed to the smallest delay with counts > 0 if this delay happens to be smaller than
tmax.

• bins (array or None) – specifies the bin edged (in seconds). When bins is not None then
the arguments binwidth and tmax are ignored. When bins is None, the bin edges are
computed from the binwidth and tmax arguments.

• ph_sel (Ph_sel object) – photon stream for which plotting the histogram

• period (int) – the background period to use for plotting the histogram. The background
period is a time-slice of the measurement from which timestamps are taken. If period is
None (default) the time-windows is the full measurement.

• yscale (string) – scale for the y-axis. Valid values include ‘log’ and ‘linear’. Default ‘log’.

• xscale (string) – scale for the x-axis. Valid values include ‘log’ and ‘linear’. Default ‘linear’.

• xunit (string) – unit used for the x-axis. Valid values are ‘s’, ‘ms’, ‘us’, ‘ns’. Default ‘ms’.

• plot_style (dict) – keyword arguments to be passed to matplotlib’s plot function. Used to
customize the plot style.

60 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

fretbursts.burst_plot.hist_interphoton(d, i=0, binwidth=0.0001, tmax=None, bins=None, period=None,
yscale='log', xscale='linear', xunit='ms', plot_style=None,
show_da=False, legend=True)

Plot histogram of photon interval for different photon streams.

Parameters
• d (Data object) – the input data.

• i (int) – the channel for which the plot must be done. Default is 0. For single-spot data the
only valid value is 0.

• binwidth (float) – histogram bin width in seconds.

• tmax (float or None) – max timestamp delay in the histogram (seconds). If None (default),
uses the the max timestamp delay in the stream. If not None, the plotted histogram may be
further trimmed to the smallest delay with counts > 0 if this delay happens to be smaller than
tmax.

• bins (array or None) – specifies the bin edged (in seconds). When bins is not None then
the arguments binwidth and tmax are ignored. When bins is None, the bin edges are
computed from the binwidth and tmax arguments.

• period (int) – the background period to use for plotting the histogram. The background
period is a time-slice of the measurement from which timestamps are taken. If period is
None (default) the time-windows is the full measurement.

• yscale (string) – scale for the y-axis. Valid values include ‘log’ and ‘linear’. Default ‘log’.

• xscale (string) – scale for the x-axis. Valid values include ‘log’ and ‘linear’. Default ‘linear’.

• xunit (string) – unit used for the x-axis. Valid values are ‘s’, ‘ms’, ‘us’, ‘ns’. Default ‘ms’.

• plot_style (dict) – keyword arguments to be passed to matplotlib’s plot function. Used to
customize the plot style.

• show_da (bool) – If False (default) do not plot the AexDem photon stream. Ignored when
the measurement is not ALEX.

• legend (bool) – If True (default) plot a legend.

fretbursts.burst_plot.hist_bg_single(d, i=0, binwidth=0.0001, tmax=0.01, bins=None,
ph_sel=Ph_sel(Dex='DAem', Aex='DAem'), period=0, yscale='log',
xscale='linear', xunit='ms', plot_style=None, show_fit=True,
fit_style=None, manual_rate=None)

Plot histogram of photon interval for a single photon streams.

Optionally plots the fitted background as an exponential curve. Most arguments are described in
hist_interphoton_single(). In the following we document only the additional arguments.

Parameters
• show_fit (bool) – If True shows the fitted background rate as an exponential distribution.

• manual_rate (float or None) – When not None use this value as background rate (ignoring
the value saved in Data).

• fit_style (dict) – arguments passed to matplotlib’s plot for for plotting the exponential curve.

For a description of all the other arguments see hist_interphoton_single().

fretbursts.burst_plot.hist_bg(d, i=0, binwidth=0.0001, tmax=0.01, bins=None, period=0, yscale='log',
xscale='linear', xunit='ms', plot_style=None, show_da=False, legend=True,
show_fit=True, fit_style=None)

3.8. Plotting Data 61

FRETBursts Documentation, Release 0.7.1+0.gc51b

Plot histogram of photon interval for different photon streams.

Optionally plots the fitted background. Most arguments are described in hist_interphoton(). In the follow-
ing we document only the additional arguments.

Parameters
• show_fit (bool) – If True shows the fitted background rate as an exponential distribution.

• fit_style (dict) – arguments passed to matplotlib’s plot for for plotting the exponential curve.

For a description of all the other arguments see hist_interphoton().

fretbursts.burst_plot.hist_burst_delays(d, i=0, bins=(0, 10, 0.2), pdf=False, weights=None,
color=None, plot_style=None)

Histogram of waiting times between bursts.

fretbursts.burst_plot.hist_asymmetry(d, i=0, bin_max=2, binwidth=0.1, stat_func=<function median>)

3.8.3 ALEX plots

fretbursts.burst_plot.alex_jointplot(d, i=0, gridsize=50, cmap='Spectral_r', kind='hex',
vmax_fret=True, vmin=1, vmax=None, joint_kws=None,
marginal_kws=None, marginal_color=10, rightside_text=False,
E_name='E', S_name='S')

Plot an ALEX join plot: an E-S 2D histograms with marginal E and S.

This function plots a jointplot: an inner 2D E-S distribution plot and the marginal distributions for E and S
separately. By default, the inner plot is an hexbin plot, i.e. the bin shape is hexagonal. Hexagonal bins reduce
artifacts due to discretization. The marginal plots are histograms with a KDE overlay.

Parameters
• d (Data object) – the variable containing the bursts to plot

• i (int) – the channel number. Default 0.

• gridsize (int) – the grid size for the 2D histogram (hexbin)

• C (1D array or None) – array of weights, it must have size equal to the number of bursts in
channel i (d.num_bursts[i]). Passed to matplotlib hexbin().

• cmap (string) – name of the colormap for the 2D histogram. In addition to matplotlib col-
ormaps, FRETbursts defines these custom colormaps: ‘alex_light’, ‘alex_dark’ and ‘alex_lv’.
Default ‘alex_light’.

• kind (string) – kind of plot for the 2-D distribution. Valid values: ‘hex’ for hexbin plots,
‘kde’ for kernel density estimation, ‘scatter’ for scatter plot.

• vmax_fret (bool) – if True, the colormap max value is equal to the max bin counts in the
FRET region (S < 0.8). If False the colormap max is equal to the max bin counts.

• vmin (int) – min value in the histogram mapped by the colormap. Default 0, the colormap
lowest color represents bins with 0 counts.

• vmax (int or None) – max value in the histogram mapped by the colormap. When None,
vmax is computed automatically from the data and dependes on the argument vmax_fret.
Default None.

62 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

• joint_kws (dict) – keyword arguments passed to the function which plots the inner 2-D
distribution (i.e matplotlib scatter or hexbin or seaborn kdeplot). and hence to matplolib
hexbin to customize the plot style.

• marginal_kws (dict) – keyword arguments passed to the function hist_burst_data()
used to plot the maginal distributions.

• marginal_color (int or color) – color to be used for the marginal histograms. It can be an
integer or any color accepted by matplotlib. If integer, it represents a color in the colormap
cmap from 0 (lowest cmap color) to 99 (highest cmap color).

• rightside_text (bool) – when True, print the measurement name on the right side of the
figure. When False (default) no additional text is printed.

• E_name, S_name (string) – name of the Data attribute to be used for E and S. The default
is ‘E’ and ‘S’ respectively. These arguments are used when adding your own cutom E or S
attributes to Data using Data.add. In this case, you can specify the name of these custom
attributes so that they can be plotted as an E-S histogram.

Returns
A matplotlib.figure.Figure object that can be used for tweaking the plot.

fretbursts.burst_plot.hist2d_alex(d, i=0, vmin=2, vmax=0, binwidth=0.05, S_max_norm=0.8,
interp='bicubic', cmap='hot', under_color='white', over_color='white',
scatter=True, scatter_ms=3, scatter_color='orange', scatter_alpha=0.2,
gui_sel=False, cbar_ax=None, grid_color='#D0D0D0')

Plot 2-D E-S ALEX histogram with a scatterplot overlay.

fretbursts.burst_plot.hexbin_alex(d, i=0, vmin=1, vmax=None, gridsize=80, cmap='Spectral_r',
E_name='E', S_name='S', **hexbin_kwargs)

Plot an hexbin 2D histogram for E-S.

fretbursts.burst_plot.plot_ES_selection(ax, E1, E2, S1, S2, rect=True, **kwargs)
Plot an overlay ROI on top of an E-S plot (i.e. ALEX histogram).

This function plots a rectangle and inscribed ellipsis with x-axis limits (E1, E2) and y-axis limits (S1, S2).

Note that, a dict with keys (E1, E2, S1, S2, rect) can be also passed to fretbursts.select_bursts.ES() to
apply a selection.

Parameters
• ax (matplotlib axis) – the axis where the rectangle is plotted. Typically you pass the axis of

a previous E-S scatter plot or histogram.

• E1, E2, S1, S2 (floats) – limits for E and S (X and Y axis respectively) used to plot the
rectangle.

• rect (bool) – if True, the rectangle is highlighted and the ellipsis is grey. The color are
swapped otherwise.

• **kwargs – other keywords passed to both matplotlib’s Rectangle and Ellipse.

See also:
For selecting bursts according to (E1, E2, S1, S2, rect) see:

• fretbursts.select_bursts.ES()

fretbursts.burst_plot.plot_alternation_hist(d, bins=None, ax=None, **kwargs)
Plot the ALEX alternation histogram for the variable d.

This function works both for us-ALEX and ns-ALEX data.

3.8. Plotting Data 63

FRETBursts Documentation, Release 0.7.1+0.gc51b

This function must be called on ALEX data before calling fretbursts.loader.alex_apply_period().

fretbursts.burst_plot.plot_alternation_hist_nsalex(d, bins=None, ax=None, ich=0, hist_style={},
span_style={})

Plot the ns-ALEX alternation histogram for the variable d.

This function must be called on ns-ALEX data before calling fretbursts.loader.alex_apply_period().

3.8.4 Scatter plots

fretbursts.burst_plot.scatter_width_size(d, i=0)
Scatterplot of burst width versus size.

fretbursts.burst_plot.scatter_da(d, i=0, alpha=0.3)
Scatterplot of donor vs acceptor photons (nd, vs na) in each burst.

fretbursts.burst_plot.scatter_rate_da(d, i=0)
Scatter of nd rate vs na rate (rates for each burst).

fretbursts.burst_plot.scatter_fret_size(d, i=0, which='all', gamma=1, add_naa=False,
plot_style=None)

Scatterplot of FRET efficiency versus burst size.

fretbursts.burst_plot.scatter_fret_nd_na(d, i=0, gamma=1.0, **kwargs)
Scatterplot of FRET versus gamma-corrected burst size.

fretbursts.burst_plot.scatter_fret_width(d, i=0)
Scatterplot of FRET versus burst width.

fretbursts.burst_plot.scatter_naa_nt(d, i=0, alpha=0.5)
Scatterplot of nt versus naa.

fretbursts.burst_plot.scatter_alex(d, i=0, **kwargs)
Scatterplot of E vs S. Keyword arguments passed to plot.

3.9 Burst Search in FRETBursts

This section describes details and conventions used to implement burst search in FRETBursts. For a more general
explanation of burst search concepts see (Ingargiola PLOS ONE 2016). For usage examples see the s-ALEX notebook.
An analysis of implementation performances of the low-level burst search can be found in this blog post: Optimizing
burst search in python.

3.9.1 Defining the rate estimator

Before describing FRETBursts implementation let me introduce an expression for computing rates of random events
that will be used later on. A general expression, used by FRETBursts (since version 0.5.6), for estimating the rate using
m consecutive timestamps is:

�̂� =
𝑚− 1− 𝑐

𝑡𝑖+𝑚−1 − 𝑡𝑖
(3.1)

where 𝑐 is a parameter that can be passed to all FRETBursts functions that deal with photon rates. Note that 𝑚 is the
number of photons and 𝑚 − 1 is the number of inter-photon delays. For example, using 𝑐 = 1, yields an unbiased

64 Chapter 3. FRETBursts Reference Manual

http://dx.doi.org/10.1101/039198
http://nbviewer.ipython.org/urls/raw.github.com/OpenSMFS/FRETBursts_notebooks/master/notebooks/FRETBursts%2520-%2520us-ALEX%2520smFRET%2520burst%2520analysis.ipynb
http://tritemio.github.io/smbits/2015/12/06/optimize-burst-search-python/
http://tritemio.github.io/smbits/2015/12/06/optimize-burst-search-python/

FRETBursts Documentation, Release 0.7.1+0.gc51b

estimator of the rate for events generated by a stationary Poisson process. See this notebook for a discussion of the
different estimator properties as a function of 𝑐. In practice, the choice of 𝑐 is just a convention and it is provided for
flexibility and to match results of other software that may use a different definition.

In FRETBursts version 0.5.5 or earlier, there is no c parameter and the rate is always computed as �̂� = 𝑚/(𝑡𝑖+𝑚−1−𝑡𝑖)
(equivalent to 𝑐 = −1).

3.9.2 Conventions in burst search

Burst search is mainly performed calling the method Data.burst_search(). The AND-gate burst search function
(fretbursts.burstlib_ext.burst_search_and()) calls Data.burst_search() under the hood, so all the con-
siderations below are also valid for the AND-gate version.

With Data.burst_search(), you can perform burst search by setting a “rate threshold” F times larger than the back-
ground rate (argument F), or you can just set a single fixed rate for the full measurement (argument min_rate_cps).
In both cases the real burst search is performed by the low-level function phtools.burstsearch.bsearch_py(),
which takes as input parameters m and T. This function finds bursts when a group of m consecutive photons lies within
a time window T. You can find an analysis of the algorithm implementation and performance considerations in this
blog post.

When using the F argument, FRETBursts will choose the appropriate T for each background period in order to obtain
a “rate threshold” F times larger than background rate. In this case, FRETBursts uses the following expression to
compute T (derived from (3.1)):

𝑇 (𝑡) =
𝑚− 1− 𝑐

𝐹 · �̂�𝑏𝑔(𝑡)

where �̂�𝑏𝑔(𝑡) is the estimated background rate as a function of time (𝑡).

Conversely, when directly fixing a rate with the argument min_rate_cps (𝜆𝑡ℎ), FRETBursts computes T using the
expression:

𝑇 =
𝑚− 1− 𝑐

𝜆𝑡ℎ

The parameter 𝑐 can be specified when performing burst search. When not specified, the default value of 𝑐 = −1 is
used. This choice preserves backward compatibility with results obtained with FRETBursts 0.5.5 or earlier.

3.9.3 The Core Algorithm

The different types of burst search described in the previous sections are implemented calling the same low-level burst
search function which implements the core “sliding window” algorithm. Here we explain in details this core algorithm.

The low-level burst search takes as an input the array of (monotonically increasing) photon timestamps, as well as two
other arguments m (the number of timestamps) and T (the time window duration). Starting from the the first element
of the array, we consider all the m-tuple of timestamps [0..m-1], [1..m], etc.

Point 1. For each m-tuple if the timestamps are contained in a time window smaller or equal to T we mark a burst start
at the position of the first timestamp in the current m-tuple. Otherwise we take the next m-tuple and repeat the check.

Once a burst starts, we keep “sliding” the m-tuple one timestamp a time. If the current m-tuple is still contained in
a window of duration T the burst continues. When the current m-tuple is contained in a window larger than T the
burst ends. When this happens, the last timestamp in a burst is the (m-1)-th timestamp of current m-tuple (i.e. the last
timestamps of the previous m-tuple which was still contained in a window T). After the burst ends, we continue as in
point 1 checking the next m-tuple. This is shifted by only one timestamp (i.e. there is no jump when the burst ends).

At this point, it can happen that the current m-tuple is contained in T and a new burst starts right away. In this situation
the new bursts will have m-2 timestamps overlapping with the previous one.

3.9. Burst Search in FRETBursts 65

http://nbviewer.jupyter.org/github/tritemio/notebooks/blob/master/Estimation%20of%20rates%20of%20random%20events.ipynb
http://tritemio.github.io/smbits/2015/12/06/optimize-burst-search-python/

FRETBursts Documentation, Release 0.7.1+0.gc51b

At the end of the timestamp array, if a burst is currently started we end it by marking the last timestamp as burst stop.
The set of bursts obtained in this way has the minimum-rate property, i.e. all the m-tuple of consecutive timestamps
in any burst are guaranteed to be contained in a windows T or smaller. Conversely, a few bursts will overlap and thus
share some timestamps. If the user wants to avoid overlapping bursts a burst fusion steps must be applied as described
in next section. Note, however, that after fusing overlapping bursts at least one m-tuple inside each fused burst will not
have the minimum-rate property, i.e. the m-tuple is contained in a window larger than T.

The previous function is implemented in phtools.burstsearch.bsearch_py() (pure python version) and in
phtools.burstsearch_c.bsearch_c() (optimized cython version). Several tests make sure that the two func-
tions return numerically identical results. An analysis of performance of of different implementations can be found in
this blog post: Optimizing burst search in python.

3.9.4 Burst Fusion

Burst fusion is an operation which fuses consecutive bursts if the start of the second bursts minus the end of the first
burst (called burst separation) is <= of a fusion time 𝑡𝑓 . When bursts are overlapping (see previous section) the burst
separation is negative. Therefore, to avoid overlapping bursts, we need to apply fusion with separation of 0. Note that
with this condition, if a bursts ends on a timestamp which is the start of the next burst (i.e. 1 overlapping photon) the
two bursts will be fused. Conversely if one burst ends and the next burst starts one photon later (0 overlapping photons)
the two bursts will be kept separated. In the latter case, there will be no timestamp between the end of the previous
burst and the start of the next one.

To perform burst fusion use the method Data.fuse_bursts().

3.9.5 Low-level burst search functions

The module phtools.burstsearch provides the low-level (or core) burst search and photon counting functions. This
module also provides Bursts, a container for a set of bursts. Bursts provides attributes for the main burst quatitites
(istart, istop, start, stop, counts, width, etc. . .). It implements the iterator interface (iterate burst by burst).
Moreover Bursts can be indexed ([], i.e. getitem interface) supporting the same indexing as a numpy 1-D array.

The burst search functions return a 2-D array (burst array) of shape Nx4, where N is the number of bursts. This array
can used to build a Bursts object using:

Bursts(bursts_array)

As an example, let assume having a burst array bursts. To take a slice of only the first 10 bursts you can do:

bursts10 = bursts[:10] # new Bursts object with the first 10 bursts

To obtain the burst start of all the bursts:

bursts.start

To obtain the burst counts (number of photons) for the 10-th to 20-th burst:

bursts[10:20].counts

For efficiency, when iterating over Bursts the returned burst is a named tuple Burst, which implements the same
attributes as Bursts (istart, istop, start, stop, counts and width). This results in faster iteration and attribute access than
using Bursts objects with only one burst.

Three methods allow to transform Bursts to refer to a new timestamps array:

• Bursts.recompute_times()

66 Chapter 3. FRETBursts Reference Manual

http://tritemio.github.io/smbits/2015/12/06/optimize-burst-search-python/

FRETBursts Documentation, Release 0.7.1+0.gc51b

• Bursts.recompute_index_expand()

• Bursts.recompute_index_reduce()

Finally, in order to support fusion of consecutive bursts, we provide the class BurstsGap (and single-burst version
BurstGap) which add the attributes gap and gap_counts that contains the duration and the number of photons in
gaps inside a burst. The attribute width is the total burst duration minus gap, while counts is the total number of
photons minus photons falling inside gaps (gaps are open intervals, do not include edges).

class fretbursts.phtools.burstsearch.Burst(istart, istop, start, stop)
Container for a single burst.

property counts

Number of photons in the burst.

property ph_rate

Photon rate in the burst (total photon counts/duration).

property width

Burst duration in timestamps unit.

class fretbursts.phtools.burstsearch.BurstGap(istart, istop, start, stop, gap, gap_counts)

property counts

Number of photons in the burst, minus gap_counts.

static from_burst(burst)
Build a BurstGap from a Burst object.

property width

Burst duration in timestamps unit, minus gap time.

class fretbursts.phtools.burstsearch.Bursts(burstarray)
A container for burst data.

This class provides a container for burst data. It has a set of attributes (start, stop, istart, istop, counts,
width, ph_rate, separation) that can be accessed to obtain burst data. Only a few fundamental attributes are
stored, the others are comuputed on-fly using python properties.

Other attributes are dataframe (a pandas.DataFramewith the complete burst data), num_bursts (the number
of bursts).

Bursts objects can be built from a list of single Burst objects by using the method Bursts.from_list(),
or from 2D arrays containing bursts data (one row per burst; columns: istart, istop, start, stop) such as the ones
returned by burst search functions (e.g. bsearch_py()).

Bursts objects are iterable, yielding one burst a time (Burst objects). Bursts can be compared for equality
(with ==) and copied (Bursts.copy()).

Additionally basic methods for burst manipulation are provided:

• recompute_times recompute start and stop times using the current start and stop index and a new times-
tamps array passed as argument.

• recompute_index_* recompute start and stop indexes to refer to an expanded or reduced timestamp se-
lection.

Other methods are:

• and_gate computing burst intersection with a second set of bursts. Used to implement the dual-channel
burst search (DCBS).

3.9. Burst Search in FRETBursts 67

FRETBursts Documentation, Release 0.7.1+0.gc51b

Methods that may be implemented in the future:

• or_gate: computing union with a second set of bursts.

• fuse_bursts: fuse nearby bursts.

and_gate(bursts2)
From 2 burst arrays return bursts defined as intersection (AND rule).

The two input burst-arrays come from 2 different burst searches. Returns new bursts representing the over-
lapping bursts in the 2 inputs with start and stop defined as intersection (or AND) operator.

Both input and output are Bursts objects.

Parameters
bursts_a (Bursts object) – second set of bursts to be intersected with bursts in self. The
number of bursts in self and bursts_a can be different.

Returns
Bursts object containing intersections (AND) of overlapping bursts.

copy()

Return a new copy of current Bursts object.

property counts

Number of photons in each burst.

property dataframe

A pandas.DataFrame containing burst data, one row per burst.

classmethod empty(num_bursts=0)
Return an empty Bursts() object.

classmethod from_list(bursts_list)
Build a new Bursts() object from a list of Burst.

property istart

Index of 1st ph in each burst

property istop

Index of last ph in each burst

join(bursts, sort=False)
Join the current Bursts object with another one. Returns a copy.

classmethod merge(list_of_bursts, sort=False)
Merge Bursts in list_of_bursts, returning a new Bursts object.

property num_bursts

Number of bursts.

property ph_rate

Photon rate in burst (tot size/duration)

recompute_index_expand(mask, out=None)
Recompute istart and istop from selection mask to full timestamps.

This method returns a new Bursts object with recomputed istart and istop. Old istart, istop are assumed to
be index of a reduced array timestamps[mask]. New istart, istop are computed to be index of a “full”
timestamps array of size mask.size.

68 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

This is useful when performing burst search on a timestamps selection and we want to transform the burst
data to use the index of the “full” timestamps array.

Parameters
• mask (bool array) – boolean mask defining the timestamps selection on which the old istart

and istop were computed.

• out (None or Bursts) – if None (default), do computations on a copy of the current object.
Otherwise, modify the Bursts object passed (can be used for in-place operations).

Returns
Bursts object with recomputed istart/istop.

recompute_index_reduce(times_reduced, out=None)
Recompute istart and istop on reduced timestamps times_reduced.

This method returns a new Bursts object with same start and stop times and recomputed istart and istop.
Old istart, istop are assumed to be index of a “full” timestamps array of size mask.size. New istart, istop
are computed to be index of the reduced timestamps array timestamps_reduced.

Note: it is required that all the start and stop times are also contained in the reduced timestamps selection.

This method is the inverse of recompute_index_expand().

Parameters
• times_reduced (array) – array of selected timestamps used to compute the new istart and

istop. This array needs to be a sub-set of the original timestamps array.

• out (None or Bursts) – if None (default), do computations on a copy of the current object.
Otherwise, modify the Bursts object passed (can be used for in-place operations).

Returns
Bursts object with recomputed istart/istop times.

recompute_times(times, out=None)
Recomputes start, stop times using timestamps from a new array.

This method computes burst start, stop using the index of timestamps from the current object and times-
tamps from the passed array times.

This is useful, for example, when burst search is computed on a “compacted” timestamps array (i.e. remov-
ing the gaps outside the alternation period in usALEX experiments), and afterwards the “real” start and
stop times needs to be recomputed.

Parameters
• times (array) – array of photon timestamps

• out (None or Bursts) – if None (default), do computations on a copy of the current object.
Otherwise, modify the Bursts object passed (can be used for in-place operations).

Returns
Bursts object with recomputed start/stop times.

property separation

Separation between nearby bursts

property size

Number of bursts. Used for compatibility with ndarray.size. Use Bursts.num_bursts preferentially.

3.9. Burst Search in FRETBursts 69

FRETBursts Documentation, Release 0.7.1+0.gc51b

property start

Time of 1st ph in each burst

property stop

Time of last ph in each burst

property width

Burst duration in timestamps units.

class fretbursts.phtools.burstsearch.BurstsGap(burstarray)
A container for bursts with optional gaps.

This class extend Bursts adding the attributes/properties gap (a duration) and gap_counts (counts in gap) that
allow accounting for gaps inside bursts.

property counts

Number of photons in each burst, minus the gap_counts.

property dataframe

A pandas.DataFrame containing burst data, one row per burst.

classmethod from_list(bursts_list)
Build a new BurstsGap() from a list of BurstGap.

property gap

Time gap inside a burst

property gap_counts

Number of photons falling inside gaps of each burst.

property width

Burst duration in timestamps units, minus the gap time.

fretbursts.phtools.burstsearch.bsearch_py(times, L, m, T, slice_=None, label='Burst search',
verbose=True)

Sliding window burst search. Pure python implementation.

Finds bursts in the array time (int64). A burst starts when the photon rate is above a minimum threshold, and
ends when the rate falls below the same threshold. The rate-threshold is defined by the ratio m/T (m photons in a
time interval T). A burst is discarded if it has less than L photons.

Parameters
• times (array, int64) – array of timestamps on which to perform the search

• L (int) – minimum number of photons in a bursts. Bursts with size (or counts) < L are
discarded.

• m (int) – number of consecutive photons used to compute the rate.

• T (float) – max time separation of m photons to be inside a burst

• slice_ (tuple) – 2-element tuple used to slice times

• label (string) – a label printed when the function is called

• verbose (bool) – if False, the function does not print anything.

Returns
Array of burst data Nx4, type int64. Column order is: istart, istop, start, stop.

70 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

fretbursts.phtools.burstsearch.count_ph_in_bursts(bursts, mask)
Counts number of photons in each burst counting only photons in mask.

This function takes a Bursts object and a boolean mask (photon selection) and computes the number of photons
selected by the mask. It is used, for example, to count donor and acceptor photons in each burst.

For a multi-channel version see mch_count_ph_in_bursts_py().

Parameters
• bursts (Bursts object) – the bursts used as input

• mask (1D boolean array) – the photon mask. The boolean mask must be of the same size
of the timestamp array used for burst search.

Returns
A 1D array containing the number of photons in each burst counting only photons in the selection
mask.

fretbursts.phtools.burstsearch.mch_count_ph_in_bursts_py(Mburst, Mask)
Counts number of photons in each burst counting only photons in Mask.

This multi-channel function takes a list of a Bursts objects and photon masks and computes the number of
photons selected by the mask in each channel.

It is used, for example, to count donor and acceptor photons in each burst.

For a single-channel version see count_ph_in_bursts_py().

Parameters
• Mburst (list Bursts objects) – a list of bursts collections, one per ch.

• Mask (list of 1D boolean arrays) – a list of photon masks (one per ch), For each channel,
the boolean mask must be of the same size of the timestamp array used for burst search.

Returns
A list of 1D array, each containing the number of photons in each burst counting only photons in
the selection mask.

3.10 Photon rates functions

This module provides functions to compute photon rates from timestamps arrays. Different methods to compute rates
are implemented:

1. Consecutive set of m timestamps (“sliding m-tuple”)

2. KDE-based methods with Gaussian or Laplace distribution or rectangular kernels.

Note: When using of “sliding m-tuple” method (1), rates can be only computed for each consecutive set of m times-
tamps. The time-axis can be computed from the mean timestamp in each m-tuple.

When using the KDE method, rates can be computed at any time point. Practically, the time points at which rates are
computed are timestamps (in a photon stream). In other words, we don’t normally use a uniformly sampled time axis
but we use a timestamps array as time axis for the rate.

Note that computing rates with a fixed sliding time window and sampling the function by centering the window on each
timestamp is equivalent to a KDE-based rate computation using a rectangular kernel.

3.10. Photon rates functions 71

FRETBursts Documentation, Release 0.7.1+0.gc51b

fretbursts.phtools.phrates.kde_gaussian(timestamps, tau, time_axis=None)
Computes Gaussian KDE for timestamps evaluated at time_axis.

Computes KDE rates of timestamps using a Gaussian kernel:

kernel = exp(-(t - t0)^2 / (2 * tau^2)))

The rate is computed for each time point in time_axis. When time_axis is None, then timestamps is used
as time axis.

Parameters
• timestamps (array) – arrays of photon timestamps

• tau (float) – sigma of the Gaussian kernel

• time_axis (array or None) – array of time points where the rate is computed. If None, uses
timestamps as time axis.

Returns
rates (array) – non-normalized rates (just the sum of the Gaussian kernels). To obtain rates in
Hz divide the array by 2.5*tau.

fretbursts.phtools.phrates.kde_laplace(timestamps, tau, time_axis=None)
Computes exponential KDE for timestamps evaluated at time_axis.

Computes KDE rates of timestamps using a laplace distribution kernel (i.e. symmetric-exponential):

kernel = exp(-|t - t0| / tau)

The rate is computed for each time point in time_axis. When time_axis is None, then timestamps is used
as time axis.

Parameters
• timestamps (array) – arrays of photon timestamps

• tau (float) – time constant of the exponential kernel

• time_axis (array or None) – array of time points where the rate is computed. If None, uses
timestamps as time axis.

Returns
rates (array) – non-normalized rates (just the sum of the exponential kernels). To obtain rates in
Hz divide the array by 2*tau (or other conventional x*tau duration).

fretbursts.phtools.phrates.kde_rect(timestamps, tau, time_axis=None)
Computes KDE with rect kernel for timestamps evaluated at time_axis.

Computes KDE rates of timestamps using a rectangular kernel which is 1 in the range [-tau/2, tau/2] and
0 otherwise.

The rate is computed for each time point in time_axis. When time_axis is None, then timestamps is used
as time axis.

Parameters
• timestamps (array) – arrays of photon timestamps

• tau (float) – duration of the rectangular kernel

• time_axis (array or None) – array of time points where the rate is computed. If None, uses
timestamps as time axis.

72 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

Returns
rates (array) – non-normalized rates (just the sum of the rectangular kernels). To obtain rates in
Hz divide the array by tau.

fretbursts.phtools.phrates.mtuple_delays(ph, m)
Compute array of m-photons delays of size ph.size - m + 1.

The m-photons delay is defined as the difference between the last and first timestamp in each set of m consecutive
timestamps. The m-photons delay expression is:

t[i + m - 1] - t[i]

for each i in [0 .. ph.size - m].

Parameters
• ph (array) – photon timestamps array

• m (int) – number of timestamps to use

Returns
Array of m-photons delays, with size equal to ph.size - m + 1.

fretbursts.phtools.phrates.mtuple_delays_min(ph, m)
Compute the min m-photons delay in ph.

fretbursts.phtools.phrates.mtuple_rates(ph, m, c=1)
Compute the instantaneous rates for timestamps in ph using m photons.

Compute the rates for all the consecutive sets of m photons. Noting that the number of inter-photon delays is n
= m - 1, the rate is computed with the expression:

(n - c) / (t[last] - t[first])

where “last” and “first” refer to the last and first timestamp in each group of m consecutive timestamps.

By changing c we obtain estimators with different properties. When c=1 (default), the result is the unbiased
estimator of the rate. When c=1/3 we obtain the estimator whose median is equal to the the rate. Empirically,
the minimal RMS error is committed with c=2. All the previous considerations are valid under the assumption
that we are estimating the rate of events generated by a stationary Poisson process.

Parameters
• ph (array) – photon timestamps array

• m (int) – number of timestamps to use for computing the rate

• c (float) – correction factor for the rate estimation.

Returns
Array of rates, with size equal to ph.size - m + 1.

fretbursts.phtools.phrates.mtuple_rates_max(ph, m, c=1)
Compute max m-photon rate in ph.

fretbursts.phtools.phrates.mtuple_rates_t(ph, m)
Compute mean time for each rate computed by mtuple_rates.

3.10. Photon rates functions 73

FRETBursts Documentation, Release 0.7.1+0.gc51b

3.11 FRETBursts plugins

The module burtlib_ext.py (by default imported as bext) contains extensions to burstslib.py. It can be though
as a simple plugin system for FRETBursts.

Functions here defined operate on fretbursts.burstlib.Data() objects extending the functionality beyond the
core functions and methods defined in burstlib. This modularization allows to implement new functions without
overloading the fretbursts.burstlib.Data with an high number of non-core methods.

The type of functions here implemented are quite diverse. A short summary follows.

• burst_search_and_gate() performs the AND-gate burst search taking intersection of the bursts detected in
two photons streams.

• burst_data() returns a pandas DataFrame with burst data (one burst per row). Burst data includes sizes,
duration, E, S, etc. . . .

• burst_photons() returns a pandas DataFrame with photon data such as timestamps or nanotimes inside bursts
(one photon per row).

• bursts_fitter() and fit_bursts_kde_peak() help to build and fit histograms and KDEs for E or S.

• calc_mdelays_hist() computes the histogram of the m-delays distribution of photon intervals.

• moving_window_chunks(): slices the measurement using a moving-window (along the time axis). Used to
follow or detect kinetics.

• join_data() joins different measurements to create a single “virtual” measurement from a series of measure-
ments.

Finally a few functions deal with burst timestamps:

• ph_burst_stats() compute any statistics (for example mean or median) on the timestamps of each burst.

• asymmetry() returns a burst “asymmetry index” based on the difference between Donor and Acceptor times-
tamps.

fretbursts.burstlib_ext.asymmetry(dx, ich=0, func=<function mean>, dropnan=True)
Compute an asymmetry index for each burst in channel ich.

It computes each burst the difference func({t_D}) - func({t_A}) where func is a function (default mean) that
computes some statistics on the timestamp and {t_D} and {t_A} are the sets of D or A timestamps in a bursts
(during D excitation).

Parameters
• d (Data) – Data() object

• ich (int) – channel index

• func (function) – the function to be used to extract D and A photon statistics in each bursts.

Returns
An arrays of photon timestamps (one array per burst).

fretbursts.burstlib_ext.burst_data(dx, include_bg=False, include_ph_index=False, skip_ch=None)
Return a table (pd.DataFrame) of burst data (one row per burst).

Columns include:

• E and S: FRET and stoichiometry for each burst.

• nd, na, naa, nda: burst counts in DexDem, DexAem, AexAem and AexDem photon streams.

• t_start, t_stop: time (in seconds) of first and last photon inside the burst

74 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

• width_ms: burst duration in milliseconds

• size_raw: the total uncorrected burst counts in the photon stream used for burst search

Optional columns include:

• i_start, i_stop: index of burst start and stop relative to the original timestamps array (requires
include_ph_index=True)

• bg_dd, bg_ad, bg_aa, bg_da: background contribution in the DexDem, DexAem, AexAem, AexDem pho-
ton streams (requires include_bg=True).

If the peak photon-counts in each bursts has been computed (see fretbursts.burstlib.Data.
calc_max_rate()), it will be included as a column called max_rate.

Parameters
• include_bg (bool) – if True includes additional columns for burst background (see above).

Default False.

• include_ph_index (bool) – if True includes additional two columns for index of first and
last timestamp in each burst. Default False.

• skip_ch (list or None) – List of channels to skip if measurement is multispot.

Returns
A pandas’s DataFrame containing burst data (one row per burst).

fretbursts.burstlib_ext.burst_data_period_mean(dx, burst_data)
Compute mean burst_data in each period.

Parameters
• dx (Data object) – contains the burst data to process

• burst_data (list of arrays) – one array per channel, each array has one element of “burst
data” per burst.

Returns
2D of arrays with shape (nch, nperiods).

Example
burst_period_mean(dx, dx.nt)

fretbursts.burstlib_ext.burst_photons(dx, skip_ch=None)
Return a pandas.DataFrame of photon-data for bursts in dx.

The returned DataFrame has one row per “photon”. Columns include:

• timestamp: the timestamp of each photon

• nantotime: the TCSPC nanotime of each photon (if available)

• stream: a categorical column indicating the stream of each photon.

• spot: (multispot only) the spot number for each photon

The returned DataFrame has a hierarchical index made of two integers: (burst_id, photon_id). burst_id iden-
tifies the burst while photon_id identifies each photon in a burst. burst_id is the same number used as index
in the DataFrame returned by burst_data(). photon_id always starts at 0 for the first photon in each burst.

Parameters

3.11. FRETBursts plugins 75

FRETBursts Documentation, Release 0.7.1+0.gc51b

• dx (Data) – the Data object containing the measurement

• skip_ch (list or None) – List of channels to skip if measurement is multispot. Default None

Returns
A pandas’s DataFrame containing the photon data for the bursts in dx. The DataFrame has one
row per photon.

fretbursts.burstlib_ext.burst_search_and_gate(dx, F=6, m=10, min_rate_cps=None, c=-1,
ph_sel1=Ph_sel(Dex='DAem', Aex=None),
ph_sel2=Ph_sel(Dex=None, Aex='Aem'),
compact=False, mute=False)

Return a Data object containing bursts obtained by and-gate burst-search.

The and-gate burst search is a composition of 2 burst searches performed on different photon selections. The
bursts in the and-gate burst search are the overlapping bursts in the 2 initial burst searches, and their duration is
the intersection of the two overlapping bursts.

By default the 2 photon selections are D+A photons during D excitation (Ph_sel(Dex='DAem')) and A photons
during A excitation (Ph_sel(Aex='Aex')).

Parameters
• dx (Data object) – contains the data on which to perform the burst search. Background

estimation must be performed before the search.

• F (float or tuple) – burst search parameter F. If it is a 2-element tuple, specifies F separately
for ph_sel1 and ph_sel2.

• m (int or tuple) – Burst search parameter m. If it is a 2-element tuple, specifies m separately
for ph_sel1 and ph_sel2.

• min_rate_cps (float or tuple) – min. rate in cps for burst detection. If not None,
min_rate_cps overrides any value passed in F. If a 2-element tuple specifies min_rate_cps
separately for ph_sel1 and ph_sel2. In multispot data, it can also be an array (or a 2-tuple
or arrays) with size equal to the number of spots.

• c (float) – parameter used set the definition of the rate estimatator. See c parameter in
burstlib.Data.burst_search() for details.

• ph_sel1 (Ph_sel object) – photon selections used for bursts search 1.

• ph_sel2 (Ph_sel object) – photon selections used for bursts search 2.

• mute (bool) – if True nothing is printed. Default: False.

Returns
A new Data object containing bursts from the and-gate search.

See also fretbursts.burstlib.Data.burst_search().

fretbursts.burstlib_ext.bursts_fitter(dx, burst_data='E', save_fitter=True, weights=None, gamma=1,
add_naa=False, skip_ch=None, binwidth=None,
bandwidth=None, model=None, verbose=False, fit_tot=True)

Create a mfit.MultiFitter object (for E or S) add it to dx.

A MultiFitter object allows to fit multi-channel data with the same model.

Parameters
• dx (Data) – Data object containing the FRET data

• save_fitter (bool) – if True save the MultiFitter object in the dx object with name:
burst_data + ‘_fitter’.

76 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

• burst_data (string) – name of burst-data attribute (i.e ‘E’ or ‘S’).

• weights (string or None) – kind of burst-size weights. See fretbursts.fret_fit.
get_weights().

• gamma (float) – gamma factor passed to get_weights().

• add_naa (bool) – if True adds naa to the burst size.

• binwidth (float or None) – bin width used to compute the histogram. If None the histogram
is not computed.

• bandwidth (float or None) – bandwidth used to compute the KDE If None the KDE is not
computed.

• model (lmfit.Model object or None) – lmfit Model used for histogram fitting. If None the
histogram is not fitted.

• verbose (bool) – if False avoids printing any output.

• fit_tot (bool) – whether to perform histogram fitting on combination of all arrays

Returns
The mfit.MultiFitter object with the specified burst-size weights.

fretbursts.burstlib_ext.calc_bg_brute(dx, min_ph_delay_list=None, return_all=False,
error_metrics='KS')

Compute background for all the ch, ph_sel and periods.

This function performs a brute-force search of the min ph delay threshold. The best threshold is the one the
minimizes the error function. The best background fit is the rate fitted using the best threshold.

Parameters
• min_ph_delay_list (sequence) – sequence of values used for the brute-force search. Back-

ground and error will be computed for each value in min_ph_delay_list.

• return_all (bool) – if True return all the fitted backgrounds and error functions. Default
False.

• error_metrics (string) – Specifies the error metric to use. See fretbursts.background.
exp_fit() for more details.

Returns
Two arrays with best threshold (us) and best background. If return_all = True also returns
the dictionaries containing all the fitted backgrounds and errors.

fretbursts.burstlib_ext.calc_bg_brute_cache(dx, min_ph_delay_list=None, return_all=False,
error_metrics='KS', force_recompute=False)

Compute background for all the ch, ph_sel and periods caching results.

This function performs a brute-force search of the min ph delay threshold. The best threshold is the one the
minimizes the error function. The best background fit is the rate fitted using the best threshold.

Results are cached to disk and loaded transparently when needed. The cache file is an HDF5 file named dx.
fname[:-5] + '_BKG.hdf5'.

Parameters
• min_ph_delay_list (sequence) – sequence of values used for the brute-force search. Back-

ground and error will be computed for each value in min_ph_delay_list.

• return_all (bool) – if True return all the fitted backgrounds and error functions. Default
False.

3.11. FRETBursts plugins 77

FRETBursts Documentation, Release 0.7.1+0.gc51b

• error_metrics (string) – Specifies the error metric to use. See fretbursts.background.
exp_fit() for more details.

• force_recompute (bool) – if True, recompute results even if a cache is found.

Returns
Two arrays with best threshold (us) and best background. If return_all = True also returns
the dictionaries containing all the fitted backgrounds and errors.

fretbursts.burstlib_ext.calc_mdelays_hist(d, ich=0, m=10, period=(0, -1), bins_s=(0, 10, 0.02),
ph_sel=Ph_sel(Dex='DAem', Aex='DAem'), bursts=False,
bg_fit=True, bg_F=0.8)

Compute histogram of m-photons delays (or waiting times).

Parameters
• dx (Data object) – contains the burst data to process.

• ich (int) – the channel number. Default 0.

• m (int) – number of photons used to compute each delay.

• period (int or 2-element tuple) – index of the period to use. If tuple, the period range between
period[0] and period[1] (included) is used.

• bins_s (3-element tuple) – start, stop and step for the bins

• ph_sel (Ph_sel object) – photon selection to use.

Returns
Tuple of values –

• bin_x (array): array of bins centers

• histograms_y (array): arrays of histograms, contains 1 or 2 histograms (when bursts is
False or True)

• bg_dist (random distribution): erlang distribution with same rate as background (kcps)

• a, rate_kcps (floats, optional): amplitude and rate for an Erlang distribution fitted to the
histogram for bin_x > bg_mean*bg_F. Returned only if bg_fit is True.

fretbursts.burstlib_ext.calc_mean_lifetime(dx, t1=0, t2=inf, ph_sel=Ph_sel(Dex='DAem',
Aex='DAem'))

Compute the mean lifetime in each burst.

Parameters
• t1, t2 (floats) – min and max value (in TCSPC bin units) for the nanotime to be included in

the mean

• ph_sel (Ph_sel object) – object defining the photon selection. See fretbursts.ph_sel for
details.

Returns
List of arrays of per-burst mean lifetime. One array per channel.

fretbursts.burstlib_ext.fit_bursts_kde_peak(dx, burst_data='E', bandwidth=0.03, weights=None,
gamma=1, add_naa=False, x_range=(-0.1, 1.1),
x_ax=None, save_fitter=True)

Fit burst data (typ. E or S) by finding the KDE max on all the channels.

Parameters

78 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

• dx (Data) – Data object containing the FRET data

• burst_data (string) – name of burst-data attribute (i.e ‘E’ or ‘S’).

• bandwidth (float) – bandwidth for the Kernel Density Estimation

• weights (string or None) – kind of burst-size weights. See fretbursts.fret_fit.
get_weights().

• gamma (float) – gamma factor passed to get_weights().

• add_naa (bool) – if True adds naa to the burst size.

• save_fitter (bool) – if True save the MultiFitter object in the dx object with name:
burst_data + ‘_fitter’.

• x_range (tuple of floats) – min-max range where to search for the peak. Used to select a
single peak in a multi-peaks distribution.

• x_ax (array or None) – x-axis used to evaluate the Kernel Density

Returns
An array of max peak positions (one per ch). If the number of channels is 1 returns a scalar.

fretbursts.burstlib_ext.get_burst_photons(d, ich=0, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'))
Return a list of arrays of photon timestamps in each burst.

Deprecated since version 0.6.5: Use burst_photons() instead.

Parameters
• d (Data) – Data() object

• ich (int) – channel index

• ph_sel (Ph_sel) – photon selection. It allows to select timestamps from a specific photon
selection. Example ph_sel=Ph_sel(Dex=’Dem’). See fretbursts.ph_sel for details.

Returns
A list of arrays of photon timestamps (one array per burst).

fretbursts.burstlib_ext.group_data(d_list)
Group a list of data objects into single data object as though each data object was a different set of set of spots,
so the returned data object appears as a multi-spot experiment. Usefull for joining technical repeats, especially
so that background calculation etc can be calculated equally on all members. This serves as an alternative to
join_data() but has some key differences: 1. Data objects can be at any state of analysis 2. Photon data is
maintained, so reassesment of background, burst search etc. all remain possible 3. Each data object is treated as
a separate spot, so burst arrays are not concatenated

Parameters
d_list (list of Data) – A list of data objects to be grouped into single data object

Raises
• RuntimeError – Mismatched fields indicating data are not technical repeats of each other

• ValueError – Inconsistent FRET correction factors

Returns
new_d (Data) – Data object of inputs grouped into new multi-spot measurment.

fretbursts.burstlib_ext.histogram_mdelays(d, ich=0, m=10, ph_sel=Ph_sel(Dex='DAem', Aex='DAem'),
binwidth=0.001, dt_max=0.01, bins=None, inbursts=False)

Compute histogram of m-photons delays (or waiting times).

3.11. FRETBursts plugins 79

FRETBursts Documentation, Release 0.7.1+0.gc51b

Parameters
• dx (Data object) – contains the burst data to process.

• ich (int) – the channel number. Default 0.

• m (int) – number of photons used to compute each delay.

• ph_sel (Ph_sel object) – photon selection to use.

• inbursts (bool) – if True, compute the histogram with only photons in bursts.

Returns
A HistData object containing the computed histogram.

fretbursts.burstlib_ext.join_data(d_list, gap=0)
Joins burst data of different measurements in a single Data object.

Merge a list of Data objects (i.e. a set of different measurements) into a single Data object containing all the
bursts (like it was a single acquisition). The Data objects to be merged need to already contain burst data.
The input Data objects are required to have undergone background estimation (all with the same background
period) and burst search. For each measurement, the time of burst start is offset by the duration of the previous
measurement + an additional gap (which is 0 by default).

The index of the first/last photon in the burst (istart and iend) are kept unmodified and refer to the original
timestamp array. The timestamp arrays are not copied: the new Data object will not contain any timestamp
arrays (ph_times_m). This may cause errors when calling functions that require the timestamps data such as
burst search.

The background arrays (bg, bg_dd, etc. . .) are concatenated. The burst attribute bp is updated to refer to these
new concatenated arrays. The attributes Lim and Ph_p are concatenated and left unchanged. Therefore different
sections will refer to different original timestamp arrays. The retuned Data object will have a new attribute
i_origin, containing, for each burst, the index of the original data object in the list.

Parameters
• d_list (list of Data objects) – the list of measurements to concatenate.

• gap (float) – the time delay (or gap) in seconds to add to each concatenated measurement.

Returns
A Data object containing bursts from the all the objects in d_list. This object will not contain
timestamps, therefore it is possible to perform burst selections but not a new burst search.

Example
If d1 and d2 are two measurements to concatenate:

file_list = ['filename1', 'filename2']
d_list = [loader.photon_hdf5(f) for f in file_list]

for dx in d_list:
loader.alex_apply_period(dx)
dx.calc_bg(bg.exp_fit, time_s=30, tail_min_us='auto', F_bg=1.7)
dx.burst_search()

d_merged = bext.join_data(d_list)

d_merged will contain bursts from both input files.

80 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

fretbursts.burstlib_ext.moving_window_chunks(dx, start, stop, step, window=None, time_zero=0)
Return a list of Data object, each containing bursts in one time-window.

Each returned Data object contains only bursts lying in the current time-window. Additionally, the start/stop
values of current time-window are saved in Data’s attributes: name, slice_tstart and slice_tstop.

Parameters
• dx (Data) – the Data() object to be sliced with a moving window.

• start, stop (scalars) – time-range in seconds spanned by the moving window.

• step (scalar) – window time-shift at each step.

• window (scalar) – window duration. If None, window = step.

• time_zero (scalar) – shift the start/stop times saved in the Data attributes so that “time zero”
falls at time_zero seconds. Default 0, no shift.

Returns
A list of Data objects, one for each window position.

See also: moving_window_dataframe().

fretbursts.burstlib_ext.moving_window_dataframe(start, stop, step, window=None, time_zero=0)
Create a DataFrame for storing moving-window data.

Create and return a DataFrame for storing columns of moving-window data. Three columns are initialize with
“time axis” data: ‘tstart’, ‘tstop’ and ‘tmean’. The returned DataFrame is typically used to store (in new columns)
quantities as function of the moving time-window. Examples of such quantities are number of bursts, mean burst
size/duration, fitted E peak position, etc.

Parameters
• start, stop (scalars) – range spanned by the moving window.

• step (scalar) – window shift at each “step”.

• window (scalar) – window duration. If None, window = step.

Returns
DataFrame with 3 columns (tstart, tstop, tmean), one row for each window position.

See also: moving_window_chunks().

fretbursts.burstlib_ext.moving_window_startstop(start, stop, step, window=None)
Computes list of (start, stop) values defining a moving-window.

Parameters
• start, stop (scalars) – range spanned by the moving window.

• step (scalar) – window shift at each “step”.

• window (scalar) – window duration. If None, window = step.

Returns
A list of (start, stop) values for the defined moving-window range.

fretbursts.burstlib_ext.ph_burst_stats(d, ich=0, func=<function mean>, ph_sel=Ph_sel(Dex='DAem',
Aex='DAem'))

Applies function func to the timestamps of each burst.

Parameters
• d (Data) – Data() object

3.11. FRETBursts plugins 81

FRETBursts Documentation, Release 0.7.1+0.gc51b

• ich (int) – channel index

• func (function) – a function that take an array of burst-timestamps and return a scalar. Default
numpy.mean.

• ph_sel (Ph_sel) – photon selection. It allows to select timestamps from a specific photon
selection. Default Ph_sel(‘all’). See fretbursts.ph_sel for details.

Returns
An array containing per-burst timestamp statistics.

3.12 Why an HDF5-based smFRET file format

In this page we briefly introduce what the HDF5 format is and why it is important for single-molecule FRET data.

3.12.1 What is HDF5?

HDF5 is standard and general-purposes container-format for binary data (see also HDF on Wikipedia). The format
can store any number of multi-dimensional arrays with no size limit in a hierarchical fashion (i.e. arrays can be put in
folders and subfolders called groups). Any dataset or folder can have metadata attached to it (for example a description,
a date, or an array of parameters).

The format is self-describing, so any HDF5 compatible application can read the file content without knowing in advance
the data-type (i.e. int32 or float) or the byte layout (i.e. big-endian little-endian).

HDF5 supports transparent data compression using the zlib algorithm or any third-party algorithm via plugins.

The format is an open standard supported by the non-profit organization HDFGroup. Open-sources libraries to read
the format are available for all the main programming languages.

3.12.2 The HDF5 ecosystem

Numerous organizations use HDF5. Just as an example, the native MATLAB format (.mat) is HDF5-based from version
7.3 on.

Libraries to read the HDF5 format exist for the majority of programming languages. Among the others, FORTRAN,
C, C++, C#, Java, MATLAB, Python, Mathematica, R have first-class support for the format.

LabView can read/write the format using h5labview.

Origin natively support HDF5 from version 8.1.

Open-source and multi-platform viewers/editors are also available (see HDFView and ViTables).

Python, in particular, has 2 libraries that allow handling HDF5 files:

• h5py

• pytables

FRETBursts uses pyTables.

82 Chapter 3. FRETBursts Reference Manual

http://www.hdfgroup.org/HDF5/
http://en.wikipedia.org/wiki/Hierarchical_Data_Format
http://www.hdfgroup.org/users.html
http://h5labview.sourceforge.net/
http://www.hdfgroup.org/products/java/hdfview/index.html
http://vitables.org/
http://www.h5py.org/
http://www.pytables.org/

FRETBursts Documentation, Release 0.7.1+0.gc51b

3.12.3 Why HDF5 and smFRET?

Most of smFRET data around the world is acquired through a custom setup and custom software. As a result the number
of file formats is almost as large as the number of existing setups.

A single, space-efficient and self-documenting file format like HDF5 is highly preferable to the Babel of formats used
today.

Numerous advantages can be easily envisioned:

• Efficiency: HDF5 is highly efficient both for space and speed. Libraries to interoperate with the format are
broadly used and heavily tested. Scientists don’t need to reinvent the wheel and can leverage the already available
state-of-the art software technologies.

• Long-term persistence: in 5-10-20 years the data can be always read without relying on obscure, poorly docu-
ment, (or in some case vendor specific) binary formats.

• Easy interoperability: a single format lowers the barriers for data-exchange and collaboration. A single for-
mat makes easier to compare the output of different analysis software, encourages reproducibility and foster
collaboration between different groups.

3.12.4 HDF5 in FRETBursts

FRETBursts allows saving and loading smFRET data from and to an HDF5-based file format called Photon-HDF5.

The Photon-HDF5 is a pre-defined layout to be used with smFRET and other data involving time-series of photon-data.

A description of the Photon-HDF5 format and its specifications can be found in Photon-HDF5 format.

For documentation on using the Photon-HDF5 format in FRETBursts see:

HDF5-based smFRET file format

We developed an HDF5-based format called Photon-HDF5 for smFRET and other measurements involving series of
photon timestamps. The specifications of the Photon-HDF5 format can be found in Photon-HDF5 format.

For a general overview on the importance of a standard file format for smFRET see also Why an HDF5-based smFRET
file format.

Read and write HDF5 smFRET files

To load a smFRET data contained in HDF5-Ph-Data use the function loader.photon_hdf5().

You can convert files from any format to Photon-HDF5 by using phconvert (already pre-installed with FRETBursts).

3.13 FRET Correction Formulas

The fretmath module contains functions to compute corrected FRET efficiency from the proximity ratio and vice-
versa.

For derivation see notebook: “Derivation of FRET and S correction formulas.ipynb” (link).

3.13. FRET Correction Formulas 83

http://photon-hdf5.readthedocs.org/
http://photon-hdf5.readthedocs.org/
https://github.com/tritemio/phconvert
http://nbviewer.jupyter.org/github/tritemio/notebooks/blob/master/Derivation%20of%20FRET%20and%20S%20correction%20formulas.ipynb

FRETBursts Documentation, Release 0.7.1+0.gc51b

fretbursts.fretmath.correct_E_gamma_leak_dir(Eraw, gamma=1, leakage=0, dir_ex_t=0)
Compute corrected FRET efficiency from proximity ratio Eraw.

For the inverse function see uncorrect_E_gamma_leak_dir().

Parameters
• Eraw (float or array) – proximity ratio (only background correction, no gamma, leakage or

direct excitation)

• gamma (float) – gamma factor

• leakage (float) – leakage coefficient

• dir_ex_t (float) – coefficient expressing the direct excitation as n_dir = dir_ex_t * (na +
gamma*nd). In terms of physical parameters it is the ratio of acceptor over donor absorption
cross-sections at the donor-excitation wavelength.

Returns
Corrected FRET effciency

fretbursts.fretmath.correct_S(Eraw, Sraw, gamma, leakage, dir_ex_t)
Correct S values for gamma, leakage and direct excitation.

Parameters
• Eraw (scalar or array) – uncorrected (“raw”) E after only background correction (no gamma,

leakage or direct excitation).

• Sraw (scalar or array) – uncorrected (“raw”) S after only background correction (no gamma,
leakage or direct excitation).

• gamma (float) – gamma factor.

• leakage (float) – donor emission leakage into the acceptor channel.

• dir_ex_t (float) – direct acceptor excitation by donor laser. Defined as n_dir = dir_ex_t
* (na + g nd). The dir_ex_t coefficient is the ratio between D and A absorption cross-
sections at the donor-excitation wavelength.

Returns
Corrected S (stoichiometry), same size as Sraw.

fretbursts.fretmath.dir_ex_correct_E(Eraw, dir_ex_t)
Apply direct excitation correction to the uncorrected FRET Eraw.

The coefficient dir_ex_t expresses the direct excitation as n_dir = dir_ex_t * (na + gamma*nd). In terms
of physical parameters it is the ratio of acceptor over donor absorption cross-sections at the donor-excitation
wavelength.

For the inverse see dir_ex_uncorrect_E().

fretbursts.fretmath.dir_ex_uncorrect_E(E, dir_ex_t)
Reverse direct excitation correction and return uncorrected FRET.

For the inverse see dir_ex_correct_E().

fretbursts.fretmath.gamma_correct_E(Eraw, gamma)
Apply gamma correction to the uncorrected FRET Eraw.

For the inverse see gamma_uncorrect_E().

84 Chapter 3. FRETBursts Reference Manual

FRETBursts Documentation, Release 0.7.1+0.gc51b

fretbursts.fretmath.gamma_uncorrect_E(E, gamma)
Reverse gamma correction and return uncorrected FRET.

For the inverse see gamma_correct_E().

fretbursts.fretmath.leakage_correct_E(Eraw, leakage)
Apply leakage correction to the uncorrected FRET Eraw.

For the inverse see leakage_uncorrect_E().

fretbursts.fretmath.leakage_uncorrect_E(E, leakage)
Reverse leakage correction and return uncorrected FRET.

For the inverse see leakage_correct_E().

fretbursts.fretmath.test_fretmath()

Run a few consistency checks for the correction functions.

fretbursts.fretmath.uncorrect_E_gamma_leak_dir(E, gamma=1, leakage=0, dir_ex_t=0)
Compute proximity ratio from corrected FRET efficiency E.

This function is the inverse of correct_E_gamma_leak_dir().

Parameters
• E (float or array) – corrected FRET efficiency

• gamma (float) – gamma factor

• leakage (float) – leakage coefficient

• dir_ex_t (float) – direct excitation coefficient expressed as n_dir = dir_ex_t * (na +
gamma*nd). In terms of physical parameters it is the ratio of absorption cross-section at
donor-excitation wavelengths of acceptor over donor.

Returns
Proximity ratio (reverses gamma, leakage and direct excitation)

fretbursts.fretmath.uncorrect_S(E_R, S, gamma, L_k, d_dirT)
Function used to test correct_S().

3.14 Description of the files

Here a brief descriprion of the main FRETBursts files.

3.14.1 burstlib.py

This module contains all the main FRETBursts analysis functions.

burstslib.py defines the fundamental object Data() that contains both the experimental data (attributes) and the
high-level analysis routines (methods).

Furthermore it loads all the remaining FRETBursts modules (except for loaders.py).

For usage example see the IPython Notebooks in sub-folder “notebooks”.

3.14. Description of the files 85

FRETBursts Documentation, Release 0.7.1+0.gc51b

3.14.2 loader.py

The loader module contains functions to load each supported data format. The loader functions load data from a
specific format and return a new fretbursts.burstlib.Data() object containing the data.

This module contains the high-level function to load a data-file and to return a Data() object. The low-level functions
that perform the binary loading and preprocessing can be found in the dataload folder.

3.14.3 select_bursts.py

See fretbursts.select_bursts.

3.14.4 burst_plot.py

This module defines all the plotting functions for the fretbursts.burstlib.Data object.

The main plot function is dplot() that takes, as parameters, a Data() object and a 1-ch-plot-function and creates a
subplot for each channel.

The 1-ch plot functions are usually called through dplot but can also be called directly to make a single channel plot.

The 1-ch plot functions names all start with the plot type (timetrace, ratetrace, hist or scatter).

Example 1 - Plot the timetrace for all ch:

dplot(d, timetrace, scroll=True)

Example 2 - Plot a FRET histogramm for each ch with a fit overlay:

dplot(d, hist_fret, show_model=True)

For more examples refer to FRETBurst notebooks.

3.14.5 background.py

Routines to compute the background from an array of timestamps. This module is normally imported as bg when
fretbursts is imported.

The important functions are exp_fit() and exp_cdf_fit() that provide two (fast) algorithms to estimate the back-
ground without binning. These functions are not usually called directly but passed to Data.calc_bg() to compute
the background of a measurement.

See also exp_hist_fit() for background estimation using an histogram fit.

3.14.6 phtools (folder)

This folder contains the core functions to manipulate timestamps, including burst search and photon rates computations.
Additionally, data structures for storing and manipulating bursts data are provided.

Burst search and photon counting functions (to count number of donor and acceptor photons in each burts) are provided
both as a pure python implementation and as an optimized Cython (compiled) version. The cython version is usually
10 or 20 times faster. burstlib.py will load the Cython functions, falling back to the pure python version if the
compiled version is not found.

86 Chapter 3. FRETBursts Reference Manual

http://nbviewer.ipython.org/github/tritemio/FRETBursts_notebooks/tree/master/notebooks/

FRETBursts Documentation, Release 0.7.1+0.gc51b

3.14.7 dataload (folder)

This folder contains one file per each supported data file.

Each file contains the binary load and preprocessing functions needed for the specific format. Functions defined here
are used by loader functions in loaders.py to properly initialize a Data() variable.

3.14.8 fit (folder)

This folder contains generic fit functions for Gaussian and exponential fit of a sample.

See Fit framework.

3.15 FRETBursts Cython extensions

Cython is a tool that, among other things, allows to translate annotated python code into C code. The C code can be
then compiled into a dynamic library and transparently called from python like any other python library, but with the
advantage of a much higher execution speed.

For some core burst-search functions FRETBursts includes both a pure pyhton and a cython version. At import time,
the code looks for the compiled version and, if not found, falls back to the pure python version. Therefore, although
the compiled cython version is completely optional, it allows to gain significant execution speed in core functions that
are potentially executed many times.

Usually the cython extensions are compiled during installation. To manually build the extensions type:

python setup.py build

from the FRETBursts source folder.

3.15. FRETBursts Cython extensions 87

http://cython.org/

FRETBursts Documentation, Release 0.7.1+0.gc51b

88 Chapter 3. FRETBursts Reference Manual

BIBLIOGRAPHY

[pax] Doose et al. European Biophysics Journal 36(6) p.669-674, 2007. DOI:10.1007/s00249-007-0133-7

[48spot] Ingargiola et al. bioRxiv 156182, 2017. DOI:10.1101/156182

89

https://doi.org/10.1007/s00249-007-0133-7
https://doi.org/10.1101/156182

FRETBursts Documentation, Release 0.7.1+0.gc51b

90 Bibliography

PYTHON MODULE INDEX

f
fretbursts, 83
fretbursts.background, 86
fretbursts.burst_plot, 53
fretbursts.burstlib, 10
fretbursts.burstlib_ext, 74
fretbursts.dataload, 87
fretbursts.fit, 87
fretbursts.fit.exp_fitting, 50
fretbursts.fit.gaussian_fitting, 45
fretbursts.fret_fit, 52
fretbursts.fretmath, 83
fretbursts.loader, 13
fretbursts.mfit, 41
fretbursts.ph_sel, 32
fretbursts.phtools, 86
fretbursts.phtools.burstsearch, 66
fretbursts.phtools.phrates, 71
fretbursts.select_bursts, 37

91

FRETBursts Documentation, Release 0.7.1+0.gc51b

92 Python Module Index

INDEX

A
A_em (fretbursts.burstlib.Data attribute), 17
alex_apply_period() (in module fretbursts.loader), 13
alex_jointplot() (in module fretbursts.burst_plot), 62
alex_period (fretbursts.burstlib.Data attribute), 18
and_gate() (fretbursts.phtools.burstsearch.Bursts

method), 68
asym_gaussian() (in module fretbursts.mfit), 44
asymmetry() (in module fretbursts.burstlib_ext), 74

B
background_correction() (fretbursts.burstlib.Data

method), 28
bg (fretbursts.burstlib.Data attribute), 18
bg_bs (fretbursts.burstlib.Data attribute), 20
bg_fun (fretbursts.burstlib.Data attribute), 18
bg_mean (fretbursts.burstlib.Data attribute), 18
bg_ph_sel (fretbursts.burstlib.Data attribute), 19
bound_check() (in module fret-

bursts.fit.gaussian_fitting), 46
bp (fretbursts.burstlib.Data attribute), 20
bridge_function() (in module fretbursts.mfit), 43
brightness() (in module fretbursts.select_bursts), 37
bsearch_py() (in module fret-

bursts.phtools.burstsearch), 70
Burst (class in fretbursts.phtools.burstsearch), 67
burst_data() (in module fretbursts.burstlib_ext), 74
burst_data_period_mean() (in module fret-

bursts.burstlib_ext), 75
burst_photons() (in module fretbursts.burstlib_ext),

75
burst_search() (fretbursts.burstlib.Data method), 25
burst_search_and_gate() (in module fret-

bursts.burstlib_ext), 76
burst_sizes() (fretbursts.burstlib.Data method), 21
burst_sizes_ich() (fretbursts.burstlib.Data method),

22
burst_sizes_pax_ich() (fretbursts.burstlib.Data

method), 21
burst_widths (fretbursts.burstlib.Data attribute), 23
BurstGap (class in fretbursts.phtools.burstsearch), 67
Bursts (class in fretbursts.phtools.burstsearch), 67

bursts_fitter() (in module fretbursts.burstlib_ext),
76

BurstsGap (class in fretbursts.phtools.burstsearch), 70

C
calc_bg() (fretbursts.burstlib.Data method), 24
calc_bg_brute() (in module fretbursts.burstlib_ext),

77
calc_bg_brute_cache() (in module fret-

bursts.burstlib_ext), 77
calc_fret() (fretbursts.burstlib.Data method), 26
calc_kde() (fretbursts.mfit.MultiFitter method), 41
calc_max_rate() (fretbursts.burstlib.Data method), 27
calc_mdelays_hist() (in module fret-

bursts.burstlib_ext), 78
calc_mean_lifetime() (in module fret-

bursts.burstlib_ext), 78
calc_ph_num() (fretbursts.burstlib.Data method), 26
calc_sbr() (fretbursts.burstlib.Data method), 27
chi_ch (fretbursts.burstlib.Data attribute), 28
clk_p (fretbursts.burstlib.Data attribute), 17
consecutive() (in module fretbursts.select_bursts), 37
copy() (fretbursts.burstlib.Data method), 32
copy() (fretbursts.phtools.burstsearch.Bursts method),

68
correct_E_gamma_leak_dir() (in module fret-

bursts.fretmath), 83
correct_S() (in module fretbursts.fretmath), 84
count_ph_in_bursts() (in module fret-

bursts.phtools.burstsearch), 70
counts (fretbursts.phtools.burstsearch.Burst property),

67
counts (fretbursts.phtools.burstsearch.BurstGap prop-

erty), 67
counts (fretbursts.phtools.burstsearch.Bursts property),

68
counts (fretbursts.phtools.burstsearch.BurstsGap prop-

erty), 70

D
D_em (fretbursts.burstlib.Data attribute), 17

93

FRETBursts Documentation, Release 0.7.1+0.gc51b

Data (class in fretbursts.burstlib), 16, 21, 24, 27, 28, 30,
31

dataframe (fretbursts.phtools.burstsearch.Bursts prop-
erty), 68

dataframe (fretbursts.phtools.burstsearch.BurstsGap
property), 70

dir_ex (fretbursts.burstlib.Data attribute), 28
dir_ex_correct_E() (in module fretbursts.fretmath),

84
dir_ex_uncorrect_E() (in module fret-

bursts.fretmath), 84
dither() (fretbursts.burstlib.Data method), 28

E
E (fretbursts.burstlib.Data attribute), 20
E() (in module fretbursts.select_bursts), 37
empty() (fretbursts.phtools.burstsearch.Bursts class

method), 68
ES() (in module fretbursts.select_bursts), 37
ES_ellips() (in module fretbursts.select_bursts), 37
ES_rect() (in module fretbursts.select_bursts), 37
exp_cdf_fit() (in module fretbursts.background), 34
exp_fit() (in module fretbursts.background), 33
exp_hist_fit() (in module fretbursts.background), 34
expand() (fretbursts.burstlib.Data method), 32
expon_fit() (in module fretbursts.fit.exp_fitting), 35, 50
expon_fit_cdf() (in module fretbursts.fit.exp_fitting),

35, 50
expon_fit_hist() (in module fretbursts.fit.exp_fitting),

36, 51

F
F (fretbursts.burstlib.Data attribute), 19
factory_asym_gaussian() (in module fretbursts.mfit),

42
factory_gaussian() (in module fretbursts.mfit), 42
factory_three_gaussians() (in module fret-

bursts.mfit), 43
factory_two_asym_gaussians() (in module fret-

bursts.mfit), 43
factory_two_gaussians() (in module fretbursts.mfit),

42
find_kde_max() (fretbursts.mfit.MultiFitter method), 41
fit_bursts_kde_peak() (in module fret-

bursts.burstlib_ext), 78
fit_E_binom() (in module fretbursts.fret_fit), 52
fit_E_cdf() (in module fretbursts.fret_fit), 52
fit_E_E_size() (in module fretbursts.fret_fit), 52
fit_E_generic() (fretbursts.burstlib.Data method), 30
fit_E_hist() (in module fretbursts.fret_fit), 52
fit_E_m() (fretbursts.burstlib.Data method), 30
fit_E_m() (in module fretbursts.fret_fit), 52
fit_E_minimize() (fretbursts.burstlib.Data method),

30

fit_E_ML_poiss() (fretbursts.burstlib.Data method),
30

fit_E_poisson_na() (in module fretbursts.fret_fit), 52
fit_E_poisson_nd() (in module fretbursts.fret_fit), 52
fit_E_poisson_nt() (in module fretbursts.fret_fit), 52
fit_E_slope() (in module fretbursts.fret_fit), 52
fit_E_two_gauss_EM() (fretbursts.burstlib.Data

method), 30
fit_histogram() (fretbursts.mfit.MultiFitter method),

41
fname (fretbursts.burstlib.Data attribute), 17
fretbursts

module, 83
fretbursts.background

module, 33, 86
fretbursts.burst_plot

module, 53, 86
fretbursts.burstlib

module, 10, 16, 85
fretbursts.burstlib_ext

module, 74
fretbursts.dataload

module, 87
fretbursts.fit

module, 87
fretbursts.fit.exp_fitting

module, 35, 50
fretbursts.fit.gaussian_fitting

module, 45
fretbursts.fret_fit

module, 52
fretbursts.fretmath

module, 83
fretbursts.loader

module, 13, 86
fretbursts.mfit

module, 41
fretbursts.ph_sel

module, 32
fretbursts.phtools

module, 86
fretbursts.phtools.burstsearch

module, 66
fretbursts.phtools.phrates

module, 71
fretbursts.select_bursts

module, 37
from_burst() (fretbursts.phtools.burstsearch.BurstGap

static method), 67
from_list() (fretbursts.phtools.burstsearch.Bursts

class method), 68
from_list() (fretbursts.phtools.burstsearch.BurstsGap

class method), 70
fuse (fretbursts.burstlib.Data attribute), 20

94 Index

FRETBursts Documentation, Release 0.7.1+0.gc51b

fuse_bursts() (fretbursts.burstlib.Data method), 27

G
gamma (fretbursts.burstlib.Data attribute), 17, 27
gamma_correct_E() (in module fretbursts.fretmath), 84
gamma_uncorrect_E() (in module fretbursts.fretmath),

84
gap (fretbursts.phtools.burstsearch.BurstsGap property),

70
gap_counts (fretbursts.phtools.burstsearch.BurstsGap

property), 70
gaussian2d_fit() (in module fret-

bursts.fit.gaussian_fitting), 46
gaussian_fit_cdf() (in module fret-

bursts.fit.gaussian_fitting), 46
gaussian_fit_curve() (in module fret-

bursts.fit.gaussian_fitting), 46
gaussian_fit_hist() (in module fret-

bursts.fit.gaussian_fitting), 46
gaussian_fit_ml() (in module fret-

bursts.fit.gaussian_fitting), 46
gaussian_fit_pdf() (in module fret-

bursts.fit.gaussian_fitting), 46
get_burst_photons() (in module fret-

bursts.burstlib_ext), 79
get_dist_euclid() (in module fretbursts.fret_fit), 52
get_ecdf() (in module fretbursts.fit.exp_fitting), 36, 51
get_epdf() (in module fretbursts.fit.gaussian_fitting), 46
get_ph_mask() (fretbursts.burstlib.Data method), 31
get_ph_times() (fretbursts.burstlib.Data method), 31
get_residuals() (in module fretbursts.fit.exp_fitting),

36, 51
get_weights() (in module fretbursts.fret_fit), 52
group_data() (in module fretbursts.burstlib_ext), 79

H
hexbin_alex() (in module fretbursts.burst_plot), 63
hist2d_alex() (in module fretbursts.burst_plot), 63
hist_asymmetry() (in module fretbursts.burst_plot), 62
hist_bg() (in module fretbursts.burst_plot), 61
hist_bg_single() (in module fretbursts.burst_plot), 61
hist_brightness() (in module fretbursts.burst_plot),

59
hist_burst_data() (in module fretbursts.burst_plot),

56
hist_burst_delays() (in module fret-

bursts.burst_plot), 62
hist_burst_phrate() (in module fret-

bursts.burst_plot), 60
hist_fret() (in module fretbursts.burst_plot), 56
hist_interphoton() (in module fretbursts.burst_plot),

60
hist_interphoton_single() (in module fret-

bursts.burst_plot), 60

hist_S() (in module fretbursts.burst_plot), 56
hist_sbr() (in module fretbursts.burst_plot), 60
hist_size() (in module fretbursts.burst_plot), 58
hist_size_all() (in module fretbursts.burst_plot), 58
hist_width() (in module fretbursts.burst_plot), 59
histogram() (fretbursts.mfit.MultiFitter method), 42
histogram_mdelays() (in module fret-

bursts.burstlib_ext), 79

I
istart (fretbursts.phtools.burstsearch.Bursts property),

68
istop (fretbursts.phtools.burstsearch.Bursts property),

68
iter_bursts_ph() (fretbursts.burstlib.Data method),

31
iter_ph_masks() (fretbursts.burstlib.Data method), 31
iter_ph_times() (fretbursts.burstlib.Data method), 31

J
join() (fretbursts.phtools.burstsearch.Bursts method),

68
join_data() (in module fretbursts.burstlib_ext), 80

K
kde_gaussian() (in module fretbursts.phtools.phrates),

71
kde_laplace() (in module fretbursts.phtools.phrates),

72
kde_rect() (in module fretbursts.phtools.phrates), 72

L
L (fretbursts.burstlib.Data attribute), 19
leakage (fretbursts.burstlib.Data attribute), 17, 27
leakage_correct_E() (in module fretbursts.fretmath),

85
leakage_correction() (fretbursts.burstlib.Data

method), 28
leakage_uncorrect_E() (in module fret-

bursts.fretmath), 85
Lim (fretbursts.burstlib.Data attribute), 18
log_likelihood_binom() (in module fret-

bursts.fret_fit), 53
log_likelihood_poisson_na() (in module fret-

bursts.fret_fit), 53
log_likelihood_poisson_nd() (in module fret-

bursts.fret_fit), 53
log_likelihood_poisson_nt() (in module fret-

bursts.fret_fit), 53

M
m (fretbursts.burstlib.Data attribute), 19
mburst (fretbursts.burstlib.Data attribute), 19

Index 95

FRETBursts Documentation, Release 0.7.1+0.gc51b

mch_count_ph_in_bursts_py() (in module fret-
bursts.phtools.burstsearch), 71

merge() (fretbursts.phtools.burstsearch.Bursts class
method), 68

module
fretbursts, 83
fretbursts.background, 33, 86
fretbursts.burst_plot, 53, 86
fretbursts.burstlib, 10, 16, 85
fretbursts.burstlib_ext, 74
fretbursts.dataload, 87
fretbursts.fit, 87
fretbursts.fit.exp_fitting, 35, 50
fretbursts.fit.gaussian_fitting, 45
fretbursts.fret_fit, 52
fretbursts.fretmath, 83
fretbursts.loader, 13, 86
fretbursts.mfit, 41
fretbursts.ph_sel, 32
fretbursts.phtools, 86
fretbursts.phtools.burstsearch, 66
fretbursts.phtools.phrates, 71
fretbursts.select_bursts, 37

moving_window_chunks() (in module fret-
bursts.burstlib_ext), 80

moving_window_dataframe() (in module fret-
bursts.burstlib_ext), 81

moving_window_startstop() (in module fret-
bursts.burstlib_ext), 81

mtuple_delays() (in module fret-
bursts.phtools.phrates), 73

mtuple_delays_min() (in module fret-
bursts.phtools.phrates), 73

mtuple_rates() (in module fretbursts.phtools.phrates),
73

mtuple_rates_max() (in module fret-
bursts.phtools.phrates), 73

mtuple_rates_t() (in module fret-
bursts.phtools.phrates), 73

MultiFitter (class in fretbursts.mfit), 41

N
na() (in module fretbursts.select_bursts), 38
na_bg() (in module fretbursts.select_bursts), 38
na_bg_p() (in module fretbursts.select_bursts), 38
naa (fretbursts.burstlib.Data attribute), 20
naa() (in module fretbursts.select_bursts), 38
naa_bg() (in module fretbursts.select_bursts), 38
naa_bg_p() (in module fretbursts.select_bursts), 38
name (fretbursts.burstlib.Data attribute), 23
Name() (fretbursts.burstlib.Data method), 23
nar (fretbursts.burstlib.Data attribute), 20
nch (fretbursts.burstlib.Data attribute), 17
nd() (in module fretbursts.select_bursts), 38

nd_bg() (in module fretbursts.select_bursts), 38
nd_bg_p() (in module fretbursts.select_bursts), 39
nda_percentile() (in module fretbursts.select_bursts),

39
normpdf() (in module fretbursts.fit.gaussian_fitting), 46
nperiods (fretbursts.burstlib.Data attribute), 18
nsalex() (in module fretbursts.loader), 14
nsalex_apply_period() (in module fretbursts.loader),

14
nt (fretbursts.burstlib.Data attribute), 20
nt_bg() (in module fretbursts.select_bursts), 39
nt_bg_p() (in module fretbursts.select_bursts), 39
num_bursts (fretbursts.burstlib.Data attribute), 21
num_bursts (fretbursts.phtools.burstsearch.Bursts prop-

erty), 68

P
P (fretbursts.burstlib.Data attribute), 19
peak_phrate() (in module fretbursts.select_bursts), 39
period() (in module fretbursts.select_bursts), 39
ph_burst_stats() (in module fretbursts.burstlib_ext),

81
ph_data_sizes (fretbursts.burstlib.Data attribute), 21
ph_in_bursts_ich() (fretbursts.burstlib.Data

method), 23, 32
ph_in_bursts_mask_ich() (fretbursts.burstlib.Data

method), 23, 32
Ph_p (fretbursts.burstlib.Data attribute), 18
ph_rate (fretbursts.phtools.burstsearch.Burst property),

67
ph_rate (fretbursts.phtools.burstsearch.Bursts property),

68
Ph_sel (class in fretbursts.ph_sel), 33
ph_sel (fretbursts.burstlib.Data attribute), 19
ph_times_m (fretbursts.burstlib.Data attribute), 17
photon_hdf5() (in module fretbursts.loader), 14
plot_alternation_hist() (in module fret-

bursts.burst_plot), 63
plot_alternation_hist_nsalex() (in module fret-

bursts.burst_plot), 64
plot_ES_selection() (in module fret-

bursts.burst_plot), 63

R
ratetrace() (in module fretbursts.burst_plot), 55
ratetrace_single() (in module fretbursts.burst_plot),

55
recompute_index_expand() (fret-

bursts.phtools.burstsearch.Bursts method),
68

recompute_index_reduce() (fret-
bursts.phtools.burstsearch.Bursts method),
69

96 Index

FRETBursts Documentation, Release 0.7.1+0.gc51b

recompute_times() (fret-
bursts.phtools.burstsearch.Bursts method),
69

reorder_parameters() (in module fret-
bursts.fit.gaussian_fitting), 46

reorder_parameters_ab() (in module fret-
bursts.fit.gaussian_fitting), 46

S
S (fretbursts.burstlib.Data attribute), 21
sbr() (in module fretbursts.select_bursts), 39
scatter_alex() (in module fretbursts.burst_plot), 64
scatter_da() (in module fretbursts.burst_plot), 64
scatter_fret_nd_na() (in module fret-

bursts.burst_plot), 64
scatter_fret_size() (in module fret-

bursts.burst_plot), 64
scatter_fret_width() (in module fret-

bursts.burst_plot), 64
scatter_naa_nt() (in module fretbursts.burst_plot), 64
scatter_rate_da() (in module fretbursts.burst_plot),

64
scatter_width_size() (in module fret-

bursts.burst_plot), 64
select_bursts() (fretbursts.burstlib.Data method), 28
select_bursts_mask() (fretbursts.burstlib.Data

method), 29
select_bursts_mask_apply() (fret-

bursts.burstlib.Data method), 29
separation (fretbursts.phtools.burstsearch.Bursts prop-

erty), 69
set_weights_func() (fretbursts.mfit.MultiFitter

method), 42
sim_nd_na() (in module fretbursts.fret_fit), 53
single() (in module fretbursts.select_bursts), 39
size (fretbursts.phtools.burstsearch.Bursts property), 69
size() (in module fretbursts.select_bursts), 39
slice_ph() (fretbursts.burstlib.Data method), 32
sm_single_laser() (in module fretbursts.loader), 15
start (fretbursts.phtools.burstsearch.Bursts property),

69
status() (fretbursts.burstlib.Data method), 23
stop (fretbursts.phtools.burstsearch.Bursts property), 70
str_G() (in module fretbursts.select_bursts), 40

T
T (fretbursts.burstlib.Data attribute), 20
test_fretmath() (in module fretbursts.fretmath), 85
Th_us (fretbursts.burstlib.Data attribute), 19
time() (in module fretbursts.select_bursts), 40
time_max (fretbursts.burstlib.Data attribute), 21
time_min (fretbursts.burstlib.Data attribute), 21
timetrace() (in module fretbursts.burst_plot), 54

timetrace_b_rate() (in module fretbursts.burst_plot),
55

timetrace_bg() (in module fretbursts.burst_plot), 55
timetrace_single() (in module fretbursts.burst_plot),

54
topN_max_rate() (in module fretbursts.select_bursts),

40
topN_nda() (in module fretbursts.select_bursts), 40
topN_sbr() (in module fretbursts.select_bursts), 40
TT (fretbursts.burstlib.Data attribute), 20
two_gauss_mix_ab() (in module fret-

bursts.fit.gaussian_fitting), 46
two_gauss_mix_pdf() (in module fret-

bursts.fit.gaussian_fitting), 47
two_gaussian2d_fit() (in module fret-

bursts.fit.gaussian_fitting), 47
two_gaussian_fit_cdf() (in module fret-

bursts.fit.gaussian_fitting), 48
two_gaussian_fit_curve() (in module fret-

bursts.fit.gaussian_fitting), 48
two_gaussian_fit_EM() (in module fret-

bursts.fit.gaussian_fitting), 47
two_gaussian_fit_EM_b() (in module fret-

bursts.fit.gaussian_fitting), 47
two_gaussian_fit_hist() (in module fret-

bursts.fit.gaussian_fitting), 48
two_gaussian_fit_hist_min() (in module fret-

bursts.fit.gaussian_fitting), 49
two_gaussian_fit_hist_min_ab() (in module fret-

bursts.fit.gaussian_fitting), 49
two_gaussian_fit_KDE_curve() (in module fret-

bursts.fit.gaussian_fitting), 47

U
uncorrect_E_gamma_leak_dir() (in module fret-

bursts.fretmath), 85
uncorrect_S() (in module fretbursts.fretmath), 85
usalex() (in module fretbursts.loader), 15
usalex_apply_period() (in module fretbursts.loader),

15

W
width (fretbursts.phtools.burstsearch.Burst property), 67
width (fretbursts.phtools.burstsearch.BurstGap prop-

erty), 67
width (fretbursts.phtools.burstsearch.Bursts property),

70
width (fretbursts.phtools.burstsearch.BurstsGap prop-

erty), 70
width() (in module fretbursts.select_bursts), 40

Index 97

	Getting started
	Getting started for the absolute python beginner
	Installing FRETBursts
	Running FRETBursts tutorial notebook

	FRETBursts Installation
	Installing latest stable version
	Alternative methods: using PIP
	Install FRETBursts in a stand-alone environment
	Install latest development version

	Running FRETBursts
	Why a notebook-based workflow

	FRETBursts Dependencies

	FRETBursts Release Notes
	Version 0.7.1
	Version 0.7 (Jul. 2018)
	Version 0.6.5 (Aug. 2017)
	Version 0.6.4 (Jul. 2017)
	Version 0.6.3 (Apr. 2017)
	Version 0.6.2 (Apr. 2017)
	Version 0.6.1 (Apr. 2017)
	Version 0.6 (Jan. 2017)
	Backward-incompatible changes
	Effect on burst search
	Details of auto-threshold changes
	Background attributes
	Compatibility layer
	Details of changed attributes

	Version 0.5.9 (Sep. 2016)
	Version 0.5.7 (Sep. 2016)
	Data Class
	Plot functions
	Burst selection
	Burst Weights
	Installation via conda-forge

	Version 0.5.6

	FRETBursts Reference Manual
	Loader functions
	List of loader functions
	Load data manually

	The “Data()” class
	“Data()” class: description and attributes
	Summary information
	Analysis methods
	Burst corrections
	Correction factors
	Correction methods

	Burst selection methods
	Fitting methods
	Timestamp access methods

	Photon selections
	Background estimation
	background.py
	Low-level background fit functions

	Burst selection
	Selection functions

	Fit framework
	MultiFitter reference documentation
	The MultiFitter class
	Model factory functions
	Utility functions

	Overview
	Fitting E or S histograms
	Lmfit introduction
	Legacy Fit functions
	Gaussian fitting
	Exponential fitting

	Direct FRET fitting
	Plotting Data
	Timetrace and ratetrace plots
	1D Histograms
	Bursts: ratiometric quantities
	Bursts: tail distributions
	Others

	ALEX plots
	Scatter plots

	Burst Search in FRETBursts
	Defining the rate estimator
	Conventions in burst search
	The Core Algorithm
	Burst Fusion
	Low-level burst search functions

	Photon rates functions
	FRETBursts plugins
	Why an HDF5-based smFRET file format
	What is HDF5?
	The HDF5 ecosystem
	Why HDF5 and smFRET?
	HDF5 in FRETBursts
	HDF5-based smFRET file format
	Read and write HDF5 smFRET files

	FRET Correction Formulas
	Description of the files
	burstlib.py
	loader.py
	select_bursts.py
	burst_plot.py
	background.py
	phtools (folder)
	dataload (folder)
	fit (folder)

	FRETBursts Cython extensions

	Bibliography
	Python Module Index
	Index

