

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	freqens 0.0.1 documentation

Welcome to freqens’s documentation!

Contents:

	Getting Started Tutorial
	Scenario

	Getting an analyzer

	Breaking the code

	Analyzer Module Reference

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Braulio Valdivielso.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	freqens 0.0.1 documentation

Tutorial

In this basic tutorial, we’ll see how we can use freqens to break some weak crypto.

Scenario

You are working for the NSA and find that some terrorists are using brainfuck programs to hack the whole universe.
Some intelligence lets you know that they are using extremely weak crypto (single byte xor) in order to “secure” their communications,
which you have been able to intercept.

In particular, you want to decode a ciphertext that looks like this:

5 555 P55'P5 7PP&5V77V7P5V5V5&P77 55&P77&&&&55&P&5V7VV\x017P7&7P7V 7 P5V77 5&555V7V7P7V5P&P5 7&V5P7 5&V
777 5 5\x01++P&\x01++++P77 5&5&\x01++++++P77P&V55&\x01++++++++P77 5 5&\x01++++++++++P77&&5&55
7&\x01++++++++++++P77 5 55&&7&\x01++++++++++++++P77&5&5&\x01++++++++++++++++P77 5 55 7&\x01++++++++++++++++++P5&7&\x0
1++++++++++++++++++++P77&5&5&\x01++++++++++++++++++++++P77&55&\x01++++++++++++++++++++++++P77
555&7&\x01++++++++++++++++++++++++++P77&&&&555 7&\x01++++++++++++++++++++++++++++P77 555
7&\x01++++++++++++++++++++++++++++++P5P&V7&\x01++++++++++++++++++++++++++++++++P77&555
7&\x01++++++++++++++++++++++++++++++++++P77&555&&7&\x01++++++++++++++++++++++++++++++++++++P77 5 55
7&\x01++++++++++++++++++++++++++++++++++++++P77P&V5&55 7&\x01++P77 5
55&&7&\x01++P7&55
7\x01++P77&55&\x01VVVVVVVVVVVVVVVVVVVVVV7P&55P77 55&V777P555 777&V7P555
777&VV55V\x015P&P&&&P&7VV5V5P P7 5&&V5V 7 PP5 7&V7V55P&%5V

Getting an analyzer

An analyzer represents the ideal frequency distribution your target plaintext has. Once it has been fed, it can be asked
to score strings based on how legit they seem (how similar its frequency distribution is to the analyzer’s). There are several ways of building an analyzer.

	
	From a raw file: you can build an analyzer like

	from freqens.analyzer import Analyzer

a representative sample of the target frequency distribution
ie. a normal brainfuck program
filename = "./program.bf"
analyzer = Analyzer.from_raw_file(filename)

	
	From a frequency distribution file: which is a json file containing some absolute frequencies.

	
	An example of a frequency distribution file would be:

	{
 "a": 4,
 "b": 3
}

	This is how you build an analyzer from one of these files:

	from freqens.analyzer import Analyzer

filename = "./bf-distribution.json"
analyzer = Analyzer.from_file(filename)

	
	From a string:

	from freqens.analyzer import Analyzer

analyzer = Analyzer("representative text")

	For this scenario, the easiest way to build the bf analyzer is to use the freqens command line utility which lets you extract a frequency distribution file from an specified set of files. For example:

	$> cd my-bf-programs
$> freqens *.bf > bf_frequency_distribution.json

Breaking the code

Now that you know how to get a brainfuck analyzer, it’s time to break the code. We’ll decode the ciphertext with every possible key (as it is single byte xor, there’s only 256 possible keys) and let the analyzer discover what is the real ciphertext. Our program will look like:

from freqens.analyzer import Analyzer

def single_byte_xor(text, byte):
 return "".join(chr(c ^ byte) for c in bytearray(text))

with open("ciphertext.txt") as ciphertext_file:
 ciphertext = ciphertext_file.read()
 analyzer = Analyzer.from_file("bf_frequency_distribution.json")

 possible_plaintexts = (single_byte_xor(ciphertext, byte) for byte in range(256))

 answer = analyzer.choose_best(possible_plaintexts)

 print answer[0] # Solution !!!

And the program will print:

+++>++>>>+[>>,[>+++++<[[->]<<]<[>]>]>-[<<+++++>>-[<<---->>-[->]<]]
<[<-<[<]+<+[>]<<+>->>>]<]<[<]>[-[>++++++<-]>[<+>-]+<<<+++>+>
 [-
 [<<+>->-
 [<<[-]>>-
 [<<++>+>-
 [<<-->->>+++<-
 [<<+>+>>--<-
 [<<->->-
 [<<++++>+>>+<-
 [>-<-
 [<<->->-
 [<<->>-
 [<<+++>>>-<-
 [<<---->>>++<-
 [<<++>>>+<-
 [>[-]<-
 [<<->>>+++<-
 [<<->>>--<-
 [<<++++>+>>+<-
 [<<[-]>->>++<-
 [<<+++++>+>>--<-
 [<->>++<
 [<<->>-
]]]]]]]]]]]]]]]]]]]]]]<[->>[<<+>>-]<<<[>>>+<<<-]<[>>>+<<<-]]>>]
>[-[---[-<]]>]>[+++[<+++++>--]>]+<++[[>+++++<-]<]>>[-.>]

Which is obviously [http://www.hevanet.com/cristofd/brainfuck/utm.b] an Universal Turing Machine! Now you know terrorists have turing-complete technology in their hands.

 Copyright 2015, Braulio Valdivielso.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	freqens 0.0.1 documentation

Analyzer

	This module contains two classes:

	
	Analyzer: a generic analyzer. It can be fed both from text strings and from files. You can also store a representation of the state of the analyzer to be retrieved later, with the from_file class method or the load method.

	EnglishAnalyzer: an special analyzer for the English language.

	
class freqens.analyzer.Analyzer(content=None)

	The class that performs the analysis.
You can feed an analyzer from different sources (strings, files...) so that
it extracts the target frequency distribution and ask
it to score supplied content based on frequency similarity

	
choose_best(strings, n=1)

	Returns the n strings whose frequency distribution is most similar
to the one fed to the analyzer.

	Parameters:	
	strings – an iterator with the strings where the Analyzer will looked for the
best strings.

	n – an integer specifying the number of strings which will be returned.

	Returns:	an iterable containing the n best strings sorted by frequency similarity

	
discard(chars)

	Removes the chars in chars from the counter

	Parameters:	chars – an interable consisting of the chars whose frequency will be set to 0

	
feed(content)

	Feeds the analyzer with a string

	Parameters:	content – the string to be fed to the analyzer

	
feed_from_raw_file(filename)

	Feeds the analyzer with the content of a file
Every character will be taken into account, including newline chars.

	Parameters:	filename – the path of the file that will be fed to the analyzer

	
classmethod from_file(filename)

	Reads a frequency distribution from a JSON file as stored by store method

	
classmethod from_raw_file(filename)

	Returns an analyzer whose frequency distribution is read from the file content

	
keys()

	Returns the characters whose frequency is greater than 0

	
load(filename)

	Loads a frequency distribution file and adds it to the current distribution

	
score(content)

	Assigns a score to any string. The smaller, the more similar frequency distribution. 0 means that the frequency distributions of both the content and the analyzer are equal.

	Parameters:	content – the string to be scored.

	Returns:	a float number

	
serialize()

	Returns a json representation of the analyzer

	Returns:	a string containing a json representation of the absolute frequencies
the analyzer has been fed with.

	
store(filename)

	Stores the json representation of the analyzer to a file

	
transform_keys(transformation)

	Maps the keys to other new keys to get a new frequency distribution

The relative frequency of keys that map to the same key will be added in
order to get the new frequency distribution.

	Parameters:	transformation – a callable object that maps chars to chars

	
class freqens.analyzer.EnglishAnalyzer(blank_spaces=True, case_sensitive=True, just_alpha=False)

	An analyzer for the english language

	
freqens.analyzer.counter_distance(counter1, counter2)

	Euclidean distance on the frequency distribution space

 Copyright 2015, Braulio Valdivielso.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	freqens 0.0.1 documentation

 Python Module Index

 f

 			

 		
 f	

 	[image: -]
 	
 freqens	

 	
 	
 freqens.analyzer	

 Copyright 2015, Braulio Valdivielso.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	freqens 0.0.1 documentation

Index

 A
 | C
 | D
 | E
 | F
 | K
 | L
 | S
 | T

A

 	

 	Analyzer (class in freqens.analyzer)

C

 	

 	choose_best() (freqens.analyzer.Analyzer method)

 	

 	counter_distance() (in module freqens.analyzer)

D

 	

 	discard() (freqens.analyzer.Analyzer method)

E

 	

 	EnglishAnalyzer (class in freqens.analyzer)

F

 	

 	feed() (freqens.analyzer.Analyzer method)

 	feed_from_raw_file() (freqens.analyzer.Analyzer method)

 	freqens.analyzer (module)

 	

 	from_file() (freqens.analyzer.Analyzer class method)

 	from_raw_file() (freqens.analyzer.Analyzer class method)

K

 	

 	keys() (freqens.analyzer.Analyzer method)

L

 	

 	load() (freqens.analyzer.Analyzer method)

S

 	

 	score() (freqens.analyzer.Analyzer method)

 	serialize() (freqens.analyzer.Analyzer method)

 	

 	store() (freqens.analyzer.Analyzer method)

T

 	

 	transform_keys() (freqens.analyzer.Analyzer method)

 Copyright 2015, Braulio Valdivielso.
 Created using Sphinx 1.3.1.

 _static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		freqens 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Braulio Valdivielso.
 Created using Sphinx 1.3.1.

_static/down.png

_static/up.png

_static/minus.png

_static/comment-close.png

_static/plus.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

