

FQN Decorators

Contents:

	Installation

	Usage
	Advanced Usage

	Introduction

	Simple decorator

	Decorator with arguments

	Async Decorator

	API
	fqn_decorators

	License

Indices and tables

	Index

	Module Index

	Search Page

Installation

At the command line:

$ pip install fqn-decorators

Usage

Topics

	Usage

	Introduction

	Simple decorator

	Decorator with arguments

	Async Decorator

	Advanced Usage
	Combining decorators

	Non-keyworded decorators

Introduction

By extending the Decorator class you can create simple decorators.
Implement the before() and/or after() methods to perform actions before or after execution of the decorated item.
The before() method can access the arguments of the decorated item by changing the args and kwargs attributes.
The after() method can access or change the result using the result attribute.
The exception() method can be used for do something with an Exception that has been raised.
In all three methods the fqn and func attributes are available.

Simple decorator

Create a simple decorator:

import fqn_decorators
import time

class time_it(fqn_decorators.Decorator):

 def before(self):
 self.start = time.time()

 def after(self):
 duration = time.time() - self.start
 print("{0} took {1} seconds".format(self.fqn, duration))

@time_it
def my_function():
 time.sleep(1)

>>>my_function()
__main__.my_function took 1.00293397903 seconds

Decorator with arguments

It is also very easy to create a decorator with arguments.

Note

It is not possible to create decorators with non-keyworded arguments.
To create a decorator that supports non-keyworded arguments see the Advanced Usage section.

Example:

import fqn_decorators
import time

class threshold(fqn_decorators.Decorator):

 def before(self):
 self.start = time.time()

 def after(self):
 duration = time.time() - self.start
 treshold = self.params.get('threshold')
 if threshold and duration > threshold:
 raise Exception('Execution took longer than the threshold')

@threshold(threshold=2)
def my_function():
 time.sleep(3)

>>> my_function()
Exception: Execution took longer than the threshold

Async Decorator

There’s also support for decorating coroutines (or any awaitable), for Python >=3.5 only.

The implementation is the same as with the sync version, just inherit from
AsyncDecorator instead.

Example:

import asyncio
import time
from fqn_decorators.async import AsyncDecorator

class time_it_async(AsyncDecorator):

 def before(self):
 self.start = time.time()

 def after(self):
 duration = time.time() - self.start
 print("{0} took {1} seconds".format(self.fqn, duration))

@time_it_async
async def coro():
 await asyncio.sleep(1)

>>> loop = asyncio.get_event_loop()
>>> loop.run_until_complete(coro())
__main__.coro took 1.001493215560913 seconds

Advanced Usage

Note

It is possible to decorate static and class methods but you have to ensure that the order of decorators is right.
The @staticmethod and @classmethod decorators should always be on top.:

@staticmethod
@my_decorator
def my_static_method():
 pass

Warning

The fully qualified name of a method cannot be properly determined for static methods and class methods.

Warning

The fully qualified name of a method or function cannot be properly determined in case they are already decorated.
This only applies to decorators that aren’t using Decorator

Decorators can be used in three different ways.:

@my_decorator
@my_decorator()
@my_decorator(my_argument=True)
def my_function():
 pass

Decorators can be used on all callables so you can decorator functions, (new style) classes and methods.:

@my_decorator
def my_function():
 pass

@my_decorator
class MyClass(object):
 @my_decorator
 def my_method():
 pass

Combining decorators

Combining decorators is as simple as just stacking them on a function definition.

Important

The before() and after() methods of the decorators are in different orders.
In the example below the before() methods of step2 and step1 are executed and then the method itself.
The after() method is called for step1 and then step2 after the method is executed.
So the call stack becomes

	step2.before()

	step1.before()

	my_process()

	step1.after()

	step2.after()

@step2
@step1
def my_process():
 pass

If you want to create a decorator that combines decorators you can do that like this:

class process(decorators.Decorator):
 """Combines step1 and step2 in a single decorator"""

 def before(self):
 self.func = step2(step1(self.func))

Non-keyworded decorators

Although not supported out of the box, it is possible to create decorators with non-keyworded or positional arguments:

import fqn_decorators

class arg_decorator(fqn_decorators.Decorator):

 def __init__(self, func=None, *args, **kwargs):
 self._args = args
 super(arg_decorator, self).__init__(func, **kwargs)

 def __call__(self, *args, **kwargs):
 if not self.func:
 # Decorator initialized without providing the function
 return self.__class__(args[0], *self._args, **self.params)
 return super(arg_decorator, self).__call__(*args, **kwargs)

 def __get__(self, obj, type=None):
 return self.__class__(self.func.__get__(obj, type), *self._args, **self.params)

 def before(self):
 print self._args

@arg_decorator(None, 1, 2)
def my_function():
 pass

>>>my_function()
(1, 2)

API

Contents:

	fqn_decorators
	fqn_decorators.async module

	fqn_decorators.decorators module

fqn_decorators

fqn_decorators.async module

fqn_decorators.decorators module

	
class fqn_decorators.decorators.ChainedDecorator(func=None, decorators=None, **params)

	Bases: fqn_decorators.decorators.Decorator

Simple decorator which allows you to combine regular decorators and decorators based on Decorator.
It will preserve the FQN for those based on Decorator.

	
before()

	Allow performing an action before the function is called.

	
class fqn_decorators.decorators.Decorator(func=None, **params)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A base class to easily create decorators.

	
after()

	Allow performing an action after the function is called.

	
args = None

	The non-keyworded arguments with which the callable will be called

	
before()

	Allow performing an action before the function is called.

	
exc_info = None

	Exception information in case of an exception

	
exception()

	Allow exception processing (note that the exception will still be raised after processing.

	
fqn = None

	The fully qualified name of the callable

	
func = None

	The callable that is being decorated

	
get_fqn()

	Allow overriding the fqn and also change functionality to determine fqn.

	
kwargs = None

	The keyword arguments with which the callable will be called

	
params = None

	The keyword arguments provided to the decorator on init

	
result = None

	The result of the execution of the callable

	
fqn_decorators.decorators.chained_decorator

	alias of fqn_decorators.decorators.ChainedDecorator

	
fqn_decorators.decorators.get_fqn(obj)

	This function tries to determine the fully qualified name (FQN) of the callable that is provided.
It only works for classes, methods and functions.
It is unable to properly determine the FQN of class instances, static methods and class methods.

License

Copyright 2016 KPN Digital.

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this application except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 fqn_decorators	

 	
 	
 fqn_decorators.decorators	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | K
 | P
 | R

A

 	
 	after() (fqn_decorators.decorators.Decorator method)

 	
 	args (fqn_decorators.decorators.Decorator attribute)

B

 	
 	before() (fqn_decorators.decorators.ChainedDecorator method)

 	(fqn_decorators.decorators.Decorator method)

C

 	
 	chained_decorator (in module fqn_decorators.decorators)

 	
 	ChainedDecorator (class in fqn_decorators.decorators)

D

 	
 	Decorator (class in fqn_decorators.decorators)

E

 	
 	exc_info (fqn_decorators.decorators.Decorator attribute)

 	
 	exception() (fqn_decorators.decorators.Decorator method)

F

 	
 	fqn (fqn_decorators.decorators.Decorator attribute)

 	fqn_decorators (module)

 	
 	fqn_decorators.decorators (module)

 	func (fqn_decorators.decorators.Decorator attribute)

G

 	
 	get_fqn() (fqn_decorators.decorators.Decorator method)

 	(in module fqn_decorators.decorators)

K

 	
 	kwargs (fqn_decorators.decorators.Decorator attribute)

P

 	
 	params (fqn_decorators.decorators.Decorator attribute)

R

 	
 	result (fqn_decorators.decorators.Decorator attribute)

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 FQN Decorators

 		
 Installation

 		
 Usage

 		
 Advanced Usage

 		
 Combining decorators

 		
 Non-keyworded decorators

 		
 Introduction

 		
 Simple decorator

 		
 Decorator with arguments

 		
 Async Decorator

 		
 API

 		
 fqn_decorators

 		
 fqn_decorators.async module

 		
 fqn_decorators.decorators module

 		
 License

