

Welcome to Foundations in Computational Skills’s documentation!

Schedule

The workshops for summer 2018 meet on the following dates:

	Friday, August 10 9-11AM (CILSE 106B): Intro to linux and command line

	Monday, August 13 9-11AM (CILSE 106B): Intro to python

	Wednesday, August 15 9-11AM (CILSE 106B): Real world application workshop 1

	Friday, August 17 9-11AM (LSEB 904): Intro to R <– Note different location!

	Monday, August 20 9-11AM (CILSE 106B): Advanced linux command line tools

	Wednesday, August 22 9-11AM (CILSE 106B): Real world application workshop 2

	Wednesday, October 24th 12-2PM (LSE 904): Shell scripting and cluster computing

	Wednesday, November 7th 12-2PM (LSE 904): Version control with git

Contents

	Workshop 0 - CLI Basics

	Workshop 1 - python

	Workshop 2 - High throughput sequencing application

	Workshop 3 - Advanced CLI

	Workshop 4 - Introduction to R

	Workshop 5 - High throughput sequencing application part 2

	Workshop 6 - Shell scripting and cluster computing

	Workshop 7 - Version Control with git

List of topics

Note

These workshops are still under construction
Please be kind.

Workshop 0 - CLI Basics

Workshop 0. Basic Linux and Command Line Usage: Online Materials

Workshop 0. Basic Linux and Command Line Usage: Workshop

	Topic

	Length

	CLI Introduction [http://www.youtube.com/watch?v=M5I6pNxVln4]

	3 min

	Navigating directories, listing files [https://www.youtube.com/watch?v=MmHcOPJEjGA]

	16 min

	Basic file operations [https://www.youtube.com/watch?v=qG8qn4ZARvg]

	9 min

	Working with files 1 [https://www.youtube.com/watch?v=hNb8gIHvN04]

	10 min

	Working with files 2 [https://www.youtube.com/watch?v=MJI4xTuxdPg]

	10 min

	I/O redirection and related commands [https://www.youtube.com/watch?v=WXcvQ5F7Kh4]

	20 min

	Globbing [https://www.youtube.com/watch?v=6iQEKElUoI8]

	6 min

Workshop 1 - python

Workshop 1. Introduction to Python

Workshop 1: Protein Translation using Python

	Topic

	Length

	Introduction

	3 min

	Builtin Types

	2 min

	A Simple Program

	6 min

	if Statements

	3 min

	Simplifying Solution

	4 min

	Defining Functions

	4 min

	More On Types and Iteration

	4 min

	More Data Structures

	
	

	File I/O

	22 min

	Modules

	3 min

	Executing Scripts with Arguments from the Command Line

	3 min

	Other File objects

	
	

Workshop 2 - High throughput sequencing application

Workshop 2. High Throughput Sequencing Application Session Online Materials

Workshop 2. High Throughput Sequencing Application Session

	Topic

	Length

	App Session Introduction [http://www.youtube.com/watch?v=67odXeyn27M]

	2 min

	Illumina Sequencing Technology [https://www.youtube.com/watch?v=fCd6B5HRaZ8]

	5 min

	High Throughput Sequencing Data Primer [http://www.youtube.com/watch?v=WLnYTiHwWAA]

	9 min

	Sequencing Data QC and Analysis Primer [http://www.youtube.com]

	9 min

Workshop 3 - Advanced CLI

Workshop 3. Advanced CLI and Tools

Workshop 3. Advanced CLI Techniques Workshop Session

	Topic

	Length

	nano [http://www.youtube.com/watch?v=cLyUZAabf40]

	~7 min

	vim (part one [http://www.youtube.com/watch?v=c6WCm6z5msk], two [http://www.youtube.com/watch?v=BPDoI7gflxM], three [http://www.youtube.com/watch?v=J1_CfIb-3X4])

	~9, ~6, ~6 min

	emacs [http://www.youtube.com/watch?v=16Rd46SE-20]

	~24 min

	piping, silencing stdout/stderr [http://www.youtube.com/watch?v=vLJOmO1WYL4]

	~10 min

	shell tricks [http://www.youtube.com/watch?v=7lSdSbgvAvs]

	~10 min

	bash history [http://www.youtube.com/watch?v=WG-MGFPsLhk]

	~4 min

	pushd/popd, find, xargs/fim [http://www.youtube.com/watch?v=k_Qt2khwA7c]

	~10 min

Workshop 4 - Introduction to R

Workshop 4. Introduction to R

Workshop 4. Introduction to R

	Topic

	Length

	Reasons why you should learn R [http://www.youtube.com/watch?v=G1PLkaRL2iY]

	~7 min

	RStudio interface [http://www.youtube.com/watch?v=jAgbZ8jkBtQ]

	~10 min

	Installing packages [http://www.youtube.com/watch?v=0cCuHhfphtQ]

	~7 min

	Console and working environment basics [http://www.youtube.com/watch?v=v5g_JZK_Ggs]

	~8 min

	Very quick data types [http://www.youtube.com/watch?v=B2f9tSGVn7w]

	~7 min

	NAs, NaNs, Infs [http://www.youtube.com/watch?v=ofe2hDUg78g]

	~3 min

	Intro to vectors [http://www.youtube.com/watch?v=uUxwf1lWgrk]

	~7 min

	Data types and structures, Part 2 [http://www.youtube.com/watch?v=_HKDbA9WkX8]

	9:30 min

	If statements and logical operators [http://www.youtube.com/watch?v=eVEx_pBEkRI]

	5:30 min

	Apply function [http://www.youtube.com/watch?v=csLati8vpOo]

	~7 min

	Reshape package [http://www.youtube.com/watch?v=aXXy04P_l1c]

	~6 min

	Split, Apply and Combine with plyr [http://www.youtube.com/watch?v=S4oCN0FDC14]

	8:30 min

	Intro to ggplot [http://www.youtube.com/watch?v=O9tudYwK1RM]

	9 min

Workshop 5 - High throughput sequencing application part 2

Workshop 5. NGS Application Session 2

Workshop 5. NGS Application Session 2 Workshop

There are no video online materials for this workshop.

Workshop 6 - Shell scripting and cluster computing

Workshop 6. Shell Scripts and Cluster Computing

There is no in-class workshop material for this workshop.

Workshop 7 - Version control with git

Workshop 7. Version Control with git

Workshop 7. Version Control with git workshop

Contributors

The primary contributors to the BU Bioinformatics Programming Workshop Taskforce:

	Gracia Bonilla

	Rachael Ivison

	Vinay Kartha

	Josh Klein

	Adam Labadorf

	Katharine Norwood

We would also like to thank Gary Benson for his mentorship and support.

Indices and tables

	Index

	Module Index

	Search Page

Workshop 0. Basic Linux and Command Line Usage: Online Materials

Introduction

Runtime: ~3 min

 Workshop 1: Python

Workshop 1: Python

Introduction

This workshop will serve as an introduction to Python. The workshop breaks into
two sections: a brief overview of Python as a programming language (created by
Joshua Klein, a Bioinformatics PhD student at Boston University), and a
problem-based workshop where students will create a python script to perform
protein synthesis in silico. The introduction should be performed before
the in-person workshop. The workshop should be done in pairs, with both students
alternating who “drives”.

	Python Introduction

	Protein Synthesis Workshop

Installation via Anaconda

To install Python, it is recommended to use the Anaconda distribution.
Anaconda is a cross platform python distribution that packages useful tools for
scientific programming in Python such as IDEs/text editors (Spyder/VSCode),
package managing tools (pip/conda), interactive notebooks (Jupyter), and other
useful tools. To install Anaconda use the following steps:

	Go to https://www.anaconda.com/download/

2. It’s 2018, so make sure to download the Python 3.6 version. Python2 support
is rapidly being dropped from many important libraries, so Python3 is preferred.

3. During installation on Windows, you may be asked if you would like to add
Anaconda to your PATH. This will make Anaconda packages/Python available across
your computer, so it’s up to you whether this is something you want.
Installation on MAC/Linux should be straight forward.

4. Once installation is successful, you will now have access to all the tools
we need. To ensure everything installed properly, look for Anaconda Navigator
in your applications. Launch the application, you should have a window that
looks like this:

[image: python]

5. If the button under Jupyter Notebook reads “Install” please click it to
ensure Jupyter Notebooks are installed.

	That’s it! You’re done!

Sections

	Workshop 1. Introduction to Python
	Introduction

	Running Python Code
	Builtin Types

	A Simple Program

	if Statements

	Simplifying Solution

	Defining Functions

	More On Types and Iteration

	Dictionaries

	More Data Structures

	File I/O

	Modules

	Executing Scripts with Arguments from the Command Line

	Other File objects

	More Parsing

	Protein Synthesis Workshop
	Overview

	Files

	Helpful Tips and Files

	If You Finish Early

 Workshop 1. Introduction to Python

Workshop 1. Introduction to Python

Introduction

 Workshop 1: Protein Translation using Python

Workshop 1: Protein Translation using Python

Instructor: Dakota Hawkins

Overview

Protein synthesis generally follows what has been termed “The Central
Dogma of Molecular Biology.” That is that DNA codes RNA where RNA then
makes protein. Here is a useful source if you need a quick refresher
(https://www.nature.com/scitable/topicpage/translation-dna-to-mrna-to-protein-393).
In today’s workshop we will be writing a small Python script to simulate
this process by reading a DNA sequence from a FASTA file, transcribing
the sequence to mRNA, translating the computed mRNA strand to amino
acids, and finally writing the protein sequence to another FASTA file.
This workshop is intended to synthesise the information we learned in
the Python introduction.

For this workshop you will be working with a partner in small teams. The
groups will be used as a means to facilitate discussion (e.g. “How can
we structure this function?”), while you and your partner will help each
other implement the code. Partners should choose a single computer to
write the code with. While a single person will be “driving” at a time,
both partners are expected to converse and contribute. Likewise, no one
person should be driving for the entire workshop: make sure to switch
semi-regularly to ensure each person is getting the same out of the
workshop. Please ensure each partner has a working copy of the completed
Jupyter Notebook after the workshop is complete.

This notebook includes skeleton methods for all of the different Python
functions we’ll need: ``read_fasta()``, ``write_fastsa()``,
``read_codon_table()``, ``transcribe()``, ``translate()``,
and ``main()``. While these functions should encompass all of the
functions we’ll need, feel free to write your own helper functions if
you deem it necessary. Similarly, if you’d rather eskew the structure I
provided – whether combining previously separated functions, changing
passed arguments, etc. – feel free to do so. The only requirement is
both partners are onboard with the change and the final product produces
the same output. The skeleton code is mainly used to provide a starting
structure so the code is easier to jump into.

Files

1. The file, ‘human_notch.fasta’, contains the genomic sequence for the Notch
gene in homo sapiens. The file is is the fasta format.

human_notch.fasta

2. The file, ‘codon_table.csv’, contains information on which codons produce
which amino acids. You will use then when simulating protein synthesis from
mRNA.

codon_table.csv

3. The file, ‘protein_synthesis.py’, contains skeleton function definitions
for all necessary steps in our simulation.

protein_synthesis.py

4. The file, ‘protein_synthesis_solutions.py’, contains implemented functions
for each function defined in ‘protein_synthesis’ skeleton code.

protein_synthesis_solutions.py

5. The file, protein_synthesis.ipynb, contains a Jupyter Notebook with the
same skeleton code found in protein_synthesis.py. Use this if Jupyter is your
preferred environment.

protein_synthesis.ipynb

Helpful Tips and Files

	The ``re`` python module contains a ``sub`` method to perform
regular expression substitution. Likewise, the base string method
``replace`` can replace substrings in a parent string with another
provided substring.

	FASTA files are text files with standardized format for storing
biological sequence. Generally, the first line in FASTA files is a
description demarked by ``>`` (or less frequently ``;``) as
the first character. The next lines contain the actual biological
sequence. Generally each line is either 60 or 70 characters long
before a line break. An example FASTA file (human_notch.fasta)
has been included. For more information:
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=BlastHelp

	Helpful functions

	Library

	Function

	Description

	Example Call

	base

	open()

	Access a
file in
Python.

	read_file = open(file_name, "r")

	base

	readline(
)

	Read the
current line
from a file
object.

	read_file.readline()

	base

	write()

	Write a
string to a
file.

	write_file.write("Hi there.")

	base

	strip()

	Remove
leading and
trailing
whitespace
and
formatting
characters.

	"\n Hi there ".strip()

	base

	split()

	Separate a
string into
disjoint
sections
given a
specified
delimiter.

	"1,2,3,4".split(',')"

	re

	sub()

	Substitute
a given
pattern with
another.

	re.sub("F", "J", "Function")

	base

	replace()

	Replace a
substring
with another
substring.

	"ATG".replace("G", "C")

Read FASTA Files:

def read_fasta(fasta_file):
 """
 Retrieve a DNA or protein sequence data from a FASTA file.

 Arguments:
 fasta_file (string): path to FASTA file.
 Returns:
 (string): DNA or protein sequence found in `fasta_file`.
 """
 return('')

Write FASTA Files:

def write_fasta(sequence, output_file, desc=''):
 """
 Write a DNA or protein sequence to a FASTA file.

 Arguments:
 sequence (string): sequence to write to file.
 output_file (string): path designating where to write the sequence.
 desc (string, optional): description of sequence. Default is empty.
 Returns:
 None.
 """
 return(None)

Read codon_table.csv:

def read_codon_table(codon_table='codon_table.csv'):
 """
 Create a dictionary that maps RNA codons to amino acids.

 Constructs dictionary by reading a .csv file containing codon to amino
 acid mappings.

 Arguments:
 codon_table (string, optional): path to the .csv file containing
 codon to amino acid mappings. Assumed column structure is
 'Codon', 'Amino Acid Abbreviation', 'Amino Acid Code', and
 'Amino Acid Name'. Default is 'codon_table.csv'
 Returns:
 (dictionary, string:string): dictionary with codons as keys and
 amino acid codes as values.
 """
 return({'': ''})

Transcribe DNA to RNA:

def transcribe(dna_seq, strand='-'):
 """
 Transcribe a DNA sequence to an RNA sequence.

 Arguments:
 dna_seq (string): DNA sequence to transcribe to RNA.
 strand (string, optional): which strand of DNA the sequence is
 derived from. The symbol '+' denotes forward/template strand
 while '-' denotes reverse/coding strand. Default is '-'.
 Regardless of strand, the sequence is assumed to oriented
 5' to 3'.
 Returns:
 (string): transcribed RNA sequence from `dna_seq`.
 """

 return('')

Translate RNA to Protein:

def translate(rna_seq, codon_to_amino):
 """
 Translate an RNA sequence to an amino acid sequence.

 Arguments:
 rna_seq (string): RNA sequence to translate to amino acid sequence.
 codon_to_amino (dict string:string): mapping of three-nuceleotide-long codons to
 amino acid codes.
 Returns:
 (string): amino acid sequence of translated `rna_seq` codons.
 """

 return('')

Tie the Steps Together:

def main(dna_seq, output_fasta):
 """
 Return the first protein synthesized by a DNA sequence.

 Arguments:
 dna_seq (string): DNA sequence to parse.
 output_fasta (string): fasta file to write translated amino acid sequence to.
 Returns:
 None.
 """

 return(None)

If You Finish Early

If you finish early, here are some suggestions to extend the
functionality of your script:

	Multiple Reading Frames: A reading frame is the sliding window in which
nucleotide triplets are considered codons. A reading frame is defined by the
first start codon discovered. That is, prior to a start codon, nucleotides
are scanned by incrementing a single nucleotide each time. After a start
codon is discovered, nucleotide positions are incremented by three (i.e. the
length of a codon). This +3 incrementation is considered the reading frame.
An open reading frame (ORF) occurs when a reading frame, beginning at a start
codon, also encompasses a stop codon. An ORF represents a genomic region that
is able to code for a complete protein. It is possible a single genomic
sequence contains multiple ORFs. Modify your code to 1. find all open reading
frames in a given genomic sequence, and 2. return the amino acid sequences
associated with each ORF.

	System Arguments: Using the ``sys`` Python module it is
possible to access command-line arguments passed by a user.
Specifically, the ``sys.argv`` variable stores user-passed
information. Implement command line functionality that takes a
user-provided FASTA file, converts the DNA sequence to amino acids,
and outputs to another user-provided FASTA file.

	Defensive Programming: When you’re creating a program, usually
you have a pretty good idea of its use and how it works. However,
sometimes we’re not the only ones using our programs. Therefore, it’s
a good idea to protect against user and input error. For example,
what happens if non-recoganized letters, whitespace, or special
characters (``*``, ``-``) are included in the input sequence?
Ensure your program is able to handle these, but remember some
characters may have special meanings.

	Calculating Statistics: Higher GC content in genomic regions is
related to many important biological functions such as protein
coding. Discuss with your partner the best way to measure the GC
content of a DNA sequence. Once you’ve agreed on the best way,
implement a function that will calculate the percentage along a
provided sequence. Using the Python module ``matplotlib``, the
output of this function to visualize how the measure changes along
the sequence. In order to easily identify areas of high and low GC
content, make sure to include a line that plots the mean level
accross sequence.

	Simulating Single Nucleotide Polymorphisms: Single nucleotide
polymorphisms (SNPs) are single-point mutations that change the
nucleotide of a single base in a strand of DNA. SNPs are incredibly
important in genome-wide association studies (GWAS) that look to
infer the relationship between specific genotypes and phenotypic
outcomes such as disease status. Using a numerical library, such as
numpy/scipy, create a function to randomly select a base for
mutation. Apply some function that determines the identity of the
newly mutated base. How biologically reasonable is your model? What
biological phenomena should we consider to create an accurate
simulation?

For some exercises, you will likely need to look for, and read, library
specific documentation in order to implement the functions. This alone
is a helpful exercise, as throughout your coding career you will
continually need to reference documentation.

 Workshop 2. High Throughput Sequencing Application Session

Workshop 2. High Throughput Sequencing Application Session

Overview

In this workshop we will accomplish the following tasks:

	Download sample FASTQ files from figshare using wget

	Downsample a FASTQ file for use in code prototyping

	Parse FASTQ file and identify good reads

	Deduplicate good reads

	Trim deduplicated reads to remove random sequences and CACA

	Calculate unique sequence counts after deduplication and trimming

	Record read count statistics of total reads, good reads, deduplicated reads, and unique
reads

	Make your python script generic and apply your code to the full datasets

The experimental setup that produced this data is as follows:

[image: ../../../_images/2omeseq_experiment.png]

Download sample FASTQ

The FASTQ files for this workshop are hosted on figshare [https://figshare.com]. figshare is a free,
open web platform that enables researchers to host and share all of their
research files, including datasets, manuscripts, figures, posters, videos, etc.
There are four FASTQ datasets hosted on figshare that we will use in this
workshop:

	Sample name

	Hours after fertilization

	RT dNTP concentration

	FO-0517-2AL

	2

	low

	FO-0517-2AH

	2

	high

	FO-0517-6AL

	6

	low

	FO-0517-6AH

	6

	high

The data are available here [https://ndownloader.figshare.com/articles/5231221/versions/1], but don’t go all clicky downloady yet.

While we could click on the link above and download the data using a web
browser, it is often convenient to download data directly using the CLI. A tool
we can use to do this is wget, which stands for ‘web get’. To download a
file available by URL, you can run the following:

$ wget https://url/to/file

This will download the file at the given URL to the local directory, creating a
local filename based on the last part of the url (e.g. file in this example).
The link to download this dataset is:

https://ndownloader.figshare.com/articles/5231221/versions/1

Tip

If you don’t have wget, you could also try curl

Running wget with this link will create a file named
1, which isn’t very nice or descriptive. Fortunately,
wget has a command line option -O <filename> that we can use to rename the
file it downloads.

Task - Download source data

Use wget and the appropriate command line arguments to download the
dataset to a file named 2OMeSeq_datasets.zip. Once the file has been
downloaded (it should be ~1Gb in size), unzip it with the unzip command.

Downsample a FASTQ file

If the previous task completed successfully, you should now see four files in
your current working directory:

$ ls *.fastq.gz
DC-0517-2AH.10M.fastq.gz DC-0517-2AL.10M.fastq.gz
DC-0517-6AH.10M.fastq.gz DC-0517-6AL.10M.fastq.gz

Use ls to examine the size of these files, and note that they are somewhat
large.

When writing analysis code for large sequencing datasets, it is often beneficial
to use a smaller, downsampled file to enable more rapid feedback during
development. We can easily produce a smaller version of these FASTQ files using
head, I/O redirection >, and zcat, a command we haven’t covered yet.

gzip and zcat

Raw FASTQ files are usually very large, so, rather than store them as regular
text files, these files are often compressed into a binary format using the
gzip program. gzipped files often end in .gz, which is the case for our
sample files. Since the compression algorithm produces a binary file, we cannot
simply print a gzipped file to the screen and be able to read the contents like
we would with a text file, e.g. using cat. If we do wish to view the
contents of a gzipped file, we can use the zcat command, which merely
decompresses the file before printing it to the screen.

Warning

FASTQ files often have hundreds of millions of lines in them. Attempting to
zcat an entire FASTQ file to the screen will take a very long time! So,
you probably don’t want to do that. You might consider piping the output to
less, however.

Tip

If you’re having trouble with zcat, you could also try gunzip -c

Task - Create a downsampled file with 100k reads

Recalling the FASTQ format has four lines per read, use zcat, head,
the pipe |, and I/O redirection > to select just the top 100k reads
of one source FASTQ file and write them to a new file. You may choose any
one of the source files you wish, just be sure to give the file a unique
name, e.g. FO-0517-6AL_100k.fastq. Once you have done this, compress the
file using the gzip command, e.g. gzip FO-0517-6AL_100k.fastq.

Parse FASTQ file and identify good reads

Using the downsampled FASTQ file from above, we are first going to examine the
reads to determine which are ‘good’, i.e. end with the sequence CACA.

Task - Identify good reads

Write a python script, e.g. named process_reads.py, that opens the
downsampled gzipped FASTQ file, iterates through the reads, count the number
of total reads in the dataset, counts reads that end in the sequence
CACA, and retain the sequences for those reads.

HINT: python can open gzipped files directly using the gzip.open [https://docs.python.org/3/library/gzip.html#gzip.open]
function.

Deduplicate good reads

In your script you should now have a set of sequences that correspond to good
reads. Recall the adapter strategy caused these reads to be as follows:

4 random nucleotides
|
| True RNA fragment insert
| |
| | 2 random nucleotides
| | |
| | | Literal CACA
| | | |
v v v v
NNNNXXXXXXXXXXXXXXXXXXXXXXXXXNNCACA

In principle, this strategy should enable us to distinguish reads that are the
result of PCR amplification from independent events. Specifically, reads with
exactly the same sequence are very likely to have been amplified from a single
methylation event (why is this?). Therefore, we are interested in eliminating
all but one of reads that have exactly the same sequence.

Task: Deduplicate reads

Collapse the good reads you identified such that there is only one sequence
per unique sequence. HINT: look at the set [https://docs.python.org/3/library/stdtypes.html#set] python datatype.

Trim deduplicated reads

The deduplicated reads represent all of the unique RNA fragments from the
original sample, but they still contain nucleotides that were introduced as a
result of the preparation protocol. We will now trim off the introduced bases
and write the result to a FASTA formatted file.

Task - Trim off artificial bases and write to FASTA format

Using the deduplicated reads identified in step 4, trim off the bases that
were introduced by the protocol. Write the resulting sequences to a FASTA [https://zhanglab.ccmb.med.umich.edu/FASTA/]
formatted file.

Take the sequence of some of these reads and search BLAST [https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome] for them. What
species did these sequences come from?

Calculate unique sequence counts

Now that we have the unique RNA sequences identified by the experiment, one
question we can ask is: which sequences do we see most frequently? To do this,
we can count the number of times we see each identical sequence, and then rank
the results descending. We can write out a list of sequences and the
corresponding counts to file for downstream analysis.

Task - Count the occurence of the deduplicated sequences

Loop through the deduplicated sequences and keep track of how many times each
unique sequence appears. Write the output to a tab delimited file, where the
first column is the unique sequence and the second column is the number of
times that sequence is seen.

HINT: Look at the csv [https://docs.python.org/3/library/csv.html] module in the standard python library.

HINT: Look at the Counter [https://docs.python.org/3/library/collections.html#collections.Counter] class in the collections [https://docs.python.org/3/library/collections.html] module of the
standard python library.

Record read count statistics

Looking at the downsampled data, we can consider four quantities:

	# of total reads (100k)

	# of good reads

	# of deduplicated reads

	# of unique deduplicated reads

Comparing these numbers may give us an idea of how well the overall experiment
worked. For example, the fraction of good reads out of the total reads gives us
an idea of how efficient the sample preparation protocol is. The fraction of
deduplicated reads out of the good reads tells us how much PCR amplification
bias we introduced into the data.

Task - Record read count statistics

In whichever format you desire, write out the counts of total reads, good
reads, deduplicated reads, and unique deduplicated reads to a file.

Make your python script generic

Now that we have prototyped our script using a downsampled version of the data,
we can be more confident that it will work on a larger dataset. To do this, we
can make a simple modification to our script such that the filename we are using
is not written directly into the file, but rather passed as a command line
argument. The argv [https://docs.python.org/3/library/sys.html#sys.argv] property in the standard python sys [https://docs.python.org/3/library/sys.html] module makes the
command line arguments passed to the python command available to a script.

Task - Make your script generic

Use the sys.argv [https://docs.python.org/3/library/sys.html#sys.argv] variable to enable the script to accept a fastq filename
as the first argument to the python script. Make sure when your script writes
out new files, the filenames reflect the filename passed as an argument.

Run your script on all four of the original FASTQ files and compare the
results. These files are substantially larger than the downsampled file, so
this may take some minutes.

Questions and Wrap-up

In this workshop, we have taken raw sequencing data from a real-world
application and applied computational skills to manipulate and quantify the
reads so we can begin interpreting them. The FASTA sequences of deduplicated
reads may now be passed on to downstream analysis like mapping to a genome and
quantification. The unique sequence counts we used may be also used to identify
overrepresented sequences between our different conditions. When you have
finished running your script on all of the full FASTQ datasets, compare and
interpret the results.

 Workshop 3. Advanced CLI and Tools

Workshop 3. Advanced CLI and Tools

This workshop covers some more advanced features of using the linux command line
that you will find very helpful when using a CLI for bioinformatics tasks.

Sections

	Command line editors
	nano

	vim

	emacs

	Advanced CLI
	Part 1

	Part 2

	Part 3

	Useful tools

	Workshop task
	Goal 1: Unique annotated gene types

	Goal 2. Identify the unique gene names of all ribosomal RNAs

	Goal 3. Count the number of unique genes annotated as ribosomal RNAs

	Goal 4. Download the genomic ribosomal RNA gene sequences to a fasta file

 Command line text editors

Command line text editors

Although there are many tools available for editing text that run on your local
machine, sometimes it is convenient or necessary to edit the text in a file from
the command line itself.

It is therefore important to have familiarity with at least one of the most
common CLI text editors: nano, vim, or emacs.

These programs accomplish essentially the same thing (editing text files) but go
about it in very different ways.

Linked below are short-ish introductions to how each editor works, but as a
quick guide:

	nano - the easiest to use, but has the fewest features, will likely be
installed on every linux system you use

	vim - the steepest learning curve, but extremely powerful when you learn
it well, will likely be installed on every linux system you use

	emacs - somewhere in between nano and vim with difficulty of use, powerful
and highly customizeable, won’t always be installed on every system you use

nano

[image: Super fun! For a couple minutes.]
nano is the most basic CLI text editor (though some might disagree [https://xkcd.com/378/]) and will be
available on nearly every linux-based system you ever encounter.

Basic usage:

	Easy: type nano or nano <filename> on the CLI and start typing

	Ctl-O to save (i.e. write Out) a file

	Ctl-X to exit

Here is a quick tutorial video of how to use the nano editor.

Runtime: ~7 min

 Advanced command line techniques

Advanced command line techniques

Despite being text-based, the bash shell is a very sophisticated and powerful
user interface.

Note

There are many shell programs, of which bash is the most common. Different
shells have different capabilities and syntax, and the following material is
specific to the bash shell. If you use another shell (e.g. tcsh [https://en.wikipedia.org/wiki/Tcsh] or zsh [https://en.wikipedia.org/wiki/Z_shell])
some of these techniques will likely not work.

These short tutorials cover some of the more useful capabilities of the bash
shell, but are hardly exhaustive.

There are many guides and tutorials online for more comprehensive study, just a
few:

	Bash Guide for Beginners [http://www.tldp.org/LDP/Bash-Beginners-Guide/html/]

	The Bash Academy [http://guide.bash.academy/] (cool, but quite incomplete as of 8/3/2017)

	LMGTFY [http://bfy.tw/Y87]

Part 1

	pipelining

	silencing stdout and stderr with /dev/null

Runtime: ~10 min

 Useful tools

Useful tools

There are many, many programs installed by default on linux systems, but only a
handful are needed in day-to-day usage.

These are some useful commands that you can explore for yourself:

	file <path> - guess what type of file (i.e. gzipped file, PDF file, etc)
is at the location <path>

	du - show the disk usage (i.e. file size) of files in a directory, or
summarized for all files beneath a directory

	df - show the disk volumes mounted on the current filesystem and their
capacity and usage

	ln -s <src> [<dest>] - create a symbolic link, which is a file that points
to file <src> and is named <dest> (same as <src> filename by
default)

The following commands are very useful but warrant some explanation and so are
described in a final video:

	pushd and popd - modify your directory stack, so you can switch
between different directories quickly

	find - search for files with particular characteristics (e.g. filename
pattern) recursively from a given directory

	xargs / fim - execute the same command on a list of input

 Workshop 3. Advanced CLI Techniques Workshop Session

Workshop 3. Advanced CLI Techniques Workshop Session

In this workshop we will extract annotation information from the human GENCODE
v26 gene annotation exclusively using command pipelines, without writing any
files to disk. Specifically, we have the following goals:

	Identify the unique annotated gene types in the annotation (i.e.
protein_coding, lincRNA, miRNA, etc)

	Identify the unique gene names of all ribosomal RNAs

	Count the number of unique genes annotated as ribosomal RNAs

	Use the ensembl gene IDs to download the genomic sequences for all ribosomal
RNA genes to a local fasta file

To make writing these commands easier, we will write them into a file and then
execute that file using bash.

Task - Create a script file

Create a file using one of the command line text editors, named something
like gencode_script.sh. You may name the file whatever you wish, but
files that contain shell commands typically have a .sh extension. The
file will be empty to begin with.

HINT: If you created a script called gencode_script.sh that has shell
commands in it, you may execute the commands in that file by running on the
command line:

bash gencode_script.sh

Goal 1: Unique annotated gene types

The GENCODE [https://www.gencodegenes.org/] gene annotation v26 [https://www.gencodegenes.org/releases/current.html] contains the genomic coordinates of all known
and well established genes in the human genome. The annotation is encoded in a
gene transfer format [http://mblab.wustl.edu/GTF2.html] (GTF) file.

Task - Define a shell variable pointing to the GENCODE v26 GTF URL

Look for the link to the first GTF file on the v26 [https://www.gencodegenes.org/releases/current.html] web page (where the
Regions column is CHR). Once you have found the link, define a shell variable
named GENCODE in your script file and set it equal to the full URL of the
GTF file.

The curl program, similar to wget, accepts a command line argument that
is a URL and prints the contents of the file at that URL to the terminal. Notice
that the URL you identified above points to a gzipped file. Therefore, if you
simply press enter after writing a curl command invocation with that URL,
the compressed file contents will be printed to the screen. This probably isn’t
what you want. However, we can instead use the | character to send the
gzipped output from curl to zcat, which will decompress the input on the
fly.

Task - Fetch the annotation using curl and pipe to zcat

Construct a command using curl to fetch the GENCODE URL defined above by
writing it onto its own line in your script file. Pipe the output of curl
to zcat to decompress it on the fly. Print out the top ten lines of the
uncompressed output using another pipe to head, to convince yourself that
you have done this correctly.

HINT: Use shell variable expansion when constructing the curl command

HINT: curl may print out some status information to stderr as it
runs. You may suppress this output using either -s option to your call
or by redirecting stderr to /dev/null

From looking at the top records in the uncompressed GTF file, you will notice
in the last column a pattern that looks like gene_type "<type>";. The value
of <type> indicates the biotype of this annotated gene. We would like to
know what the gene type string is for ribosomal RNA. To do this, we can use
grep with the -o command line argument.

Recall that grep can be used to look for specific patterns in text, e.g.
grep gene_type annot.gtf will print out the lines in annot.gtf that
contain the text gene_type. The first argument to grep is interpreted
as a regular expression [http://www.regular-expressions.info/], which is a language that expresses patterns in text.

Task - grep out the gene_type from the zcat GTF

Look at the man page for grep to identify what the -o argument
does. Also read the regular expression [http://www.regular-expressions.info/] information if you are unfamiliar
with regular expressions. Use grep and write a regular expression to
print out only the gene_type "<type>"; part of the uncompressed GTF
output. Add your grep command to the end of the command you previously
wrote into your script.

HINT: What types of characters do you expect to be between the “s in
<type>?

HINT: Try looking at inverted character classes in the regex documentation.

HINT: You probably don’t want to print out all of the grep output to the
screen all at once. How have you looked at only a part of the results before?

Now that we have captured the gene_type "<type>"; from every line where it
is found, we would like to know what the unique <type> values are. We can
use sort and uniq to do this.

Task - Identify the unique gene types

Read the man page for uniq to understand how it works. Pipe the
output of your grep call to the appropriate commands to print out only
the unique values to the terminal.

HINT: This command might take a minute or two to complete for the whole file.
How might you restrict the input to your new commands to shorten this run
time for debugging purposes?

Once you have printed out the unique gene types, look for an entry that looks
like it corresponds to ribosomal RNA. Make note of this value, as we will use it
in the next steps.

Goal 2. Identify the unique gene names of all ribosomal RNAs

Now that you have identified the gene type for ribosomal RNAs, we will use this
information to restrict the section of the annotation to only those of this gene
type. Start writing a new command on a new line of your script. We will begin
with the same curl and zcat command as above.

Task - Restrict annotations to only those marked as ribosomal RNA

Use grep to filter the lines of the uncompressed GTF file that are
annotated as ribosomal RNAs.

HINT: You may prevent your previous command from running every time you run
the script by putting a # at the beginning of the line with the command.
The # character indicates a comment in bash.

When you inspect the output of these gene annotations, notice that some of the
lines have a field gene_name "<gene name>"; toward the end of the line. This
is the (somewhat) human-readable gene name for this gene. We are interested in
identifying the unique gene names for the ribosomal RNA genes.

Task - Extract just the gene names out of each annotated ribosomal RNA

Using the grep command as we have earlier, extract out just the part of
each line that contains the gene_name attribute. Use your strategy from
earlier to identify only the unique gene names.

Task - Identify the number of unique gene names

The output from the previous task can be used with wc to identify the
number of unique gene names. How many unique gene names are there?

Goal 3. Count the number of unique genes annotated as ribosomal RNAs

In the previous task, you found the unique human readable gene names in the
annotation. However, human readable gene names are often unstable and inaccurate.
A more reliable way of counting the number of annotated genes is by examining
the records that are marked as having the feature type gene. The feature
type is the third column of the GTF file, and contains what kind of annotation
the line represents, e.g. gene, exon, UTR, etc. By definition, each gene only has
a single gene record. Counting the annotations of ribosomal RNAs that are
marked as gene feature types, we can get a more accurate number of genes.

Task - Filter ribosomal RNA records of feature type gene

Create a new line in your script to write this new command. Using the
annotation records filtered by ribosomal RNA as above, identify only those
records that have gene as the feature type.

HINT: There are several ways to do this. One way is to use the cut
command with grep to ensure you are matching on the correct strings. You
may also consider looking for ways to make a regular expression match the
beginning and end of a word. Or you may consider trying to use the whitespace
delimiter (tab character) to match only a value in a single column. There are
probably other ways to go about this too.

Task - Count the number of gene feature type records

Using the output from above and wc, count the number of gene feature type
records.

How many gene records are there for ribosomal RNAs?

How does this compare to the number of unique gene names?

Goal 4. Download the genomic ribosomal RNA gene sequences to a fasta file

Ensembl [http://www.ensembl.org/index.html] is a genome browser and database of genomic information, including
genome sequence. Ensembl also has its own gene identifier system that is often
more stable than human readable gene symbols. This is very convenient when
processing genome information programmatically, and GENCODE includes Ensembl
gene identifiers as its primary identifier type. Human Ensembl gene identifiers
are of the form ENSGXXXXXXXXXXX, where each X is a number 0-9, and there
are (presently) eleven digits.

Task - Extract only the Ensembl gene id from each ribosomal RNA gene

Create a new line in your script to begin writing a new command. Starting
with the commands above that identify unique gene records, use grep to
extract only the portion of the record that corresponds to the Ensembl gene
ID.

HINT: All human Ensembl gene IDs start with ENSG and have the same number
of characters in them.

Check that the number of unique Ensembl IDs is the same as the total number of
Ensembl IDs (i.e. that there are no duplicate gene IDs). Are the they the same?

Ensembl has an RESTful [https://en.wikipedia.org/wiki/Representational_state_transfer] API [https://rest.ensembl.org/] that allows programmatic access to nearly all of
the information in the Ensembl database. One of the endpoints [https://rest.ensembl.org/documentation/info/sequence_id] allows automatic
extraction of FASTA-formatted sequences for a given Ensembl ID. We can use
curl once again to download the genomic FASTA sequence for an Ensembl ID as
follows:

$ curl https://rest.ensembl.org/sequence/id/ENSG00000199240?type=genomic -H 'Content-type:text/x-fasta'
>ENSG00000199240 chromosome:GRCh38:1:43196417:43196536:1
GTCTACAGCCATAACACCGTGAATGCACCTGATCTTGTCTGATCTCAGAAGCTAAGCAGG
GTCAGGCCTGGTTAATACTTGGATGGGAGATACTAGCGTAGGATAGAGTGGATGCAGATA

This example, however, only downloads the sequence for a single identifier. We
would like to download sequences for every identifier we obtained in the
previous step. To do this, we can use either xargs [https://en.wikipedia.org/wiki/Xargs] or fim [https://bitbucket.org/adamlabadorf/fim/overview], as described
in the videos.

Task - Download all of the sequences for ribosomal RNA genes

Using the Ensembl IDs from the previous step, write either an xargs or
fim command that downloads the genomic sequences for each ID. Use curl
and follow the URL pattern above with the appropriate substitution. Write the
FASTA formatted sequences to a file, named to your liking.

Take a look at the FASTA file using one of head, cat, less,
vim, emacs, or ok even nano.

Pause and reflect on how powerful you have become.

 Workshop 4. Introduction to R

Workshop 4. Introduction to R

Reasons why you should learn R

Runtime: ~7 min. Created by Gracia Bonilla

 Workshop 5. NGS Application Session 2

Workshop 5. NGS Application Session 2

In this workshop, we will resume analysis of the 2OMeSeq datasets we worked with
in Workshop 2.
We will begin with the deduplicated FASTA sequences for the 10M sequence datasets
for all four time points, which will be made available to you.

The tasks we will perform in this workshop are:

	Create an index for the zebrafish genomic ribosomal RNA sequences and align
the deduplicated FASTA sequences to it using the alignment program bwa.

	Convert the alignments from SAM format to sorted BAM format using samtools

	Count the number of alignments across all positions in the rRNA sequences
using bedtools genomecov

	Plot read count distributions using a tool of your choosing

	Compute an enrichment score for all positions in the rRNA to identify
differences between low and high dNTP concentration conditions

Genomics tools

An introduction to the three tools we will be using in this workshop:

	bwa - Burrows Wheeler Transform reference based sequence alignment

	samtools - perform operations on SAM [https://samtools.github.io/hts-specs/SAMv1.pdf] and BA formatted alignment files

	bedtools - suite of tools for doing ‘genomic arithmetic’

My video capture program was crashing like it was its job, so these materials
are text-based.

bwa

bwa is a short read alignment program that uses the Burrows-Wheeler Transform [https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler_transform]
(BWT) to encode long sequences, like a genome, into a form that is easy to search.

bwa requires an index to run, which is a set of files that contain a set of
BWT encoded sequences that the program can understand. To create a bwa index,
all we need is a FASTA formatted file of reference sequences. For example, if
we have the FASTA file zebrRNA.fa, we can create an index using:

bwa index zebrRNA.fa

This will create a new set of files with the zebrRNA.fa prefix and various
suffixes added:

$ ls zebrRNA.fa*
zebrRNA.fa zebrRNA.fa.amb zebrRNA.fa.ann zebrRNA.fa.bwt zebrRNA.fa.pac zebrRNA.fa.sa

The newly created files (e.g. zebraRNA.fa.amb) are not specified directly to
bwa, but rather specified as a index base path corresponding to the common
prefix of those files, which in this case is zebrRNA.fa.

The recommended command for aligning sequences against a preexisting index is
bwa mem (there are other modes, but mem is usually the best). The bwa mem
command is invoked with two arguments, the index base and a (possibly gzipped)
FASTQ or FASTA file. For example, if we have short reads in the sample.fasta.gz
file, we could align them against the index we built with:

bwa mem zebrRNA.fa sample.fasta.gz > sample.sam

By default, bwa mem prints out alignments to stdout, so the alignments are
redirected to a new file named sample.sam. This new file contains read
alignment information in SAM [https://samtools.github.io/hts-specs/SAMv1.pdf] format, which is the current standard file format
for storing alignments.

samtools

samtools [http://www.htslib.org/] is a suite of programs that is used to manipulate SAM files. The
SAM [https://samtools.github.io/hts-specs/SAMv1.pdf] format is a text-based format, and can become very large for short read
datasets with millions of reads. Therefore, a binary version of SAM files called
BAM (Binary SAM) files can be created using samtools view.

samtools view sample.sam -b > sample.bam

The -b argument tells samtools to output the alignments in sample.sam to
BAM format. Like bwa, samtools outputs to the stdout by default, so a
redirect is used to capture this output to a file.

Warning

Viewing a binary file to stdout without capturing it, such that it is printed
to the screen, is very scary. But not dangerous.

The alignments in sample.bam are in the same order as those in sample.sam
which are roughly in the same order as they appear in sample.fasta.gz. For
some operations, it is useful or necessary to have the alignments sorted by
genomic position. We can use samtools sort to do this:

samtools sort sample.bam -o sample_sorted.bam

The alignments in sample_sorted.bam will be ordered by ascending genomic
alignment coordinate.

Using pipes, all of these operations can be done in a single command. This avoids
writing large intermediate files, like SAM files, to disk. We could do all of
the previous commands as follows:

bwa mem zebrRNA.fa sample.fasta.gz | samtools view -b | samtools sort -o sample_sorted.bam

bedtools

bedtools [http://bedtools.readthedocs.io/en/latest/] is another freely available program that allows analysts to perform
so-called genomic arithmetic. This essentially means dividing up the genome into
different parts and applying operations on the reads that map to them. bedtools
has many different subcommands, but the one we will use in this workshop is called
genomecov. This subcommand accepts a set of alignments and returns a histogram
of reads that map to each position in the genome.

To use genomecov, we need an input set of alignments in BAM format and a file
that contains the reference sequences and their lengths (i.e. number of nucleotides)
called a sizes file. The sizes file expected by bedtools is a tab delimited
file with two columns, the first being the name of the sequence and the second
the length of the sequence in nucleotides (see the UCSC hg19 [https://genome.ucsc.edu/goldenpath/help/hg19.chrom.sizes] file as an example).
If we create such a file named zebrRNA.fa.sizes using the zebrRNA.fa
file we used as the basis for our bwa alignments, we can count the number of
reads that map to each location in the ribosomal RNA index as follows:

bedtools genomecov -d -ibam sample_sorted.bam -g zebrRNA.fa.sizes > sample_sorted_coverage.tsv

The file sample_sorted_coverage.tsv will now contain the number of reads that
map to each position in our reference in a tab delimited file. These counts can
then be easily read by scripts for further analysis.

Technically speaking, the above command reports the number of sequenced bases
that map to each position of the reference. In other words, if you sum up the
counts returned, the summed value will approximately equal the number of aligned
reads times the read length. If you are interested instead to know the number
of distinct alignments that align to the reference, you can provide the -5
(or -3) option to bedtools genomecov. This will report the number of
alignments that begin (or end) at each base position. We will use -5 in the
workshop.

Workshop Problem Statement

An introduction to two new concepts we need to understand the goal of the analysis
tasks of the workshop:

	5’ read coverage - counting just the 5’ locations of aligned reads

	enrichment score - an algorithm for quantifying the overabundance of 5’ read
alignments compared to surrounding bases for every position in the reference

Recall that in the 2OMeSeq protocol, reverse transcription stalls immediately
upstream of methylation events under low dNTP conditions, resulting in an
enrichment of reads that begin at those locations. Under normal dNTP conditions,
no such enrichment should occur. We can use this principle to identify putative
methylation events programmatically by analyzing the 5’ read alignment patterns
across the transcriptome. The following figure illustrates this process:

[image: ../../../_images/2OMeSeq_read_pileup_cartoon.png]
In the figure, by counting just the 5’ ends of the alignments (dark red bars),
the methylation event is much more clearly marked than when considering all
aligned bases (light red area).

We can use the 5’ end alignment counts to calculate a score at each base position
that identifies locations that show high read pileup within a surrounding window
as illustrated in the next figure.

[image: ../../../_images/2OMeSeq_score_cartoon.png]
The intuition behind the score is that individual positions with many more 5’
alignments than the average number of reads per base within a window surrounding
that position are putative methylation events.

In this workshop, you analyze the deduplicated reads we identified in workshop 2
and identify putative methylation sites in the zebrafish ribosomal RNA genes.

Workshop 5. NGS Application Session 2 Workshop

 Workshop 6. Shell Scripts and Cluster Computing

Workshop 6. Shell Scripts and Cluster Computing

	Shell scripts

	Basic shell script

	Running shell scripts

	Making shell scripts executable

	bash scripts

	Environment and user defined variables

	Shell expansion

	Command expansion

	Variable manipulation

	Command line arguments

	Conditional statements

	for loops

	Cluster Computing

	Cluster concepts

	Cluster computing tools

	qsub

	Basic usage

	Requesting multiple cores

	Running executables directly

	Command line arguments to scripts

	qrsh / qlogin

	qstat

	qdel

	qsub script templates

	Basic script

	Multiple job slots

	Long running time

	qsub Command line arguments

Shell scripts

Shell scripts are files that contain commands that are understood by a shell
program (e.g. bash). All of the commands that can be run on a command line
may also be included in a shell script, but there are some features in shell
scripts that are not available on the command line.

Basic shell script

The most basic shell script is a file that has a single command in it.
Typically, shell script filenames end in .sh, to indicate they are shell
scripts. For example:

$ cat list_10_biggest_files.sh
du . | sort -nr | head

The shell script example above contains one command line command that prints to
the screen the top ten largest files under the current directory. Shell scripts
may contain as many valid command line commands as desired.

Shell scripts may be created using any regular text editor.

Running shell scripts

This shell script may be run in one of two ways:

$ bash list_10_biggest_files.sh # method 1
319268 .
221556 ./content
221552 ./content/workshops
217880 ./content/workshops/05_ngs_app_session_2
5356 ./.build
4384 ./.build/html
4344 ./.git
4180 ./.git/objects
2780 ./content/workshops/04_R
1436 ./.build/html/_downloads
$. list_10_biggest_files.sh # method 2
319268 .
221556 ./content
221552 ./content/workshops
217880 ./content/workshops/05_ngs_app_session_2
5356 ./.build
4384 ./.build/html
4344 ./.git
4180 ./.git/objects
2780 ./content/workshops/04_R
1436 ./.build/html/_downloads

In the first method, the command bash invokes a new bash shell, executes the
commands in script inside the new shell, and exits. In the second method, the
commands in the script are executed as if they had been typed on the current
command line. This distinction may be important depending on what variables are
defined in the script (see Environment and user defined variables below).
Specifically, if a variable is defined in the current shell environment and
redefined in the script, the first method will preserve the local environment
variable, while the second does not:

$ cat my_script.sh
MYVAR=junk # (re)define the variable named MYVAR
$ MYVAR=stuff # define the variable MYVAR in the current environment
$ echo $MYVAR
stuff
$ bash my_script.sh
$ echo $MYVAR
stuff
$. my_script.sh
$ echo $MYVAR
junk

The . method has overwritten the local variable MYVAR value, while the
bash method does not.

Making shell scripts executable

There is a third method for executing shell scripts that involves making the
script executable.

Linux file permissions

Every file in a linux operating system has a mode that defines which
operations a given user has permission to perform on that file. There are
three types of modes: read, write, and execute. These mode types may be
assigned to a file for three different types of users: owner, group, and
others. Each file has an owner and a group associated with it, and the
mode of the file may be inspected using the ls -l command:

$ ls -l my_script.sh
-rw-r--r-- 1 ubuntu ubuntu 12 Oct 14 17:24 my_script.sh

Here, the output of ls -l is interpreted as follows:

permissions

 owner last
 | group modified
 | | others group date
 / \/ \/ \ / \ / \
-rw-r--r-- 1 ubuntu ubuntu 12 Oct 14 17:24 my_script.sh
 | \ / | \ /
 | owner file filename
 num size
 hard
 links

See this page [https://wiki.archlinux.org/index.php/File_permissions_and_attributes] for more information on linux file permissions.

By default, files created will have a mode such that the creator may read and write
the file, and users in the file’s group and others may only read the file. To
make a file executable, the execute mode on that file must be set appropriately:

$ ls -l my_script.sh
-rw-r--r-- 1 ubuntu ubuntu 12 Oct 14 17:24 my_script.sh
$ chmod a+x my_script.sh
$ ls -l my_script.sh
-rwxr-xr-x 1 ubuntu ubuntu 12 Oct 14 17:24 my_script.sh

Any user on the system now has access to execute this script.

In addition to setting the execute mode on the script, executable shell scripts
must also have a shebang line. The shebang line in a bash script looks like
#!/bin/bash. This must be the first line on the shell script, e.g.:

$ cat my_executable_script.sh
#!/bin/bash
MYVAR=junk

Note

The shebang line tells the shell which program should be used to run the
commands in the script. It always starts with #!, followed by a command
that can understand the contents of the script. For example, python scripts
may be made executable by setting the executable mode on the file as above
and adding #!/usr/bin/python at the top of the python script. Note the
program specified uses an absolute path, i.e. /usr/bin/python instead of
just python. It is good practice to specify the absolute path to the
desired program in the shebang line, which can be identified for a given
command on the path using the which command:

$ which python
/usr/bin/python

The # symbol is often called ‘hash’, and the ! symbol is often called
‘bang’ in linux parlance. Thus, shebang is the inexact contraction of ‘hash’
and ‘bang’.

Once the execute mode is set on the script and the appropriate shebang line has
been specified, the script can be run as follows:

$./my_script.sh

Running scripts in this way is equivalent to the bash my_script.sh form.
Executable shell scripts may always be run by the other two methods mentioned in
Running shell scripts as well as with the ./ prefix.

bash scripts

Scripts that include commands from the bash language [http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html] are called bash scripts.
bash has many language features, but some are only conveniently implemented in
scripts, while others are exclusively available in scripts. This section covers
the key concepts of bash that are useful in writing scripts.

Environment and user defined variables

The bash program supports storing values into variables, similar to other languages.
Variables in bash are typically named in all capital letters and underscores, but
this is not required, e.g.:

$ MYVAR=stuff
$ nonstandard_but_valid_bash_variable_name=other stuff

The values stored in a variable are always stored as a string; there are no
numeric types in bash.

Important

When defining a shell variable, there must be no spaces between the
variable name and the equals sign. For example, the following definition
throws an error:

$ MYVAR = stuff
bash: MYVAR: command not found

Note

There are many environment variables defined by bash by default. To see a
list of them, use the env command:

$ env | head
APACHE_PID_FILE=/home/ubuntu/lib/apache2/run/apache2.pid
MANPATH=/home/ubuntu/.nvm/versions/node/v4.6.1/share/man:/usr/local/rvm/rubies/ruby-2.3.0/share/man:/usr/local/man:/usr/local/share/man:/usr/share/man:/usr/local/rvm/man
rvm_bin_path=/usr/local/rvm/bin
C9_SHARED=/mnt/shared
C9_FULLNAME=Adam
GEM_HOME=/usr/local/rvm/gems/ruby-2.3.0
NVM_CD_FLAGS=
APACHE_RUN_USER=ubuntu
SHELL=/bin/bash
TERM=xterm-256color

Shell expansion

Certain expressions in bash result in shell expansion, where the expression is
literally substituted with another string before a command is executed. The
simplest shell expansion type is shell variable expansion, which is accomplished
by prepending a $ to the variable name, optionally surrounding the variable
name in curly braces:

$ MYVAR=stuff
$ echo $MYVAR
stuff
$ echo ${MYVAR} # equivalent to above
stuff

Above, the value of MYVAR is literally replaced in the echo command before
it is run. This type of shell expansion is useful for, e.g. storing a filename
prefix and used to create multiple derivative files, e.g.:

$ PREFIX=file_sizes_top
$ du . | sort -nr | head -n 10 > ${PREFIX}_10.txt
$ du . | sort -nr | head -n 100 > ${PREFIX}_100.txt
$ du . | sort -nr | head -n 1000 > ${PREFIX}_1000.txt
$ ls
file_sizes_top_10.txt file_sizes_top_100.txt file_sizes_top_1000.txt

You can use as many variable expansions in a command as desired. For example,
we could perform the same operation above using a variable for the number of
top largest files:

$ PREFIX=file_sizes_top
$ NUM=10
$ du . | sort -nr | head -n $NUM > ${PREFIX}_${NUM}.txt
$ NUM=100
$ du . | sort -nr | head -n $NUM > ${PREFIX}_${NUM}.txt
$ NUM=1000
$ du . | sort -nr | head -n $NUM > ${PREFIX}_${NUM}.txt
$ ls
file_sizes_top_10.txt file_sizes_top_100.txt file_sizes_top_1000.txt

Warning

bash does not require that a variable be defined to substitute it into a command.
If a variable expansion is used on a variable that does not exist, the empty
string will be substituted:

$ PREFIX=file_sizes_top
$ du . | sort -nr | head -n 10 > ${PERFIX}_10.txt # <- typo!
$ ls
_10.txt

These are some of the useful environment variables that are defined by default
in bash:

$ echo $PWD # absolute path to present working directory
$ echo $PATH # the set of directories bash searches to find commands run
 # on the command line
$ echo $RANDOM # returns a random number in the range 0 - 32767
$ echo $HOSTNAME # the host name of the computer you are currently working on

Command expansion

Similar to variable expansion, bash has two ways to take the output of one bash
command and substitute it into another. The syntax is either `<command>`
or $(<command>):

$ basename my_script.sh .sh # removes prefix path elements and .sh extension
my_script
$ BASENAME=$(basename my_script.sh .sh)
$ echo $BASENAME
my_script
$ BASENAME=`basename my_script.sh .sh` # equivalent to above
$ echo $BASENAME
my_script

This form of expansion can be useful for making bash scripts generic when passing
in a file on the command line upon execution (see Command line arguments below).

Variable manipulation

Variables in bash have special syntax for manipulating the value of the strings
contained within them. These manipulations include computing the length of a
string, substituting a portion of the string with a regular expression, stripping
off a particular pattern from the beginning or end of a string, etc. These are
some of the more useful examples:

$ VAR=ABCABC123456.txt
$ echo ${#VAR} # length of VAR
16
$ echo ${VAR:3} # value of VAR starting at position 3 (0-based)
ABC123456.txt
$ echo ${VAR:3:5} # string of length 5 starting at position 3
ABC12
$ echo ${VAR%%.txt} # remove longest occurence of .txt from end of VAR
ABCABC123456
$ echo ${VAR/ABC/XYZ} # replace first occurence of ABC with XYZ
XYZABC123456.txt
$ echo ${VAR//ABC/XYZ} # replace all occurences of ABC with XYZ
XYZXYZ123456.txt

See the Manipulating Strings [http://www.tldp.org/LDP/abs/html/string-manipulation.html] page of the bash language reference for more
types of string manipulations.

Command line arguments

Bash scripts can access command line arguments passed to the script using special
variables $0, $1, $2, $3, etc. $0 expands to the name of the
executed command, which depends on how the script was executed:

$ ls -l my_script.sh
-rwxr-xr-x 1 ubuntu ubuntu 12 Oct 14 17:24 my_script.sh
$ cat my_script.sh
#!/bin/bash
echo $0
$ bash my_script.sh
my_script.sh
$. my_script.sh
bash
$./my_script.sh
./my_script.sh

$1 expands to the first command line argument, $2 expands to the second,
and so on:

$ cat my_script.sh
#!/bin/bash
echo $0, $1, $2, $3
$ bash my_script.sh arg1
my_script.sh, arg1
$. my_script.sh arg1
bash, arg1, ,
$./my_script.sh arg1
./my_script.sh, arg1, ,
$./my_script.sh arg1 arg2
./my_script.sh, arg1, arg2,
$./my_script.sh arg1 arg2 arg3
./my_script.sh, arg1, arg2, arg3
$./my_script.sh arg1 arg2 arg3 arg4
./my_script.sh, arg1, arg2, arg3

The positional variables behave just like any other bash variables in a script.

One additional variable that is sometimes useful is $#, which expands to
the number of command line arguments passed on the command line:

$ cat my_script.sh
#!/bin/bash
echo $#
$./my_script.sh
0
$./my_script.sh arg
1
$./my_script.sh arg arg
2

Another variable that is also useful is $@, which is a string of all the
command line arguments in one variable:

$ cat my_script.sh
#!/bin/bash
echo Arguments: $@
$./my_script.sh
Arguments:
$./my_script.sh arg1
Arguments: arg1
$./my_script.sh arg1 arg2 arg3
Arguments: arg1 arg2 arg3

Conditional statements

bash supports conditional statements and constructs. Below are several examples
of how to write conditional expressions:

[<operator> <value 2>] # test on value 2
[! <operator> <value 2>] # negated test on value 2
[<value 1> <operator> <value 2>] # comparative test of value 1 and 2
[! <value 1> <operator> <value 2>] # negated test on value 1 and 2

In the above examples, the spaces are important; all terms, including the [
and] must be separated by spaces.

Command exit status

Every command executed in a bash shell returns an integer called an exit status.
The exit status of a command indicates what happened during the execution of
the command. Typically, 0 means the program executed successfully and any
other number means there was a failure. The exit status of the last
executed program is automatically stored into the environment variable $?.
For example:

$ echo hello
hello
$ echo $? # exit status of previous echo command
0
$ cat nonexistent_file.txt
cat: nonexistent_file.txt: No such file or directory
$ echo $? # exit status of previous cat command
1

The exit status of 1 means the cat command failed. The exit status of each
command can be used to implement conditional logic based on the success or
failure of commands run in a script.

The conditional expressions above have no output but produce an exit status of
0 or 1 based on evaluation of the test:

$ ["a" = "a"] # test if "a" and "b" are lexicographically identical
$ echo $?
0
$ ["a" = "b"]
$ echo $?
1
$ [-z ""] # test if the value is empty
$ echo $?
0

Here are some of the common useful operators that can be used to construct
conditional statements:

all of these examples evaluate to 0 (true)

for strings
"a" = "a" # test for lexicographical equality
"a" != "b" # test for lexicographical inequality
-z "" # test whether value has zero length
-n "a" # test whether value does not have zero length

for integers
1 -eq 1 # test for integer (non-lexicographic) equality
1 -ne 2 # test for integer inequality
1 -gt 0 # integer greater than test
1 -ge 1 # integer greater than or equal to test
1 -lt 0 # integer less than test
1 -le 1 # integer less than or equal to test

for files
-e hello_world.qsub # test if file or directory exists
! -e hello_world.qsub # test if file or directory does not exist
-f hello_world.qsub # test if the argument is a regular file
 # (i.e. not a directory, pipe, link, etc)
-d dir/ #test if the argument is a directory
-s nonempty_file.txt # test if the file has non-zero contents

Conditional statements can be used in two ways. The first is as guards in
command line commands that use the logical operators && and ||:

$ cat nonexistent_file.txt
cat: nonexistent_file.txt: No such file or directory
$ [-e nonexistent_file.txt] && cat nonexistent_file.txt
$ # cat was not executed, because the initial test fails

The && operator is a logical AND operator for exit statuses. It can be used
in between two separate commands to short-circuit command execution. In the above
example, chaining the file existence test before the cat command prevents the
latter command from running and failing if the file does not exist. If the file
does exist, the file existence test passes and the cat command is executed as
expected. When chaining together commands in this way, a command will continue
executing subsequent commands as long as the current command evaluates to an
exit status of 0.

The || operator is a logical OR operator for exit statuses. It can be used to
construct more complicated conditional logic on a single line. For example:

$ ls new_file.txt existing_file.txt
ls: cannot access new_file.txt: No such file or directory
existing_file.txt
$ [! -e new_file.txt] && touch new_file.txt || \
 ls new_file.txt existing_file.txt
existing_file.txt new_file.txt

In the above example, the ls command runs regardless of whether new_file.txt
exists or not, because we create it only if it does not already exist.

bash also supports if statement syntax:

if [! -e new_file.txt];
then
 touch new_file.txt
else
 # do nothing, else not necessary here,
 # just including for illustration
fi

ls new_file.txt existing_file.txt

This example has the same effect as the previous inline example using && and
||. The if statement syntax can be specified on the command line as well
as in scripts, if desired:

$ if [! -e new_file.txt]; then touch new_file.txt; fi
$ ls new_file.txt existing_file.txt
existing_file.txt new_file.txt

Conditional expressions can also be used with the while looping construct,
for example:

while [! -e server_is_up.txt];
do
 echo Checking if server is up...
 curl www.my-server.com > /dev/null
 if [$? -eq 0];
 then
 touch server_is_up.txt
 else
 sleep 5 # curl exited with an error, wait five seconds
 fi
done

This example uses the sentinal file pattern, where the file server_is_up.txt
is used to indicate the state of another process.

See the bash reference on tests [http://tldp.org/LDP/abs/html/testconstructs.html] for more complete description of conditional
expressions and tests.

for loops

bash supports for loop constructs. The for loop is especially helpful
when a number of files or values must be iterated for each execution of the script.
For example, we could create a backup of every text file in the current directory:

#!/bin/bash
for fn in *.txt
do
 cp $fn ${fn}_bak
done

The syntax of the for loop goes like:

for <iter varname> in <expression>
do
 <commands>
done

Here, <iter varname> can be any valid bash variable name, and <expression>
can be any list of values or valid shell expansion. Note in the backup example
above the expression can be a glob. By default, the for loop iterates on each
space-delimited value in <expression>, for example:

these loops all print out 1-4 on individual lines

list of values
for i in 1 2 3 4
do
 echo $i
done

variable expansion
MYVAR="1 2 3 4"
for i in $MYVAR
do
 echo $i
done

command expansion
for i in $(seq 1 4)
do
 echo $i
done

The command expression example can be very useful when running some number of
trials of an analysis, for example:

NUM_TRIALS=10
for i in $(seq 1 $NUM_TRIALS)
do
 # assume ./run_trial.sh exists and runs some randomized analysis
 ./run_trial.sh > trial_${i}.txt
done

It may also be useful to write a script that processes each argument on the
command line separately using $@:

$ cat my_script.sh
#!/bin/bash
for i in $@;
do
 echo $i
done
$./my_script.sh
$./my_script.sh 1 2
1
2
$./my_script.sh 1 2 3 4
1
2
3
4

Cluster Computing

Cluster computing [https://en.wikipedia.org/wiki/Computer_cluster] is a strategy to enable the efficient utilization of a large
number of computers connected together in a shared setting. As computational
needs have grown, dedicated computing facilities with hundreds or thousands of
individual computers have been established to run larger and larger scale analyses.
This development presents a new set of challenges to system administrators and
end users in how to manage and use these large numbers of connected computers.

Cluster concepts

Clusters are typically organized similarly to the following illustration.

[image: ../../../_images/cluster_illustration.svg.png]
Below are some key terms and definitions for using a cluster:

	node

	Individual computers, or nodes are installed into racks and connected by
high speed network connections to each other and usually to large shared
storage disks.

	worker node or compute node

	Most of the nodes on a cluster are dedicated for performing computations
and are called worker or compute nodes. There may be hundreds or
thousands of such nodes, but most of them are not directly accessible.

	head node or login node

	A small number of nodes are designated as head nodes or login nodes that
users connect to directly, and then request certain types of computational
resources for running programs on the cluster using special cluster
management software. The purpose of a head node is to prevent users from
manually running jobs on worker nodes in an uncoordinated and inefficient
manner, and to manage the resources on the cluster in the most efficient way
possible. Computationally intensive processes should not be run on head
nodes. You’ll likely get curt emails from the system administrators if you
are found doing so!

	job

	The cluster management software then examines the resources of a request,
identifies one of the worker nodes that matches the requested resources, and
spawns the requested program to run on that worker node. A request that has
been allocated to a worker node is called a job.

	batch job

	Jobs that are submitted to the cluster to run non-interactively are called
batch jobs. These jobs are managed by the cluster software directly and
the user does not interact with them as they run. Any terminal and program
output are written to files for later inspection.

	interactive job

	Interactive jobs are jobs allocated by the cluster management software that
give a user an interactive shell, rather than running a specific command.
Interactive jobs are not intended for running computationally intensive
programs.

	slots

	One resource a job may request is a certain number of slots. A slot is
equivalent to a single core, so a process that runs with 16 threads needs
to request 16 slots in its request. A job requesting slots must in
general be run on a worker node with at least the requested number of slots.
For example, if a job requests 32 slots, but the largest worker node on the
cluster only has 16 cores, the job request will fail because no worker node
has resources that can fulfill the request.

	resources

	Cores are only one type of resource configured on a cluster. Another type of
resource is main memory (i.e. RAM). Some worker nodes have special architectures
that allow very large amounts of main memory. For a job that is known to load
large amounts of data into memory at once, a job must request an appropriate
amount of memory. Another resource is the amount of time a job is allowed to
run. Jobs usually have a default limit, e.g. 12 hours, and are forceably
killed after this time period if they have not completed.

	parallel environment

	A parallel environment is a configuration that enables efficient allocation
of certain types of resources. The most common use of parallel environments
is to submit jobs that request more than one slot. The correct parallel
environment must be supplied along with the request to have the job run on
an appropriate worker node.

Cluster computing tools

Users interact with the cluster from the head node with commands included in the
cluster management software suite installed on the cluster. Oracle Grid Engine
(OGE) [https://en.wikipedia.org/wiki/Oracle_Grid_Engine], Torque [http://www.adaptivecomputing.com/products/open-source/torque/], and SLURM [https://slurm.schedmd.com/] are some common cluster management software
suites, but there are many others [https://en.wikipedia.org/wiki/Comparison_of_cluster_software]. The specific commands for interacting with
the cluster management system vary based on the software suite, but the ideas
above are for the most part applicable across these systems. The remainder of
this guide will focus on the commands that are specific to the Oracle Grid
Engine (OGE) [https://en.wikipedia.org/wiki/Oracle_Grid_Engine] and Torque [http://www.adaptivecomputing.com/products/open-source/torque/].

qsub

Basic usage

Submit a batch job. The usage of qsub goes as follows:

qsub [options] <script path> <arguments>

Here, <script path> is a path to a script file, which may be any kind of
text-based script that can be run on the command line and contains a shebang
line (see Making shell scripts executable). This is often a shell script that
includes the specific commands desired to run the batch job, but may also be, e.g.
a python script. Shell scripts that are submitted as qsub script often have the
.qsub extension to signify it is intended to be submitted to qsub. For
example, consider the file named hello_world.qsub:

#!/bin/bash

echo hello world
cat nonexistent_file

The script starts with a shebang line indicating which program is a bash script
followed by a single command. To submit the script:

$ qsub -P project -o hello_world.stdout -e hello_world.stderr hello_world.qsub
Your job 2125600 ("hello_world.qsub") has been submitted
$ ls hello_world.* # after the job has completed
hello_world.qsub hello_world.stderr hello_world.stdout
$ cat hello_world.stdout
hello world
$ cat hello_world.stderr
cat: nonexistent_file: No such file or directory

The qsub command submits hello_world.qsub to the system for execution as a
batch job. The command line arguments provided are interpreted as follows:

-P project # a project name is sometimes required for accounting purposes
-o hello_world.stdout # write the standard output of the command to this file
-e hello_world.stderr # write the standard error of the command to this file

Cluster administrators often organize users into projects, that enable tracking,
accounting, and access control to the cluster based on a project’s permissions.
On some systems, supplying a project with the -P flag is required to submit
any jobs.

Instead of supplying these arguments to qsub on the command line, they may also
be included in the script itself prefixed with #$:

#!/bin/bash

equivalent to the above, do not need to specify on command line
#$ -P project # a project name is sometimes required for accounting purposes
#$ -o hello_world.stdout # write the standard output of the command to this file
#$ -e hello_world.stderr # write the standard error of the command to this file

echo hello world
cat nonexistent_file

When a qsub script is submitted it enters a queue of jobs that are not yet
allocated to a worker node. When a resource has been allocated, the requested
job dequeues and enters a run state until it completes or exceeds its run time.

Requesting multiple cores

When submitting a job requiring multiple threads, an argument specifying the
number of slots must be provided in the form of a parallel environment. The
name of the parallel environment required varies based on how the cluster
administrator set up the system, but a complete list of locally configured
parallel environments can be viewed with the qconf command:

$ qconf -spl | head
mpi
mpi12
mpi128_a
mpi128_n
mpi128_s
mpi16
mpi20
mpi28
mpi36
mpi4

Check with your cluster administrator for how to submit multicore jobs on your
cluster.

In this example the parallel environment needed to submit a job with multiple
cores is named omp. The following script submits a job requesting 16 cores:

#!/bin/bash

#$ -pe omp 16
#$ -cwd # execute this qsub script in the directory where it was submitted

echo Running job with $NSLOTS cores
fake command, that accepts the number of threads on the command line
./analysis.py --threads=$NSLOTS

The $NSLOTS environment variable is made available when qsub runs the batch
job and is equal to the number of slots requested by the job.

Running executables directly

Executable commands may also be submitted as jobs to qsub using the -b y
command line argument. This may be useful when an explicit qsub script is not
needed because only a single command needs to be run. The following script and
qsub command are equivalent:

$ cat hello_world.qsub
#!/bin/bash
#$ -P project
echo hello world
$ qsub hello_world.qsub
Your job 2125668 ("hello_world.qsub") has been submitted
$ ls hello_world.qsub.*
hello_world.qsub.o2125688 hello_world.qsub.e2125688
$ cat hello_world.qsub.o2125688
hello world
$ qsub -P project -b y echo hello world
Your job 2125669 ("echo") has been submitted
$ ls echo.*
echo.o2125689 echo.e2125689
$ cat echo.o2125689
hello world

Command line arguments to scripts

Command line arguments may be passed to qsub scripts as with any other shell
script. This may be useful for generalizing a qsub script to process multiple
files:

$ cat command_w_args.qsub
#!/bin/bash

#$ -P project
#$ -cwd

echo $1 $2
$ qsub command_w_args.qsub arg1 arg2
Your job 2125670 ("command_w_args.qsub") has been submitted
$ ls command_w_args.qsub.*
command_w_args.qsub.o2125670 command_w_args.qsub.e2125670
$ cat command_w_args.qsub.o2125670
arg1 arg2

qrsh / qlogin

qrsh and qlogin are synonymous commands for requesting interactive jobs. They
use many of the same command line arguments as qsub:

$ hostname
head_node
$ qrsh -P project
Last login: Thu Jun 8 14:36:43 2017 from head_node
$ hostname
some_worker_node

qstat

qstat prints out information about jobs currently queued and running on the
cluster. By default running qstat will print out information on all jobs
currently running, not just your own. To print out information on just your own
jobs, provide the -u <username> argument to qstat:

$ qsub hello_world.qsub
Your job 2125674 ("hello_world.qsub") has been submitted
$ qstat -u my_username
job-ID prior name user state submit/start at queue slots ja-task-ID

2125674 0.00000 hello_worl my_username qw 10/15/2017 17:094 2
$ # wait until job dequeues
$ qstat -u my_username
job-ID prior name user state submit/start at queue slots ja-task-ID

2125674 1.10004 hello_worl my_username r 10/15/2017 17:09:35 some_worker_node 2

The state column lists the state of each job you have submitted. qw means
the job is still queued and has not been allocated. r means the job is
running.

Sometimes it is useful to look at the specifics of a job request while it is
running. To view all the details of a job submission, use the -j <jobid>
command line option:

$ qsub hello_world.qsub
Your job 2125675 ("hello_world.qsub") has been submitted
$ qstat -j 2125675

qdel

qdel is the command used to remove a queued job or terminate a running job:

$ qsub hello_world.qsub
Your job 2125676 ("hello_world.qsub") has been submitted
$ qdel 2125676
Job 2125676 has been marked for deletion
$ qsub hello_world.qsub
Job 2125675 has been marked for deletion
$ qdel -u my_username
Jobs for user my_username have been marked for deletion

qsub script templates

Basic script

#!/bin/bash

#$ -P project
#$ -cwd
#$ -o basic.stdout
#$ -e basic.stderr

command

Multiple job slots

#!/bin/bash

#$ -P project
#$ -cwd
#$ -o multicore.stdout
#$ -e multicore.stderr
#$ -pe omp SLOTS_HERE

echo Cores requested: $NSLOTS

Long running time

#!/bin/bash

#$ -P project
#$ -cwd
#$ -o long_run_time.stdout
#$ -e long_run_time.stderr
#$ -l rt_h=24:00:00 # run for 24 hours max

command

qsub Command line arguments

qsub -P project -o hello_world.stdout -e stderr -cwd -b y echo hello world

 Workshop 7. Version Control with git

Workshop 7. Version Control with git

In this online workshop you will learn about version control using git. You are expected to study the materials and go over the git and GitHub tutorials before the workshop. You will also need an account on GitHub [https://github.com] before the workshop. In the hands-on workshop we will work with forking, resolving conflicts and more advanced git commands.

Sections

	Version Control
	What is version control

	Version control platforms

	Git
	Installing and configuring git

	A basic git tutorial

	Git Workflows

	Version control for large files

	Code hosting and repositories
	What is GitHub?

	SSH vs HTTPS

	Semantic versioning

	Licensing

	README and Markdown syntax

	Bug and Issue tracking

	Workshop task
	Getting started

	Your first contribution

	Exploring the tree

	Extending the source code

	Changing history

	Getting ready for the release

	Send me a pull request

 Version control

Version control

During your career as a researcher, you will write code and create documents over time, go back and edit them, reuse parts of it, share your code with other people or collaborate with others to make tools and documents.

Have you ever lost files that weren’t saved?
Or have you gone to a conference or interview and met someone interested in your work and realized you don’t have the files on your laptop?
On a gloomy day, have you changed some part of your code when suddenly everything broke and you wished you could just go back to the previous working version, but alas there is no backup and you have tens of folders with misleading names?

Or are you familiar with the scenario, in which you are working with a group, writing a function and then notice another person simultaneously making changes to the same file and you don’t know how to merge the changes?
Or someone makes changes to your working version and now when you run it, everything crashes?
Have you experienced these or a million other situations when you felt frustrated and stressed and spent hours trying to fix things and wished there was a time machine to go back in time?
The time machine has already been invented, and it’s called version control.

What is version control

Version control [https://www.atlassian.com/git/tutorials/what-is-version-control] software keeps track of every modification to the code in a special kind of database. If a mistake is made, developers can turn back the clock and compare earlier versions of the code to help fix the mistake while minimizing disruption to all team members.

Advantages:

	You can save all your code, data, and documents on the cloud, as you develop a project.

	You can manage the versions throughout time and see which changes were made at which time, and by whom.

	You can find other projects, import their scripts and modify them to reuse them for your purpose.

	You can share your code online: it’s good for science and it’s good for your resume.

	If you are a PhD student, you can start saving your files early on, and by the time you finish, you will have all your analyses documented and easily accessible, which will help a lot when you’re writing your thesis.

There are many version control software such as git, subversion, mercurial and many others.
git is by far the most popular one.

So what is git [https://www.atlassian.com/git/tutorials/what-is-git]?
git is a open source tool, which features functionalities to make repositories, download them, get and push updates. It can allow for teams to work on the same project, manage conflicts, monitor changes and track issues.

Version control platforms

The most widely used version control platforms supporting git are GitHub [https://github.com/] and Bitbucket [https://bitbucket.org/].

	Repositories on Bitbucket are by default private and only viewable by you and your team.

	Repositories on GitHub are by default public (everyone can see them), and to make them private you need to pay.

For a more comprehensive comparison of the two platforms see this comparison by UpGuard [https://www.upguard.com/articles/github-vs-bitbucket].
When choosing a platform you must consider the limitations of each tool, and if you are employed in research, most likely, you will have to use the platform preferred by your research institute or company.
Note that Bitbucket has a limitation on the number of teams one can make for free, and after some point you will need to pay.

Another platform for git is Gitlab [https://about.gitlab.com/].

 Git

Git

	Installing and configuring git

	A basic git tutorial

	Useful tips for commit messages

	Git Workflows

	Popular git workflows

	Version control for large files

Installing and configuring git

How will you run git on your system? If you prefer the command line (which is the best way to use git), just install git and you are good to go.

You can install git on a Debian system using:

sudo apt-get install git

or on a Red Hat based system

sudo yum install git

and on Mac

brew install git

For Windows, to get a git shell you can install TortoiseGit [https://tortoisegit.org/].

If you prefer to work with a GUI, you could install GitKraken [https://www.gitkraken.com/] on all three Operating Systems.

If you are using a terminal, the first thing to do is configure git with your username and email.
The username will be printed on the commits and changes you make.
The email will be used to log in. You will be prompted for your password when pushing and pulling from the server.

git config --global user.name "[your_username]"
git config --global user.email "[your_email]"

A basic git tutorial

The basic operations with git are pretty simple.
You can find a list of commands here [https://confluence.atlassian.com/bitbucketserver/basic-git-commands-776639767.html].

In general, the most typical use of git consists of:

	git init to initialize a new repository

	git clone to copy a repository onto your local computer

	git add to make a list of changes you made locally

	git commit to make a log of your changes

	git push to send the changes to the online repository

	git pull to get changes.

There are plenty of nice turorials to learn git on the web.
The best way to get started with git would be to try out this short tutorial [http://rogerdudler.github.io/git-guide] on the command line along with this interactive web tutorial [https://learngitbranching.js.org] which features a built-in terminal that you can use to walk through the commands step by step.
The Bibucket tutorial from Atlassian [https://www.atlassian.com/git/tutorials/setting-up-a-repository] is also a very comprehensive and detailed turorial, and overall, a good resource to find what you need.

Exercise

	Start with this tutorial [http://rogerdudler.github.io/git-guide]

	Try the interactive web tutorial [https://learngitbranching.js.org] and try to finish all the exercises in the “Main” tab.

For the workshop, we expect you to know how to clone a repository, add and commit changes, push to, pull from the repository and some basic knowledge for moving and modifying the source tree.

Useful tips for commit messages

Let’s go over some standards to keep in mind when using git commit.

When you are committing your changes always use meaningful messages.

git commit -m "[a brief meaningful message explaining what the change was about]"

Avoid vague messages such as changed file x and fixed function y. The commit itself shows which files have been changed. The message should explain the functionality of the change.

Another important concept is that, each commit should have one functionality. It is not a good practice to make a lot of progress then push all the changes at once. The server will not run out of space if you do several commits. Commits are very useful to track the jobs you have completed.

When you find a conflict or something is not working, do not make duplicate files. For example, having main.tex and then creating main1.tex is confusing and voids the purpose of version control.

Commits can be undone. Conflicts can be resolved so don’t be afraid to make mistakes.

[image: ../../../_images/1*bLtPTIsKUeAQHPo2eGrKpw.png]
Do not let this happen to your code!

Tip

Read this guide [https://chris.beams.io/posts/git-commit/#seven-rules] on how to write better commit messages.

Git Workflows

A Git Workflow is a recipe or recommendation for how to use git to accomplish work in a consistent and productive manner.
Given git’s focus on flexibility, there is no standardized process on how to interact with git.
These workflows ensure that all the developers in a team are making changes to the project in a uniform fashion.
It is important to note that these workflows are more guidelines than strict rules.

Popular git workflows

	Centralized workflow

	Feature branch workflow

	Gitflow

	Forking workflow

You can read more about these over here [https://www.atlassian.com/git/tutorials/comparing-workflows]. In the hands-on workshop task you will be using the feature branch workflow.

Version control for large files

git is decentralized, which means that changes in large files cause git repositories to grow by the size of the file (not by the size of the change) every time the file is committed.
Luckily, there are multiple third party implementations that will try to solve the problem, many of them use similar paradigms to provide solutions.

There are many routes one could go through to achieve this result. Some of them are mentioned below:

	git-lfs:
Git Large File Storage works by storing a pointer to the file in the git repository instead of the file itself.
The blobs are written to a separate server using the Git LFS HTTP API.
Hence, in order to use git-lfs your repository hosting platform must support it.
Fortunately, GitHub, BitBucket and GitLab all support git-lfs.
Learn more here [https://git-lfs.github.com/].

	git-annex:
Git-annex works by storing the contents of files being tracked by it to separate location.
What is stored into the repository, is a symlink to the to the key under the separate location.
In order to share the large binary files between a team for example the tracked files need to be stored to a different backend (like Amazon S3).
Note that GitHub does not support git-annex (i.e. you cannot use GitHub as a backend) but GitLab does.
Learn more here [https://git-annex.branchable.com/].

	dat
Dat is a nonprofit-backed community & open protocol for building apps of the future.
Use Dat command line to share files with version control, back up data to servers, browse remote files on demand, and automate long-term data preservation.
Dat allows you to Track your files with automatic version history, share files with others over a secure peer to peer network and automate live backups to external HDs or remote servers.
Learn more here [http://datproject.org/].

The easiest way to get started with versioning your large file is by using git-lfs, but git-annex and dat offer more flexibility and are more modern options.

 Source Code Hosting

Source Code Hosting

What is GitHub?

GitHub is a web-based hosting service for version control using Git.
It offers all of the distributed version control and source code management (SCM) functionality of Git as well as adding its own features.
It provides access control and several collaboration features such as bug tracking, feature requests, task management, and wikis for every project
GitHub offers plans for both private repositories and free accounts which are commonly used to host open-source software projects.

Exercise

	Create a GitHub account

	Get familiar with GitHub

	Read this short guide [https://guides.github.com/activities/hello-world/]

SSH vs HTTPS

The connection to the server is secured with SSH or HTTPS.
GitHub explains which URL to use [https://help.github.com/articles/which-remote-url-should-i-use/].
If you use SSH you will need an SSH key.
Read here to learn how to connect to GitHub with SSH [https://help.github.com/articles/connecting-to-github-with-ssh/].

[image: ../../../_images/HTTPS_SSH_github.png]
When using your_username to clone/fetch a repository from the_author, an SSH url will look like:

git@github.com:[the_author]/[repository].git

and HTTPS will look like:

https://[your_username]@github.com/[the_author]/[repository].git.

Semantic versioning

Have you ever wondered how developers decide how to number the different versions of their software?
Do they just randomly come up with numbers? No, the version number consists of 3 numbers, x.y.z where x is a major change, y is a minor change and z a patch. There is official documentation [http://semver.org/] on this, which you can read if you are interested. But assume you have a tool that reads some data and performs some function on the data. If you find a bug and fix it, you publish the fix by adding to z. If you added a small functionality, for example support for compressed data input and compatibility with other tools, increase y. If you added another function to it, increase x.

Licensing

Public repositories on GitHub are often used to share open source software.
For your repository to truly be open source, you’ll need to license it so that others are free to use, change, and distribute the software.
You’re under no obligation to choose a license.
However, without a license, the default copyright laws apply, meaning that you retain all rights to your source code and no one may reproduce, distribute, or create derivative works from your work.

For example: if you use GitHub and/or Bitbucket, you can publish your tool with the GNU licensing.
GNU is open source, and open source does not mean free.
Whenever using code with GNU licensing, you must cite the authors/developers.
For more information on the license check the GNU organization documentation [https://www.gnu.org/licenses/gpl-3.0.en.html].

This link [https://choosealicense.com/] contains useful information to help you choose a license for your project.

README and Markdown syntax

It’s a good practice to make a README for your repository.
The README file can also be edited online using the editors GitHub and Bitbucket provide.
Typically they are written in Markdown syntax, which is very simple.
You might have heard about R Markdown, but Markdown is a syntax that R has knitted into its compiler.
Again there are many tutorials to learn Markdown.
You can check the syntax on the Atlassian website [https://confluence.atlassian.com/bitbucketserver/markdown-syntax-guide-776639995.html].

A README should include information about:

	name of the tool and the version

	what is this tool about

	who are the authors

	requirements and dependencies

	how to install/clone it

	how to run it

	what is the input and output

	licensing

	how to cite it

Look at this nice outline [https://gist.github.com/PurpleBooth/109311bb0361f32d87a2] for a standard README file in Markdown syntax.
To get the source code click the Raw button on the top left.

Bug and Issue tracking

Both GitHub and Bitbucket allow for issue tracking.
Members of a team can create an issue, assign it to a developer or admin, and comment on it.
An issue can be marked according to its importance and type, for example, fixing a bug or adding functionality; and the issue can be resolved once it is has been taken care of.
Issues can be linked to commits, to show which commit resulted in resolving an issue.

When a repository is publicly accessible, you can create issues to inform the developers there is a bug or a functionality you would be interested in.
So, the next time you find an issue with some tool that you can’t resolve after trying for a few days, just post an issue on their GitHub repository.
You can also link/mention issues and commits from different repositories.

Read this useful guide [https://guides.github.com/features/issues/] to learn more.

 Workshop 7. Version Control with git workshop

Workshop 7. Version Control with git workshop

Instructors: Dileep Kishore and Dakota Hawkins

	Getting started

	Your first contribution

	Exploring the tree

	Extending the source code

	Changing history

	Getting ready for the release

	Send me a pull request

In this workshop you will work on both basic and advanced git commands and collaborate with each other through git repositories.
For this workshop you will be working in small teams of 2-3 people.
You can either complete the tasks on the Shared Computing Cluster (SCC) or on your local computer.
We will be using the git command line interface throughout this workshop.

Tip

To login to the SCC use: ssh <username>@scc1.bu.edu

Getting started

You will be working on a movie recommender system that recommends movies based on plot and keyword similarities.

Task 1

	One team member should fork this repository: https://github.com/dileep-kishore/git-intro

	Add all your other team members as collaborators.

	Clone the repository

	Follow the instructions in the README to set up your environment

	Ensure that the package runs as expected

Tip

	If you’re working on the scc you can use module load anaconda3

	Look at the git history

	Observe the list of remote repositories

Your first contribution

You can now make your first contribution to the package

Task 2

	Add your name to the contributors section of the README

	Commit your changes

	Oops, I meant to ask you to add your team member’s name not yours. Fix that.

	Push, pull and merge (fix conflicts, if any)

Tip

	If you’re stuck, look up how to ammend a commit

	Use git status to explore what happens to the unstaged and staging areas

Exploring the tree

In this section you will explore the history of the repository

Task 3

	Go back 10-20 commits (these should be one of my commits)

	Now go to commit 0338440

	What’s changed?

	Compare the version of the README you had just updated with this version

	Go back to the latest commit

Extending the source code

Software development usually involves multiple developers working on the software at the same time. You will now divide your team into bug fixers and feature contributors. Don’t worry you will get to switch roles in the middle.

Task 4

	
	Bug fixers (will work on the master branch)

	
	Fix: Raise ValueError when unsupported method is passed to movie_recommender

	Now switch roles

	Fix: Load pickled recommender when available

	
	Feature contributors (will create a new feature branch)

	
	Feat: Save the recommender object after training

	Now switch roles

	Feat: Unknown movie query returns fuzzy matches

The save, load and search functions are already implemented in utils.py and can be imported as

``from .utils import save, load, search``

Tip

	How can the bug fixers also get access to the feature branch?

	Make sure you merge to master after completing your first feature

	Use git stash to stash changes before switching branches

Changing history

When you git a time-machine the first thing you do is go change history.

Task 5

	Reset the repository to the state it was in when you found it (my last commit). Observe the working directory

	Now reset it back to your commit

	Now revert your last commit. Observe the git history

	Undo your revert

Caution

Do not push or pull if you’ve just reset to a previous commit. This will screw up your history and make things a lot more complicated since the remote history will be different.

Tip

	Use git reflog to get the reference of your last commit before you reset

	Can you reset a revert?

Getting ready for the release

Task 6

	Add the pickled file to gitignore. We don’t want to store binaries in version control especially large binaries.

	Tag your commit with a version number. Finally, release your source code.

Send me a pull request

You can inform other’s of you magnificent changes and accomplishments by making pull requests.
This way you let everyone know that you made some changes and they need to pull.

Task 7

Create a new pull request.

Tip

Ideally pull requests should be from branches in your fork of the repository

 Index

Index

 Introduction

Introduction

Some friendly introductory message?

Ever since biology became a science in the 1950s, the field has moved steadily
toward being fundamentally quantitative.
It’s not a coincidence that our ability to quantify biological systems tracked
with the power and sophistication of our computational systems.
When the human genome project was launched in 1990, the state of the art
consumer computer had a single core running at 25 million cycles per second,
had 8 Mb of RAM, and cost around four thousand dollars.
Today, in 2017, the state of the art mobile phone, which might be in your
pocket, has eight cores each running at around 2 billion cycles per second,
with 4000 Mb of RAM, and costs less than $1000.
The tasks our computers can perform are orders of magnitude greater than they
were even just ten years ago, and our computers have become immensely more
complex.

Getting computers to do what we want has also become more complex.
Scientific computing today requires an understanding of many different
components of the computer, from coding in multiple programming languages to
efficient memory use to managing different types of storage and so on.
It is no longer reasonable to expect a biologist, or any other person who
needs to use computers to do more than check email, to be able to learn all
of the necessary skills on their own.
It is not just a matter of not having enough time to learn; the results we
produce with our code will ideally inform real world decisions about human
health, the environment, pharmaceuticals, and other important problems.
We need to not only be able to wield computers to answer these types of
questions, but we must also be as sure as we can that the results are, in fact,
correct.
It turns out that there are no established best practices for addressing these
challenges in bioinformatics to date.
The BU Bioinformatics Program has created this series of workshops in an
attempt to give students exposure to the types of tools and techniques that
will enable them to acheive these goals.

This is the introductory video in the Foundations in Computational Skills
workshops offered by the BU Bioinformatics Program.
The series of workshops is designed to introduce core computational concepts
commonly used in bioinformatics.
We will focus on building practical skills through both guided exercises and
hands-on, real world applications.
The workshops are implemented in the so-called “flipped classroom” model,
where materials and videos explaining core concepts should be reviewed prior
to the in-class periods.
Class time is dedicated to hands-on activities related to the content, where
you are invited to work together with the help of the instructors.
There are nine workshops in total, organized into three modules of three
workshops each.

 Links to workshop and video scripts

Links to workshop and video scripts

Scripts

	Introduction

	Workshop 0 scripts

	Workshop 2 scripts

 Workshop 0 scripts

Workshop 0 scripts

Introduction

Hi my name is Adam or some shit.

These are the materials for workshop zero.

In case you’re wondering why we call this workshop zero and not workshop
one, in computer science, counting usually starts from zero.

If this sounds strange, think about measuring something with a ruler.

When you measure something to be half of an inch long, how many inches do you
have?

Zero of the units of inches, and five of the units of tenths of inches.

Now what if you measured something that is 1/100th of an inch long?

How many inches do you have?

Zero of the units of inches, and one of the units of hundreths of inches.

So, in this way, whenever we are counting units of distance, we start counting
from zero.

Computers very literally think in the same way.

Throughout these workshops, we will introduce concepts that might seem
strange or foreign, but are actually not as unfamiliar as you may think.

This first workshop is intended to give you familiarity and comfort with the
basics of using a command line interface.

These commands are available on linux and mac operating systems, but Windows is
a different animal entirely unless you have special software installed, so be
aware.

The videos below were made by Douglas Rumbaugh, who has no affiliation with BU
and someone I have never met, but his series on using linux is very accessible
so we decided not to reinvent the wheel.

Don’t worry, there will be plenty of time for you to get tired of hearing my
voice throughout these workshops, so just sit tight.

The concepts covered in each of the videos are listed prior to the embed, so
you can decide if that is content you want to view or review.

Globbing

One important concept the previous videos did not cover is the glob expression.

A glob is essentially an expression that describes a pattern of files.

Previously, Douglas used ls or head or grep in combination with a specific
file.

But what if you wanted to grep through all text files in a directory that
contains hundreds or even thousands of text files?

You certainly don’t want to have to type out the name of each file on the
command line.

This is where globbing comes in.

In this example, say we have a directory with a large number of files that end
in .txt and other files that end in .pdf.

To list out the file information for all of these files, you could just type ls
and see both .txt and .pdf files.

But if you wanted to only see the files that end in .txt, we can use the glob
symbol * combined with the part these filenames have in common.

In this case, we can type ls *.txt, and only files that end in .txt will be
listed.

In the same way, we might type ls *.pdf to list only the pdf files.

The * character means match zero or more characters, regardless of which
characters they are.

The .txt or .pdf at the end constrains the glob to expand to only filenames
that end with those characters.

Star characters can be specified in any part of a filename pattern.

If we wanted to list all the filenames that contain an e in them, we could
type ls *e*.

This glob means give me filenames that start with any number of characters,
including zero, followed by an e, followed by zero or more other characters.

This means that filenames like run.exe, eland, or file.txt all match, because
there is an e somewhere in the filename.

Note in the run.exe filename there are two ‘e’s, but that doesn’t bother the
glob, because all it cares about is finding at least one e in the filename.

Globbing is incredibly powerful and important when you start dealing with
multiple files, as you will certainly do in your computational travels.

terminal_quest

aaaaaaaaaaad lib!

 Workshop 0. Basic Linux and Command Line Usage: Workshop

Workshop 0. Basic Linux and Command Line Usage: Workshop

terminal_quest

 Workshop 1. Introduction to Python: Workshop

Workshop 1. Introduction to Python: Workshop

Today’s workshop will involve solving a series of programming
tasks with Python.

solutions.py

Task 1. Counting Nucleotides

Create a function that takes a str as an argument
and returns a dict containing a count of each nucleotide.

Example Usage:

>>> count_nucleotides(gene)
{'A': 1735, 'G': 1276, 'C': 1276, 'T': 1729}

Here’s a gene sequence to test with:

AGACACGTGGTTCAGAGAGAACTTATAAATCTCCCCTCCCCGGCAAGATCGTGATGTTATCTGCTGGCAGCAGAAGGTTCGCTCCGAGCGGAGCTCCAGAAGCTCCTGACAAGAGAAAGACAGATTGAGATAGAGATAGAAAGAGAAAGAGAGAAAGAGACAGCAGAGCGAGAGCGCAAGTGAAAGAGGCAGGGGAGGGGGATGGAGAATATTAGCCTGACGGTCTAGGGAGTCATCCAGGAACAAACTGAGGGGCTGCCCGGCTGCAGACAGGAGGAGACAGAGAGGATCTATTTTAGGGTGGCAAGTGCCTACCTACCCTAAGCGAGCAATTCCACGTTGGGGAGAAGCCAGCAGAGGTTGGGAAAGGGTGGGAGTCCAAGGGAGCCCCTGCGCAACCCCCTCAGGAATAAAACTCCCCAGCCAGGGTGTCGCAAGGGCTGCCGTTGTGATCCGCAGGGGGTGAACGCAACCGCGACGGCTGATCGTCTGTGGCTGGGTTGGCGTTTGGAGCAAGAGAAGGAGGAGCAGGAGAAGGAGGGAGCTGGAGGCTGGAAGCGTTTGCAAGCGGCGGCGGCAGCAACGTGGAGTAACCAAGCGGGTCAGCGCGCGCCCGCCAGGGTGTAGGCCACGGCGCGCAGCTCCCAGAGCAGGATCCGCGCCGCCTCAGCAGCCTCTGCGGCCCCTGCGGCACCCGACCGAGTACCGAGCGCCCTGCGAAGCGCACCCTCCTCCCCGCGGTGCGCTGGGCTCGCCCCCAGCGCGCGCACACGCACACACACACACACACACACACACGCACGCACACACGTGTGCGCTTCTCTGCTCCGGAGCTGCTGCTGCTCCTGCTCTCAGCGCCGCAGTGGAAGGCAGGACCGAACCGCTCCTTCTTTAAATATATAAATTTCAGCCCAGGTCAGCCTCGGCGGCCCCCCTCACCGCGCTCCCGGCGCCCCTCCCGTCAGTTCGCCAGCTGCCAGCCCCGGGACCTTTTCATCTCTTCCCTTTTGGCCGGAGGAGCCGAGTTCAGATCCGCCACTCCGCACCCGAGACTGACACACTGAACTCCACTTCCTCCTCTTAAATTTATTTCTACTTAATAGCCACTCGTCTCTTTTTTTCCCCATCTCATTGCTCCAAGAATTTTTTTCTTCTTACTCGCCAAAGTCAGGGTTCCCTCTGCCCGTCCCGTATTAATATTTCCACTTTTGGAACTACTGGCCTTTTCTTTTTAAAGGAATTCAAGCAGGATACGTTTTTCTGTTGGGCATTGACTAGATTGTTTGCAAAAGTTTCGCATCAAAAACAACAACAACAAAAAACCAAACAACTCTCCTTGATCTATACTTTGAGAATTGTTGATTTCTTTTTTTTATTCTGACTTTTAAAAACAACTTTTTTTTCCACTTTTTTAAAAAATGCACTACTGTGTGCTGAGCGCTTTTCTGATCCTGCATCTGGTCACGGTCGCGCTCAGCCTGTCTACCTGCAGCACACTCGATATGGACCAGTTCATGCGCAAGAGGATCGAGGCGATCCGCGGGCAGATCCTGAGCAAGCTGAAGCTCACCAGTCCCCCAGAAGACTATCCTGAGCCCGAGGAAGTCCCCCCGGAGGTGATTTCCATCTACAACAGCACCAGGGACTTGCTCCAGGAGAAGGCGAGCCGGAGGGCGGCCGCCTGCGAGCGCGAGAGGAGCGACGAAGAGTACTACGCCAAGGAGGTTTACAAAATAGACATGCCGCCCTTCTTCCCCTCCGAAACTGTCTGCCCAGTTGTTACAACACCCTCTGGCTCAGTGGGCAGCTTGTGCTCCAGACAGTCCCAGGTGCTCTGTGGGTACCTTGATGCCATCCCGCCCACTTTCTACAGACCCTACTTCAGAATTGTTCGATTTGACGTCTCAGCAATGGAGAAGAATGCTTCCAATTTGGTGAAAGCAGAGTTCAGAGTCTTTCGTTTGCAGAACCCAAAAGCCAGAGTGCCTGAACAACGGATTGAGCTATATCAGATTCTCAAGTCCAAAGATTTAACATCTCCAACCCAGCGCTACATCGACAGCAAAGTTGTGAAAACAAGAGCAGAAGGCGAATGGCTCTCCTTCGATGTAACTGATGCTGTTCATGAATGGCTTCACCATAAAGACAGGAACCTGGGATTTAAAATAAGCTTACACTGTCCCTGCTGCACTTTTGTACCATCTAATAATTACATCATCCCAAATAAAAGTGAAGAACTAGAAGCAAGATTTGCAGGTATTGATGGCACCTCCACATATACCAGTGGTGATCAGAAAACTATAAAGTCCACTAGGAAAAAAAACAGTGGGAAGACCCCACATCTCCTGCTAATGTTATTGCCCTCCTACAGACTTGAGTCACAACAGACCAACCGGCGGAAGAAGCGTGCTTTGGATGCGGCCTATTGCTTTAGAAATGTGCAGGATAATTGCTGCCTACGTCCACTTTACATTGATTTCAAGAGGGATCTAGGGTGGAAATGGATACACGAACCCAAAGGGTACAATGCCAACTTCTGTGCTGGAGCATGCCCGTATTTATGGAGTTCAGACACTCAGCACAGCAGGGTCCTGAGCTTATATAATACCATAAATCCAGAAGCATCTGCTTCTCCTTGCTGCGTGTCCCAAGATTTAGAACCTCTAACCATTCTCTACTACATTGGCAAAACACCCAAGATTGAACAGCTTTCTAATATGATTGTAAAGTCTTGCAAATGCAGCTAAAATTCTTGGAAAAGTGGCAAGACCAAAATGACAATGATGATGATAATGATGATGACGACGACAACGATGATGCTTGTAACAAGAAAACATAAGAGAGCCTTGGTTCATCAGTGTTAAAAAATTTTTGAAAAGGCGGTACTAGTTCAGACACTTTGGAAGTTTGTGTTCTGTTTGTTAAAACTGGCATCTGACACAAAAAAAGTTGAAGGCCTTATTCTACATTTCACCTACTTTGTAAGTGAGAGAGACAAGAAGCAAATTTTTTTTAAAGAAAAAAATAAACACTGGAAGAATTTATTAGTGTTAATTATGTGAACAACGACAACAACAACAACAACAACAAACAGGAAAATCCCATTAAGTGGAGTTGCTGTACGTACCGTTCCTATCCCGCGCCTCACTTGATTTTTCTGTATTGCTATGCAATAGGCACCCTTCCCATTCTTACTCTTAGAGTTAACAGTGAGTTATTTATTGTGTGTTACTATATAATGAACGTTTCATTGCCCTTGGAAAATAAAACAGGTGTATAAAGTGGAGACCAAATACTTTGCCAGAAACTCATGGATGGCTTAAGGAACTTGAACTCAAACGAGCCAGAAAAAAAGAGGTCATATTAATGGGATGAAAACCCAAGTGAGTTATTATATGACCGAGAAAGTCTGCATTAAGATAAAGACCCTGAAAACACATGTTATGTATCAGCTGCCTAAGGAAGCTTCTTGTAAGGTCCAAAAACTAAAAAGACTGTTAATAAAAGAAACTTTCAGTCAGAATAAGTCTGTAAGTTTTTTTTTTTCTTTTTAATTGTAAATGGTTCTTTGTCAGTTTAGTAAACCAGTGAAATGTTGAAATGTTTTGACATGTACTGGTCAAACTTCAGACCTTAAAATATTGCTGTATAGCTATGCTATAGGTTTTTTCCTTTGTTTTGGTATATGTAACCATACCTATATTATTAAAATAGATGGATATAGAAGCCAGCATAATTGAAAACACATCTGCAGATCTCTTTTGCAAACTATTAAATCAAAACATTAACTACTTTATGTGTAATGTGTAAATTTTTACCATATTTTTTATATTCTGTAATAATGTCAACTATGATTTAGATTGACTTAAATTTGGGCTCTTTTTAATGATCACTCACAAATGTATGTTTCTTTTAGCTGGCCAGTACTTTTGAGTAAAGCCCCTATAGTTTGACTTGCACTACAAATGCATTTTTTTTTTAATAACATTTGCCCTACTTGTGCTTTGTGTTTCTTTCATTATTATGACATAAGCTACCTGGGTCCACTTGTCTTTTCTTTTTTTTGTTTCACAGAAAAGATGGGTTCGAGTTCAGTGGTCTTCATCTTCCAAGCATCATTACTAACCAAGTCAGACGTTAACAAATTTTTATGTTAGGAAAAGGAGGAATGTTATAGATACATAGAAAATTGAAGTAAAATGTTTTCATTTTAGCAAGGATTTAGGGTTCTAACTAAAACTCAGAATCTTTATTGAGTTAAGAAAAGTTTCTCTACCTTGGTTTAATCAATATTTTTGTAAAATCCTATTGTTATTACAAAGAGGACACTTCATAGGAAACATCTTTTTCTTTAGTCAGGTTTTTAATATTCAGGGGGAAATTGAAAGATATATATTTTAGTCGATTTTTCAAAAGGGGAAAAAAGTCCAGGTCAGCATAAGTCATTTTGTGTATTTCACTGAAGTTATAAGGTTTTTATAAATGTTCTTTGAAGGGGAAAAGGCACAAGCCAATTTTTCCTATGATCAAAAAATTCTTTCTTTCCTCTGAGTGAGAGTTATCTATATCTGAGGCTAAAGTTTACCTTGCTTTAATAAATAATTTGCCACATCATTGCAGAAGAGGTATCCTCATGCTGGGGTTAATAGAATATGTCAGTTTATCACTTGTCGCTTATTTAGCTTTAAAATAAAAATTAATAGGCAAAGCAATGGAATATTTGCAGTTTCACCTAAAGAGCAGCATAAGGAGGCGGGAATCCAAAGTGAAGTTGTTTGATATGGTCTACTTCTTTTTTGGAATTTCCTGACCATTAATTAAAGAATTGGATTTGCAAGTTTGAAAACTGGAAAAGCAAGAGATGGGATGCCATAATAGTAAACAGCCCTTGTGTTGGATGTAACCCAATCCCAGATTTGAGTGTGTGTTGATTATTTTTTTGTCTTCCACTTTTCTATTATGTGTAAATCACTTTTATTTCTGCAGACATTTTCCTCTCAGATAGGATGACATTTTGTTTTGTATTATTTTGTCTTTCCTCATGAATGCACTGATAATATTTTAAATGCTCTATTTTAAGATCTCTTGAATCTGTTTTTTTTTTTTTTAATTTGGGGGTTCTGTAAGGTCTTTATTTCCCATAAGTAAATATTGCCATGGGAGGGGGGTGGAGGTGGCAAGGAAGGGGTGAAGTGCTAGTATGCAAGTGGGCAGCAATTATTTTTGTGTTAATCAGCAGTACAATTTGATCGTTGGCATGGTTAAAAAATGGAATATAAGATTAGCTGTTTTGTATTTTGATGACCAATTACGCTGTATTTTAACACGATGTATGTCTGTTTTTGTGGTGCTCTAGTGGTAAATAAATTATTTCGATGATATGTGGATGTCTTTTTCCTATCAGTACCATCATCGAGTCTAGAAAACACCTGTGATGCAATAAGACTATCTCAAGCTGGAAAAGTCATACCACCTTTCCGATTGCCCTCTGTGCTTTCTCCCTTAAGGACAGTCACTTCAGAAGTCATGCTTTAAAGCACAAGAGTCAGGCCATATCCATCAAGGATAGAAGAAATCCCTGTGCCGTCTTTTTATTCCCTTATTTATTGCTATTTGGTAATTGTTTGAGATTTAGTTTCCATCCAGCTTGACTGCCGACCAGAAAAAATGCAGAGAGATGTTTGCACCATGCTTTGGCTTTCTGGTTCTATGTTCTGCCAACGCCAGGGCCAAAAGAACTGGTCTAGACAGTATCCCCTGTAGCCCCATAACTTGGATAGTTGCTGAGCCAGCCAGATATAACAAGAGCCACGTGCTTTCTGGGGTTGGTTGTTTGGGATCAGCTACTTGCCTGTCAGTTTCACTGGTACCACTGCACCACAAACAAAAAAACCCACCCTATTTCCTCCAATTTTTTTGGCTGCTACCTACAAGACCAGACTCCTCAAACGAGTTGCCAATCTCTTAATAAATAGGATTAATAAAAAAAGTAATTGTGACTCAAAAAAAAAAAAAA

Task 2: Analyzing Sequences in a File

Data File: sequences.txt [https://drive.google.com/uc?id=0B6adxGixQdBaSW52WTNwVFg5OWM&authuser=2&export=download]

Create a function that takes a file as an argument
and iterates over its lines. Each line will be a single gene
sequence. For each line, function should print to the console
the length of the sequence and the CG/AT ratio of the sequence.

Example Usage:

>>> with open("sequences.txt") as f:
... analyze_sequence_file(f)
6016 0.7367205542725174

Task 3: Parsing Metadata

Data File sequences_with_annotations.txt [https://drive.google.com/uc?id=0B6adxGixQdBaYTB0eEkxVHF6RVk&authuser=2&export=download]

Create a function that takes a file as an argument. Each line
may be either a gene sequence or its annotations. The annotations line
always precedes the gene’s nucleotide sequence. For each pair of gene
sequence and annotation line, create a dict which contains the
key "sequence" with the value being the gene sequence, and the key
"annotations" for a dict of the parsed annotation line
values. All keyword pairs whose key is "KW" should be stored in a
list called "keywords", and all other keyword pairs should be stored
in this annotation dict with their keyword name in lower case.

Each annotation line contains data in the following grammar:

<annotation_line>: sp|<accession_number>|<gene_symbol> <common_name> <keywords_list>
<accession_number>: {uppercase letters or numbers}
<gene_symbol>: {uppercase letters or numbers}_HUMAN
<common_name>: {free text}
<keywords_list>: {keyword_pair}[;{keyword_pair}]
<keyword_pair>: {letters}={free text}

Example Annotation Line:

sp|P61812|TGFB2_HUMAN Transforming growth factor beta-2 KW=3D-structure;KW=Alternative splicing;KW=Aortic aneurysm;KW=Chromosomal rearrangement;KW=Cleavage on pair of basic residues;KW=Complete proteome;KW=Direct protein sequencing;KW=Disease mutation;KW=Disulfide bond;KW=Glycoprotein;KW=Growth factor;KW=Mitogen;KW=Polymorphism;KW=Reference proteome;KW=Secreted;KW=Signal;RefSeq=NM_001135599.3

This should be parsed into the following annotation dictionary:

{'accession': 'P61812',
 'gene_symbol': 'TGFB2_HUMAN',
 'keywords': ['3D-structure',
 'Alternative splicing',
 'Aortic aneurysm',
 'Chromosomal rearrangement',
 'Cleavage on pair of basic residues',
 'Complete proteome',
 'Direct protein sequencing',
 'Disease mutation',
 'Disulfide bond',
 'Glycoprotein',
 'Growth factor',
 'Mitogen',
 'Polymorphism',
 'Reference proteome',
 'Secreted',
 'Signal'],
 'name': 'Transforming growth factor beta-2',
 'refseq': 'NM_001135599.3'}

Your final outcome should be a list of dictionaries. Example usage might be

>>> with open("sequences_with_annotations.txt") as f:
... sequence_data = parse_with_metadata(f)
>>> len(sequence_data)
138

Task 4: Partitioning on Keywords

Continuing to use the data you parsed from Task 3, get the complete set of all
keywords in the dataset. For each keyword, count the number of times it occurs,
and how often it co-occurs with each other keyword. Use this to construct a matrix
of co-occurrences.

Using this matrix, find the most frequent keyword, and it’s most common co-occurring
keywords.

Task 5: Writing Structured Data Out

Convert your dictionary representation into a text format you can write to a file and
read back in to construct the same dictionary. If you choose to use an existing format,
explain why you chose the format and what its strengths and weaknesses are.

 Python 3

Python 3

Welcome to this supa-quick, supa-dope Python 3 tutorial. Python is a
general purpose programming language created in the early 1990s by Guido
van Rossum. Today, Python is one of the most popular languages and
enjoys particular success in statistics/data science and scientific
computing. This tutorial will serve as a brief introduction to the
capabilities of Python and its syntax.

Getting Started

To get started we will likely need to install Python. While there are
many ways to install Python on your system, I recommend using the
Anaconda Distribution (https://www.continuum.io/downloads). Anaconda is
a cross-platform (OSX, Linux, Windows) distribution manager that
simplifies installing and managing packages. While this tutorial only
makes use of the base Python packages, installing via Anaconda will also
install several scientific libraries that you will likely find useful
later. Further, Jupyter is also included in the Anaconda install, giving
you access to Jupyter Notebooks.

Interacting with Python

Once Python is installed on our system, there are two main ways we can
interact with Python: 1) opening a python interpreter using the
terminal, 2) creating a python script file.

Accessing a Python Interpreter

To access a Python Interpreter simply open a terminal window, and type
‘python’. This will create an interactive Python session where we
can write and test Python code. If you are on a Windows machine, instead
of the normal command prompt, barring specific installation steps, you
will need to open an Anaconda Prompt. This is a special terminal that
will give you access to your Python/Anaconda installation.

Writing a Python Script

A python script is a file with the ‘.py’ extension and can be written
using your favorite text editor or IDE. If you have Anaconda installed
on your computer, you will have access to the Sypder IDE, which is a
popular and useful IDE for writing scripts in Python. A python file can
be run by typing ‘python *script_name*.py’ into the terminal.

Basic Python Variables and Operations

Mathematical Operators

Unsurprisingly, Python can do math! The basic mathematic operators are
+, -, *, and \ for addition, subtraction,
multiplication, and division

The print function takes a value or expression and displays the output to
the screen. The hash symbol denotes the proceeding text as a comment, and
thus is not evaluated by the interpreter.

print(2 + 2)
print(2 - 2)
print(2*2)
print(2/2)

4
0
4
1.0

Negative values are demonstrated with a '-'
print(-3 + 2)

-1

Exponents use the double star operator '**'
print(2**3)

8

The percent symbol, '%', is used as the modulo operator for calculating
remainders.
print(6 % 4) # 6 = 4*1 + 2

2

Mathematical expressions follow the order of operations.
print((2+3)*(-1)**2/2)

2.5

Mathematical Variables

There are two basic numerical data types in Python: integers and
floating point numbers. Integers are whole number, signed or unsigned,
while floating point numbers contain decimal values.

The data type of a value can be determined using the 'type()' function.
print(type(2))
print(type(2.0))

<class 'int'>
<class 'float'>

Values in Python can be assigned to variables with different names for
later access. Variable assignment is done using the '=' symbol.
x = 2
y = 3.0
print(x)
print(y)
print(y*x)

2
3.0
6.0

Variables can be cast to compatible data types using the desired data
type function.
print(y)
print(type(y))

z = int(y)
print(z)
print(type(z))

3.0
<class 'float'>
3
<class 'int'>

While we instantiated 'z' using 'y' and then modified 'z', the value 'y'
remains unchanged.
print(y)

3.0

Boolean Values and Operations

Boolean values are values that determine the truth value of a specific
statement. In Python, these take the form the key words, True and
False. There are several useful operators such as <, >,
<=, >=, and == for excessing relationships between numerical
values. Each of these operators returns a boolean value representing the
truth value of the given statement. All the previously listed operators
expect to be sandwiched between two values, one to the left and one to
the right, and are evaluated left to right.

The less than operator '<'
x = 3
y = 6
z = 10
print(x < 5)
The greater than operator '>'
print(z > x)
the less than or equal to operator '<='
print(x <= 5)
print(x <= 3)
the greater than or equal to operator '>='
print(x >= 5)
print(x >= 3)
the equality operator '=='
print(y == 6)
print(y == 7)

True
True
True
True
False
True
True
False

Boolean statements (e.g. 3 < 5) can be strung together using and
maniuplated using the and, or, and not keywords. All
keywords follow their formal logic definitions: the and keyword is
true if both statements are true, the or keyword is true if one
of the statements is true, and not negates the original truth value of a
given statement.

print(y > x and y < z)
print(y < x or y < z)
print(not y > x)

True
True
False

String Variables and Operations

Strings are data types used to represent text data. They can be
instantiated by placing expressions between single (‘expression’)
or double (“expression”) quotes.

string_1 = 'dog'
string_2 = "cat"
print(string_1)
print(string_2)

dog
cat

strings can be concatenated using the '+' operator
string_3 = string_2 + string_1
print("What do you mean you've never seen a " + string_3 + "?!")

What do you mean you've never seen a catdog?!

String Substitution

Values can be substituted into a string using string substitution. This
is done using the .format() method available to string objects.

the second single or double quote mark can be escaped using a backslash: \
statement = 'What do you mean you\'ve never seen a {0}?!'
print(statement.format(string_3))

What do you mean you've never seen a catdog?!

strings be evaluated using boolean operators
print(string_1 == string_2) # are they the same string?
print(string_1 < string_2) # is string_1 shorter than string_2?
print(string_3 > string_2) # is string_3 longer than string_2?

strings are case sensitive
print('cat' == 'Cat')

False
False
True
False

String case can be changed using the .upper() and .lower() string methods.

print(string_2.upper())
print(string_2.upper() == 'CAT')
print(string_2 == 'CAT'.lower())

CAT
True
True

The length of a string can be accessed using the built-in len() function.
print("The string '{0}' is {1} characters long.".format(string_1, len(string_1)))

The string 'dog' is 3 characters long.

Characters in a string can be assessed by position.
Python indexing starts at 0.

print("The first character in '{0}' is: {1}.".format(string_1, string_1[0]))

Due to zero indexing, the last element is the n - 1 element.
print("The last character in '{0}' is: {1}.".format(string_1,
 string_1[len(string_1) - 1]))

Negative indexing also works (e.g. -1 accesses the last element):
print("The second to last character in '{0}' is: {1}.".format(string_1,
 string_1[-2]))

The first character in 'dog' is: d.
The last character in 'dog' is: g.
The second to last character in 'dog' is: o.

If a string is of a numerical value, the string can be converted to an
integer or float.

float_string = '2.5'
int_string = '2'
print_msg = 'Converted {0} to {1} from type {2} to type {3}'

int_num = int(int_string)
print(print_msg.format(int_string, int_num, type(int_string),
 type(int_num)))

float_num = float(float_string)
print(print_msg.format(float_string, float_num, type(float_string),
 type(float_num)))

Likewise, numbers can easily be converted to strings
num = 3.5
print(print_msg.format(num, str(num), type(num), type(str(num))))

It is important to note that if a string represents a floating point
number, Python is unable to convert that number to an integer.

Converted 2 to 2 from type <class 'str'> to type <class 'int'>
Converted 2.5 to 2.5 from type <class 'str'> to type <class 'float'>
Converted 3.5 to 3.5 from type <class 'float'> to type <class 'str'>

Container Variables and Operations

There are three main container data structures in base Python: lists,
sets, and dictionaries.

Lists

Lists are arbitrarily long collections of objects. The are instantiated
by placing comma-separated values within square bracks [].

my_list = [1, 2, 3, 4]
print(my_list)

[1, 2, 3, 4]

Like strings, elements within lists can be accessed via their position.
print('The first element of my_list is {0}'.format(my_list[0]))

The first element of my_list is 1

Access and assign list value by accessing an indexed element,
and assigning it to a new value.
new_list = [1, 2, 3]
print(new_list)
new_list[2] = 5
print(new_list)

[1, 2, 3]
[1, 2, 5]

A range of objects within a list can be select using ':'
print(my_list[1:3])

Another ':' can be used to define step size for the selection range.
print(my_list[1:4:2])

[2, 3]
[2, 4]

element membership within a list can be tested using the 'in' keyword.

print(5 in my_list)
print(3 in my_list)

False
True

The length of a list is also assessed using the len() function.
print(len(my_list))

4

An empty list can be constructed using empty square brackets
x = []
print(len(x))
print(x)

0
[]

Elements can added onto the end of a list using the .append() list method.

x.append('Hi')
print(x)

['Hi']

Lists can have mixed-type variables (e.g. a list can contain both integers
and strings)
my_list.append('String!')
print(my_list)

[1, 2, 3, 4, 'String!']

incremented lists up to a defined number can be created using the built-in
range() function. The range function outputs a 'range' object. However, it
can be casted to a list using the list() function.

n = 10
Create list of length 10 ranging from 0 - 9
range_list = list(range(n))
print(range_list)

The list doesn't need to start at 0
m = 3
print(list(range(m, n)))

Likewise, we can specify our own step size
step = 2
print(list(range(m, n, step)))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[3, 4, 5, 6, 7, 8, 9]
[3, 5, 7, 9]

Lists can be concatenated using the '+' operator
string_list = ['I', 'Love', 'Dogs']
print(my_list + string_list)

[1, 2, 3, 4, 'String!', 'I', 'Love', 'Dogs']

Sets

Sets are container objects that can only contain unique elements. If you
are familiar with Set Theory in Mathematics, Python sets are simply an
implementation of such a structure. Sets are constructed passing a list
to the ‘set()’ function or constructing via { }.

Sets can only contain unique elements.
set_1 = set([1, 1, 2, 2, 3, 4, 5])
print(set_1)

set_2 = {3, 4, 6, 7, 7, 8 , 9, 10}
print(set_2)

{1, 2, 3, 4, 5}
{3, 4, 6, 7, 8, 9, 10}

add elements to a set using the .add set method
set_1.add(6)
print(set_1)

{1, 2, 3, 4, 5, 6}

still only unique elements
set_1.add(5)
print(set_1)

{1, 2, 3, 4, 5, 6}

Remove elements using the .remove set method
set_1.remove(6)
print(set_1)

{1, 2, 3, 4, 5}

retrieve union of two sets using the .union set method
print(set_1.union(set_2))

retrieve set difference of two sets using the .difference method
print(set_2.difference(set_1))

retrieve set intersection using the .intersection method
print(set_1.intersection(set_2))

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
{8, 9, 10, 6, 7}
{3, 4}

Unlike lists, sets are unordered and thus don't support indexing.
print(set_1[0])

TypeError Traceback (most recent call last)

<ipython-input-37-c17aa407af1e> in <module>()
 1 # Unlike lists, sets are unordered and thus don't support indexing.
----> 2 print(set_1[0])

TypeError: 'set' object does not support indexing

Dictionaries

Dictionaries are collections with key-value pairs. They are constructed
by matching a key with an associated value. The value can then be
retrieved at a later time using the provided key. In python, keys and
values can be of arbitrary data types. Similar to sets, dictionaries are
consructed using curly brackets { }, though each entry must follow
the key:value syntax.

Construct dictionaries by separating keys and values using ':'
Separate key-value pairs using ','
my_dict = {'a': 1, 'b': 2, 'c': 3}
print(my_dict)

Look up values using keys
my_dict['a']

Create an empty list using {}
empty_dict = {}

add elements by 'indexing' by a given key and provided an associated
value as an assignment.
empty_dict['key'] = 'value'
print(empty_dict)

Retrieve keys of a dictionary using .keys() dictionary method
print(my_dict.keys())

Retrieve values of a dictionary using .values() dictionary method
print(my_dict.values())

If, Else, and Elif Statements

Sometimes when writing a program, you need to execute different code
snippets depending on the value of a specific variable. In Python, we do
this by employing the three boolean key words: if, else, and
elif

An if statement uses if the following syntax:

**if (boolean statement): **

run this code

if statements must be followed by a colon.
Likewise, the next line MUST be indented using either a tab or 4 spaces.
if True:
 print("It's true!")

x = 3
if (x < 10):
 print('{0} is less than 10'.format(x))

An else statement must follow an if statement and is executed
if the statement in the if statement is not met.
x = 11
if (x < 10):
 print('{0} is less than 10'.format(x))
else:
 print('{0} is greater than or equal to 10'.format(x))

Like an else statement, an elif statement must follow a preceding if
statement. However, like an if statement, an elif must also have its own
boolean statement that must be met in order for its snippets to be run.

if (x < 10):
 print('{0} is less than 10'.format(x))
elif (x < 15):
 print('{0} is greater than 9, but less than 15'.format(x))
else:
 print('{0} is greater than 14'.format(x))

Iteration and Looping

While programming, it is common you will want to execute a code snippet
multiple times, or execute the same line over a set of values. For this,
we use looping. There are two different types of loops we can use in
Python: for loops and while loops. For loops iterate through
a set of values; a while loop iterates until a specific condition is
met.

For loops

For loops employ the following syntax:

for each in list:

run code

The variable each is defined in the loop statement. Similarly, the
variable list can be any iterable data type: not just a list. Like
if, else, and elif statements, loop statements end with a
colon and must be followed by a new line and an indentation.

iterate through a list
my_list = [1, 'hi', 'yellow', 'pizza', 4.5]
for each in my_list:
 print(each)

use the range() function to iterate through integer values
for i in range(5):
 print(i)

Nested For Loops

We can nest loops within other loops for loop-ception. In a nested loop,
the first loop will run with the first value specified by the iterator
(e.g. i = 0) until the inner loop gone to completion (e.g. executed for
j =0 and j = 1). Once the inner loop is completed, the outer loop then
moves on to the next value, and the process is repeated.

for i in range(5):
 for j in range(2):
 print('(i={0}, j={1})'.format(i, j))

While Loops

While loops execute until a boolean statement returns False. While
loops employ the following syntax:

while boolean_statement:

execute code

count = 0
while count < 5:
 print(count)
 count += 1 # the += operator increments the value of a variable by
 # the right value

Nested While Loops

Like for loops, while loops can also be nested; however, in order to
fully iterate through each loop, values used in the boolean statement in
the inner loop must be set in the outer loop. This ensures the value
will be reset for the next iteration in the inner loop.

count = 0
while count < 3:
 num = 5
 while num > 3:
 print('num: ' + str(num))
 num -= 1 # the -= operater decrements a variable by the right value.
 print('count: ' + str(count))
 count += 1

Functions

It often a good idea to modularize your programming. That is, break your
code into smaller parts that can be run together to complete your task.
This is often performed by declaring functions. In Python, functions
take a defined set of inputs, perform some set of operations using the
inputs, and likely outputs some value. Functions are defined using the
following syntax:

def function_name(input_1, …):

run code

Like loops and control statements, function definitions end with a colon
followed by a new line and an indentation.

def add(x, y):
 return(x + y)

print(add(1, 2))

It is common to have doc-strings, denoted by three sets of quotation marks,
after a function definition to define the use of the function.
def multiply(x, y):
 """
 Multiplies two numbers together.

 Arguments:
 x (float or int): a numeric value.
 y (float or int): a numeric value.

 Returns:
 (float or int): the product of `x` and `y`.
 """
 return(x*y)

print(multiply(3, 2))

It is possible to include optional parameters in functions.
These are defined by setting an arguments name and giving
a default value using '='

def increment(x, step=1):
 """
 Increments a value by specified value.

 Arguments:
 x (float or int): a numeric value.
 step (float, optional): a numeric value to increment `x` by.
 Default value is 1.
 Returns:
 (float or int): sum of `x` and `step`.
 """
 return(x + step)
print(increment(2))
print(increment(2, 3))

Scope

When discussing functions, it is important to also talk about the
scope of a variable. The scope of a variable is the environment in
which the variable is defined. If a variable is defined within a
function, it’s scope is local and unique to that function: the variable
cannot be accessed outside of the function. If a variable is defined
outside of a function, at the first indentation level, the scope is
global: the variable can be accessed anywhere within the Python file.

global_var = 20
def scope_function():
 """Scope example."""
 local_var = 3
 print(global_var + local_var) # global_var has global scope

local_var was defined only within scope_function(). Thus,
it does not exist outside of the function.
print(local_var)

File Input and Output.

Often when writing a program, it is necessary to read or write to a
file. Reading and writing can be done in a variety of ways and we’ll go
over the most useful here.

Reading a file

To read a file, we must first create a connection to the file. The most
basic way to do this is with the open command and utilize the
readline io method.

The open command creates a TextIOWrapper object that is used to read
lines in a file. The first argument in the file to open, while the
second argument specifies the object should be in "read-mode"

read_file = open('input_file.txt', 'r') # open the file
file_string = ""
line = read_file.readline() # read a line using the readline TextIOWrapper method.
while len(line) > 0: # read lines until no lines are left in the file.
 file_string += line
 line = read_file.readline()
print(file_string)
read_file.close() # close the connection to the file.

Using with to simplify file reading

The above method requires we create a separate file object and remember
to open and close it. This can be simplified by using the with and
as keywords:

with open('input_file.txt') as f:
 for line in f:
 print(line)

Writing Files

We write to files analagous to the way we first read a file: creating a
connection, iterating through the lines we want to write, and finally
closing the file.

write_list = ['This is a line',
 'This is also a line.',
 'In case you didn\'t know,',
 'You can have line breaks',
 'in between list elements',
 'and really any bounded element.']

f = open('output_file.txt', 'w') # the 'w' parameter specifies "write-mode"
for each in write_list:
 f.write(each)
f.close() # Look in your present working directory and you'll notice an output_file.txt file.

Importing Modules

In Python, a module is an external library that provides functionality
that extends past the built-in functionality. However, there are several
standard libraries/modules that are included in the base Python install,
such as math, sys, os and other modules. These, and any
other module, must be brought into the python environment using the
import keyword.

On a basic import, any method, data structure, or value provided by the
module must be accessed by first appending the module name to the method
(e.g. to use the sin function in the math module, we type
math.sin)

import math
find the sin of 1, 0, and pi
print(math.sin(1))
print(math.sin(0))
print(math.sin(math.pi))

It is possible to import specifc methods or sub-modules from libraries.
This is done by combining the from keyword with the import
keyword. Depending on the level of import, the syntax for accessing the
imported methods changes.

from math import cos
print(cos(math.pi)) # no `math.cos` necessary because we imported
 # `cos` directly.

from os import path
import 'path' submodule from 'os' module to gain access to 'realpath'
method. When executing, os.path.realpath' not necessary because 'path'
sub-module imported. However, path.realpath necessary because 'realpath'
is in the 'path' sub-module.
print(path.realpath('input_file.txt'))

You can re-name modules using the 'as' keyword on import
import math as m
print(m.pi)

Conclusion

This concludes our brief introduction to Python 3. This document simply
serves as a primer to first getting acquainted with the syntax and data
structures in Python. Many concepts, techniques, and capabilities were
left out. Feel free to explore more of Python’s capabilities on your own
if you so desire. Looking into external libraries such as numpy and
scipy will be incredibly beneficial for anyone looking to continue
to perform numerical/data analysis in Python.

 Workshop 2. High Throughput Sequencing Application Session Online Materials

Workshop 2. High Throughput Sequencing Application Session Online Materials

Introduction

 Workshop 2 scripts

Workshop 2 scripts

Introduction

In Workshop 2, we’ll apply your command line and python skills in order to
process real-world high-throughput sequencing data.

Before we get to the actual data analysis, let’s cover the basics of sequencing.

The next video in these materials uses animations to describe Illumina
short read sequencing technology, which is currently the most popular form of
high-throughput sequencing.

The data analysis portion of the Illumina video describes genomic DNA
sequencing, which is a specific type of data, so we’ve provided two videos to
give general descriptions of the data produced by the Illumina sequencer and of
how to analyze this data.

If you are already comfortable with high-throughput sequencing data, feel free
to skip forward to the Problem Description section.

Illumina Sequencing Technology

Note

https://www.youtube.com/watch?v=fCd6B5HRaZ8

High-Throughput Sequencing Data

As of 2017, it is very common for researchers to supply input material, usually
in the form of extracted DNA or RNA from some system of interest, to
organizations called “sequencing centers” or “sequencing core facilities” that
own and operate sequencing machines.

The actual process of sequencing as described in Illumina’s videos is therefore
seldom actually performed by researchers themselves, unless significant
customization to the process is necessary for their problem of interest.

High-throughput sequencing data is most often provided to researchers, and
made available through sequencing dataset repositories, in the FASTQ file
format.

Note

switch to fastq wikipedia page

The FASTQ format is a text-based format that contains sequences identified by
the sequencer, and is organized into sets of individual sequences, called
reads.

One read is represented by four lines in the FASTQ file:

	the header, which starts with an @ symbol and contains information about
the machine that produced the sequencing, the flowcell, the location of
the spot on the flowlane, and any barcode information, which we don’t
cover here.

	the sequence of the read, which always uses the DNA alphabet of A, C, G,
and T regardless of whether the input material is DNA or RNA

	an additional header starting with a + that is usuall blank

	a sequence of characters, which is also called a string, that is the same
length as the sequence read and encodes quality scores for each base

Each character in the quality score string is matched to the nucleotide
character in corresponding DNA sequence, so the first score character gives us
information about the first sequenced base, the fifth score character the fifth
sequenced base, etc.

Note

walk through this by highlighting the bases on the wiki page

The quality scores, also called PHRED scores, translate to a number that
corresponds to the confidence the base call made by the sequencing machine is
what is reported it to be.

I won’t go into exactly how this score is calculated, or how it is encoded in
FASTQ format; all that you need to know is that each base in a read has an
associated quality that can be used later for quality control.

There are presently two types of read datasets produced by Illumina sequencers:
single end and paired end.

As previously mentioned, the input to sequencing is usually short DNA fragments.

Single end reads capture one end of each fragment, meaning each fragment has
only one read in the resulting dataset, stored in a single FASTQ formatted file.

Paired end reads capture both ends of each fragment, meaning each fragment has
two reads in the resulting dataset, usually stored in a pair of FASTQ formatted
files.

Any input material can be used to make either single or paired end data, and
the choice depends on the question being asked.

Typically, paired end sequencing is only used when sequencing mRNA, for reasons
that will hopefully become clear later.

Most other types of sequencing experiments only need single end reads.

Besides single vs paired end, another important property of a sequencing data
is the read length.

In the FASTQ files that came directly from a sequencer, all of the reads
will be exactly the same length.

This is due to the way the sequencing machine works when it encorporates bases
in the sequence synthesis process.

The sequence length is a parameter that is specified by the researcher, or the
core producing the data, at the time the sequencing is performed.

Obviously, the longer each read is, the more sequenced bases a dataset
contains, and the more information is (likely) contained in the dataset.

For most sequencing applications, a question of interest is: where in a genome
did a given read originate?

To do this, a read must be mapped back to a reference sequence, for example,
the human genome.

In general, longer reads, on account of containing more information, can be
mapped more confidently back to a reference sequence.

It is this consideration that often motivates the choice of read length; namely
what is the complexity of the genome being targeted, and therefore how
confident must we be in our read mapping.

For the purposes of mapping, longer reads are generally better, but very long
reads may be overkill for some purposes.

A full discussion of this topic is beyond the scope of this video, but suffice
it to say that the two properties of a dataset you should pay attention to are
read length and whether it is single or paired end.

Sequencing quality control and analysis basics

In this video I’m going to talk about some very high-level QC and analysis
tasks that are commonly done on FASTQ files.

Once you have FASTQ files, the first task is to assess the quality of the
reads.

Note

switch to fastqc example output
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

One program very often used in sequence data QC is fastqc, which computes a
number of metrics using the reads in a FASTQ file.

The first quality control metric that is of interest is the average quality
score per base across all of the reads in the dataset.

Recall that all the reads in a short read dataset are the same length.

Also recall that each FASTQ formatted read has an associated score string that tells
you how confident the machine was about each base called in the corresponding
sequence.

fastqc visualizes these scores across the read by base position as a boxplot.

Note

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html#M10

You can see that the average base quality degrades as the base position in the
read increases.

This is normal, but some reads may have bases of unacceptable quality at the end
that may affect downstream analysis.

Note

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html

In this example, we have another short read dataset with reads of length 40,
but the base quality degrades dramatically as the base position advances.

We can mitigate this problem by trimming off bases of low quality from the end
of individual reads.

Another common form of post processing is called ‘adapter clipping’, where
bases that correspond to the sequencing adapter molecules introduced by the
sequencing protocol are included in the sequenced read.

Note

https://sequencing.qcfail.com/wp-content/uploads/sites/2/2016/02/read_through_adapter.png

These adapter sequences must be removed from the reads, if they exist, since
the adapter sequence was designed such that it does not appear in any known
genome and are therefore of no interest to the researcher.

Note

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/small_rna_fastqc.html#M10

As a result of trimming, the reads are no longer all the same length, and some
reads may be excessively trimmed, such that the surviving high quality bases
make a read that is too short for reliable mapping.

For genomic sequences, a minimum length of 35 is often used, and any reads that
become shorter due to adapter or quality trimming are removed from the dataset.

For paired end sequencing, it is common that if one end of a read pair is
filtered for length, both ends are filtered.

As a note, if you are given a FASTQ file, and the reads are not all the same
length, you know that some post-processing has already been done.

There are a number of published programs that perform this adapter and quality
clipping, including fastx-toolkit, trimmomatic, cutadapt, and others.

There are other interesting metrics that can be calculated from a FASTQ
dataset, including GC content, overrepresented sequences, etc but for the
sake of brevity they are not covered in detail in this video.

Now, the point of trimming and clipping reads is to arrive at the highest
quality reads possible for downstream analysis.

With the exception of ab initio genome or transcriptome assembly efforts,
nearly all sequencing datasets are intended to be mapped to a reference
sequence, like the human genome, so that will be our focus for the rest of this
video.

Therefore, the practical effect of filtering out poor quality reads is that it
enables us to obtain the highest mapping quality possible.

Mapping quality is important, because the entire meaning of a dataset is tied
to examining where, and in some cases how well, a dataset maps to a genome of
interest.

Mapping reads to a genome is essentially the process of finding one, short
sequence inside another, long sequence.

There are many different strategies, and even more programs, available to do
this.

Note

https://www.ecseq.com/support/ngs/what-is-the-best-ngs-alignment-software

Basically, all of these programs accomplish the same task of mapping reads to
a genome, but they have different strategies or are designed for specific types
of data.

In anycase, the important thing to know about mapping is that, ultimately,
reads that encode sequences originating from some part of the genome are
assigned the appropriate genomic position, or positions, from whence they came.

Many factors affect this, including sequencing quality and genome complexity,
and a full treatment of mappability is well beyond the scope of this video.

The important concept to remember for mapping reads to a genome is that the
locations where reads map, and the proportion of reads that map to particular
locations, is the fundamental output of many sequencing experiments, including
those we will focus on in these workshops.

Problem Description

Now I’m going to talk about the background necessary to understand what we are
going to do in the hands-on workshop.

A researcher at BU is interested in epitranscriptomics.

Epitranscriptomics refers to the study of post-transcriptional biochemical
modifications to RNA.

This is similar to the concept of epigenomics with DNA, where chemical
modifications to DNA nucleotides that do not alter primary sequence have some
functional significance.

Epitranscriptomics is the same idea, except applied to RNA.

Note

switch to figure epitranscriptomic_marks.png

Epitranscriptomic events manifest in the form of marks, or single chemical
modifications to individual residues that affect how the RNA species is
processed downstream.

In this figure, six such marks are depicted, but there are more than 150 such
marks known.

Unlike epigenomic marks like DNA methylation, which have been successfully
determined genome-wide using high throughput sequencing techniques, identifying
epitranscriptomic marks genome-wide is relatively more difficult.

Note

switch to figure epitranscriptomic_methods.png

A number of methods have been developed to identify epitranscriptomic marks
using high-throughput sequencing data, some examples are illustrated here.

Different protocols are used to identify different marks, and these protocols
are often tricky and complicated.

For more information, you can check out this review:

Helm, Mark, and Yuri Motorin. 2017. “Detecting RNA Modifications in the
Epitranscriptome: Predict and Validate.” Nature Reviews. Genetics 18 (5):
275-91.

Note

switch to https://en.wikipedia.org/wiki/2%27-O-methylation

The BU researcher is working with a sequencing method called 2OMeSeq, which
seeks to identify RNA residues that have the 2’-O-methylation modification.

Note

switch to https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388417/figure/F1/

2OMeSeq was developed following the observation that, under low dNTP
conditions, reverse transcription stalls at 2’-OMe sites but has more complete
read-through otherwise.

The idea is that we start with RNA that has some modifications.

We then reverse transcribe that RNA under either high or low dNTP concentrations.

With high dNTP concentrations, the reverse transcription proceeds past the marks
with high frequence, but under dNTP starvation, the reverse transcriptase
stalls just prior to the 2 oh methyl modified residues.

Note

switch to https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388417/figure/F2/

As a result, when the RNA fragments are size selected and sequenced, there is
a larger proportion of reads that map immediately upstream of 2’OMe sites in
the low dNTP conditions than normal, as seen in the figure.

However, since the number of 2OMe sites in the transcriptome are relatively few
when compared to the size of the genome, the source RNA concentration is small,
and must undergo several rounds of PCR prior to sequencing.

We therefore would like to be able to differentiate between PCR amplification
products and distinct 2OMe events.

To do so, the researcher employed a custom primer strategy, such that each RNA
fragment in the input sent for sequencing was as follows:

4 random nucleotides
|
| True RNA fragment insert
| |
| | 2 random nucleotides
| | |
| | | Literal CACA
| | | |
v v v v
NNNNXXXXXXXXXXXXXXXXXXXXXXXXXNNCACA

Reads that end in the CACA sequence are RNA fragments that were
successfully subjected to the custom adapter protocol, and thus reads that do
not end with CACA should be discarded.

Of the reads that remain, the random nucleotide sequences in combination with
the true RNA insert, allow us to assume that any reads with duplicate sequence
are the result of PCR amplification and therefore only represent a single true
modification event.

In this workshop, we will use linux and python to process reads from this real
experiment in order to:

	Identify reads that were successfully ligated (i.e. end with CACA)

	De-duplicate the reads so that each is unique

	Trim off the beginning and trailing random sequences from the reads

Using this randomization scheme, any reads in the resulting data correspond to
unique RNA species and can therefore be confidently studied for evidence of
true 2OMe events by mapping to the genome and counting 5’ events.

The researcher is interested in the epitranscriptomic changes that occur during
embryonic development.

They are using an experimental animal model that you will be asked to determine
for yourself in the workshop.

In the experiment, WT eggs from this organism are fertilized, harvested at 2
and 6 hours post fertilization in duplicate, and then subjected to RNA extraction.

Then the duplicates are subjected to a reverse transcription protocol to produce
cDNA, where one replicate is treated at high dNTP concentration and the other at
low dNTP concentration.

Remember that the low dNTP concentration conditions enable detection of 2-O-
methyl events, and we can use the samples from the high dNTP concentration
conditions as negative controls for enrichment sites in the genome.

This is all you need to know to understand the tasks you will be performing in
the hands on workshop.

 Workshop 2. High Throughput Sequencing Application Session Solution

Workshop 2. High Throughput Sequencing Application Session Solution

Part 1

Runtime: ~10 min

Topics:

	Downsampling FASTQ

	Iterating through gzipped FASTQ

	Identifying good reads

	Deduplicating good reads

	Counting total, good, and deduplicated reads

 Workshop 4. Introduction to R

Workshop 4. Introduction to R

Overview

In this workshop, you will get started using R, and you will do basic data exploration. In addition, you’ll get started using ggplot

This workshop will cover the following topics:

	Package installation and loading

	Reading data

	Data exploration

	Making graphics with ggplot

A great thing about R is that there are thousands of packages freely available. Adding packages significantly expands your data analysis capabilities, therefore, it is an essential task when working with R.

Task - Install and load packages

Install the packages reshape2 and ggplot2.
We will also be using plyr, and this gets automatically installed when you install reshape2.
Load plyr, reshape2 and ggplot2 to your environment.

For this workshop, we have chosen a data set that will allow us to illustrate different aspects of data manipulation and plotting. This data set was produced by the Waxman lab, and it is publicly available (Sugathan 2013) [http://mcb.asm.org/content/33/18/3594.long], and the data for this example can be downloaded here (gene_regulation_in_liver.tab)

This dataset comprises of a gene-wise characterization of transcriptional regulation. Each row in this dataset is a gene that was profiled in male/female mice liver tissue, with columns having important features for each gene, including numeric values for gene expression in each type of tissue, and binary values that indicate whether the gene expression is altered in mice deficient in specific transcription factors.

The following illustrates the biology of differences in gene regulation:

[image: ../../../_images/gene_regulation.png]
Let’s load the data

Task - Load the data

The file provided is in tab-delimited format. Read the file and assign the data to a variable. In my examples, I’ll refer to this as gene_data. You can quickly check that the import worked with the command head(gene_data).
Does the data have headers?

Now, we are going to do basic exploration of our data.

The first thing we can do, is look at the dimensions of our dataset. This can be done with the dim function.

Another useful function is str. It is used to display the structure of an object, and it is useful because it gives you information on the type of fields you have in your data in a compact view.

A complement to str is the summary function.

A very useful function for categorical data is table, and it gives you the frequencies of each value.

Task - Explore the data

Now, you are ready to answer basic questions about your data. How many genes are there in this set? What is the maximum logRPKM in male? Howe many sex-biased genes are there (Sex.bias field)?

Using the commands introduced in Introduction to the plyr package [https://www.youtube.com/watch?time_continue=8&v=S4oCN0FDC14] we can summarize our data in a lot of useful ways.

Task - Use plyr

Compute the mean RPKM expression levels in Male and Female livers for different Sex.bias states (i.e. female, male and sex-independent)”

Now, let’s prepare our data for plotting. For this workshop, we’ll focus on making graphics with ggplot2. This requires the data to be in “long” format, which was introduced in the Intro to reshape video [https://www.youtube.com/watch?time_continue=8&v=aXXy04P_l1c], and the accompanying document

Task - Reshape the data

Prepare the data for plotting by “melting” the data sets. For the following plotting examples, we need two data frames:

	melt of TF KO response, for this, we want the categorical variables Up.regulated.by.PPARa, Down.regulated.by.PPARa, Up.regulated.by.PPARbd, Down.regulated.by.PPARbd to be in one column.

	melt of RPKMs, for this we want logRPKM.in.Male, logRPKM.in.Female to be one column

Now, let’s get started with ggplot!

This section will cover the following topics:

	Comparison between ggplot and basic R plots

	Elements of ggplot
* mapping

	geoms

	stats

Comparison between ggplot and basic R plots

Some plots are quicker or easier to make with base R plots than with ggplot2, but when making complex plots, ggplot2 gives more flexibility

Basic scatter plot

#basic scatter plot in ggplot
ggplot(gene_data,aes(x=logRPKM.in.Male,y=logRPKM.in.Female))+
geom_point()

[image: plot of chunk basic-scatter-plot]
plot of chunk basic-scatter-plot

#basic scatter plot in R base graphics
plot(x = gene_data$logRPKM.in.Male,y=gene_data$logRPKM.in.Female)

[image: plot of chunk basic-scatter-plot]
plot of chunk basic-scatter-plot

Complex plot

#complex scatter plot in ggplot
ggplot(gene_data,aes(x=logRPKM.in.Male,y=logRPKM.in.Female,color=Sex.bias))+
 geom_point()+
 geom_abline(slope=1,color="darkslateblue")

[image: plot of chunk complex-plot-comparison]
plot of chunk complex-plot-comparison

#complex scatter plot in R base graphics
gene_data_male<-gene_data[gene_data$Sex.bias=="male",]
gene_data_female<-gene_data[gene_data$Sex.bias=="female",]
gene_data_indep<-gene_data[gene_data$Sex.bias=="sex-indep",]

plot(x = gene_data_indep$logRPKM.in.Male,y=gene_data_indep$logRPKM.in.Female,col="steelblue3")
points(x = gene_data_female$logRPKM.in.Male,y=gene_data_female$logRPKM.in.Female,col="tomato3")
points(x = gene_data_male$logRPKM.in.Male,y=gene_data_male$logRPKM.in.Female,col="springgreen4")
abline(a=0,b=1,col="turquoise")

[image: plot of chunk complex-plot-comparison]
plot of chunk complex-plot-comparison

As you can see, it takes considerably more code to make this plot in base R plots than with ggplot.

Elements of ggplot2

mapping

We tell ggplot how to use information included in the data frame using aes(). In the previous example, we specified the x and y values to plot. In ggplot, characteristics of the plot that depend on data are called aesthetics. In addition to the x and y axis, plot aesthetics include color, fill, size, and shape.

Warning

Note: If we want to change plot characteristics in a fixed way (not based on the data), then we have to specify them outside of aes(). For example, you would do this if you want to change the color of all the points to the same color, regardless of values (we used the value in Sex.bias in the previous example).

As you can see, color is another plotting feature that we can map to our data

Warning

Use colour="hotpink" to set the colors of lines and points. To set the color of filled objects, like bars and box plots, you have to use fill="hotpink". (change hotpink for your desired color)

color by Sex.bias
ggplot(gene_data,aes(x=logRPKM.in.Male,y=logRPKM.in.Female,color=Sex.bias))+
geom_point()

[image: plot of chunk mapping-with-color]
plot of chunk mapping-with-color

Also, we can use features of our data to generate plots in multiple panels. This can be done using facet_wrap()

color by Sex.bias and create different panels based on Cluster.in.female.liver
ggplot(gene_data,aes(x=logRPKM.in.Male,y=logRPKM.in.Female,color=Sex.bias))+
geom_point()+facet_wrap(~Cluster.in.female.liver)

[image: plot of chunk facet_wrap]
plot of chunk facet_wrap

color by Sex.bias and create different panels
based on all the combinations of Cluster.in.male.liver and Cluster.in.female.liver
ggplot(gene_data,aes(x=logRPKM.in.Male,y=logRPKM.in.Female,color=Sex.bias))+
geom_point()+facet_wrap(Cluster.in.male.liver~Cluster.in.female.liver)

[image: plot of chunk facet_wrap]
plot of chunk facet_wrap

In these examples, we have used aesthetics to specify x and y values, colors, and panels based on the data.
Aesthethics can also be used to map data to the shape of points, types of lines and size.

Visit this site for more examples Shapes and line types [http://www.cookbook-r.com/Graphs/Shapes_and_line_types/]

Task - Mapping aesthetics

Use different point shapes to represent the Sex-bias of the genes.
HINT: The shape of points is set using aes(shape=...)

For more details regarding aesthetics, visit the ggplot2 reference [http://ggplot2.tidyverse.org/reference/#section-aesthetics]

geoms

Geometric objects, or geoms are the symbols used to plot. These also may refer also to the type of plot.

We already used a geom, geom_point for scatter plots, and there are other geoms available, such as

	geom_line

	geom_bar

	geom_boxplot

	geom_abline, geom_hline, geom_vline

	geom_jitter

	geom_text

	geom_smooth

For the list of available geoms, visit the ggplot2 reference [http://ggplot2.tidyverse.org/reference/#section-layer-geoms]

Now, let’s put those other geoms to use!

Making line plots

Let’s go back to our original scatter plot, and find a line that fits the data

MA_data<-gene_data
MA_data$A<-0.5*(gene_data$logRPKM.in.Female+gene_data$logRPKM.in.Male)
MA_data$M<-gene_data$logRPKM.in.Female-gene_data$logRPKM.in.Male

MA_data_lm<-lm(MA_data$M~MA_data$A)

MA_data_lm$coefficients

(Intercept) MA_data$A
-0.06061486 0.02173641

MA_data$lm<-predict(MA_data_lm,MA_data) ##

In the code above, lm stands for “linear model” and by doing lm(MA_data$M~MA_data$A) we are performing a linear regression on the M and A variables of our data.

ggplot(MA_data,aes(x=A,y=M))+geom_point()+
facet_wrap(~Cluster.in.female.liver)+
 geom_line(aes(y = lm),color="turquoise")

[image: plot of chunk line-plots]
plot of chunk line-plots

Making bar charts

Task - Make a bar chart of counts of genes that are regulated by each knockout

Use the melt of TF KO response data frame to make a bar chart.
This data frame includes values of 0’s and 1’s. For our bar chart, we want to keep only those genes that are regulated, that is, genes with values of 1. Make a bar chart using geom_bar() and fill based on Sex.bias

Sometimes, it’s useful to add information, like statistics, to the plot.
In ggplot, we can use the annotate function, which adds a layer that doesn’t inherit global settings from the plot. It is used to add fixed reference data to plot.

Let’s add a correlation value to our plot

calculating the correlation, using the R function cor
corr_coef<-cor(gene_data$logRPKM.in.Male,gene_data$logRPKM.in.Female)
rounded_corr_coef<-round(corr_coef,digits = 2)

We can add it to the title of the plot, or to the plot itself

adding the correlation coefficient to the plot using "annotate"
ggplot(gene_data,aes(x=logRPKM.in.Male,y=logRPKM.in.Female))+geom_point()+
 annotate("text", x = 10, y = -5,
 label = -paste("italic(r) = ", rounded_corr_coef), parse = TRUE)+
 labs(title=" logRPKMs in M and F liver")

Error in -paste("italic(r) = ", rounded_corr_coef): invalid argument to unary operator

Task - Add statistics to your plot

Add the number of genes and the correlation value to the plot title.

HINT: paste lets you concatenate character vectors

stats

ggplot facilitates some computations on the data.
This comes in handy when we want to summarize the data, rather than visualizing every point.

For example

	box plots require the computation of median, and quartiles

	histograms require the computation of counts in bins

Warning

Different tools might use different calculation methods when making box plots. Always check the documentation so that you know what is on your plot. Check ?geom_boxplot and ?boxplot.stats for more information

For this example, we’ll use our melt of RPKMs data frame that we created earlier

Making histograms

#Making the histogram
ggplot(gene_rpkm_melt,aes(value,fill=variable))+
 geom_histogram()+facet_wrap(~Cluster.in.male.liver)

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

[image: plot of chunk histogram]
plot of chunk histogram

Task - Make box plots

Make box plots of M and F RPKMs for each cluster of activity in male (Cluster.in.male.liver field).

HINT: use facet_wrap to make multiple plots at the same time

BONUS Making plots pretty

The theme function in ggplot2 gives you a lot of control over the look of the elements of your plot.
Theme elements allow you to modify non-data aspects of your plots, such as axes, labels, and backgrounds.

For example, we can rotate the labels on the x-axis

ggplot(gene_rpkm_melt,aes(y=value,x=Cluster.in.male.liver,fill=variable))+
 geom_boxplot()+theme(axis.text.x=element_text(angle = -90, hjust = 0))

[image: plot of chunk label-rotation]
plot of chunk label-rotation

A great thing about ggplot2 is that it allows the definition of themes, which is a set of theme characteristics. This makes it very easy to polish the appearance of the graphics consistently for a set of plots.

ggplot2 comes equipped with various built-in themes, including:

	theme_bw()

	theme_gray()

	theme_classic()

	theme_linedraw()

Let’s try a few

ggplot(gene_rpkm_melt,aes(value,fill=variable))+
 geom_histogram()+facet_wrap(~Cluster.in.male.liver)+theme_bw()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

[image: plot of chunk histogram-w-themes]
plot of chunk histogram-w-themes

ggplot(gene_rpkm_melt,aes(value,fill=variable))+
 geom_histogram()+facet_wrap(~Cluster.in.male.liver)+theme_linedraw()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

[image: plot of chunk histogram-w-themes]
plot of chunk histogram-w-themes

ggplot(gene_rpkm_melt,aes(value,fill=variable))+
 geom_histogram()+facet_wrap(~Cluster.in.male.liver)+theme_classic()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

[image: plot of chunk histogram-w-themes]
plot of chunk histogram-w-themes

In addition, ggplot2 allows you to save your own themes.

You will also be able to find themes contributed by other ggplot users.

For a variety of predefined themes, visit

	ggplot2 built-in themes [http://ggplot2.tidyverse.org/reference/ggtheme.html]

	ggthemes [https://cran.r-project.org/web/packages/ggthemes/vignettes/ggthemes.html]

 Workshop 5. NGS Application Session 2 Workshop

Workshop 5. NGS Application Session 2 Workshop

In this workshop, we will perform the following tasks:

	Install software to perform the analysis

	Download sequences of the deduplicated reads and reference

	Build a bwa index of ribosomal RNA sequences

	Align deduplicated reads to the reference and convert to sorted BAM format

	Count 5’ alignments across the reference and write to file

	Compute enrichment scores using the 5’ alignment counts

	Plot the count and score distributions

	Filter and plot genomic sites that are the most likely methylation event candidates

Install software

We first must make the software packages we need available on the command line.
Probably the easiest way to do this is to use miniconda [https://conda.io/miniconda.html].

Task - Install necessary software packages

Install the bwa, samtools, and bedtools command line programs in
your environment. If you are using miniconda [https://conda.io/miniconda.html], you may install these programs
with:

conda create -n hts_workshop python=3.6
source activate hts_workshop
conda install -c bioconda bwa samtools bedtools

Download sequences

The two sequence datasets we need are:

	the deduplicated read sequences from
Workshop 2

	the ribosomal RNA sequences we will use as the reference

Deduplicated FASTA sequences:

https://ndownloader.figshare.com/files/9071635?private_link=455fcc63e1b3c8ffa0b3

Task - Download deduped sequences

Use wget to download the deduplicated sequences from the URL above. The
sequences are in zipped FASTA format. Use the unzip command to decompress
the files.

Genomic DNA sequences of select ribosomal RNA genes in zebrafish:

https://ndownloader.figshare.com/articles/5298121/versions/2

Task - Download ribosomal RNA sequences

Use wget to download the ribosomal RNA sequences. Use unzip to
decompress the files. In the archive there is a FASTA file, which will be
used to build the index, and a sizes file that we will use with bedtools.

Build a bwa index

We will use the ribosomal RNA FASTA file to build a bwa reference. Ribosomal
RNAs are known to be heavily methylated in humans, but less is know about the
prevalence and location of methylated residues in zebrafish, particularly in
development.

Task - Build a bwa index using the zerbrafish ribosomal RNA
sequences

Use wget to download the ribosomal RNA fasta file using the URL above.
Then run bwa index to see the usage information for how to build a bwa
index, and construct the appropriate command to build an index for the rRNA
sequences.

Align deduplicated reads

Once the index has been built, we can use it to align the deduplicated reads. Be
careful not to run bwa without first redirecting standard out, specifying the
appropriate command line argument, or combining the alignment with the next two
samtools calls.

Task - Align the deduplicated sequences against the bwa rRNA index

Using bwa mem, align the DC-0517-2AL.10M_deduped.fasta.gz sequence file
against the rRNA index. Note: by default, bwa outputs the alignments in
SAM [https://samtools.github.io/hts-specs/SAMv1.pdf] format to the command line. You may either use a command line option or
redirect stdout to save these alignments to a file.

Task - Convert the SAM alignments to BAM format and sort them using
samtools

Use samtools view to convert the SAM [https://samtools.github.io/hts-specs/SAMv1.pdf] formatted alignments found by
bwa to BAM format. Then use samtools sort to sort the alignments.

Align all four of the deduplicated sequences separately.

HINT: You can use pipes to combine the bwa mem, samtools view, and
samtools sort commands together into a single command and avoid creating
redundant intermediate files.

Count 5’ alignments

Now that we have sorted alignments in BAM format, we can use bedtools to
count the 5’ alignment positions across the entire reference. Counting reads by
only their 5’ alignment locations allows us to more easily identify individual
positions with high read mapping rates.

[image: ../../../_images/2OMeSeq_read_pileup_cartoon.png]

Task - Count the number of alignments per base position in the
reference

Use the bedtools genomecov command to count the number of reads that map
to each base in the rRNA sequences. Examine the bedtools genomecov help
message to identify the option that makes bedtools count only the 5’ position
of each alignment. Also, be sure to supply the -d command line flag to
the bedtools call, to ensure that every base position is repoted, even
if there are zero reads. Save the output to a file named as you please.

The resulting file is a tab delimited file with three columns:

	sequence name

	sequence position

	number of reads

Compute enrichment scores

Recall that methylation events in this experiment may be detected when the reverse
transcriptase stalls at modified residues. True events should therefore apear as
a pileup of reads that map to exactly one location but are less prevalent in
surrounding bases. We have devised a score to programmatically identify such
events:

[image: ../../../_images/2OMeSeq_score_cartoon.png]
The score is a ratio of read depths, where \(r_i\) is the number of reads at
genomic position i and, \(w_b\) and \(w_a\) are the average number of
reads in the upstream and downstream windows of size n (in the above example,
\(n = 10\)). The score is therefore defined as the number of reads at
position i divided by the mean of the average read counts per base in the
flanking windows. This unit-less score has a direct interpretation: when the
score is equal to 1, there is the same average read counts at the given position
as the flanking regions, indicating this location is not of interest. Therefore,
scores substantially greater than one are putative methylation sites.

Note: When \(w_b = w_a = 0\) the score is set to zero.

In this task we will write a script that implements this score.

Task - Compute the 5’ window score for every valid position in the
rRNA sequences

Using whichever tool you desire, compute the enrichment score for each valid
position in the rRNA sequences using the 5’ read counts. There will be slightly
fewer scores than base positions (why is this?).

Write a script that accepts a file on the command line that was created by
bedtools genomecov and writes out another file with the same format but
with the score instead of the counts.

Generate scores for each of the aligned samples.

Plot the count and score distributions

Now we are interested in the distribution of counts and scores across our samples.
A boxplot can be useful for this purpose.

Task - Plot the distribution of 5’ read counts and scores across all
rRNAs as boxplots

Using whichever tool you desire, read in and plot the 5’ alignment count
distributions for the four samples. How do we interpret this plot?

Plot the distribution of scores for each sample in a boxplot. How do these
scores compare to the 5’ counts?

Challenge: plot a scatter of the read count and corresponding score for all
positions in the reference. What can we interpret from this plot?

Filter and plot genomic sites

As we saw in the boxplots, most genomic positions have counts and scores of
zero. We would therefore like to identify sites that are potentially interesting
by putting filters on the data. Recall that the low dNTP condition should be
enriched for true sites, and therefore locations with high scores in the high
dNTP condition are likely to be false positives. We have therefore devised a set
of criteria to identify interesting sites using this knowledge.

Task - Filter and plot the 5’ window scores for low vs high dNTP
concentration samples

Using whichever tool you desire, filter the score positions for low and high
sample conditions within the same timepoint by the following criteria:

score_low > 2
score_high > 0
score_low > score_high

Using the remaining positions, create a scatter plot of scores where the
low and high dNTP concentration samples are on the x-axis and y-axis,
respectively. You may put a scatter for both time points on the same plot,
or on separate plots as you wish.

Do the enriched sites agree between timepoints?

 Workshop 6. Shell Scripts and Cluster Computing

Workshop 6. Shell Scripts and Cluster Computing

	Boston University Shared Computing Cluster (SCC)

	Connecting to SCC

	Transferring files to SCC

	Software and Application Environments

	File Storage on SCC

Boston University Shared Computing Cluster (SCC)

The SCC is a high performance computing resource available to BU researchers. The SCC is a Linux-based system with over 11 thousand processors, and it is located in Holyoke, MA.

This document provides details specific to BU SCC, and it is an addition to the Shell Scripts and Cluster Computing material. This document provides a very quick introduction to BU SCC, meant to get new students started right away. For more detailed information check out the SCC Quick Start Guide [http://www.bu.edu/tech/support/research/system-usage/scc-quickstart/] and the more detailed Using the System [http://www.bu.edu/tech/support/research/system-usage/using-scc/] section of the documentation.

Connecting to SCC

To be able to connect to SCC, you need to be added to a project active on SCC. Eventually, your PI or collaborator will add you to the appropriate project, but for the purpose of this workshop, you’ve been added temporarily to the BU Bioinformatics Hub SCC project.

To connect to SCC, you need to log in with an SSH client, using your BU Kerberos user name and password.
Bioinformatics researchers generally connect to scc4.bu.edu

ssh username@scc4.bu.edu

scc4.bu.edu is a restricted SCC head node that is only accessible from within the BU campus network. When working off campus, you may log into scc1.bu.edu first, which is an unrestricted head node that is accessible from anywhere, and then connect to scc4. Alternatively, you may connect using a VPN; however, in practice, we’ve noticed that connecting to scc1 provides a more consistent connection.

Transferring files to SCC

To transfer files from your local computer to SCC you can use any file transfer application that supports the Secure Copy Protocol (SCP) or the Secure File Transfer Protocol (SFTP).

Examples of these are WinSCP for Windows, Fetch for Mac OS X, and the scp command for Linux.

Software and Application Environments

Most applications on the SCC require the use of modules. Modules set the appropriate environment variables for the application and are useful in preventing conflicts related to different versions of an application.

To avoid compatibility issues and for other technical reasons, the versions available by default for packages like MATLAB, R, and Python are very old. The module system may be used to access more recent versions of the applications.

Modules may be loaded and unloaded as needed. This is done using the module package, which offers several commands, including:

	Command

	Description

	module list

	List currently loaded modules.

	module avail

	List modules that are available

	module help [modulefile]

	Provides the description of the specified module

	module load [modulefile]

	Loads module. Or, specifies other packages that are required, but that have not been loaded

	module unload [modulefile]

	Unloads specified module from environment.

Attention

You may load a package by using the name of the application. This will load the version of the application that is available by default on SCC right now. The default version will change over time, as new versions of the application are installed on SCC. Therefore, it is recommended that you load modules using the full version. This will ensure that, in the future, your script works as expected, even when new versions of the software become available.
For example, to load samtools, you may simply do

$ module load samtools

As of the time of this workshop, this loads version 1.5. Currently on SCC, the following options are available

samtools
samtools/1.1
samtools/1.3
samtools/1.4.1
samtools/samtools-0.1.18_gnu446
samtools/0.1.19
samtools/1.2
samtools/1.4
samtools/1.5
samtools/samtools-0.1.19_gnu446

As y