

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/foscommentbundle/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/foscommentbundle/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

FOSCommentBundle

The FOSCommentBundle adds support for a comment system in Symfony2. Features include:

	Manages trees of comments

	Can include comment threads in any page

	Compatible with any persistence backend. Doctrine2 mongodb-odm and ORM are implemented.

	Configurable sorting of the comment tree

	REST api

	Extensible through events fired during the comment lifecycle

	Optional use of Symfony2 Acl to protect comments

	Optional integration with FOS\UserBundle

	Optional integration with Akismet

	Optional markup parser support (eg HtmlPurifier or php-sundown)

[image: Build Status] [https://travis-ci.org/FriendsOfSymfony/FOSCommentBundle] [image: Total Downloads] [https://packagist.org/packages/friendsofsymfony/comment-bundle] [image: Latest Stable Version] [https://packagist.org/packages/friendsofsymfony/comment-bundle]

Documentation

The bulk of the documentation is stored in the Resources/doc/index.md
file in this bundle:

Read the Documentation [https://github.com/FriendsOfSymfony/FOSCommentBundle/blob/master/Resources/doc/index.md]

Installation

All the installation instructions are located in documentation [https://github.com/FriendsOfSymfony/FOSCommentBundle/blob/master/Resources/doc/index.md].

License

This bundle is under the MIT license. See the complete license in the bundle:

Resources/meta/LICENSE

Changelog

3.0.0 (2017-xx-xx)

	Dropped PHP < 5.6 support.

	Dropped Symfony < 2.7 support.

	Dropped jQuery < 3 support.

 2.0.x:

	The dependencies to FOS RestBundle have changed and as a result, you need to ensure that you have defined
a format_listener rule for comment-bundle, for example:

fos_rest:
 format_listener:
 rules:
 - { path: '^/comments', priorities: ['json', 'html'], fallback_format: json }

	[BC BREAK] VoteInterface signature has been modified. The type hint of
VoteInterface::isVoteValid() has been removed to support symfony 3.0.

2.0.4 to 2.0.5

	Editing is more robust and works even if you change the structure of the HTML
code. If you have customised the “comment_content.html.twig” you might need to
apply the changes made in this version to your customisation.

2.0.3 to 2.0.4

	Symfony 2.2 compatibility

2.0.2 to 2.0.3

	A recent change to FOSRestBundle now means that JMSSerializerBundle needs to
be specified explicitly in your application configuration.

	The ThreadController now decodes the provided permalink before setting it on
the Thread object.

	The ThreadController now validates that a Thread object is valid according
to the Symfony2 Validator metadata.

	The example CSS now uses more general selectors

	The example Javascript is deprecated and will be replaced in 3.0.0

	The example javascript now fires some events [https://github.com/FriendsOfSymfony/FOSCommentBundle/blob/master/Resources/doc/13-hooking-into-the-js-code.md] to provide extension points.

	The example javascript now uses classes instead of traversal making it less
reliant on the structure of the markup.

	The example javascript now resets the entire reply form instead of blanking
only the textarea for the comment body.

	Edit and Delete are now denied by default. Implement ACL to provide access.

2.0.1 to 2.0.2

	No changes required.

2.0.0 to 2.0.1

	Configuration for form names has changed swapping all instances of . with _.

1.1.x to 2.0.0

	No changes are required. 2.0.0 primarily introduces Symfony 2.1 support
while breaking BC with Symfony 2.0.

1.0.0 to 1.1.0

	Resources/Thread/comment.html.twig has changed, adding a rawBody option. This
change is not relevant unless you are going to use RawComments

	If you don’t use the async template to render the comments, you will need to add
a new variable defining the base url of the api:

var fos_comment_thread_api_base_url = 'http://example.org/api/threads';
var fos_comment_thread_id = 'my_thread_id';

	A new method ThreadManagerInterface#findThreadsBy was added.

	A new method ThreadManagerInterface#isNewThread() was added.

	ThreadInterface#setIsCommentable was renamed to ThreadInterface#setCommentable

	A new method CommentManagerInterface#isNewComment was added.

	The html class fos_comment_comment_form was renamed to
fos_comment_comment_new_form. Custom javascript implementations should be
adjusted for this change.

	A new method CommentInterface#getState was added.

	A new method CommentInterface#setState was added.

	A new method CommentInterface#getPreviousState was added.

	A new field was added to Document\Comment and Entity\Comment. ORM users
should update their schema.

0.9.2 to 1.0.0

	You need to remove comment.js previously used by this bundle.
async.html.twig now includes its own javascript file automatically.

	There is now a dependency on FOSRestBundle. Check the installation documentation
for details.

	Routing has changed, you must replace your existing fos_comment route import to

fos_comment_api:
 type: rest
 resource: "@FOSCommentBundle/Resources/config/routing.yml"
 prefix: /comment/api

	The way to include comments in a page has changed, importing an asynchronous
javascript template into your page which will trigger an asynchronous load
of a comment thread using the REST api.

{% include 'FOSCommentBundle:Thread:async.html.twig' with {'id': 'foo'} %}

2012-01-21

	Blamers, Creators and Spam Detection classes have been moved to an Event
Dispatcher based set up. Documentation on how to use this feature is expected
to be available with the release of v1.0.0

	CommentManager, ThreadManager and VoteManager’s interfaces have changed
slightly, renaming add() methods to save().

2011-08-10

	ORM: Column names like createdAt have been changed to underscore delimited
format created_at. Schema update and cache clearance is required for
migration.

2011-08-08

	Thread property identifier has been renamed to id

	ORM: Comment property ancestors has been marked as not null and should default
to an empty string

2011-07-31

	The supplied Thread classes are now mapped-superclasses, you must extend and
implement an appropriate class from Entity/ or Document/ for your application
and adjust your configuration accordingly.

Step 2a: Setup Doctrine ORM mapping

The ORM implementation does not provide a concrete Comment class for your use,
you must create one. This can be done by extending the abstract entities
provided by the bundle and creating the appropriate mappings.

For example:

<?php
// src/MyProject/MyBundle/Entity/Comment.php

namespace MyProject\MyBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use FOS\CommentBundle\Entity\Comment as BaseComment;

/**
 * @ORM\Entity
 * @ORM\ChangeTrackingPolicy("DEFERRED_EXPLICIT")
 */
class Comment extends BaseComment
{
 /**
 * @ORM\Id
 * @ORM\Column(type="integer")
 * @ORM\GeneratedValue(strategy="AUTO")
 */
 protected $id;

 /**
 * Thread of this comment
 *
 * @var Thread
 * @ORM\ManyToOne(targetEntity="MyProject\MyBundle\Entity\Thread")
 */
 protected $thread;
}

And the Thread:

<?php
// src/MyProject/MyBundle/Entity/Thread.php

namespace MyProject\MyBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use FOS\CommentBundle\Entity\Thread as BaseThread;

/**
 * @ORM\Entity
 * @ORM\ChangeTrackingPolicy("DEFERRED_EXPLICIT")
 */
class Thread extends BaseThread
{
 /**
 * @var string $id
 *
 * @ORM\Id
 * @ORM\Column(type="string")
 */
 protected $id;
}

Configure your application

app/config/config.yml

fos_comment:
 db_driver: orm
 class:
 model:
 comment: MyProject\MyBundle\Entity\Comment
 thread: MyProject\MyBundle\Entity\Thread

assetic:
 bundles: ["FOSCommentBundle"]

Or if you prefer XML:

app/config/config.xml
<fos_comment:config db-driver="orm">
 <fos_comment:class>
 <fos_comment:model
 comment="MyProject\MyBundle\Entity\Comment"
 thread="MyProject\MyBundle\Entity\Thread"
 />
 </fos_comment:class>
</fos_comment:config>

<assetic:config>
 <assetic:bundle name="FOSCommentBundle" />
</assetic:config>

Back to the main step

Step 2: Create your Comment and Thread classes.

Step 3: Import FOSCommentBundle routing

Import the bundle routing:

fos_comment_api:
 type: rest
 resource: "@FOSCommentBundle/Resources/config/routing.yml"
 prefix: /api
 defaults: { _format: html }

Note:

The type: rest part is important.

Note:

The defaults configuration may not be necessary unless you have
changed FOSRestBundle’s default format.

Continue to the next step! (final!)

When you’re done. Continue with the final step: enabling the comments on a page:
Step 4: Enable comments on a page.

 CommentBundle also provides the ability to customize the sorting of the comment tree.
See the configuration example below for how to customise the default sorting, which is descending by date.

To configure ascending sorting by date:

app/config/config.yml
fos_comment:
 service:
 sorting:
 default: date_asc

If you wish to sort comment threads in a custom way which is not provided by FOSCommentBundle you may
do so by creating a custom sorting service by implementing the SortingInterface and declaring it as a service.

For example:

<?php

/**
 * This file is part of the FOSCommentBundle package.
 *
 * (c) FriendsOfSymfony <http://friendsofsymfony.github.com/>
 *
 * This source file is subject to the MIT license that is bundled
 * with this source code in the file LICENSE.
 */

namespace Acme\CommentBundle\Sorting;

use FOS\CommentBundle\Sorting\SortingInterface;

/**
 *
 */
class AcmeOrderSorting implements SortingInterface
{
 /**
 * Takes an array of Tree instances and sorts them.
 *
 * @param array $tree
 * @return Tree
 */
 public function sort(array $tree)
 {
 //Implement sorting strategy
 }

 /**
 * Sorts a flat comment array.
 *
 * @param array $comments
 * @return array
 */
 public function sortFlat(array $comments)
 {
 //Implement sorting strategy
 }
}

Then declare the sorter as a service and configure CommentBundle to use it

services:
 acme_comment.sorter.my_sort:
 class: Acme\CommentBundle\Sorting\AcmeOrderSorting
 tags:
 - { name: fos_comment.sorter, alias: my_sort }

Step 2: Create your Comment and Thread classes

The FOSCommentBundle supports both Doctrine ODM (mongodb) and Doctrine ORM by
default. However, you must provide a concrete Comment and Thread class. Follow
the appropriate instructions to set up the classes:

	Doctrine ORM

	Doctrine ODM (mongodb)

Continue to the next step!

When you’re done. Continue with importing the routing:
Step 3: Importing FOSCommentBundle routing.

Step 9b: Using the Sundown PECL extension

The markup system in FOSCommentBundle is flexible and allows you to use any
syntax language that a parser exists for. PECL has an extension for markdown
parsing called Sundown, which is faster than pure PHP implementations of a
markdown parser.

First, you will need to use PECL to install Sundown. pecl install sundown.

You will want to create the service below in one of your application bundles.

<?php
// src/Application/CommentBundle/Markup/Sundown.php

namespace Application\CommentBundle\Markup;

use FOS\CommentBundle\Markup\ParserInterface;
use Sundown\Markdown;

class Sundown implements ParserInterface
{
 private $parser;

 protected function getParser()
 {
 if (null === $this->parser) {
 $this->parser = new Markdown(
 new \Sundown\Render\HTML(array('filter_html' => true)),
 array('autolink' => true)
);
 }

 return $this->parser;
 }

 public function parse($raw)
 {
 return $this->getParser()->render($raw);
 }
}

And the service definition to enable this parser bridge

app/config/config.yml

services:
 # ...
 markup.sundown_markdown:
 class: Application\CommentBundle\Markup\Sundown
 # ...

fos_comment:
 # ...
 service:
 markup: markup.sundown_markdown
 # ...

That is it!

Return to the index.

Step 12c: Integration with FOSUserBundle

By default, votes are made anonymously.
FOSUserBundle [http://github.com/FriendsOfSymfony/FOSUserBundle]
authentication can be used to sign the votes.

A) Setup FOSUserBundle

First you have to setup FOSUserBundle [https://github.com/FriendsOfSymfony/FOSUserBundle]. Check the instructions [https://github.com/FriendsOfSymfony/FOSUserBundle/blob/master/Resources/doc/index.md].

B) Extend the Vote class

In order to add an author to a vote, the Vote class should implement the
SignedVoteInterface and add a field to your mapping.

For example in the ORM:

<?php
// src/MyProject/MyBundle/Entity/Vote.php

namespace MyProject\MyBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use FOS\CommentBundle\Entity\Vote as BaseVote;
use FOS\CommentBundle\Model\SignedVoteInterface;
use Symfony\Component\Security\Core\User\UserInterface;

/**
 * @ORM\Entity
 */
class Vote extends BaseVote implements SignedVoteInterface
{
 // .. fields

 /**
 * Author of the vote
 *
 * @ORM\ManyToOne(targetEntity="MyProject\MyBundle\Entity\User")
 * @var User
 */
 protected $voter;

 /**
 * Sets the owner of the vote
 *
 * @param UserInterface $voter
 */
 public function setVoter(UserInterface $voter)
 {
 $this->voter = $voter;
 }

 /**
 * Gets the owner of the vote
 *
 * @return UserInterface
 */
 public function getVoter()
 {
 return $this->voter;
 }
}

That is it!

Return to the index.

Step 12: Enable voting

Setup Classes

The FOSCommentBundle supports both Doctrine ODM (mongodb) and Doctrine ORM by
default. However, you must provide a concrete Vote class. Follow
the appropriate instructions to set up the classes:

	Doctrine ORM

	Doctrine ODM (mongodb)

Integration with fosuserbundle

	Integration with FOSUserBundle

That is it!

Return to the index.

Step 10: Other ways of including comments in a page

The default implementation of FOSCommentBundle uses asynchronous javascript
and jQuery (optionally with easyXDM for cross domain requests) to load a comment
thread into a page.

It is possible to include the thread without using javascript to load it, but
needs additional work inside the controller’s action.

At a minimum, you will need to include the following in your action’s PHP code:

public function somethingAction(Request $request)
{
 $id = 'thread_id';
 $thread = $this->container->get('fos_comment.manager.thread')->findThreadById($id);
 if (null === $thread) {
 $thread = $this->container->get('fos_comment.manager.thread')->createThread();
 $thread->setId($id);
 $thread->setPermalink($request->getUri());

 // Add the thread
 $this->container->get('fos_comment.manager.thread')->saveThread($thread);
 }

 $comments = $this->container->get('fos_comment.manager.comment')->findCommentTreeByThread($thread);

 return $this->render('AcmeDemoBundle:Controller:something.html.twig', array(
 'comments' => $comments,
 'thread' => $thread,
));
}

Once you’ve included this code in your action, some code must be included in your
template:

{% block body %}
{# ... #}
<div id="fos_comment_thread" data-thread="{{ thread.id }}">

{% include 'FOSCommentBundle:Thread:comments.html.twig' with {
 'comments': comments,
 'thread': thread
} %}

</div>
{# ... #}
{% endblock body %}

{% block javascript %}
{# jQuery must be available in the page by this time, and make sure javascript block is after
 <div id="fos_comment_thread"> in the DOM Tree, for example right before </body> tag
#}
{% javascripts '@FOSCommentBundle/Resources/public/js/comments.js' %}
<script type="text/javascript" src="{{ asset_url }}"></script>
{% endjavascripts %}
{% endblock javascript %}

That is it!

Return to the index.

Step 6: Integration with FOSUserBundle

By default, comments are made anonymously.
FOSUserBundle [http://github.com/FriendsOfSymfony/FOSUserBundle]
authentication can be used to sign the comments.

A) Setup FOSUserBundle

First you have to setup FOSUserBundle [https://github.com/FriendsOfSymfony/FOSUserBundle]. Check the instructions [https://github.com/FriendsOfSymfony/FOSUserBundle/blob/master/Resources/doc/index.md].

B) Extend the Comment class

In order to add an author to a comment, the Comment class should implement the
SignedCommentInterface and add a field to your mapping.

For example in the ORM:

<?php
// src/MyProject/MyBundle/Entity/Comment.php

namespace MyProject\MyBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use FOS\CommentBundle\Entity\Comment as BaseComment;
use FOS\CommentBundle\Model\SignedCommentInterface;
use Symfony\Component\Security\Core\User\UserInterface;

/**
 * @ORM\Entity
 */
class Comment extends BaseComment implements SignedCommentInterface
{
 // .. fields

 /**
 * Author of the comment
 *
 * @ORM\ManyToOne(targetEntity="MyProject\MyBundle\Entity\User")
 * @var User
 */
 protected $author;

 public function setAuthor(UserInterface $author)
 {
 $this->author = $author;
 }

 public function getAuthor()
 {
 return $this->author;
 }

 public function getAuthorName()
 {
 if (null === $this->getAuthor()) {
 return 'Anonymous';
 }

 return $this->getAuthor()->getUsername();
 }
}

That is it!

Return to the index.

Step 1: Setting up the bundle

A) Download and install FOSCommentBundle

To install FOSCommentBundle run the following command

$ php composer.phar require friendsofsymfony/comment-bundle

B) Enable the bundle

Enable the required bundles in the kernel:

<?php
// app/AppKernel.php

public function registerBundles()
{
 $bundles = array(
 // ...
 new FOS\RestBundle\FOSRestBundle(),
 new FOS\CommentBundle\FOSCommentBundle(),
 new JMS\SerializerBundle\JMSSerializerBundle($this),
);
}

C) Enable Http Method Override

Enable HTTP Method override as described here [http://symfony.com/doc/master/cookbook/routing/method_parameters.html#faking-the-method-with-method]

As of symfony 2.3, you just have to modify your config.yml :

app/config/config.yml

framework:
 http_method_override: true

D) Enable translations

If you wish to use default texts provided in this bundle, you have to make
sure you have translator enabled in your config.

app/config/config.yml

framework:
 translator: ~

For more information about translations, check Symfony documentation [http://symfony.com/doc/current/book/translation.html].

Continue to the next step!

When you’re done. Continue by creating the appropriate Comment and Thread classes:
Step 2: Create your Comment and Thread classes.

Step 9: Using a markup parser

FOSComment bundle allows a developer to implement RawCommentInterface, which
will tell the bundle that your comments are to be parsed for a markup language.

You will also need to configure a rawBody field in your database to store the parsed comments.

use FOS\CommentBundle\Model\RawCommentInterface;

class Comment extends BaseComment implements RawCommentInterface
{
 /**
 * @ORM\Column(name="rawBody", type="text", nullable=true)
 * @var string
 */
 protected $rawBody;

 ... also add getter and setter as defined in the RawCommentInterface ...
}

When a comment is added, it is parsed and setRawBody() is called with the raw version
of the comment which is then stored in the database and shown when the comment is later rendered.

Any markup language is supported, all you need is a bridging class that
implements Markup\ParserInterface and returns the parsed result of a comment
in raw html to be displayed on the page.

To set up your own custom markup parser, you are required to define a service
that implements the above interface, and to tell FOSCommentBundle about it,
adjust the configuration accordingly.

app/config/config.yml

fos_comment:
 service:
 markup: your_markup_service

	Allow your users to post safe HTML with ExerciseHtmlPurifierBundle

	Enable the sundown pecl extension to parse comments for markdown

	Implement a BBCode parser to let your users post comments with BBCode

	Implement the PHP Markdown extra parser

That is it!

Return to the index.

Step 15 : Create a listener for comment events

FOSCommentBundle fires events inside Symfony. It’s very handy to add custom
tasks at a precise time, without modifying the controller.

Events

All the events and their description are listed in the Events [https://github.com/FriendsOfSymfony/FOSCommentBundle/blob/master/Events.php]
file.

	COMMENT_PRE_PERSIST

	COMMENT_POST_PERSIST

	COMMENT_CREATE

	THREAD_PRE_PERSIST

	THREAD_POST_PERSIST

	THREAD_CREATE

	VOTE_PRE_PERSIST

	VOTE_POST_PERSIST

	VOTE_CREATE

Handle an event

You have to create a listener to handle an event.

For example :

// src/Application/CommentBundle/EventListener/MailNotificationListener.php

<?php

namespace Application\CommentBundle\EventListener;

use FOS\CommentBundle\Events;
use FOS\CommentBundle\Event\CommentEvent;
use Symfony\Component\EventDispatcher\EventSubscriberInterface;

/**
 * Listener responsible to send email notifications when a comment is persisted
 */
class MailNotificationListener implements EventSubscriberInterface
{
 /**
 * @var Swift_Mailer
 */
 private $mailer;

 /**
 * Constructor.
 *
 * @param Swift_Mailer $mailer
 */
 public function __construct(\Swift_Mailer $mailer)
 {
 $this->mailer = $mailer;
 }

 /**
 * {@inheritDoc}
 */
 public static function getSubscribedEvents()
 {
 return array(
 Events::COMMENT_POST_PERSIST => 'onCommentPostPersistTest',
);
 }

 public function onCommentPostPersist(CommentEvent $event)
 {
 $comment = $event->getComment();

 $message = \Swift_Message::newInstance()
 ->setSubject('New comment of ' . $comment->getAuthor())
 ->setFrom('root@example.com')
 ->setTo('john@doe.com')
 ->setBody(
 $comment->getAuthor() . ' has written ' . $comment->getBody()
);

 $this->mailer->send($message);
 }
}

Now you need to register you Listener in Service.xml file

<service id="application_comment.listener.comment" class="Application\CommentBundle\EventListener\MailNotificationListener">
 <argument type="service" id="mailer" />
 <tag name="kernel.event_listener" event="fos_comment.comment.post_persist" method="onCommentPostPersist" />
</service>

This is where you indicate which Event you’re listening to, and which method is
needed to be called when the Event is fired.

That is it!

Return to the index.

Step 8: Adding ACL security

Note:

This bundle ships with support different security setups. You can also have a look at Adding role based ACL security.

To use the built in Acl system, it must first be initialised with the Symfony2 console:

$ app/console init:acl

Additionally, your configuration needs to be modified to add the right managers:

app/config/config.yml

fos_comment:
 acl: true
 service:
 manager:
 thread: fos_comment.manager.thread.acl
 comment: fos_comment.manager.comment.acl
 vote: fos_comment.manager.vote.acl

Note:

Note: you must enable the Security Acl component::

app/config/security.yml
security:
 # ...
 acl:
 connection: default

Finally, you must populate the Acl system with entries that may not be there yet
by running:

$ app/console fos:comment:installAces

This will make sure that the Acl entries in the database are correct. This command
must be run whenever any configuration for security changes in FOSCommentBundle,
including enabling the security features or changing the FQCN of your extended
FOSCommentBundle objects.

That is it!

Return to the index.

Step 13: Hooking into the JS code

The FOSCommentBundle Js code fires events on the thread container object.
These events are triggered, for example, when users cancel a comment or reply to a comment.

fos_comment_before_load_thread(identifier)

Triggered before getting the comments of a thread and placing them in the thread holder.

	identifier: unique identifier url for the thread comments

fos_comment_load_thread(identifier)

Triggered after placing retrieved comments in the thread holder.

	identifier: unique identifier url for the thread comments

fos_comment_new_comment(data)

Triggered if the request about a new comment submission succeeds.

	data: data sent to the server with the request.

fos_comment_submitted_form(statusCode)

Triggered when the request about a new comment submission is completed.

	statusCode: status of the server response

fos_comment_submitting_form()

Triggered before posting the new comment form.

Preventing the default action will cancel the submission of the comment.

fos_comment_show_form(data)

Triggered when the reply form is inserted into the DOM tree.

	data: the reply form content

fos_comment_cancel_form()

Triggered when the comment reply is closed.

Preventing the default action will cancel closing the form.

fos_comment_edit_comment(data)

Triggered if the request about editing a comment succeeds.

	data: data sent to the server with the request.

fos_comment_vote_comment(data)

Triggered when the the request about voting a comment succeeds.

	data: data sent to the server with the request.

fos_comment_add_comment(commentHtml)

Triggered when the comment is inserted into the DOM tree.

	commentHtml: jQuery object to insert into the DOM tree.

fos_comment_removing_comment()

Triggered before a comment delete action.

Preventing the default action will cancel the removal.

fos_comment_show_edit_form(data)

Triggered when the edit form is inserted into the DOM tree.

	data: the edit form content

Example:

$(document)
 .on('fos_comment_show_form', '.fos_comment_comment_reply_show_form', function (event, data) {
 // do stuffs
 });

That is it!

Return to the index.

Step 11: Running the test suite

FOSCommentBundle comes with both unit and functional tests written using PHPUnit.

When contributing to FOSCommentBundle, please provide test coverage for your
change and make sure the existing test suite passes before submitting a pull
request.

Unit and Functional Tests

Unit and functional tests both use PHPUnit which has a few requirements to run:

	vendors set up by Composer [http://getcomposer.org]
	php composer.phar install --dev

	A PHPUnit [http://www.phpunit.de/manual/current/en/index.html] installation

Once these dependencies are installed, run the unit test suite by running phpunit
in the root bundle directory.

PHPUnit will use phpunit.xml.dist provided by FOSCommentBundle. You can
customise the test run by copying phpunit.xml.dist to phpunit.xml and making
your modifications.

Travis CI

FOSCommentBundle uses Travis-CI and provides set up in the .travis.yml file. You
can enable Travis CI on your fork to get build notifications on any branch you
create for a pull request.

That is it!

Return to the index.

Getting Started With FOSCommentBundle

Installation

Installation is a quick (I promise!) 4 step process:

	Setting up the bundle

	Create your Comment and Thread classes

	Importing FOSCommentBundle routing

	Enable comments on a page

Optional next steps

The following steps are optional and the order doesn’t matter:

	Style it

	Integration with FOSUserBundle

	Adding role based ACL security

	Adding Symfony2’s built in ACL security

	Setting up a parser to allow marked up comments

	Other ways of adding comments to a page

	Running the test suite

	Enable voting

	Hooking into the JS code

	Customizing tree sorting

	Handling Events

Any problem? Check our FAQ.

TODO:

	Spam detection

	Comment tree sorting

Step 7: Adding role based ACL security

Note:

This bundle ships with support different security setups. You can also have a look at Adding Symfony2’s built in ACL security.

CommentBundle also provides the ability to configure permissions based on the roles
a specific user has. See the configuration example below for how to customise the
default roles used for permissions.

To configure Role based security override the Acl services:

app/config/config.yml

fos_comment:
 acl: true
 service:
 acl:
 thread: fos_comment.acl.thread.roles
 comment: fos_comment.acl.comment.roles
 vote: fos_comment.acl.vote.roles
 manager:
 thread: fos_comment.manager.thread.acl
 comment: fos_comment.manager.comment.acl
 vote: fos_comment.manager.vote.acl

To change the roles required for specific actions, modify the acl_roles configuration
key:

app/config/config.yml

fos_comment:
 acl_roles:
 comment:
 create: IS_AUTHENTICATED_ANONYMOUSLY
 view: IS_AUTHENTICATED_ANONYMOUSLY
 edit: ROLE_ADMIN
 delete: ROLE_ADMIN
 thread:
 create: IS_AUTHENTICATED_ANONYMOUSLY
 view: IS_AUTHENTICATED_ANONYMOUSLY
 edit: ROLE_ADMIN
 delete: ROLE_ADMIN
 vote:
 create: IS_AUTHENTICATED_ANONYMOUSLY
 view: IS_AUTHENTICATED_ANONYMOUSLY
 edit: ROLE_ADMIN
 delete: ROLE_ADMIN

That is it!

Return to the index.

Step 9d: Using the PHP Markdown Extra

The markup system in FOSCommentBundle is flexible and allows you to use any
syntax language that a parser exists for.
PHP Markdown Extra [https://michelf.ca/projects/php-markdown/extra/] is an
extension to PHP Markdown implementing some features currently not available
with the plain Markdown syntax.

First, to install php-markdown run this command

 php composer.phar require michelf/php-markdown

You will want to create the service below in one of your application bundles.

<?php
// src/Application/CommentBundle/Markup

namespace Application\CommentBundle\Markup;

use FOS\CommentBundle\Markup\ParserInterface;
use \Michelf\MarkdownExtra;

use Symfony\Component\DependencyInjection\ContainerInterface;

class MarkdownExtraParser implements ParserInterface
{
 private $parser;

 private $purifer;

 /**
 * Constructor.
 *
 * @param \HTMLPurifier $purifier
 */
 public function __construct(\HTMLPurifier $purifier)
 {
 $this->purifier = $purifier;
 }

 protected function getParser()
 {
 if (null === $this->parser) {
 $this->parser = new MarkdownExtra;
 }

 return $this->parser;
 }

 public function parse($raw)
 {
 // to avoid xss we must filter input
 $textPurify = $this->purifier->purify($raw);

 return $this->getParser()->defaultTransform($textPurify);
 }
}

And the service definition to enable this parser bridge

app/config/config.yml

services:
 # ...
 markup.markdown_extra:
 class: Application\CommentBundle\Markup\MarkdownExtraParser
 arguments: ["@exercise_html_purifier.default"]
 # ...

fos_comment:
 # ...
 service:
 markup: markup.markdown_extra
 # ...

That is it!

Return to the index.

Step 12b: Setup MongoDB mapping

The MongoDB implementation does not provide a concrete Vote class for your use,
you must create one:

<?php
// src/MyProject/MyBundle/Document/Vote.php

namespace MyProject\MyBundle\Document;

use Doctrine\ODM\MongoDB\Mapping\Annotations as MongoDB;
use FOS\CommentBundle\Document\Vote as BaseVote;

/**
 * @MongoDB\Document
 * @MongoDB\ChangeTrackingPolicy("DEFERRED_EXPLICIT")
 */
class Vote extends BaseVote
{
 /**
 * @MongoDB\Id
 */
 protected $id;

 /**
 * Comment of this vote
 *
 * @var Comment
 * @MongoDB\ReferenceOne(targetDocument="MyProject\MyBundle\Document\Comment")
 */
 protected $comment;
}

And you should implement VotableCommentInterface in your Comment class and add a field to your mapping:

<?php
// src/MyProject/MyBundle/Document/Comment.php

namespace MyProject\MyBundle\Document;

use Doctrine\ODM\MongoDB\Mapping\Annotations as MongoDB;
use FOS\CommentBundle\Document\Comment as BaseComment;
use FOS\CommentBundle\Model\VotableCommentInterface;

/**
 * @MongoDB\Document
 * @MongoDB\ChangeTrackingPolicy("DEFERRED_EXPLICIT")
 */
class Comment extends BaseComment implements VotableCommentInterface
{
 // .. fields

 /**
 * @MongoDB\Int
 * @var int
 */
 protected $score = 0;

 /**
 * Sets the score of the comment.
 *
 * @param integer $score
 */
 public function setScore($score)
 {
 $this->score = $score;
 }

 /**
 * Returns the current score of the comment.
 *
 * @return integer
 */
 public function getScore()
 {
 return $this->score;
 }

 /**
 * Increments the comment score by the provided
 * value.
 *
 * @param integer value
 *
 * @return integer The new comment score
 */
 public function incrementScore($by = 1)
 {
 $this->score += $by;
 }

}

Configure your application

In YAML:

app/config/config.yml

fos_comment:
 db_driver: mongodb
 class:
 model:
 vote: MyProject\MyBundle\Document\Vote

Or if you prefer XML:

app/config/config.xml

<fos_comment:config db-driver="mongodb">
 <fos_comment:class>
 <fos_comment:model
 vote="MyProject\MyBundle\Document\Vote"
 />
 </fos_comment:class>
</fos_comment:config>

Back to the main step

Step 12: Enable voting.

Step 12a: Setup Doctrine ORM mapping

The ORM implementation does not provide a concrete Vote class for your use,
you must create one. This can be done by extending the abstract entities
provided by the bundle and creating the appropriate mappings.

For example:

<?php
// src/MyProject/MyBundle/Entity/Vote.php

namespace MyProject\MyBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use FOS\CommentBundle\Entity\Vote as BaseVote;

/**
 * @ORM\Entity
 * @ORM\ChangeTrackingPolicy("DEFERRED_EXPLICIT")
 */
class Vote extends BaseVote
{
 /**
 * @ORM\Id
 * @ORM\Column(type="integer")
 * @ORM\GeneratedValue(strategy="AUTO")
 */
 protected $id;

 /**
 * Comment of this vote
 *
 * @var Comment
 * @ORM\ManyToOne(targetEntity="MyProject\MyBundle\Entity\Comment")
 */
 protected $comment;
}

And you should implement VotableCommentInterface in your Comment class and add a field to your mapping:

<?php
// src/MyProject/MyBundle/Entity/Comment.php

namespace MyProject\MyBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use FOS\CommentBundle\Entity\Comment as BaseComment;
use FOS\CommentBundle\Model\VotableCommentInterface;

/**
 * @ORM\Entity
 */
class Comment extends BaseComment implements VotableCommentInterface
{
 // .. fields

 /**
 * @ORM\Column(type="integer")
 * @var int
 */
 protected $score = 0;

 /**
 * Sets the score of the comment.
 *
 * @param integer $score
 */
 public function setScore($score)
 {
 $this->score = $score;
 }

 /**
 * Returns the current score of the comment.
 *
 * @return integer
 */
 public function getScore()
 {
 return $this->score;
 }

 /**
 * Increments the comment score by the provided
 * value.
 *
 * @param integer value
 *
 * @return integer The new comment score
 */
 public function incrementScore($by = 1)
 {
 $this->score += $by;
 }

}

Configure your application

app/config/config.yml

fos_comment:
 db_driver: orm
 class:
 model:
 vote: MyProject\MyBundle\Entity\Vote

Or if you prefer XML:

app/config/config.xml

<fos_comment:config db-driver="orm">
 <fos_comment:class>
 <fos_comment:model
 vote="MyProject\MyBundle\Entity\Vote"
 />
 </fos_comment:class>
</fos_comment:config>

Back to the main step

Step 12: Enable voting.

Step 9c: Implementing a BBCode parser

There are multiple BBCode parsers available for PHP, but are generally considered
slow when implemented in pure PHP.

An example BBCode bridge is provided that uses StringParser_BBCode, available from
GitHub [https://github.com/merk/StringParser_BBCode] which is a git mirror of the library
written by Christian Seiler located here [http://christian-seiler.de/projekte/php/bbcode/index_en.html].

For details on the configuration, look at this gist [https://gist.github.com/1948617]. It requires
ExerciseHTMLPurifier bundle being installed but does not require the HTMLPurifier bridge to be
defined.

That is it!

Return to the index.

Step 5: Style it

This bundle supplies some basic CSS markup that will make it usable. It’s
included in the Resources/assets/css directory.

To use the basic CSS in your templates with Assetic, place the following in your base template::

<!-- CSS -->
{% stylesheets '@FOSCommentBundle/Resources/public/css/comments.css' %}
<link rel="stylesheet" href="{{ asset_url }}" type="text/css" />
{% endstylesheets %}

That is it!

Return to the index.

Step 2b: Setup MongoDB mapping

The MongoDB implementation does not provide a concrete Comment class for your use,
you must create one:

<?php
// src/MyProject/MyBundle/Document/Comment.php

namespace MyProject\MyBundle\Document;

use Doctrine\ODM\MongoDB\Mapping\Annotations as MongoDB;
use FOS\CommentBundle\Document\Comment as BaseComment;

/**
 * @MongoDB\Document
 * @MongoDB\ChangeTrackingPolicy("DEFERRED_EXPLICIT")
 */
class Comment extends BaseComment
{
 /**
 * @MongoDB\Id
 */
 protected $id;

 /**
 * Thread of this comment
 *
 * @var Thread
 * @MongoDB\ReferenceOne(targetDocument="MyProject\MyBundle\Document\Thread")
 */
 protected $thread;
}

Additionally, create the Thread class:

<?php
// src/MyProject/MyBundle/Document/Thread.php

namespace MyProject\MyBundle\Document;

use Doctrine\ODM\MongoDB\Mapping\Annotations as MongoDB;
use FOS\CommentBundle\Document\Thread as BaseThread;

/**
 * @MongoDB\Document
 * @MongoDB\ChangeTrackingPolicy("DEFERRED_EXPLICIT")
 */
class Thread extends BaseThread
{

}

Configure your application

In YAML:

app/config/config.yml

fos_comment:
 db_driver: mongodb
 class:
 model:
 comment: MyProject\MyBundle\Document\Comment
 thread: MyProject\MyBundle\Document\Thread

assetic:
 bundles: ["FOSCommentBundle"]

Or if you prefer XML:

app/config/config.xml

<fos_comment:config db-driver="mongodb">
 <fos_comment:class>
 <fos_comment:model
 comment="MyProject\MyBundle\Document\Comment"
 thread="MyProject\MyBundle\Document\Thread"
 />
 </fos_comment:class>
</fos_comment:config>

<assetic:config>
 <assetic:bundle name="FOSCommentBundle" />
</assetic:config>

Back to the main step

Step 2: Create your Comment and Thread classes.

Step 4: Enable comments on a page

The recommended way to include comments on a page is using the reference
javascript provided. The javascript will asynchronously load the comments after
the page load.

Note:
The implementation javascript provided with FOSCommentBundle relies on jQuery 3.x
You will need to install this separately and make sure that it is available on the
page you want to enable comments on.

You are welcome to rewrite the reference implementation using another javascript
framework.

And the following code at a desired place in the template to load the comments:

{% include 'FOSCommentBundle:Thread:async.html.twig' with {'id': 'foo'} %}

That’s the basic setup! For additional information and configuration check the ... section and the cookbook.

Any problem? Check our FAQ.

Step 9a: Using ExerciseHTMLPurifierBundle

FOSCommentBundle allows you to use ExerciseHTMLPurifierBundle [https://github.com/Exercise/HTMLPurifierBundle]
to sanitise HTML entered into comments.

** Note: **

Letting users post HTML directly without appropriate safety measures can lead
to XSS attacks. Be careful with your HTMLPurifier configuration!

FOSCommentBundle does not automatically define the parsing bridge service for
HTMLPurifier. You will need to do this in your application configuration.

Additionally, you are required to tell FOSCommentBundle about this markup class
so that it knows to use it. Both requirements are listed in the code block below

app/config/config.yml

services:
 # ...
 markup.exercise_html_purifier:
 class: FOS\CommentBundle\Markup\HtmlPurifier
 arguments: [@exercise_html_purifier.default]
 # ...

fos_comment:
 # ...
 service:
 markup: markup.exercise_html_purifier
 # ...

You are able to define different configurations for HTMLPurifierBundle, just change
the argument given to the parser bridge to reflect the new HTMLPurifier configuration
you have created. More information on this can be found at ExerciseHTMLPurifierBundle’s documentation [https://github.com/Exercise/HTMLPurifierBundle]

That is it!

Return to the index.

Frequently Asked Questions

After including the async template I can’t see anything new on my page. Do I need to follow some other steps?

No, there is no additional steps required for a basic configuration. Please check the following:

	Check the HTML output of your page and ensure there is some javascript code included.

	Ensure there are no javascript errors on your page

	Check the HTTP requests. Should have the following:

	An initial request to your page

	A request to the jQuery library

	A request to a javascript file. Something like /web/js/35a8e64.js

	A request to the FOSCommentBundle’s API. Something like /web/app.php/api/threads/test

How to solve the error “Fatal error: Maximum function nesting level of ‘100’ reached”?

This error only occurs when xdebug is installed and is common with the default maximum of 100 (without xdebug, there is no cap).

xdebug.max_nesting_level = 200

in your php.ini will fix it up

 _static/minus.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/down-pressed.png

_static/comment.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/plus.png

