

Formal Documentation

	Version

	0.6

	Release

	0.6.5

	Date

	Sep 01, 2019

About

	About: Formal

User’s Manual

	Formal User’s Manual

Developer Documentation

	How to help the project?

	Developer Guidelines

	Recent Changes

	Road Map

	Contributors

	Supporters

Indices and tables

	Index

	Module Index

	Search Page

	Glossary

	Recent Changes

About: Formal

Formal User’s Manual

	Welcome to the Formal Users Manual!

	This part of the documentation explains how to work with Formal and use the core modules.

Detailed Feature Overview

How to help the project?

Glad to see you’re interested in helping out the project!

Generally, you can ping riot if you want to help out and don’t exactly know where to start.

Here, we list a few possible opportunities where you can help us and become part of the driving community:

Communication

People need to be more aware of this project as it may be of great value to them.
If you’re interested in spreading the word and getting people involved, you’re very welcome to do so.
Again, please ping riot to get crucial info on how to do so.

Testing

There are various degrees to which you can test the project:

	Check the installation processes if they actually work on your platform and everything installs smoothly

	Test-drive your installation

	Build and extend parts of the automatic testing infrastructure

	Optimize and extend the continuous integration infrastructure

Documentation

A lot of documentation is still missing. If you’re interested in writing documentation, you should be familiar
with the two core tools we use for generating our documentation:

	reStructured Text formatting [http://www.sphinx-doc.org/en/stable/rest.html]

	Sphinx [http://www.sphinx-doc.org/en/stable/index.html]

We still need a lot of module, core framework and source code documentation, so there’s ample opportunities in
this field.

Translations

Most of (if not all) parts of the project can be translated and are waiting for your help.
You can use Transifex [https://www.transifex.com/hackerfleet-community/formal/] to translate all the strings
we have or work with your favourite PO Editor. Have a look at Translating Formal for more details.

Developer Guidelines

This is the rather dry material for new software developers:

	Development Introduction
	Communication

	Standards

	Tools

	Contributing to Formal
	Submitting Bug Reports

	Writing new tests

	Adding New Features

	Setting up a Formal Development Environment
	Getting Started

	Setup

	Development Processes
	Software Development Life Cycle (SDLC)

	Bug Reports

	Feature Requests

	Writing new Code

	Running the Tests

	Development Standards
	Cyclomatic Complexity

	Coding Style

	Revision History

	Unit Tests

	Translating Formal

Development Introduction

Here’s how we do things in Formal…

If you’re looking for instructions on how to set up a development environment, please check out the workflow
documentation.

Communication

	`#hackerfleet IRC Channel`_ on the FreeNode IRC Network [http://freenode.net]

	Issue Tracker [https://github.com/isomeric/formal/issues] located at https://github.com/isomeric/formal/issues

Note

If you are familiar with IRC [http://en.wikipedia.org/wiki/Internet_Relay_Chat]
and use your own IRC Client then connect to the FreeNode Network and /join #hackerfleet.

Standards

We use the following coding standards:

	PEP-008 [http://www.python.org/dev/peps/pep-0008/]

We also lint our codebase with the following tools:

	pyflakes [https://pypi.python.org/pypi/pyflakes]

	pep8 [https://pypi.python.org/pypi/pep8]

	mccabe [https://pypi.python.org/pypi/mccabe/0.2.1]

Please ensure your Development IDE or Editor has the above
linters and checkers in place and enabled.

Alternatively you can use the following command line tool:

	flake8 [https://pypi.python.org/pypi/flake8]

Tools

We use the following tools to develop Formal and share code:

	Code Sharing:
Git [https://git-scm.com/]

	Code Hosting and Bug Reporting:
GitHub [https://github.com/isomeric/formal]

	Issue Tracker:
Issue Tracker [https://github.com/isomeric/formal/issues]

	Documentation Hosting:
Read the Docs [http://formal.readthedocs.org]

	Package Hosting:
Python Package Index (PyPi) [http://pypi.python.org/pypi/formal]

	Continuous Integration:
Travis CI [https://travis-ci.org/isomeric/formal]

	Code Quality:
Landscape [https://landscape.io/github/isomeric/formal/]

	Translations:
Transifex [https://www.transifex.com/hackerfleet-community/formal/]

We strongly suggest familiarizing with all of them, to make sure you understand our CI.

Big thanks to all of these magnificent and free-for-opensource services!

Contributing to Formal

Here’s how you can contribute to Formal

Submitting Bug Reports

We welcome all bug reports. We do however prefer bug reports in a clear
and concise form with repeatable steps. One of the best ways you can report
a bug to us is by writing a unit test (//similar to the ones in our tests//)
so that we can verify the bug, fix it and commit the fix along with the test.

To submit a bug report, please Create an Issue [https://github.com/isomeric/formal/issues/new]

Writing new tests

We’re not perfect, and we’re still writing more tests to ensure quality code.
If you’d like to help, please Fork Formal [https://github.com/isomeric/formal/#fork-destination-box], write more tests that cover more
of our code base and submit a Pull Request [https://github.com/isomeric/formal/compare/]. Many Thanks!

Adding New Features

If you’d like to see a new feature added to Formal, then we’d like to hear
about it~ We would like to see some discussion around any new features as well
as valid use-cases. To start the discussions off, please either:

	Chat with us [http://webchat.freenode.net/?randomnick=1&channels=hackerfleet&uio=d4] on #hackerfleet on the FreeNode IRC Network

or

	Create an Issue [https://github.com/isomeric/formal/issues/new]

Setting up a Formal Development Environment

This is the recommended way to setup a development environment for developing
Formal.

Getting Started

Here is a summary of the steps to your own development environment:

	Fork Formal [https://github.com/isomeric/formal#fork-destination-box]
(if you haven’t done so already)

	Clone your forked repository using Git [https://git-scm.com/]

	Create a virtual environment

	Install formal

	Run tests

And you’re done!

Setup

The setup guide shall aid you in setting up a development environment for all
purposes and facettes of Formal development. It is split up in a few parts
and a common basic installation.

Get the sourcecode

After forking the repository, clone it to your local machine:

git clone git@github.com:yourgithubaccount/formal.git ~/src/formal

Setting up a basic development Instance

First install the management tool:

cd ~/src/formal
python setup.py install

This installs basic dependencies and Formal itself.

Development Processes

We document all our internal development processes here so you know exactly
how we work and what to expect. If you find any issues or problems, please
let us know!

Software Development Life Cycle (SDLC)

We employ the use of the SCRUM Agile Process [http://en.wikipedia.org/wiki/Scrum_(development)]
and use our Issue Tracker [https://github.com/isomeric/formal/issues] to track features, bugs, chores and releases.
If you wish to contribute to Formal, please familiarize yourself with SCRUM
and GitHub’s Issue Tracker [https://github.com].

Bug Reports

	New Bug Reports are submitted via:
https://github.com/isomeric/formal/issues

	Confirmation and Discussion of all New Bug Reports.

	Once confirmed, a new Bug is raised in our Issue Tracker [https://github.com/isomeric/formal/issues]

	An appropriate milestone will be set (depending on current milestone’s schedule and resources)

	A unit test developed that demonstrates the bug’s failure.

	A fix developed that passes the unit test and breaks no others.

	A New Pull Request [https://github.com/isomeric/formal/compare/] created with the fix.

This should contain:
- A new or modified unit test.
- A patch that fixes the bug ensuring all unit tests pass.
- The Change Log [https://github.com/isomeric/formal/tree/master/CHANGES.rst] updated.
- Appropriate documentation updated.

	The Pull Request [https://github.com/isomeric/formal/pulls] is reviewed and approved by at least two other developers.

Feature Requests

	New Feature Requests are submitted via:
https://github.com/isomeric/formal/issues

	Confirmation and Discussion of all New Feature Requests.

	Once confirmed, a new Feature is raised in our Issue Tracker [https://github.com/isomeric/formal/issues]

	An appropriate milestone will be set (depending on current milestone’s schedule and resources)

	A unit test developed that demonstrates the new feature.

	The new feature developed that passes the unit test and breaks no others.

	A New Pull Request [https://github.com/isomeric/formal/compare/] created with the fix.

This must contains:
- A new or modified unit test.
- A patch that implements the new feature ensuring all unit tests pass.
- The Change Log [https://github.com/isomeric/formal/tree/master/CHANGES.rst] updated.
- Appropriate documentation updated.

	The Pull Request [https://github.com/isomeric/formal/pulls] is reviewed and approved by at least two other developers.

Writing new Code

	Submit a New Issue [https://github.com/isomeric/formal/issues/new]

	Write your code.

	Use flake8 [http://pypi.python.org/pypi/flake8] to ensure code quality.

	Run the tests:

tox

	Ensure any new or modified code does not break existing unit tests.

	Update any relevant doc strings or documentation.

	Update the Change Log [https://github.com/isomeric/formal/tree/master/CHANGES.rst] appropriately.

	Submit a New Pull Request [https://github.com/isomeric/formal/compare/].

Running the Tests

To run the tests you will need the following installed:

	tox [http://codespeak.net/tox/] installed as well as

	pytest-cov [http://pypi.python.org/pypi/pytest-cov]

	pytest [http://pytest.org/latest/]

All of these can be installed via pip install -r requirements-dev.txt.

Please also ensure - if you can - that you you have all supported versions of Python
that Formal supports installed in your local environment.

To run the tests:

tox

Development Standards

We aim for the following development standards:

Cyclomatic Complexity

	Code Complexity shall not exceed 10

See: Limiting Cyclomatic Complexity [http://en.wikipedia.org/wiki/Cyclomatic_complexity#Limiting_complexity_during_development]

Coding Style

Note

We do accept “black” formatting.

	Code shall confirm to the PEP8 [http://legacy.python.org/dev/peps/pep-0008/] Style Guide.

	Doc Strings shall confirm to the PEP257 [http://legacy.python.org/dev/peps/pep-0257/] Convention.

Note

Arguments, Keyword Arguments, Return and Exceptions must be
documented with the appropriate Sphinx Python Domain [http://sphinx-doc.org/latest/domains.html#the-python-domain].

Revision History

	Commits shall be small tangible pieces of work.
- Each commit must be concise and manageable.
- Large changes are to be done over smaller commits.

	There shall be no commit squashing.

	Rebase your changes as often as you can.

Unit Tests

	Every new feature and bug fix must be accompanied with a unit test.
(The only exception to this are minor trivial changes).

Translating Formal

To translate Formal, you can use Transifex [https://www.transifex.com/isomeric-community/formal/]
or any PO editor of your choice.

Recent Changes

	Updated by ri0t at 2019-09-01 20:37:04

	Construct short version from tuple by ri0t at 2019-09-01 20:22:17

	Fixed license and version_info string by ri0t at 2019-09-01 20:22:02

	Removed future interpreter by ri0t at 2019-09-01 20:21:43

	Removed 3.3 interpreter by ri0t at 2019-09-01 19:31:35

	Reformatted by ri0t at 2019-09-01 19:25:45

	Minor cleanups and reformatting by ri0t at 2019-09-01 19:25:40

	Added sphinx documentation by ri0t at 2019-09-01 19:25:35

	Added tox configuration by ri0t at 2019-09-01 19:25:15

	Updated travis for newer interpreters and pytest infrastructure by ri0t at 2019-09-01 19:24:46

Road Map

We manage our roadmap via milestones on our github issuetracker [https://github.com/isomeric/formal/milestones].

Contributors

The following users and developers have contributed to Formal:

	Rob Britton (Original author)

	Heiko ‘riot’ Weinen riot@c-base.org (Current maintainer)

	You?

Anyone not listed here, ping us. We appreciate any and all
contributions to Formal and other Hackerfleet components.

Supporters

	Free OSS license of IntelliJ IDEA Ultimate:
Jetbrains [https://jetbrains.com"]

	Repository and issue tracker hosting:
Github [https://github.com"]

	Repository and issue tracker hosting:
GitLab [https://gitLab.com"]

Glossary

 Python Module Index

 d |
 e |
 f |
 m |
 s

 		 	

 		
 d	

 	
 	
 formal.database	

 		 	

 		
 e	

 	
 	
 formal.exceptions	

 		 	

 		
 f	

 	
 	
 formal	

 		 	

 		
 m	

 	
 	
 formal.model_base	

 	
 	
 formal.model_mongodb	

 	
 	
 formal.model_sqlalchemy	

 		 	

 		
 s	

 	
 	
 formal.scm_version	

Index

 _
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | N
 | R
 | S
 | T
 | U
 | V

_

 	
 	__init__() (Model method)

 	(ModelBase method)

B

 	
 	bulk_create() (formal.model_mongodb.Model class method)

 	(formal.model_sqlalchemy.Model class method)

C

 	
 	cast() (Model method)

 	(ModelBase method)

 	clear() (formal.model_sqlalchemy.Model class method)

 	collection() (formal.model_mongodb.Model class method)

 	(formal.model_sqlalchemy.Model class method)

 	
 	collection_name() (formal.model_base.ModelBase class method)

 	(formal.model_sqlalchemy.Model class method)

 	connect() (in module formal.database)

 	connect_sql() (in module formal.database)

 	count() (formal.model_mongodb.Model class method)

 	(formal.model_sqlalchemy.Model class method)

D

 	
 	database_name() (formal.model_base.ModelBase class method)

 	(formal.model_sqlalchemy.Model class method)

 	
 	delete() (Model method), [1]

E

 	
 	extend_with_default() (in module formal.model_base)

F

 	
 	find() (formal.model_mongodb.Model class method)

 	(formal.model_sqlalchemy.Model class method)

 	find_by_id() (formal.model_mongodb.Model class method)

 	(formal.model_sqlalchemy.Model class method)

 	find_latest() (formal.model_mongodb.Model class method)

 	(formal.model_sqlalchemy.Model class method)

 	find_one() (formal.model_mongodb.Model class method)

 	(formal.model_sqlalchemy.Model class method)

 	
 	find_or_create() (formal.model_mongodb.Model class method)

 	(formal.model_sqlalchemy.Model class method)

 	formal (module)

 	formal.database (module)

 	formal.exceptions (module)

 	formal.model_base (module)

 	formal.model_mongodb (module)

 	formal.model_sqlalchemy (module)

 	formal.scm_version (module)

G

 	
 	get() (Model method)

 	(ModelBase method)

 	
 	get_collection() (in module formal.database)

 	get_database() (in module formal.database)

I

 	
 	InvalidReloadException

 	
 	InvalidSchemaException

M

 	
 	make_migration() (formal.model_sqlalchemy.Model class method)

 	migrate() (formal.model_sqlalchemy.Model class method)

 	Model (class in formal.model_mongodb)

 	(class in formal.model_sqlalchemy)

 	
 	model_factory() (in module formal)

 	ModelBase (class in formal.model_base)

N

 	
 	NotConnected

R

 	
 	reload() (Model method), [1]

S

 	
 	save() (Model method), [1]

 	
 	serializablefields() (Model method), [1]

T

 	
 	to_dict() (Model method)

 	(ModelBase method)

U

 	
 	update() (Model method)

 	(ModelBase method)

V

 	
 	validate() (Model method)

 	(ModelBase method)

 	
 	ValidationError

Frequently Asked Questions

General

	… What is Formal?

	Formal is an opensource document to object mapping library

	… What platforms does Formal support?

	We currently test on Debian, various flavours of Python (3.3, 3.4, 3.5, 3.6, 3.7, 3.8, pypy)
It’ll probably run on various other platforms as well. E.g. we’ve made good experiences with Arch Linux.

Got more questions?

	Meet us and chat with us online on the #hackerfleet IRC Channel [http://webchat.freenode.net/?randomnick=1&channels=hackerfleet&uio=d4]

Note

Please be patient when using IRC, responses might take a few hours!

Development README Page

[image: Build Status] [https://travis-ci.org/isomeric/formal]

Formal!

A Python library for object document mapping with MongoDB and SQL
dialects(WiP) using JSON schema.

Description

This is a package for generating classes from a JSON-schema that are
to be

saved in MongoDB or SQL and (un)pickled via Python’s builtin json
module or others like simplejson or ujson.

This extends the JSON schema by supporting extra BSON types:

	ObjectId - use the "object_id" type in your JSON schema to
validate that
a field is a valid ObjectId.

	datetime - use the "date" type in your JSON schema to validate
that a field
is a valid datetime

Usage

	Build your schema

>>> schema = {
 'name': 'Country',
 'id': '#country',
 'properties': {
 'name': {'type': 'string'},
 'abbreviation': {'type': 'string'},
 },
 'additionalProperties': False,
}

	Connect to your database

>>> import formal
>>> formal.connect("test")

	Create a model

>>> Country = formal.model_factory(schema)

	Create an object using your model

>>> sweden = Country({"name": 'Sweden', "abbreviation": 'SE'})
>>> sweden.save()
>>> sweden._id
ObjectId('50b506916ee7d81d42ca2190')

	Let the object validate itself!

>>> sweden = Country.find_one({"name" : "Sweden"})
>>> sweden.name = 5
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "formal/model.py", line 254, in __setattr__
 self.validate_field(attr, self._schema["properties"][attr], value)
 File "formal/model.py", line 189, in validate_field
 self.validate_simple(key, value_schema, value)
 File "formal/model.py", line 236, in validate_simple
 (key, value_type, str(value), type(value)))
formal.exceptions.ValidationError: Field 'name' is of type 'string', received '5' (<type 'int'>)

>>> sweden.overlord = 'Bears'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "formal/model.py", line 257, in __setattr__
 raise ValidationError("Additional property '%s' not allowed!" % attr)
formal.exceptions.ValidationError: Additional property 'overlord' not allowed!

	You can also update objects from dictionaries:

>>> sweden.update({"name": "Sverige"})
>>> sweden.save()

	To get them to a browser or other similar things, serialize them:

>>> sweden.serializablefields()
{'_id': '50b506916ee7d81d42ca2190', 'name': 'Sverige', 'abbreviation': 'SE', 'id': '#country'}

Choosing a collection

By default Formal will use the pluralized version of the model’s name.
If

you want to use something else, put it in the JSON-schema:

{
 "name": "MyModel",
 ...
 "collectionName": "some_collection",
 ...
}

Multiple Databases

To use multiple databases, simply call connect() multiple times:

>>> import formal
>>> formal.connect("test")
>>> formal.connect("other_db")

By default all models will use the first database specified. If you
want to use

a different one, put it in the JSON-schema:

{
 "name": "MyModel",
 ...
 "databaseName": "other_db",
 ...
}

SQL Operation

..is still work in progress.

Roadmap

We have many plans for the future:

	Complete SQL support including:

	JSON document storage

	GeoJSON queries

	Time series support

	Support for consensus algorithms like Paxos or Raft

	Automatic data migration (up and down)

	Improved testing

	multiple interpreters via tox

	complete coverage

	more tests

Ping us, if you’d like to contribute!

History

Formal is a fork of warmongo, originally written by Rob Britton.

Things that have changed:

	jsonschema is now truly used to validate objects (it validates far
more than just basetypes)

	we do ignore mongo’s object_id - not sure if this is a good thing,
but it helps with the schemata

	we require (by spec) an ‘id’ field that lists a uri for the schema

	the resulting field is enforced on instantiated objects, too, so
clients can validate by schema-id

Work in progress:

	Migration of versioned object models

	SQL integration

	Deep dot notation

	Delta operation for concurrent editing and object history

Licence

Apache Version 2.0

Change notice

This file has been changed by the Hackerfleet Community and a change
notice has

been added to all modified files in accordance to the Apache License
2.0

Production Examples

The Isomer framework uses Formal as object document mapping system to
deal with data objects in a developer and

enduser friendly way.

See it in action on http://github.com/isomeric/isomer

The original author uses Warmongo every day at his startup
http://www.sweetiq.com/ to share data

definitions between their Python and Node.js applications. It has been
running in

production for some time now, so it has been reasonably tested for
robustness and performance.

Documentation TODO

Global TODO

	Clean up docstrings

	Shorten Index

	Split up Index?

	Shorten Index title lengths

	Multilang

Local TODO

API Documentation

formal package

Submodules

formal.database module

Changes notice

This file has been changed by the Hackerfleet Community and this notice has
been added in accordance to the Apache License 2.0

Description

Interface to pymongo and sqlalchemy

	
exception NotConnected

	Bases: RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError]

Raised when a query is made without being connected to the database

	
connect(database, username=None, password=None, host='localhost', port=27017)

	Connect to a database.

	
connect_sql(database, database_type='postgresql', username=None, password=None, host='localhost', port=5432)

	Connect an optional SQL database

	
get_collection(collection, database=None)

	Get the collection of a database

	
get_database(database=None)

	Get a database by name, or the default database.

formal.exceptions module

Changes notice

This file has been changed by the Hackerfleet Community and this notice has
been added in accordance to the Apache License 2.0

	
exception InvalidReloadException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Thrown when we attempt to call reload() on a model that is not in the
database.

	
exception InvalidSchemaException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Thrown when we have discovered an invalid schema.

	
exception ValidationError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Thrown when a field does not match the schema.

formal.model_base module

Changes notice

This file has been changed by the Hackerfleet Community and this notice has
been added in accordance to the Apache License 2.0

	
class ModelBase(original_fields=None, from_find=False, *args, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

This class serves as a base class for the main model types in
formal: Model, and TwistedModel.

	
__init__(original_fields=None, from_find=False, *args, **kwargs)

	Creates an instance of the object.

	
cast(fields, schema=None)

	Cast the fields from Mongo into our format - necessary to convert
floats into ints since Javascript doesn’t support ints.

	
classmethod collection_name()

	Get the collection associated with this class.

	
classmethod database_name()

	Get the database associated with this class. Meant to be overridden
in subclasses.

	
get(field, default=None)

	Get a field if it exists, otherwise return the default.

	
to_dict()

	Convert the object to a dict.

	
update(new_fields, update_id=False)

	Updates an objects fields

	
validate()

	Validate schema against a dict obj.

	
extend_with_default(validator_class)

	Extend a validator by adding default functionality

formal.model_mongodb module

Changes notice

This file has been changed by the Hackerfleet Community and this notice has
been added in accordance to the Apache License 2.0

	
class Model(original_fields=None, from_find=False, *args, **kwargs)

	Bases: formal.model_base.ModelBase

The Mongodb object model class

	
classmethod bulk_create(objects, *args, **kwargs)

	Create a number of objects (yay performance).

	
classmethod collection()

	Get the pymongo collection object for this model. Useful for
features not supported by formal like aggregate queries and
map-reduce.

	
classmethod count(object_filter=None)

	Counts the number of items:
- not the same as pymongo’s count, this is the equivalent to:

collection.find(*args, **kwargs).count()

	
delete()

	Removes an object from the database.

	
classmethod find(*args, **kwargs)

	Grabs a set of elements from the DB.
Note: This returns a generator, so you can’t to do an efficient count.
To get a count, use the count() function which accepts the same
arguments as find() with the exception of non-query fields like sort,
limit, skip.

	
classmethod find_by_id(obj_id, **kwargs)

	Finds a single object from this collection.

	
classmethod find_latest(*args, **kwargs)

	Finds the latest one by _id and returns it.

	
classmethod find_one(*args, **kwargs)

	Finds a single object from this collection.

	
classmethod find_or_create(query, *args, **kwargs)

	Retrieve an element from the database. If it doesn’t exist, create
it. Calling this method is equivalent to calling find_one and then
creating an object. Note that this method is not atomic.

	
reload()

	Reload this object’s data from the DB.

	
save(*args, **kwargs)

	Saves an object to the database.

	
serializablefields()

	Return serializable fields of the object

formal.model_sqlalchemy module

SQL Support for Formal

	
class Model(original_fields=None, from_find=False, *args, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The SQL object model class

	
__init__(original_fields=None, from_find=False, *args, **kwargs)

	Creates an instance of the object.

	
classmethod bulk_create(objects, *args, **kwargs)

	Create a number of objects (yay performance).

	
cast(fields, schema=None)

	Cast the fields from Mongo into our format - necessary to convert
floats into ints since Javascript doesn’t support ints.

	
classmethod clear()

	Clear a collection

	
classmethod collection()

	Get the pymongo collection object for this model. Useful for
features not supported by formal like aggregate queries and
map-reduce.

	
classmethod collection_name()

	Get the collection associated with this class.

	
classmethod count(*args, **kwargs)

	Counts the number of items:

	
classmethod database_name()

	Get the database associated with this class. Meant to be overridden
in subclasses.

	
delete()

	Removes an object from the database.

	
classmethod find(*args, **kwargs)

	Grabs a set of elements from the DB.
Note: This returns a generator, so you can’t do an efficient count.
To get a count, use the count() function which accepts the same
arguments as find() with the exception of non-query fields like sort,
limit, skip.

	
classmethod find_by_id(obj_id, **kwargs)

	Finds a single object from this collection.

	
classmethod find_latest(*args, **kwargs)

	Finds the latest one by _id and returns it.

	
classmethod find_one(*args, **kwargs)

	Finds a single object from this collection.

	
classmethod find_or_create(query, *args, **kwargs)

	Retrieve an element from the database. If it doesn’t exist, create
it. Calling this method is equivalent to calling find_one and then
creating an object. Note that this method is not atomic.

	
get(field, default=None)

	Get a field if it exists, otherwise return the default.

	
classmethod make_migration(new_schema)

	Make migrations for a schema

	
classmethod migrate(patchset)

	Migrate an object model with a patchset

	
reload()

	Reload this object’s data from the DB.

	
save(*args, **kwargs)

	Saves an object to the database.

	
serializablefields()

	Return serializable fields of the object

	
to_dict()

	Convert the object to a dict.

	
update(new_fields, update_id=False)

	Update an object’s fields

	
validate()

	Validate schema against a dict obj.

formal.scm_version module

Module contents

Changes notice

This file has been changed by the Hackerfleet Community and this notice has
been added in accordance to the Apache License 2.0

	
model_factory(schema, base_class=<class 'formal.model_mongodb.Model'>)

	Construct a model based on schema that inherits from base_class.

formal

	formal package
	Submodules

	formal.database module
	Changes notice

	Description

	formal.exceptions module
	Changes notice

	formal.model_base module
	Changes notice

	formal.model_mongodb module
	Changes notice

	formal.model_sqlalchemy module

	formal.scm_version module

	Module contents
	Changes notice

Downloading

Latest Stable Release

By design, there is currently no stable release planned.

The latest stable releases (if there should ever be one) could be downloaded from the
Releases [https://github.com/isomeric/formal/releases] page
(specifically the Tags tab).

Latest Development Source Code

We use Git [https://git-scm.com/] for source control and code sharing.

The latest development branch can be cloned using the following command:

git clone https://github.com/isomeric/formal.git
cd formal

For further instructions on how to use Git, please refer to the
Git Website [https://git-scm.com/].

Getting Started

	Requirements and Dependencies

	Downloading

	Installing

Installing

Formal itself

Here is a summary of the steps to your own development environment:

	Fork Formal [https://github.com/isomeric/formal#fork-destination-box]
(if you haven’t done so already)

	Clone your forked repository using `Git`_

	Create a virtual environment

	Install formal

	Run tests

And you’re done!

Documentation

The documentation is available online on ReadTheDocs.org [https://formal.readthedocs.org].
If you wish to build the included documentation for offline use,
run these commands:

python setup.py build_sphinx

You can also build the PDF file (and various other formats) by using the
Makefile inside the docs directory.

cd docs
make pdf

Just running make without arguments gives you a list of the other available
documentation formats.

Windows & OS X installation notes

These instructions are WiP. The easiest way to get Formal on Win7 or newer
is to install and user Docker or a virtual machine

To install on Windows, you’ll need to install these packages first:

	Python >=3.4 https://www.python.org/downloads/windows/

	MongoDB https://www.mongodb.org/downloads#production

	pymongo

	sqlalchemy

Requirements and Dependencies

Backend

Formal’ backend has a few dependencies:

	Python [https://python.org]: >= 3.4 (or possibly pypy >= 2.0)

	Database: MongoDb [https://mongodb.org/]

Note

We have phased out Python 2.7 support.

The Formal Python package additionally installs a few pure Python libraries:

	PyMongo

	JSONSchema

	DeepDiff

	SqlAlchemy

	Supported Platforms

	Linux

	Supported Python Versions

	3.4, 3.5, 3.6, 3.7

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Formal Documentation

 		
 About: Formal

 		
 Formal User’s Manual

 		
 Detailed Feature Overview

 		
 How to help the project?

 		
 Communication

 		
 Testing

 		
 Documentation

 		
 Translations

 		
 Developer Guidelines

 		
 Development Introduction

 		
 Communication

 		
 Standards

 		
 Tools

 		
 Contributing to Formal

 		
 Submitting Bug Reports

 		
 Writing new tests

 		
 Adding New Features

 		
 Setting up a Formal Development Environment

 		
 Getting Started

 		
 Setup

 		
 Development Processes

 		
 Software Development Life Cycle (SDLC)

 		
 Bug Reports

 		
 Feature Requests

 		
 Writing new Code

 		
 Running the Tests

 		
 Development Standards

 		
 Cyclomatic Complexity

 		
 Coding Style

 		
 Revision History

 		
 Unit Tests

 		
 Translating Formal

 		
 Recent Changes

 		
 Road Map

 		
 Contributors

 		
 Supporters

_static/logo_small.png
p<

FORMAL

_static/minus.png

_static/logo.png
g

FORMAL

_static/logo_docnavbar.png

_static/up-pressed.png

_static/up.png

_static/plus.png

