

Foreshadow: Simple Machine Learning Scaffolding

[image: BuildStatus] [https://dev.azure.com/georgianpartners/foreshadow/_build/latest?definitionId=1&branchName=master] [image: Documentation Status] [https://foreshadow.readthedocs.io/en/latest/?badge=latest] [image: Coverage] [https://dev.azure.com/georgianpartners/foreshadow/_build/latest?definitionId=1&branchName=master] [image: Code Style] [https://github.com/ambv/black] [image: License] [https://github.com/georgianpartners/foreshadow/blob/master/LICENSE]

Foreshadow is an automatic pipeline generation tool that makes creating, iterating,
and evaluating machine learning pipelines a fast and intuitive experience allowing
data scientists to spend more time on data science and less time on code.

Installing Foreshadow

$ pip install foreshadow

Read the documentation to set up the project from source [https://foreshadow.readthedocs.io/en/development/developers.html#setting-up-the-project-from-source].

Getting Started

To get started with foreshadow, install the package using pip install. This will also
install the dependencies. Now create a simple python script that uses all the
defaults with Foreshadow.

First import foreshadow

import foreshadow as fs

Also import sklearn, pandas, and numpy for the demo

import pandas as pd

from sklearn.datasets import boston_housing
from sklearn.model_selection import train_test_split

Now load in the boston housing dataset from sklearn into pandas dataframes. This
is a common dataset for testing machine learning models and comes built in to
scikit-learn.

boston = load_boston()
bostonX_df = pd.DataFrame(boston.data, columns=boston.feature_names)
bostony_df = pd.DataFrame(boston.target, columns=['target'])

Next, exactly as if working with an sklearn estimator, perform a train test
split on the data and pass the train data into the fit function of a new Foreshadow
object

X_train, X_test, y_train, y_test = train_test_split(bostonX_df,
 bostony_df, test_size=0.2)
shadow = fs.Foreshadow()
shadow.fit(X_train, y_train)

Now fs is a fit Foreshadow object for which all feature engineering has been
performed and the estimator has been trained and optimized. It is now possible to
utilize this exactly as a fit sklearn estimator to make predictions.

shadow.score(X_test, y_test)

Great, you now have a working Foreshaow installation! Keep reading to learn how to
export, modify and construct pipelines of your own.

Key Features

	Automatic Feature Engineering

	Automatic Model Selection

	Rapid Pipeline Development / Iteration

	Automatic Parameter Optimization

	Ease of Extensibility

	Scikit-Learn Compatible

Foreshadow supports python 3.6+

Documentation

Read the docs! [https://foreshadow.readthedocs.io/en/development/index.html]

The User Guide

	User Guide
	Getting Started

	Foreshadow

	Preprocessor

	Configuration

	Hyperparameter Tuning

The Developer Guide

	Developers Guide
	Setting up the Project From Source

	Adding Transformers

	Adding Smart Transformers

	Adding Intents

	Future Architecture Roadmap

API

	API Reference
	Foreshadow

	dp

	Intents

	Transformers

	Estimators

	Optimizers

	Utils

	Core

	Project Architecture

Changelog

	Foreshadow 0.2.1 (2019-09-26)
	Features

	Foreshadow 0.2.0 (2019-09-24)
	Features

	Foreshadow 0.1.0 (2019-06-28)
	Features

Indices and tables

	Index

	Module Index

	Search Page

User Guide

Getting Started

To get started with foreshadow, install the package using pip install. This will also
install the dependencies. Now create a simple python script that uses all the
defaults with Foreshadow.

First import foreshadow

import foreshadow as fs

Also import sklearn, pandas, and numpy for the demo

import pandas as pd

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split

Now load in the Boston housing dataset from sklearn into pandas dataframes. This
is a common dataset for testing machine learning models and comes built-in to
scikit-learn.

boston = load_boston()
bostonX_df = pd.DataFrame(boston.data, columns=boston.feature_names)
bostony_df = pd.DataFrame(boston.target, columns=['target'])

Next, exactly as if working with an sklearn estimator, perform a train test
split on the data and pass the train data into the fit function of a new Foreshadow
object

X_train, X_test, y_train, y_test = train_test_split(bostonX_df,
 bostony_df, test_size=0.2)
shadow = fs.Foreshadow()
shadow.fit(X_train, y_train)

Now fs is a fit Foreshadow object for which all feature engineering has been
performed and the estimator has been trained and optimized. It is now possible to
utilize this exactly as a fit sklearn estimator to make predictions.

print(shadow.score(X_test, y_test))

Great, you now have a working Foreshaow installation! Keep reading to learn how to
export, modify and construct pipelines of your own.

Here it is all together.

import foreshadow as fs
import pandas as pd
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor

boston = load_boston()
bostonX_df = pd.DataFrame(boston.data, columns=boston.feature_names)
bostony_df = pd.DataFrame(boston.target, columns=['target'])

X_train, X_test, y_train, y_test = train_test_split(bostonX_df,
 bostony_df, test_size=0.2)
shadow = fs.Foreshadow()
shadow.fit(X_train, y_train)

print(shadow.score(X_test, y_test))

Recommended Workflow

There are many ways to use Foreshadow, but we recommend using this workflow initially as it is the quickest and easiest way to
generate a high-performing model with minimum effort.

First, prep your data into X_train, X_test, y_train and y_test pandas dataframes. For example:

boston = load_boston()
bostonX_df = pd.DataFrame(boston.data, columns=boston.feature_names)
bostony_df = pd.DataFrame(boston.target, columns=['target'])

X_train, X_test, y_train, y_test = train_test_split(bostonX_df,
 bostony_df, test_size=0.2)

Then initialize a default Foreshadow object with a sklearn estimator such as XGBoost. We want this
process to be fast so we can iterate, so for the time being we will override the default TPOT model selection,
ensembling and hyperparameter optimization for regression problems with a simple default XGBoost regressor.

shadow = fs.Foreshadow(estimator=XGBRegressor())

Then fit the train data on that object

shadow.fit(X_train, Y_train)

You now have an initial pipeline. Lets see how it did and serialize it to a JSON file so we can look at it.

Score the pipeline
shadow.score(X_test, y_test)

Serialize the pipeline
x_proc = shadow.X_preparer.serialize()
y_proc = shadow.y_preparer.serialize()

Write the serialized pipelines to file
json.dump(x_proc, open("x_proc.json", "w"), indent=2)
json.dump(y_proc, open("y_proc.json", "w"), indent=2)

Now we have two pipeline configurations, one for our X data and one for our Y data. We also have an initial idea
of how well the initial pipeline performed.

Let’s suppose that you want to experiment with a different scaler. Open the configuration JSON and make this change. (Look to the Configuration section for more details on this)

For example, add the following snippet to the bottom or x_proc.json

"combinations": [
 {
 "columns.CHAS.0": "['NumericIntent', 'CategoricalIntent']"
 }
]

Now let’s re-create the Foreshadow object with your changes.

import json

Load in the configs from file
x_proc = json.load(open("x_proc.json", "r"))
y_proc = json.load(open("y_proc.json", "r"))

Create the preprocessors
x_processor = fs.Preprocessor(from_json=x_proc)
y_processor = fs.Preprocessor(from_json=y_proc)

Create the foreshadow object
shadow = fs.Foreshadow(X_preparer=x_processor, y_preparer=y_processor, estimator=XGBRegressor())

Fit the foreshadow object
shadow.fit(X_train, y_train)

Score the foreshadow object
shadow.score(X_test, y_test)

Now we can see the performance difference as a result of the changes. This process of swapping in and out different scalers is slow and tedious though. Let’s add a combinations section to the configuration file and let an optimizer do the heavy lifting of evaluating the framework.

First, read the Hyperparameter Tuning section about how hyperparameter optimization works in Foreshadow. Then add a combinations section to the exported JSON file(s) you have from the preprocessor. Remember that the more parameters you add, the longer it will take. We recommend focusing on a set of related parameters one by one and optimizing them individually. e.g. Optimize thresholds for Scaling, then thresholds for Encoding, then feature reduction (PCA / LDA) etc.

Once you add a combinations section to figure out the best parameters, create the Foreshadow object again, except this time with an optimizer such as GridSearchCV or RandomSearchCV from sklearn.

Load in the configs from file
x_proc_combo = json.load(open("x_proc_combo.json", "r"))
y_proc_combo = json.load(open("y_proc_combo.json", "r"))

Create the preprocessors
x_processor = Preprocessor(from_json=x_proc_combo)
y_processor = Preprocessor(from_json=y_proc_combo)

Create the foreshadow object
shadow = fs.Foreshadow(X_preparer=x_processor, y_preparer=y_processor, estimator=XGBRegressor(), optimizer=GridSearchCV)

Fit the foreshadow object
shadow.fit(X_train, y_train)

Score the foreshadow object
shadow.score(X_test, y_test)

Extract the optimized pipeline
pipeline = shadow.pipeline

Save it to file
pickle.dump(pipeline, open("final_pipeline.pkl", "wb"))

Export the best pipelines

Serialize the pipeline
x_proc_best = shadow.X_preparer.serialize()
y_proc_best = shadow.y_preparer.serialize()

Write the serialized pipelines to file
json.dump(x_proc_best, open("x_proc_best.json", "w"), indent=2)
json.dump(y_proc_best, open("y_proc_best.json", "w"), indent=2)

Once you have a preprocessor pipeline that you are happy with, you should attempt to optimize the model. The AutoEstimator will be good for this as it will automatically do model selection and hyperparameter optimization. To do this, construct the Foreshadow object in the same way as above, using the optimized JSON configuration, but instead of passing in an sklearn estimator and optimizer, leave those fields as default. This will force Foreshadow to use the defaults which automatically chooses either TPOT (regression) or AutoSklearn (classification) to fit the preprocessed data without any of their in-built feature engineering. When serializing the pipeline, Foreshadow will automatically choose the pipeline with the highest cross-validation score.

This will take a long time to execute… get yourself a cup of coffee or tea, sit back, and relax

Great! Now you have an optimized sklearn pipeline that you can share, load, manipulate, and inspect!

Foreshadow

Foreshadow is the primary object and interface for the Foreshadow framework. By
default, Foreshadow creates a Preprocessor object for both the input
data and the target vector.

It also automatically determines whether the target data
is categorical or numerical and determines whether to use a Classification estimator
or a Regressor. By default Foreshadow will either pick TPOT [https://github.com/EpistasisLab/tpot] for regression or
auto-sklearn [https://github.com/automl/auto-sklearn] for classification.

This pipeline is then fit and exposed via the pipeline object attribute.

Foreshadow can optionally take in a Preprocessor
object for the input data, a Preprocessor object for the target vector, a
sklearn.base.BaseEstimator [https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator] object to fit the preprocessed data, and a sklearn.grid_search.BaseSearchCV
class to optimize the available hyperparameters.

Here is an example of a fully defined Foreshadow object

shadow = fs.Foreshadow(X_preparer=Preprocessor(), y_preparer=Preprocessor(), estimator=AutoEstimator(), optimizer=None)

This code is equivalent to the fs.Foreshadow() definition but explicitly defines each component. In order to disable one or more
of these components simply pass False to the named parameter (Note that the default None automatically initializes the above).

AutoEstimator is automatically defined as the estimator for Foreshadow. This estimator detects the problem type (classification or regression)
and then either uses TPOT or Auto-Sklearn to serve as the estimator. The preprocessing methods are stripped from TPOT and Auto-Sklearn when they are used in this manner as we favor our own
Preprocessor over their methods. As such these two frameworks will only perform model selection and estimator hyperparameter optimization by default.

NOTE: Future work includes implementing TPOT and AutoSklean’s optimizers into this platform such that they can be used for both model selection and optimizing hyperparameters for the feature
engineering aspects. Until then, however, they will only optimize the model as they are blind to the earlier parts of the pipeline.

Foreshadow, acting as an estimator is also capable of being used in a sklearn.pipeline.Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline] object. For example:

pipeline = Pipeline([("estimator", Foreshadow())])
pipeline.fit(X_train, y_train)
pipeline.score(X_test, y_test)

By passing an optimizer into Foreshadow, it will attempt to optimize the pipeline it creates by extracting all the hyperparameters from
the preprocessors and the estimator and passing them into the optimizer object along with the partially fit pipeline. This is a potentially
long-running process and is not reccomended to be used with estimators such as TPOT or AutoSklearn which also do their own optimization.

Preprocessor

The Preprocessor object provides the feature engineering capabilities for the Foreshadow framework. Like
the Foreshadow object, the Preprocessor
is capable of being used as a standalone object to perform feature engineering, or it can be
used in a Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline] as a Transformer to perform preprocessing for an estimator.

In its most basic form, a Preprocessor can be initialized with no parameters as fs.Preprocessor() in which all defaults
will be applied. Ideally, a default preprocessor will be able to produce an acceptable pipeline for feature engineering.

The preprocessor performs the following tasks in order

	Load configuration (if present)

	Iterate columns and match Intents

	Execute single-pipelines on columns in parallel

	Execute multi-pipelines on columns in series

Intents

Preprocessor works by using Intents. These classes describe a type of feature that a
dataset could possibly contain. For example, we have a NumericIntent and a
CategoricalIntent.

Depending on the characterization of the data performed by the
is_intent() class method, each Intent individually determines if it applies to a particular feature
in the dataset. However, it is possible for multiple intents to match to a feature. In order to resolve this,
Preprocessor uses a hierarchical structure defined by the superclass (parent) and children attributes of
and intent. There is also a priority order defined in each intent to break ties at the same level.

This tree-like structure which has GenericIntent as its
root node is used to prioritize Intents. Intents further down the tree more precisely define a feature and intents further to the right hold a higher priority than those to the left, thus the Intent represented by the right-most node of the tree that matches will be selected.

Each Intent contains a multi-pipeline and a single-pipeline. These objects are lists of tuples of the form
[('name', TransformerObject()),...] and are used by Preprocessor to construct sklearn Pipeline objects.

Single Pipeline

The single pipeline defines operations (transformations of data) on a single column of the dataset matched to a specific intent. For example, in the Boston Housing
dataset, the 'CRIM' column could match to the NumericIntent in which the single pipeline
within that Intent would be executed on that feature.

This process is highly parallelized interally.

Multi Pipeline

Intents also contain a multi-pipeline which operates on all columns of data of a given intent simultaneously. For example, in the Boston Housing dataset,
the 'CRIM' feature (per capita crime rate), the 'RM' feature (average rooms per house), and the 'TAX' feature (property tax rate) could be
matched to NumericIntent in which the corresponding multi-pipeline would apply transformers across the columns such as
feature reduction methods like PCA or methods of inference such as Multiple Imputation.

Additionally, while single pipelines are applied on an exclusive basis, multiple pipelines are applied on an inclusive basis. All multiple pipelines in the Intent hierarchy
are executed on matching columns in the order from lowest (most-specific) intent, to the highest (most-general) intent.

NOTE: All transformers within a single or multi pipeline can access the entire current dataframe as it stands via fit_params['full_df'] in fit or fit_transform

Smart Transformers

Smart Transformers are a special subclass of sklearn Transformers derived from the SmartTransformer base class.
These transformers do not perform operations on data themselves but instead return a Transformer object at the time of pipeline execution. This allows pipelines to make logical
decisions about actions to perform on features in real-time.

Smart Transformers make up the essence of single and multi pipelines in Intents as they allow conditional operations to be performed on data depending on any statistical analysis
or hypothesis testing. Smart transformers can be overriden using the override attribute which takes in a string which is capable of being resolved as an internal transformer
in the Foreshadow library, an external transfomer from sklearn or another smart transformer. The attributes of this override can be set via the set_params() methods for which all parameters
other than the override parameter itself will be passed to the override object.

To use a smart transformer outside of the Intent / Foreshadow environment simply use it exactly as a sklearn transformer. When you call fit() or fit_transform() it automatically
resolves which transformer to use by interally calling the _get_transformer() overriden method.

Note

Arguments passed into the constructor of a smart transformer will be passed into the fit function of the transformer it resolves to. This is meant to primarily be used alongside the override argument.

Configuration

The configurability is by far the most powerful aspect of this framework. Through configuration, data scientists can quickly iterate on pipelines generated by Foreshadow and Preprocessor.
Preprocessors take a python dictionary configuration in the from_json named parameter in the constructor. This dictionary can be used to override all decision -making processes used by
Preprocessor.

An example configuration for processing the Boston Housing dataset is below. We will step through this one by one and demonstrate all the capabilities.

{
 "columns": {
 "crim": {
 "intent": "GenericIntent",
 "pipeline": [{
 "transformer": "StandardScaler",
 "name": "Scaler",
 "parameters": {
 "with_mean": false
 }
 }]
 },
 "indus": {
 "intent": "GenericIntent"
 }
 },
 "postprocess": [{
 "name": "pca",
 "columns": ["age"],
 "pipeline": [{
 "transformer": "PCA",
 "name": "PCA",
 "parameters": {
 "n_components": 2
 }
 }]
 }],
 "intents": {
 "NumericIntent": {
 "single": [{
 "transformer": "Imputer",
 "name": "impute",
 "parameters": {
 "strategy": "mean"
 }
 }],
 "multi": []
 }
 }
}

The configuration file is composed of a root dictionary containing three hard-coded keys: columns,
postprocess, and intents. First, we will examine the columns section.

Column Override

"columns": {
 "crim": {
 "intent": "GenericIntent",
 "pipeline": [{
 "transformer": "StandardScaler",
 "name": "Scaler",
 "parameters": {
 "with_mean": false
 }
 }]
 },
 "indus": {
 "intent": "GenericIntent"
 }
}

This section is a dictionary containing two keys, each of which are columns in the Boston Housing set. First we will look at the value
of the "crim" key which is a dict.

{
 "intent": "GenericIntent",
 "pipeline": [{
 "transformer": "StandardScaler",
 "name": "Scaler",
 "parameters": {
 "with_mean": false
 }
 }]
}

Here we can see that this column has been assigned the intent "GenericIntent
and the pipeline [{"transformer": "StandardScaler", "name": "Scaler", "parameters": {"with_mean":false}}]

This means that regardless of how Preprocessor automatically assigns Intents, the intent GenericIntent will always be assigned to the crim column.
It also means that regardless of what intent is assigned to the column (this value is still important for multi-pipelines), the Preprocessor will always
use this hard-coded pipeline to process that column. The column would still be processed by its initially identifited multi-pipeline unless explicitly overridden.

The pipeline itself is defined by the following standard [{"transformer":class, "name":name, "parameters":{param_key: param_value, ...}], ...]
When preprocessor parses this configuration it will create a Pipeline object with the given transformers of the given class, name, and parameters.
For example, the preprocessor above will look something like sklearn.pipeline.Preprocessor([('Scaler', StandardScaler(with_mean=False)))])
Any class implementing the sklearn Transformer standard (including SmartTransformer) can be used here.

That pipeline object will be fit on the column crim and will be used to transform it.

Moving on to the "indus" column defined by the configuration. We can see that it has an intent override but not a pipeline override. This means
that the default single_pipeline for the given intent will be used to process that column. By default the serialized pipeline will have
a list of partially matching intents under the “all_matched_intents” dict key. These can likely be substituted into the Intent name with little or no
compatibility issues.

Intent Override

"intents": {
 "NumericIntent": {
 "single": [{
 "transformer": "Imputer",
 "name": "impute",
 "parameters": {
 "strategy": "mean"
 }
 }],
 "multi": []
 }
}

Next, we will examine the intents section. This section is used to override intents globally, unlike the columns section which overrode intents on a per-column
basis. Any changes to intents defined in this section will apply across the entire Preprocessor pipeline. However, individual pipelines defined in the columns section will override pipelines defined here.

The keys in this section each represent the name of an intent. In this example, NumericIntent is being overridden. The value is a dictionary with the
keys "single" and "multi" respresent the single and multi pipeline overrides. The value of these pipelines is parsed through the same mechanism as the pipelines
in the columns section.

If a pipeline is empty such as the multi pipeline is above, it will be removed from the final pipeline. However, if the multi key is ommitted from the configuration file, then the default
multi pipeline for that intent will be used.

In this case, for all NumericIntent columns, by default, the pipeline Pipeline([('impute', Imputer(strategy=mean))]) will be executed on the column. No multi-pipeline will be executed
on columns of NumericIntent.

Postprocessor Override

{
 "postprocess": [{
 "name": "pca",
 "columns": ["age"],
 "pipeline": [{
 "class": "PCA",
 "name": "PCA",
 "parameters": {
 "n_components": 2
 }
 }]
 }]
}

Finally, in the postprocess section of the configuration, you can manually define pipelines to execute on columns of your choosing. The
content of this section is a list of dictionaries of the form [{"name":name, "columns":[cols, ...], "pipeline":pipeline}, ...]. Each list defines a pipeline that will
execute on certain columns. These processes execute after the intent pipelines!

IMPORTANT There are two ways of selecting columns through the cols list. By default, specifying a column, or a list of columns, will automatically select
the columns in the data frame that are computed columns deriving from that column. For example, in the list above, all columns derived from the age column
will be passed into the PCA transformer and reduced to 2 components. To override this behavior and select columns by their name at the current stage in the process,
prepend a dollar sign to the column name. For example ["$age_scale_0", "$indus_encode_0", "$indus_encode_1"]

Through overriding these various components, any combination of feature engineering can be achieved. To generate this configuration dictionary after fitting a Preprocessor or a
Foreshadow object, run the serialize() method on the Preprocessor object or on Foreshadow.X_preparer or y_preparer. That dictionary can be programmatically modified in python
or can be serialized to JSON where it can be modified by hand. By default the output of serialize() will fix all
feature engineering to be constant. To only enforce sections of the configuration output from serialize() simply copy and paste the relevant sections into a new JSON file.

Hyperparameter Tuning

Foreshadow also supports hyperparameter tuning through two mechanisms. By default, Foreshadow will use AutoEstimator as an estimator
in the pipeline. This estimator will automatically choose either TPOT, for regression problems or AutoSklearn for classification problems. It also strips all feature engineering and preprocessing
from these two frameworks. This, in effect, uses TPOT and AutoSklearn only for model selection and model hyperparameter optimization. These estimators are not passed hyperparameters from the Preprocessor
and thus will not optimize them.

The second method of hyperparameter tuning is to use a vanilla sklearn estimator when declaring foreshadow (such as XGBoost or LogisticRegression) and also pass in a BaseSearchCV
class into the optimizer parameter. This will use the provided optimizer to perform a parameter search on both the preprocessing and the model at the same time. The parameter search space for this configuration is defined
in two locations.

Default Dictionary

The first is in foreshadow/optimizers/param_mapping.py which contains a dictionary like:

config_dict = {
 "StandardScaler.with_std": [True, False]
 "StandardScaler.with_mean": [True, False]
 }

This dictionary contains keys and values of the form ClassName.attribute: iterator(test_values) If any items in the pipeline match the classname.attribute selector then that attribute will be added as a
hyperparameter with the values of the iterator (list, generator, etc.) as the search space.

NOTE: In the future, this dictionary will be able to be passed in to Foreshadow, for now it must be modified manually if changes wish to be made.

JSON Combinations Config

If you wish to manually define spaces to search for the Preprocessor those can be defined in the configuration dictionary of the preprocessor in the combinations section.
This is what a combinations section looks like.

{
 "columns": {
 "crim": {
 "intent": "GenericIntent",
 "pipeline": [{
 "transformer": "StandardScaler",
 "name": "Scaler",
 "parameters": {
 "with_mean": false
 }
 }]
 },
 "indus": {
 "intent": "GenericIntent"
 }
 },

 "postprocess": [],

 "intents": {},

 "combinations": [{
 "columns.crim.pipeline.0.parameters.with_mean": "[True, False]",
 "columns.crim.pipeline.0.name": "['Scaler', 'SuperScaler']"
 }]

}

This section of the configuration file is a list of dictionaries. Each dictionary represents a single parameter space definition that should be searched. Within these dictionaries
each key is an identifier for a value in another part of the configuration file. For example columns.crim.1.0.2.with_mean will identify the columns key and then the crim key, then
the 1th index of that list, the 0th index of the next list, the 2nd index of the next list, and finally the with_mean key of that dictionary. Each value is a string of python code that
will be evaluated to create an iterator object that will be used to generate the parameter space.

In this example 4 combinations will be searched:

	StandardScaler(with_mean=False, name="Scaler")

	StandardScaler(with_mean=True, name="Scaler")

	StandardScaler(with_mean=False, name="SuperScaler")

	StandardScaler(with_mean=True, name="SuperScaler")

In addition to any search parameters defined in the default search space dictionary above

Frequently Asked Questions

Test page

Developers Guide

Thank you for taking the time to contribute and reading this page, any and all help is appreciated!

Setting up the Project From Source

	General Setup

	
	Clone the project down to your computer

$ git clone https://github.com/georgianpartners/foreshadow.git
$ cd foreshadow
$ git checkout development

	Install and setup pyenv [https://github.com/pyenv/pyenv] and pyenv-virtualenv [https://github.com/pyenv/pyenv-virtualenv]

Follow the instructions on their pages or use homebrew if you have a Mac

$ brew install pyenv
$ brew install pyenv-virtualenv

Make sure to add the following lines to your .bash_profile

export PYENV_ROOT="$HOME/.pyenv"
export PATH="$PYENV_ROOT/bin:$PATH"
if command -v pyenv 1>/dev/null 2>&1; then
 eval "$(pyenv init -)"
fi
eval "$(pyenv virtualenv-init -)"

Restart your shell session for the changes to take effect and perform the following setup in the root directory of the project. This sets up a convenient virtualenv that automatically activates in the root of your project. (Note: there is a known error with pyenv [https://github.com/pyenv/pyenv/issues/1219#issuecomment-487206619]. Also, you may need to change the file path depending on your version or you may not even need to do that step.

$ open /Library/Developer/CommandLineTools/Packages/macOS_SDK_headers_for_macOS_10.14.pkg
$ pyenv install 3.6.8
$ pyenv global 3.6.8
$ pyenv virtualenv -p python3.6 3.6.8 venv
$ pyenv local venv 3.6.8

	Install poetry package manager

(venv) $ pyenv shell system
$ curl -sSL https://raw.githubusercontent.com/sdispater/poetry/master/get-poetry.py | python
$ pyenv shell --unset

	Prepare for Autosklearn install

	Autosklearn was setup as an optional dependency as it can be sometimes difficult to install because of its requirement of xgboost. In order to have a development environment that passes all tests, autosklearn is required.

	Install swig

Use your package manager to install swig

(venv) $ brew install swig # (or apt-get)

	Install gcc (MacOS only)

Use your package manager to install gcc (necessary for xgboost)

(venv) $ brew install gcc@5 # (or apt-get)

	Install all the packages and commit hooks

	When the project is installed through poetry both project requirements and development requirements are installed. Install commit-hooks using the pre-commit [https://pre-commit.com/] utility.

(venv) $ poetry install -v
(venv) $ export CC=gcc-5; export CXX=g++-5;
(venv) $ poetry install -E dev
(venv) $ poetry run pre-commit install

Configure PlantUML

(venv) $ brew install plantuml # MacOS (requires brew cask install adoptopenjdk)
(venv) $ sudo apt install plantuml # Linux

	Making sure everything works

	
	Run pytest to make sure you’re good to go

(venv) $ poetry run pytest

	Run tox to run in supported python versions (optional)

(venv)$ poetry run tox -r # supply the -r flag if you changed the dependencies

	Run make html in foreshadow/doc to build the documentation (optional)

(venv) $ poetry run make html

If all the tests pass you’re all set up!

Note

Our platform also includes integration tests that asses the overall performance of our framework using the default settings on a few standard ML datasets. By default these tests are not executed, to run them, set an environmental variable called FORESHADOW_TESTS to ALL

	Suggested development work flow

	
	Create a branch off of development to contain your change

(venv) $ git checkout development
(venv) $ git checkout -b {your_feature}

	Run pytest and pre-commit while developing
This will help ensure something hasn’t broken while adding a feature. Pre-commit will lint the code before each commit.

$ poetry run pytest
$ poetry run pre-commit run --all-files

	Run tox to test your changes across versions
Make sure to add test cases for your change in the appropriate folder in foreshadow/tests and run tox to test your project across python 3.5 and 3.6

$ poetry run tox

	Submit a pull request
This can be tricky if you have cloned the project instead of forking it but no worries the fix is simple. First go to the project page and fork it there. Then do the following.

(venv) $ git remote add upstream https://github.com/georgianpartners/foreshadow.git
(venv) $ git remote set-url origin https://github.com/{YOUR_USERNAME}/foreshadow.git
(venv) $ git push origin {your_feature}

Now you can go to the project on your github page and submit a pull request to the main project.

Note

Make sure to submit the pull request against the development branch.

Adding Transformers

Adding transformers is quite simple. Simply write a class with the fit transform and inverse_transform methods that extends scikit_learn.base.BaseEstimator and sklearn.base.TransformerMixin [https://scikit-learn.org/stable/modules/generated/sklearn.base.TransformerMixin.html#sklearn.base.TransformerMixin]. Take a look at the structure below and modify it to suit your needs. We would recommend taking a look at the sklearn.preprocessing.RobustScaler [https://github.com/scikit-learn/scikit-learn/blob/f0ab589f/sklearn/preprocessing/data.py#L939] source code for a good example.

from foreshadow.base import TransformerMixin, BaseEstimator
from sklearn.utils import check_array

class CustomTransformer(BaseEstimator, TransformerMixin):
 def fit(self, X, y=None):
 X = check_array(X)
 return self

 def transform(self, X, y=None):
 X = check_array(X, copy=True)
 # modify input based on fit here
 return X

 def inverse_transform(self, X):
 X = check_array(X, copy=True)
 # if applicable, write inverse transform here
 return X

After writing your transformer make sure place it in the internals folder in its own file with the associated tests for the transformer in the mirrored test directory and you are all set. If you want to add an external transformer that is not already supported by foreshadow submit a pull request with the appropriate modification to the externals.py file in transformers.

Adding Smart Transformers

Building smart transformers is even easier than build transformers. Simply extend SmartTransformer and implement the _get_transformer(). Modify the example below to suit your needs.

class CustomTransformerSelector(SmartTransformer):
 def _get_transformer(self, X, y=None, **fit_params):
 data = X.iloc[:, 0] # get single column to decide upon
 # perform some computation to determin the best transformer to choose
 return BestTransformer() # return an instance of the selected transformer

Add the smart transformer implementation to the bottom of the smart.py file and add the appropriate tests to the mirrored tests folder as well.

Adding Intents

Intents are where the magic of Foreshadow all comes together. You need to be thoughtful when adding an intent especially with respect to where your intent will slot into the intent tree. This positioning will determine the priority with which the intent is mapped to a column. You will need to subclass your intent off of the parent intent that you determine is the best fit. Intents should be constructed in the form matching BaseIntent.

You will need to set the dtype, children, single_pipeline, and multi_pipeline class attributes. You will also need to implement the is_intent classmethod. In most cases when adding an intent you can initialize children to an empty list. Set the dtype to the most appropriate initial form of that entering your intent.

Use the single_pipeline field to determine the transformers that will be applied to a single column that is mapped to your intent. Add a unique name describing each step that you choose to include in your pipeline. This field is represented as a list of PipelineTemplateEntry objects which are constructed using the following format PipelineTemplateEntry([unique_name], [class], [can_operate_on_y]) The class name is either a singular transformer class, or a tuple of the form ([cls], {**args}) where args will be passed into the constructor of the transformer. The final boolean determines whether that transformer should be applied when operating on y-variables.

It is important to note the utility of smart transformers here as you can now include branched logic in your pipelines deciding between different individual transformers based on the input data at runtime. The multi_pipeline pipeline should be used to apply transformations to all columns of a specific intent after the single pipelines have been evaluated. The same rules for defining the pipelines themselves apply here as well.

The is_intent classmethod determines whether a specific column maps to an intent. Use this method to apply any heuristics, logic, or methods of determine whether a raw column maps to the intent that you are defining. Below is an example intent definition that you can modify to suit your needs.

The column_summary classmethod is used to generate statistical reports each time an intent operates on a columns allowing a user to examine how effective the intent will be in processing the data. These reports can be accessed by calling the summarize method after fitting the Foreshadow object.

Make sure to go to the parent intent and add your intent class name to the ordered children field in the order of priority among the previously defined intents. The last intent in this list will be the most preferred intent upon evaluation in the case of multiple intents being able to process a column.

Take a look at the NumericIntent implementation for an example of how to implement an intent.

Future Architecture Roadmap

In progress

Contributing

Project Setup

Foreshadow has one main master branch and feature branches if an when collaborative development is required. Each pypi version and their associated commit will be tagged in GitHub. Before each release a new branch will be created freezing that specific version. Pull requests are merged directly into master. This project follows the semantic versioning [https://semver.org/] standard.

Issues

Please feel free to submit issues to github with any bugs you encounter, ideas you may have, or questions about useage. We only ask that you tag them appropriately as bug fix, feature request, usage. Please also follow the following format

Description
<!--
Example: DropFeatures fails on categorical features when assessing a string column
-->

Steps/Code to Reproduce
<!--
Please add the minimum code required to reproduce the issue if possible.
Example:
```python
import uuid
import numpy as np
import pandas as pd
from foreshadow.preprocessor import Preprocessor

cat1 = [str(uuid.uuid4()) for _ in range(40)]
cat2 = [str(uuid.uuid4()) for _ in range(40)]

input = pd.DataFrame({
    'col1': np.random.choice(cat1, 1000),
    'col2': np.random.choice(cat2, 1000)
})

processor = Preprocessor()
output = processor.fit_transform(input)
```
If the code is too long, feel free to put it in a public gist and link it in the issue: https://gist.github.com
-->

Expected Results
<!--
Please add the results that you would expect here.
Example: Error should not be thrown
-->

Actual Results
<!--
Please place the full traceback here, again use a gist if you feel that it is too long.
-->

Versions
<!--
Please run the following snippet in your environment and paste the results here.

```python
import platform; print(platform.platform())
import sys; print("Python", sys.version)
import numpy; print("NumPy", numpy.__version__)
import sklearn; print("Scikit-Learn", sklearn.__version__)
import pandas; print("Pandas", pandas.__version__)
import foreshadow; print("Foreshadow", foreshadow.__version__)
from foreshadow.utils import check_transformer_imports; check_transformer_imports()
```
-->

<!--Thank you for contributing!-->

How to Contribute: Pull Requests

We accept pull requests! Thank you for taking the time to read this. There are only a few guidelines before you get started. Make sure you have read the Developers Guide and have appropriately setup your project. Please make sure to do the following to appropriately create a pull request for this project.

	Fork the project on GitHub [https://github.com/georgianpartners/foreshadow]

	Setup the project following the instructions in the Developers Guide using your fork

	Create a branch to hold your change

$ git checkout development
$ git checkout -b contribution_branch_name

	Start making changes to this branch and remember to never work on the master branch.

	Make sure to add tests for your changes to foreshadow/tests/ and make sure to run those changes. You need to run these commands from the root of the project repository.

$ black foreshadow # required formatter
$ pytest
$ coverage html
$ open htmlcov/index.html
$ tox -r

	If everything is green and looks good, you’re ready to commit

$ git add changed_files
$ git commit # make sure use descriptive commit messages
$ git push -u origin contribution_branch_name

	Go to the github fork page and submit your pull request against the development branch. Please use the following template for pull requests

<!--
Thanks you for taking the time to submit a pull request! Please take a look at some guidelines before submitting a pull request: https://github.com/georgianpartners/foreshadow/blob/development/doc/contrib.rst
-->

Related Issue
<!--
Example: Fixes #7. See also #35.
Please use keywords (e.g., Fixes) to create link to the issues or pull requests
you resolved, so that they will automatically be closed when your pull request
is merged. See https://github.com/blog/1506-closing-issues-via-pull-requests
-->

Description
<!--
Please add a narrative description of your the changes made and the rationale behind them. If making an enhancement include the motivation and use cases addressed.
-->

API Reference

Foreshadow

Core end-to-end pipeline, foreshadow.

	
class Foreshadow(X_preparer=None, y_preparer=None, estimator=None, optimizer=None, optimizer_kwargs=None)

	An end-to-end pipeline to preprocess and tune a machine learning model.

Example

>>> shadow = Foreshadow()

	Parameters

	
	X_preparer (Preprocessor, optional) – Preprocessor instance that will apply to X data. Passing
False prevents the automatic generation of an instance.

	y_preparer (Preprocessor, optional) – Preprocessor instance that will apply to y data. Passing
False prevents the automatic generation of an instance.

	estimator (sklearn.base.BaseEstimator [https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator], optional) – Estimator
instance to fit on processed data

	optimizer (sklearn.grid_search.BaseSeachCV, optional) – Optimizer class to optimize feature engineering and model
hyperparameters

	
X_preparer

	Preprocessor object for performing feature engineering on X data.

	Getter

	Returns Preprocessor object

	Setter

	Verifies Preprocessor object, if None, creates a default
Preprocessor

	Type

	Preprocessor

	
y_preparer

	Preprocessor object for performing scaling and encoding on Y data.

	Getter

	Returns Preprocessor object

	Setter

	Verifies Preprocessor object, if None, creates a default
Preprocessor

	Type

	Preprocessor

	
estimator

	Estimator object for fitting preprocessed data.

	Getter

	Returns Estimator object

	Setter

	Verifies Estimator object. If None, an
AutoEstimator
object is created in place.

	Type

	sklearn.base.BaseEstimator [https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator]

	
optimizer

	Optimizer class that will fit the model.

Performs a grid or random search algorithm on the parameter space from
the preprocessors and estimators in the pipeline

	Getter

	Returns optimizer class

	Setter

	Verifies Optimizer class, defaults to None

	
fit(data_df, y_df)

	Fit the Foreshadow instance using the provided input data.

	Parameters

	
	data_df (DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The input feature(s)

	y_df (DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The response feature(s)

	Returns

	The fitted instance.

	Return type

	Foreshadow

	
predict(data_df)

	Use the trained estimator to predict the response variable.

	Parameters

	data_df (DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The input feature(s)

	Returns

	The response feature(s) (transformed if necessary)

	Return type

	DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
predict_proba(data_df)

	Use the trained estimator to predict the response variable.

Uses the predicted confidences instead of binary predictions.

	Parameters

	data_df (DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The input feature(s)

	Returns

	The probability associated with each response feature

	Return type

	DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
score(data_df, y_df=None, sample_weight=None)

	Use the trained estimator to compute the evaluation score.

The scoding method is defined by the selected estimator.

	Parameters

	
	data_df (DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]) – The input feature(s)

	y_df (DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], optional) – The response
feature(s)

	sample_weight (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], optional) – The weights to be
used when scoring each sample

	Returns

	A computed prediction fitness score

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
dict_serialize(deep=False)

	Serialize the init parameters of the foreshadow object.

	Parameters

	deep (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, will return the parameters for this estimator
recursively

	Returns

	The initialization parameters of the foreshadow object.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
classmethod dict_deserialize(data)

	Deserialize the dictionary form of a foreshadow object.

	Parameters

	data – The dictionary to parse as foreshadow object is constructed.

	Returns

	A re-constructed foreshadow object.

	Return type

	object [https://docs.python.org/3/library/functions.html#object]

	
get_params(deep=True)

	Get params for this object. See super.

	Parameters

	deep – True to recursively call get_params, False to not.

	Returns

	params for this object.

	
set_params(**params)

	Set params for this object. See super.

	Parameters

	**params – params to set.

	Returns

	See super.

dp

Intents

Intents package used by IntentMapper PreparerStep.

	
class Categoric

	Defines a categoric column type.

	
confidence_computation = {<class 'foreshadow.metrics.MetricWrapper' with function 'num_valid' object at 140481457308784>: 0.25, <class 'foreshadow.metrics.MetricWrapper' with function 'unique_heur' object at 140481457308840>: 0.65, <class 'foreshadow.metrics.MetricWrapper' with function 'is_numeric' object at 140481457308896>: 0.1}

	

	
fit(X, y=None, **fit_params)

	Empty fit.

	Parameters

	
	X – The input data

	y – The response variable

	**fit_params – Additional parameters for the fit

	Returns

	self

	
transform(X, y=None)

	Pass-through transform.

	Parameters

	
	X – The input data

	y – The response variable

	Returns

	The input column

	
classmethod column_summary(df)

	

	
class Numeric

	Defines a numeric column type.

	
confidence_computation = {<class 'foreshadow.metrics.MetricWrapper' with function 'num_valid' object at 140481457309680>: 0.3, <class 'foreshadow.metrics.MetricWrapper' with function 'unique_heur' object at 140481457309736>: 0.2, <class 'foreshadow.metrics.MetricWrapper' with function 'is_numeric' object at 140481457309792>: 0.4, <class 'foreshadow.metrics.MetricWrapper' with function 'is_string' object at 140481457309848>: 0.1}

	

	
fit(X, y=None, **fit_params)

	Empty fit.

	Parameters

	
	X – The input data

	y – The response variable

	**fit_params – Additional parameters for the fit

	Returns

	self

	
transform(X, y=None)

	Convert a column to a numeric form.

	Parameters

	
	X – The input data

	y – The response variable

	Returns

	A column with all rows converted to numbers.

	
classmethod column_summary(df)

	

	
class Text

	Defines a text column type.

	
confidence_computation = {<class 'foreshadow.metrics.MetricWrapper' with function 'num_valid' object at 140481457310464>: 0.2, <class 'foreshadow.metrics.MetricWrapper' with function 'unique_heur' object at 140481457310520>: 0.2, <class 'foreshadow.metrics.MetricWrapper' with function 'is_numeric' object at 140481457310576>: 0.2, <class 'foreshadow.metrics.MetricWrapper' with function 'is_string' object at 140481457310632>: 0.2, <class 'foreshadow.metrics.MetricWrapper' with function 'has_long_text' object at 140481457310688>: 0.2}

	

	
fit(X, y=None, **fit_params)

	Empty fit.

	Parameters

	
	X – The input data

	y – The response variable

	**fit_params – Additional parameters for the fit

	Returns

	self

	
transform(X, y=None)

	Convert a column to a text form.

	Parameters

	
	X – The input data

	y – The response variable

	Returns

	A column with all rows converted to text.

	
classmethod column_summary(df)

	

	
class BaseIntent

	Base for all intent definitions.

For each intent subclass a class attribute called confidence_computation
must be defined which is of the form:

{
 metric_def: weight
}

	
classmethod get_confidence(X, y=None)

	Determine the confidence for an intent match.

	Parameters

	
	X – input DataFrame.

	y – response variable

	Returns

	A confidence value bounded between 0.0 and 1.0

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
classmethod column_summary(df)

	

Transformers

Internal Transformers

Smart Transformers

Transformer Bases

Estimators

Estimators provided by foreshadow.

	
class AutoEstimator(problem_type=None, auto=None, include_preprocessors=False, estimator_kwargs=None)

	A wrapped estimator that selects the solution for a given problem.

By default each automatic machine learning solution runs for 1 minute but
that can be changed through passed kwargs. Autosklearn is not required for
this to work but if installed it can be used alongside TPOT.

	Parameters

	
	problem_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The problem type, ‘regression’ or ‘classification’

	auto (str [https://docs.python.org/3/library/stdtypes.html#str]) – The automatic estimator, ‘tpot’ or ‘autosklearn’

	include_preprocessors (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether include preprocessors in AutoML
pipelines

	estimator_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of args to pass to the specified
auto estimator (both problem_type and auto must be specified)

	
problem_type

	Type of machine learning problem.

Either regression or classification.

	Returns

	self._problem_type

	
auto

	Type of automl package.

Either tpot or autosklearn.

	Returns

	self._auto, the type of automl package

	
estimator_kwargs

	Get dictionary of kwargs to pass to AutoML package.

	Returns

	estimator kwargs

	
configure_estimator(y)

	Construct and return the auto estimator instance.

	Parameters

	y – input labels

	Returns

	autoestimator instance

	
fit(X, y)

	Fit the AutoEstimator instance.

Uses the selected AutoML estimator.

	Parameters

	
	X (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or list [https://docs.python.org/3/library/stdtypes.html#list]) – The input
feature(s)

	y (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or list [https://docs.python.org/3/library/stdtypes.html#list]) – The response
feature(s)

	Returns

	The selected estimator

	
predict(X)

	Use the trained estimator to predict the response.

	Parameters

	X (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or list [https://docs.python.org/3/library/stdtypes.html#list]) – The input
feature(s)

	Returns

	The response feature(s)

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
predict_proba(X)

	Use the trained estimator to predict the responses probabilities.

	Parameters

	X (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or list [https://docs.python.org/3/library/stdtypes.html#list]) – The input
feature(s)

	Returns

	The probability associated with each response feature

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
score(X, y, sample_weight=None)

	Use the trained estimator to compute the evaluation score.

Note: sample weights are not supported

	Parameters

	
	X (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or list [https://docs.python.org/3/library/stdtypes.html#list]) – The input feature(s)

	y (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or list [https://docs.python.org/3/library/stdtypes.html#list]) – The response
feature(s)

	sample_weight – sample weighting. Not implemented.

	Returns

	A computed prediction fitness score

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
class MetaEstimator(estimator, preprocessor)

	Wrapper that allows data preprocessing on the response variable(s).

	Parameters

	
	estimator – An instance of a subclass of
sklearn.base.BaseEstimator [https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator]

	preprocessor – An instance of
foreshadow.preprocessor.Preprocessor

	
dict_serialize(deep=False)

	Serialize the init parameters (dictionary form) of a transformer.

	Parameters

	deep (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, will return the parameters for this estimator
recursively

	Returns

	The initialization parameters of the transformer.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
fit(X, y=None)

	Fit the AutoEstimator instance using a selected AutoML estimator.

	Parameters

	
	X (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or list) – The
input feature(s)

	y (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or list) – The
response feature(s)

	Returns

	self

	
predict(X)

	Use the trained estimator to predict the response.

	Parameters

	X (pandas.DataFrame or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or list) – The input
feature(s)

	Returns

	The response feature(s) (transformed)

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
predict_proba(X)

	Use the trained estimator to predict the response probabilities.

	Parameters

	X (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or list) – The
input feature(s)

	Returns

	The probability associated with each feature

	Return type

	pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	
score(X, y)

	Use the trained estimator to compute the evaluation score.

Note: sample weights are not supported

	Parameters

	
	X (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or list) – The
input feature(s)

	y (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame] or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or list) – The
response feature(s)

	Returns

	A computed prediction fitness score

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Optimizers

Foreshadow optimizers.

	
class ParamSpec(fs_pipeline=None, X_df=None, y_df=None)

	Holds the specification of the parameter search space.

A search space is a dict or list of dicts. This search space should be
viewed as one run of optimization on the foreshadow object. The
algorithm for optimization is determined by the optimizer that is
chosen. Hence, this specification is agnostic of the optimizer chosen.

A dict represents the set of parameters to be applied in a single run.

A list represents a set of choices that the algorithm (again, agnostic
at this point) can pick from.

For example, imagine s as our top level object, of structure:

	s (object)

	
	.transformer (object)

	.attr

s has an attribute that may be optimized and in turn, that object has
parameters that may be optimized. Below, we try two different
transformers and try 2 different parameter specifications for each.
Note that these parameters are specific to the type of transformer
(StandardScaler does not have the parameter feature_range and vice versa).

	[

	

	{

	“s__transformer”: “StandardScaler”,
“s__transformer__with_mean”: [False, True],

},
{

“s__transformer”: “MinMaxScaler”,
“s__transformer__feature_range”: [(0, 1), (0, 0.5)]
),

},

],

Here, the dicts are used to tell the optimizer where to values to set
are. The lists showcase the different values that are possible.

	
convert(key, replace_val=<function hp_choice>)

	Convert internal self.param_distributions to valid distribution.

Uses _replace_list to replace all lists with replace_val

	Parameters

	
	key – key to use for top level hp.choice name

	replace_val – value to replace lists with.

	
get_params(deep=True)

	Get the params for this object. Used for serialization.

	Parameters

	deep – Does nothing. Here for sklearn compatibility.

	Returns

	Members that need to be set for this object.

	
set_params(**params)

	Set the params for this object. Used for serialization.

Also used to init this object when automatic tuning is not used.

	Parameters

	**params – Members to set from get_params.

	Returns

	self.

	
class Tuner(pipeline=None, params=None, optimizer=None, optimizer_kwargs={})

	Tunes the Foreshadow object using a ParamSpec and Optimizer.

	
fit(X, y, **fit_params)

	Optimize self.pipeline using self.optimizer.

	Parameters

	
	X – input points

	y – input labels

	**fit_params – params to optimizer fit method.

	Returns

	self

	
transform(pipeline)

	Transform pipeline using best_pipeline.

	Parameters

	pipeline – input pipeline

	Returns

	best_pipeline.

	
class RandomSearchCV(estimator, param_distributions, n_iter=10, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', random_state=None, error_score='raise', return_train_score='warn', max_tries=100)

	Optimize Foreshadow.pipeline and/or its sub-objects.

	
get(optimizer, **optimizer_kwargs)

	Get optimizer from foreshadow.optimizers package.

	Parameters

	
	optimizer – optimizer name or class

	**optimizer_kwargs – kwargs used in instantiation.

	Returns

	Corresponding instantiated optimizer using kwargs.

Utils

Common Foreshadow utilities.

	
get_cache_path()

	Get the cache path which is in the config directory.

Note

This function also makes the directory if it does not already exist.

	Returns

	str; The path to the cache directory.

	
get_config_path()

	Get the default config path.

Note

This function also makes the directory if it does not already exist.

	Returns

	The path to the config directory.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_transformer(class_name, source_lib=None)

	Get the transformer class from its name.

Note

In case of name conflict, internal transformer is preferred over
external transformer import. This should only be using in internal
unit tests, get_transformer from serialization should be preferred in
all other cases. This was written to decouple registration from unit
testing.

	Parameters

	
	class_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The transformer class name

	source_lib (str [https://docs.python.org/3/library/stdtypes.html#str]) – The string import path if known

	Returns

	Imported class

	Raises

	TransformerNotFound – If class_name could not be found in internal or
external transformer library pathways.

	
check_df(input_data, ignore_none=False, single_column=False, single_or_empty=False)

	Convert non dataframe inputs into dataframes.

	Parameters

	
	input_data (pandas.DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], list) – input
to convert

	ignore_none (bool [https://docs.python.org/3/library/functions.html#bool]) – allow None to pass through check_df

	single_column (bool [https://docs.python.org/3/library/functions.html#bool]) – check if frame is of a single column and return
series

	single_or_empty (bool [https://docs.python.org/3/library/functions.html#bool]) – check if the frame is a single column or an
empty DF.

	Returns

	Converted and validated input dataframes

	Return type

	DataFrame [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Invalid input type

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Input dataframe must only have one column

	
check_series(input_data)

	Convert non series inputs into series.

This is function is to be used in situations where a series is expected but
cannot be guaranteed to exist. For example, this function is used in
the metrics package to perform computations on a column using functions
that only work with series.

Note

This is not to be used in transformers as it will break the standard
that enforces only DataFrames as input and output for those objects.

	Parameters

	input_data (iterable) – The input data

	Returns

	pandas.Series

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the data could not be processed

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the input is a DataFrame and has more than one column

	
check_module_installed(name)

	Check whether a module is available for import.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – module name

	Returns

	Whether the module can be imported

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
check_transformer_imports(printout=True)

	Determine which transformers were automatically imported.

	Parameters

	printout (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to output to stdout

	Returns

	A tuple of the internal transformers and the external transformers

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple](list [https://docs.python.org/3/library/stdtypes.html#list])

	
is_transformer(value, method='isinstance')

	Check if the class is a transformer class.

	Parameters

	
	value – Class or instance

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – Method of checking. Options are ‘issubclass’ or
‘isinstance’

	Returns

	True if transformer, False if not.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if method is neither issubclass or isinstance

	
is_wrapped(transformer)

	Check if a transformer is wrapped.

	Parameters

	transformer – A transformer instance

	Returns

	True if transformer is wrapped, otherwise False.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
dynamic_import(attribute, module_path)

	Import attribute from module found at module_path at runtime.

	Parameters

	
	attribute – the attribute of the module to import (class, function, …)

	module_path – the path to the module.

	Returns

	attribute from module_path.

	
mode_freq(s, count=10)

	

	
get_outliers(s, count=10)

	

	
standard_col_summary(df)

	

	
class ConfigureColumnSharerMixin

	Mixin that configure column sharer.

	
configure_column_sharer(column_sharer)

	Configure the column sharer attribute if exists.

	Parameters

	column_sharer – a column sharer instance

Core

Project Architecture

Note

Open the diagram in a new tab to see the full details.

UML Class Diagram

[image: @startuml skinparam BackgroundColor transparent skinparam Shadowing false ' Diagram setup hide empty members left to right direction set namespaceSeparator none skinparam linetype polyline skinparam linetype ortho package foreshadow.utils { class check_df << (M,lemonchiffon) >> } package foreshadow.logging { class ForeshadowLogger } package foreshadow.intents { abstract class BaseIntent { list engineering_pipeline list preprocessing_pipeline resolve_intent() } class DropIntent class NumericalIntent class CategoricalIntent class TextIntent BaseIntent <|-- DropIntent BaseIntent <|-- NumericalIntent BaseIntent <|-- CategoricalIntent BaseIntent <|-- TextIntent note "Config for intentless transformations (cleaner) are placed in\nBaseIntent's specification" as N1 } package foreshadow.transformers.core { abstract class SmartTransformer { bool fixed_fit log_decision() } class ParallelProcessor class SigCopy class DropFeature class wrap_transformer << (M,lemonchiffon) >> wrap_transformer o-- SigCopy } package foreshadow.transformers.smart { SmartTransformer <|-- Cleaner SmartTransformer <|-- Engineerer SmartTransformer <|-- Scaler SmartTransformer <|-- Imputer SmartTransformer <|-- CategoricalEncoder SmartTransformer <|-- TextEncoder SmartTransformer <|-- Reducer } package foreshadow.transformers.internal { class FancyImpute class UncommonRemover class BoxCox FancyImpute o-- Imputer CategoricalEncoder o-- UncommonRemover Scaler o-- BoxCox class DaysSince class NumericalFeatuerizer class CategoricalFeatuerizer Engineerer o-- DaysSince Engineerer o-- NumericalFeaturizer Engineerer o-- CategoricalEncoder class ToString class SplitDate class FinancialCleaner Cleaner o-- ToString Cleaner o-- SplitDate Cleaner o-- FinancialCleaner class Boruta class Hypothesis Reducer o-- Boruta Reducer o-- Hypothesis } package foreshadow.transformers.external { note "All sklearn transformers are mirrored\nand pandas wrapped here." as N3 } ' foreshadow.transformers.smart <|-r- foreshadow.transformers.internal package foreshadow.config { class ConfigManager { json framework_config json user_config json local_config } } package foreshadow.tuners { class TunerWrapper { BaseEstimator tuner_type } } package foreshadow.core { abstract class BaseFeatureMapper { split_columns() join_columns() } class Foreshadow class DataPreparer { bool is_y_var } class FeatureCleaner class IntentResolver class FeatureEngineerer class FeaturePreprocessor class FeatureReducer class ColumnInfoSharer class SerializerMixin << (X,peru) >> Foreshadow "0..2" o-- DataPreparer Foreshadow "0..1" o-- sklearn.RandomizedSearchCV DataPreparer o-- FeatureCleaner DataPreparer o-- IntentResolver DataPreparer "0..1" o-- FeatureEngineerer DataPreparer o-- FeaturePreprocessor DataPreparer "0..1" o-- FeatureReducer SerializerMixin <|-- DataPreparer SerializerMixin <|-- FeatureCleaner SerializerMixin <|-- IntentResolver SerializerMixin <|-- FeatureEngineerer SerializerMixin <|-- FeaturePreprocessor SerializerMixin <|-- FeatureReducer BaseFeatureMapper <|-- DataPreparer BaseFeatureMapper <|-- FeatureCleaner BaseFeatureMapper <|-- IntentResolver BaseFeatureMapper <|-- FeatureEngineerer BaseFeatureMapper <|-- FeaturePreprocessor BaseFeatureMapper <|-- FeatureReducer } package foreshadow.estimators { class MetaEstimator class AutoEstimator MetaEstimator "0..1" o-- AutoEstimator MetaEstimator o-- DataPreparer Foreshadow "0..1" o-- MetaEstimator } package sklearn.base { class TransformerMixin << (X,peru) >> class BaseEstimator } @enduml]

UML Sequence Diagrams

Main Sequence Diagram

[image: @startuml skinparam Shadowing false participant User User -> Foreshadow: ~__init__() note over Foreshadow, DataPreparer Foreshadow and DataPreparer are wrappers for an sklearn Pipeline. Fit and transform calls originate from sklearn logic and not the objects themselves. end note note over Foreshadow shadow.steps = Pipeline([('t', DataPreparer()), ('m', LogisticRegression()),]) end note note over DataPreparer ci = ColumnInfoSharer() dp.steps = Pipeline([('c', FeatureCleaner(share=ci)), ('i', IntentResolver(share=ci)), ('e', FeatureEngineerer(share=ci)), ('p', FeaturePreprocessor(share=ci)), ('r', FeatureReducer(share=ci)),]) end note User -> Foreshadow: fit(X, y) Foreshadow -> DataPreparer: fit(X, y) DataPreparer -> ColumnInfoSharer: ~__init__() DataPreparer -> FeatureCleaner: fit_transform(X, y) FeatureCleaner -> ColumnInfoSharer: set_info(column, 'tags', values) FeatureCleaner --> DataPreparer: X DataPreparer -> IntentResolver: fit_transform(X, y) IntentResolver -> ColumnInfoSharer: set_info(column, 'intent', value) IntentResolver --> DataPreparer: X DataPreparer -> FeatureEngineerer: fit_transform(X, y) FeatureEngineerer -> ColumnInfoSharer: get_info(column, 'tags') return col_tag_list FeatureEngineerer --> DataPreparer: X DataPreparer -> FeaturePreprocessor: fit_transform(X, y) FeaturePreprocessor -> ColumnInfoSharer: get_info(column, 'intent') return col_intent FeaturePreprocessor --> DataPreparer: X DataPreparer -> FeatureReducer: fit_transform(X, y) FeatureReducer -> ColumnInfoSharer: get_info(column, 'intent') return col_intent FeatureReducer --> DataPreparer: X Foreshadow -> LogisticRegression: fit(X, y) LogisticRegression -> Foreshadow: self @enduml]

Hyperparameter Optimization Sequence Diagram

[image: @startuml skinparam BackgroundColor transparent skinparam Shadowing false participant User User -> Foreshadow: ~__init__() note over Foreshadow pipeline = Pipeline([('dp', DataPreparer()), ('lr', LogisticRegression()),]) end note Foreshadow -> TunerWrapper: ~__init__(pipeline, RandomizedSearchCV) User -> Foreshadow: fit(X, y) Foreshadow -> TunerWrapper: fit(X, y) TunerWrapper -> RandomizedSearchCV ++: fit_pipelines(X, y) return best_pipeline TunerWrapper -> RandomizedSearchCV ++: fit_params(X, y) return best_pipeline_params TunerWrapper --> Foreshadow: self Foreshadow --> User: self @enduml]

Foreshadow 0.2.1 (2019-09-26)

Features

	Bug fix of pick_transformer may transform dataframe in place, causing
inconsistency between the data and intended downstream logic. (bug-fix)

Foreshadow 0.2.0 (2019-09-24)

Features

	Add feature_summarizer to produce statistics about the data after
intent resolving to show the users why such decisions are made. (data-summarization)

	Foreshadow is able to run end-to-end with level 1 optimization with the tpot
auto-estimator. (level1-optimization)

	Add Feature Reducer as a passthrough transformation step. (pass-through-feature-reducer)

	Multiprocessing:
1. Enable multiprocessing on the dataset.
2. Collect changes from each process and update the original columnsharer. (process-safe-columnsharer)

	Serialization and deserialization:
1. Serialization of the foreshadow object in a non-verbose format.
2. Deserialization of the foreshadow object. (serialization)

	Adding two major components:
1. usage of metrics for any statistic computation
2. changing functionality of wrapping sklearn transformers to give them DataFrame capabilities. This now uses classes and metaclasses, which should be easier to maintain (#74)

	Adding ColumnSharer, a lightweight wrapper for a dictionary that functions
as a cache system, to be used to pass information in the foreshadow pipeline. (#79)

	Creating DataPreparer to handle data preprocessing. Data Cleaning is the
first step in this process. (#93)

	Adds skip resolve functionality to SmartTransformer, restructure utils, and add is_wrapped to utils (#95)

	Add serializer mixin and resture package import locations. (#96)

	Add configuration file parser. (#99)

	Add Feature Engineerer as a passthrough transformation step. (#112)

	Add Intent Mapper and Metric wrapper features. (#113)

	Add Preprocessor step to DataPreparer (#118)

	Create V2 architecture shift. (#162)

Foreshadow 0.1.0 (2019-06-28)

Features

	Initial release. (#71)

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 foreshadow	

 	
 	
 foreshadow.estimators	

 	
 	
 foreshadow.foreshadow	

 	
 	
 foreshadow.intents	

 	
 	
 foreshadow.optimizers	

 	
 	
 foreshadow.utils	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | X
 | Y

A

 	
 	auto (AutoEstimator attribute)

 	
 	AutoEstimator (class in foreshadow.estimators)

B

 	
 	BaseIntent (class in foreshadow.intents)

C

 	
 	Categoric (class in foreshadow.intents)

 	check_df() (in module foreshadow.utils)

 	check_module_installed() (in module foreshadow.utils)

 	check_series() (in module foreshadow.utils)

 	check_transformer_imports() (in module foreshadow.utils)

 	column_summary() (foreshadow.intents.BaseIntent class method)

 	(foreshadow.intents.Categoric class method)

 	(foreshadow.intents.Numeric class method)

 	(foreshadow.intents.Text class method)

 	
 	confidence_computation (Categoric attribute)

 	(Numeric attribute)

 	(Text attribute)

 	configure_column_sharer() (ConfigureColumnSharerMixin method)

 	configure_estimator() (AutoEstimator method)

 	ConfigureColumnSharerMixin (class in foreshadow.utils)

 	convert() (ParamSpec method)

D

 	
 	dict_deserialize() (foreshadow.foreshadow.Foreshadow class method)

 	dict_serialize() (Foreshadow method)

 	(MetaEstimator method)

 	
 	dynamic_import() (in module foreshadow.utils)

E

 	
 	estimator (Foreshadow attribute)

 	
 	estimator_kwargs (AutoEstimator attribute)

F

 	
 	fit() (AutoEstimator method)

 	(Categoric method)

 	(Foreshadow method)

 	(MetaEstimator method)

 	(Numeric method)

 	(Text method)

 	(Tuner method)

 	
 	Foreshadow (class in foreshadow.foreshadow)

 	foreshadow.estimators (module)

 	foreshadow.foreshadow (module)

 	foreshadow.intents (module)

 	foreshadow.optimizers (module)

 	foreshadow.utils (module)

G

 	
 	get() (in module foreshadow.optimizers)

 	get_cache_path() (in module foreshadow.utils)

 	get_confidence() (foreshadow.intents.BaseIntent class method)

 	get_config_path() (in module foreshadow.utils)

 	
 	get_outliers() (in module foreshadow.utils)

 	get_params() (Foreshadow method)

 	(ParamSpec method)

 	get_transformer() (in module foreshadow.utils)

I

 	
 	is_transformer() (in module foreshadow.utils)

 	
 	is_wrapped() (in module foreshadow.utils)

M

 	
 	MetaEstimator (class in foreshadow.estimators)

 	
 	mode_freq() (in module foreshadow.utils)

N

 	
 	Numeric (class in foreshadow.intents)

O

 	
 	optimizer (Foreshadow attribute)

P

 	
 	ParamSpec (class in foreshadow.optimizers)

 	predict() (AutoEstimator method)

 	(Foreshadow method)

 	(MetaEstimator method)

 	
 	predict_proba() (AutoEstimator method)

 	(Foreshadow method)

 	(MetaEstimator method)

 	problem_type (AutoEstimator attribute)

R

 	
 	RandomSearchCV (class in foreshadow.optimizers)

S

 	
 	score() (AutoEstimator method)

 	(Foreshadow method)

 	(MetaEstimator method)

 	
 	set_params() (Foreshadow method)

 	(ParamSpec method)

 	standard_col_summary() (in module foreshadow.utils)

T

 	
 	Text (class in foreshadow.intents)

 	transform() (Categoric method)

 	(Numeric method)

 	(Text method)

 	(Tuner method)

 	
 	Tuner (class in foreshadow.optimizers)

X

 	
 	X_preparer (Foreshadow attribute)

Y

 	
 	y_preparer (Foreshadow attribute)

 _static/up.png

_images/plantuml-54a67cfacdfd0cc88838b99bd47e18588f7f6f80.png
DataPreparer,

n
2
2
e
)
-
-]
e
b
2
5
5
]
]
3
g
-
e
2
2
t
i
g
2
2
& A
e
2
2
t
o
5
]
£
)
- - -
' Iy
2
2
t
E
8
I PR P .
g 7y
]
L
£
]
g
£
K
O N O .
5 173 2
H L 3
o i 3| ~ T
El 8 B 8
5 ol ol o ol
2 8 8 8 E
3
= = = = = =
£ 3 3| 3 3| 3
& & i & i
sl I sl B) Aol I sl RN Mol I

Foreshadow

User

LogisticRegression

FeatureReducer|

FeaturePreprocessor’

FeatureEngineere:

IntentResolver|

FeatureCleane

ColumninfoShares

DataPreparer,

Foreshadow

User

_static/ajax-loader.gif

_images/plantuml-1f71c44b4f70d6c13d256c3c2da566acb29b72ce.png
Foreshadow

nit_(pipeline, Randomizedsearchcv)

TunerWrapper|

RandomizedSearchC

fit(x, y)

Foreshadow

<

| fit_pipelines(X, y)

Ji

fit_params(X, y)
bes(,p.pelme,pmmsﬂ

TunerWrapper|

RandomizedSearchC

_images/plantuml-491e99358e5ff82ac45e2c6ffe07948d493a424e.png
® ransormenion

(© sssecstmator

foreshadow.core

(©) intentResolver

(© Festuretngneerer

(@ sasereaturamapper

Split_columns()

Join_columns0) =

(©)Featurereducer

o

(© vatorreparer

bool is_y_var

(© columninfosharer

(© reaturepreprocessor

© reureciemner

foreshadow.tuners

© Tonertiapper
SoseEsimator ner e

[foreshadow.config

. ConfigManager

json framework_config
Json user_config
Json local_config

@ wrap_transformer

(©)Paralieprocessor

(© oropreature

() smartTransformer|

iow.transformers.external

foreshadow.transformers.core

©sacon)]

[foreshadow.estimators

bool fixed_fit

log_decision(]

fdreshadow.transformers.smart

.Categonca\Encoder

[foreshadow.intents'

@ owentent

vi.mm

[foreshadow.transformers.internal

© uncommongemover]

Tist engineering_pipeline
list preprocessing_pipeline

resolve_intent()

_ (© ororintent

foreshadow.logging

. ForeshadowLogger

[foreshadow.utils

. Categoricalintent

© oavesice

(© numencalintent

(©) NumericalFeaturizer

©osumg

(©) NumericalFeatuerizer

.Categonca\Featuenzer

. SplitDate

(© FinancialCleaner

© sorcor

(©Fancympure

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Foreshadow: Simple Machine Learning Scaffolding

 		
 User Guide

 		
 Getting Started

 		
 Recommended Workflow

 		
 Foreshadow

 		
 Preprocessor

 		
 Intents

 		
 Single Pipeline

 		
 Multi Pipeline

 		
 Smart Transformers

 		
 Configuration

 		
 Column Override

 		
 Intent Override

 		
 Postprocessor Override

 		
 Hyperparameter Tuning

 		
 Default Dictionary

 		
 JSON Combinations Config

 		
 Developers Guide

 		
 Setting up the Project From Source

 		
 Adding Transformers

 		
 Adding Smart Transformers

 		
 Adding Intents

 		
 Future Architecture Roadmap

 		
 API Reference

 		
 Foreshadow

 		
 dp

 		
 Intents

 		
 Transformers

 		
 Internal Transformers

 		
 Smart Transformers

 		
 Transformer Bases

 		
 Estimators

 		
 Optimizers

 		
 Utils

 		
 Core

 		
 Project Architecture

 		
 UML Class Diagram

 		
 UML Sequence Diagrams

 		
 Main Sequence Diagram

 		
 Hyperparameter Optimization Sequence Diagram

 		
 Foreshadow 0.2.1 (2019-09-26)

 		
 Features

 		
 Foreshadow 0.2.0 (2019-09-24)

 		
 Features

 		
 Foreshadow 0.1.0 (2019-06-28)

 		
 Features

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

