Football Data Connector
Documentation

Tony Joseph

Oct 29, 2018

Contents

1 Contents

3

1.1 Installation e e e e e e e e e 3

1.2 UserGuide 0 e e e e e 4

1.3 Caching and Lazy Evaluation e 7

2 Indices and tables 9

Football Data Connector Documentation

Football Data Connector is a Python package to connect to football-data.org API

Contents 1

Football Data Connector Documentation

2 Contents

CHAPTER 1

Contents

1.1 Installation

1.1.1 Requirements

Football data connector requires Python 3.4 or later. This package is not tested with any version of Python 2.7. The
following third party packages are required, which will be auto-installed if you are using pip.

* python-dateutil

* requests

1.1.2 Installing via pip

The easiest way to install football data connector is using the Python package manager, pip. Use the following
command if you have pip installed

pip install football-data-connector

1.1.3 Installing from github

If you need the latest version, you can install it directly from github repository.

pip install git+https://github.com/tony-joseph/football-data-connector.git

Football Data Connector Documentation

1.2 User Guide

1.2.1 Creating a Connection to football-data.org API

Before retrieving data, you need to create a connection object.

from footballdata.connector import Connector

connection = Connector ()

The Connector constructor also accepts two optional arguments, api_key and api_version.

from footballdata import Connector

connection = Connector (api_key='api key from football-data.org', api_version='vl'")

Using an API key is recommended. Otherwise you may hit the rate limiting of APL. Currently the only sup-
ported API version is vl. You can retrieve the list of supported API versions using the class method Connec-
tor.supported_api_versions()supported_api_versions

Connector object attributes

» api_key Gives the API key used to create Connector object
 api_version Gives the API version used to create Connector object

* base_url Gives the base API URL

* competitions_endpoint Gives the API endpoint to fetch competitions

* fixtures_endpoint Gives the API endpoint to fetch fixtures

Connector object methods

get_competitions(season="", force_update=False)

Returns a DataSet object contains Competition objects. Accepts two optional arguments, season and force_update.
season should be a 4 digit integer representing an year (example 2017). If season is given, only the competitions in
the given season will be fetched. Once the values are fetched from API, the results will be cached and, the subsequent
calls to get_competitions method will return the cached results. Use force_update=True if you want to override the
cache and get fresh results from APIL.

get_fixtures(force_update=False)

Returns a DataSet object contains Fixture objects. Results will be cached after first API call to avoid unnecessary
APT hits. Use force_update=True if you want to override the cache.

1.2.2 DataSet Objects

Methods like ger_competitions, get_fixtures etc will return a DataSet object. DataSet is an iterable object. You can
use it like any other iterable such as list, tuple etc. Operations like using with a for loop, checking length using len,
subscripting, slicing, reversing etc are supported.

4 Chapter 1. Contents

Football Data Connector Documentation

1.2.3 Competition Objects

A Competition object represents a competition in football-data.org API.

Competition Object Attributes
e id
* caption
 current_match_day
* last_updated
* league
* number_of_games
e number_of teams

* year
Competition Object Methods
get_teams(force_update=False)

Returns a DataSet of Team objects. Use force_update=True to override cache.

get_fixtures(force_update=False)

Returns a DataSet of Fixture objects. Use force_update=True to override cache.

get_league_table(force_update=False)

Returns a DataSet of Standing objects. If league table is not available for a competition, an empty DataSet will be
returned. Use force_update=True to override cache.

1.2.4 Fixture Objects

A Fixture object represent a fixture in football-data.org APIL

Fixture Object Attributes

e date

e away_team_name
e home_team_name
* match_day

e odds

e result

1.2. User Guide 5

Football Data Connector Documentation

e status

1.2.5 Team Objects

A Team object represents a team in a competition.

Team Object Attributes

e code

e crest_url

¢ name

¢ short_name

* squad_market_value

Team Object Methods

get_fixtures(force_update=False)

Returns a DataSet of Fixture objects representing fixtures of the team for the current season.

get_players(force_update=False)

Returns a DataSet for Player objects representing players in the team.

1.2.6 Standing Objects

A Standing object represents the standing of a team in a competition.

Standing Object Attributes

* team_name

e crest_uri
 played_games
* wins

e draws

* losses

* home

e away

* points

* position

* goals

Chapter 1. Contents

Football Data Connector Documentation

* goals_aganist

 goal_difference

1.2.7 Player Objects

A Player object represents a player in a team.

Player Object Attributes

* name

* nationality

* position

e contract_until
e date_of birth
* jersey_number

¢ market_value

1.3 Caching and Lazy Evaluation

Values in a DataSet object are cached during the creation of DataSet. Subsequent calls to methods which returns a
DataSet will be returning the cached values. These methods will accept an optional parameter, force_update, which
if set to True, will force an API call again and fetch new values. You should force update only on situations where it
is absolutely necessary. Otherwise you may hit the API rate limit.

A DataSet will not perform any API calls during its creation. There will not be any values in a DataSet after its
creation. API call is executed only when an action which uses the data is executed such as using in a for loop,
checking the length of DataSet etc.

1.3. Caching and Lazy Evaluation 7

Football Data Connector Documentation

8 Chapter 1. Contents

CHAPTER 2

Indices and tables

* genindex
* modindex

e search

	Contents
	Installation
	User Guide
	Caching and Lazy Evaluation

	Indices and tables

