
fogflow tutorial
Release v3.2.8

Bin Cheng

Nov 29, 2022

INTRODUCTION

1 Motivation 3

2 High level view 5

3 Technical benefit 7

4 Differentiation 9

5 Quick Start 11

6 Hello World Example 15

7 Core concepts 21

8 Programming Model 27

9 API Walkthrough 61

10 System Setup 93

11 Monitoring 101

12 Security 107

13 Compile the source code 125

14 Test 127

15 Related publications 129

16 Troubleshooting 131

17 Contact 133

i

ii

fogflow tutorial, Release v3.2.8

FogFlow is an IoT edge computing framework that automatically orchestrates dynamic data processing flows over cloud
and edges based on various context, including:

• system context: the available system resources from all layers;

• data context: the registered metadata of all available data entities;

• usage context: the expected usage intention defined by users in terms QoS, latency, and bandwidth cost;

Thanks to its advanced intent-based programming model and context-driven service orchestration, FogFlow is able to
provide optimized QoS with minimal development effort and nearly zero operation overhead. Currently, FogFlow
has been applied into various business use cases in the areas of retails, smart cities, and smart industry.

Nowadays IoT infrastructure providers for smart city, smart industry, and connected vehicles are facing lots of com-
plexity and high operation cost to manage their geo-distributed infrastructures for supporting various IoT services,
especially those that require low latency. FogFlow is a distributed execution framework to dynamically orchestrate
IoT services over cloud and edges, in order to reduce internal bandwidth consumption and offer low latency and fast
response time.

By providing automated and optimized IoT service orchestration with high scalability and reliability, FogFlow helps
infrastructure providers to largely reduce their operation cost. FogFlow also provides an intent-based programming
model and the development tools for service developers and system integrators to quickly realize IoT services with low
development cost and fast time-to-market.

The overall architecture view of FogFlow system is illustrated in below Figure. Infrastructure resources are vertically
divided as cloud, edge nodes, sensor devices and Actuators. Computationally intensive tasks, such as data analytics can
be performed on the cloud servers, while some tasks, such as stream processing can be effectively moved to the edge
nodes (e.g., IoT gateways or endpoint devices with computation capabilities).Sensor shares observed data (observed
by different sensor devices) with broker present on edge nodes and edge nodes compute this data based on logic,then
sends response to Actuators.

INTRODUCTION 1

https://www.fiware.org/developers/catalogue/
https://stackoverflow.com/questions/tagged/fiware/

fogflow tutorial, Release v3.2.8

2 INTRODUCTION

CHAPTER

ONE

MOTIVATION

FogFlow is an IoT edge computing framework, which is designed to address the following concerns:

• The cost of a cloud-only solution is too high to run a large scale IoT system with >1000 geo-distributed devices

• Many IoT services require fast response time, such as <10ms end-to-end latency

• Service providers are facing huge complexity and cost to fast design and deploy their IoT services in a cloud-edge
environment - business demands are changing fast over time and service providers need to try out and release
any new services over their shared cloud-edge infrastructure at a fast speed

• Lack of programming model to fast design and deploy IoT services over geo-distributed ICT infrastructure

• Lack of interoperability and openness to share and reuse data and dervied results across various applications

With FogFlow, service providers can easily programme their IoT services with minimal development effort and also
they are able to release new IoT services with fast time-to-market. On the other hand, for IoT platform operators,
FogFlow can help them to seamlessly server latency-sensitive IoT services over cloud and edges with low operation
cost and optimized QoS.

3

fogflow tutorial, Release v3.2.8

4 Chapter 1. Motivation

CHAPTER

TWO

HIGH LEVEL VIEW

The unique feature of FogFlow is context-driven, meaning that FogFlow is able to orchestrate dynamic data processing
flows over cloud & edges based on three types of contexts, including:

• System context: available resources which are changing over time
The resources in a cloud-edge environment are geo-distributed in nature and they are dynamically chang-
ing over time; As compared to cloud computing, resources in such a cloud-edge environment are more
heterogenous and dynamical.

• Data context: the structure and registered metadata of available data, including both raw sensor data
and intermediate data

based on the standardized and unified data model and communicatino interface, namely NGSI, FogFlow
is able to see the content of all data generated by sensors and data processing tasks in the system, such as
data type, attributes, registered metadata, relations, and geo-locations;

• Usage context: high level intents defined by all different types of users (developers, service consumers,
data providers) to specify what they want to achieve.

For example, for service consumers, they can specify which type of results are expected under which type
of QoS within which geo-scope; for data providers, they can specify how their data should be utilized by
whom. In FogFlow, orchestration decisions are made to meet those user-definable objectives during the
runtime. We are working on more advanced algorithms to enable those new features.

By leveraging these three kinds of context, FogFlow is able to orchestrate IoT services in a more intelligent and auto-
matic manner.

5

fogflow tutorial, Release v3.2.8

6 Chapter 2. High level view

CHAPTER

THREE

TECHNICAL BENEFIT

As illustrated in the following figure, FogFlow provides a standard-based and data-centric edge programming model
for IoT service providers to easily and fast realize their services for various business demands. With its data-driven and
optimized service orchestration mechanism, FogFlow helps infrastructure providers to automatically and efficiently
manage thousands of cloud and edge nodes for city-scale IoT services to achieve optimized performance. In large scale
IoT projects like Smart Cities or Smart Factories, FogFlow can therefore save development and operation cost, improve
productivity, provide fast time-to-market, as well as increase scalability and reliability.

7

fogflow tutorial, Release v3.2.8

8 Chapter 3. Technical benefit

CHAPTER

FOUR

DIFFERENTIATION

As compared to the other existing IoT edge computing frameworks, such as EdgeX, Azure IoT Edge, Amazon Green-
grass. FogFlow has the following unique features illustrated in the following picture.

• The service orchestration in FogFlow is driven by context, rather than raw events or topics.
This feature is enabled by the design of introducing a new layer, namely IoT Discovery, which provides a
update summary of available entity data on all brokers. As compared to event or topic based orchestration,
our context-based orchestration in FogFlow is more flexible and more light-weight. This is because the
orchestration decisions in FogFlow can be made based on aggregated context, without reading throught all
involved data streams. On the other hand, FogFlow takes into account the high level intentions defined by
users to make optimized orchestration decisions for better QoS.

• The FogFlow services and applications are designed against a global view of all cloud nodes and edge
nodes, rather than from the perspective of each individual edge node.

This design principle can largely simplify the required development effort and management overhead, es-
pecially FogFlow can support well distributed applications which could run across all cloud nodes and
edge nodes seamlessly without knowing the details of how tasks coordination between cloud and edge or
between different edge nodes should be carried out. However, for most of the other IoT Edge Computing
frameworks, services or applications are designed for each edge and they are not really distributed services
or applications, because those services or applications are able to run either in the cloud or at some edge
but they are not able to run over cloud nodes and edge nodes in a distributed fasion.

More detailed differentiations are summarized in the following table.

9

fogflow tutorial, Release v3.2.8

10 Chapter 4. Differentiation

CHAPTER

FIVE

QUICK START

This is an one-page introductory tutorial to FogFlow. In the FIWARE-based architecture, FogFlow can be used to
dynamically trigger data processing functions between IoT devices and Orion Context Broker, for the purpose of trans-
forming and preprocessing raw data at edge nodes (e.g., IoT gateways or Raspberry Pis).

The tutorial introduces a typical FogFlow system setup with a simple example to do anomaly detection at edges for tem-
perature sensor data. It explains an example usecase implementation using FogFlow and FIWARE Orion in integration
with each other.

Every time to implement a usecase FogFlow creates some internal NGSI entities such as operators, Docker image, Fog
Function and service topology. So these entity data are very important for FogFlow system and these are need to be
stored somewhere. An entity data can not be stored in FogFlow memory because memory is volatile and it will lose
content when power is lost. To solve this issue FogFlow introduces Dgraph a persistent storage. The persistent storage
will store FogFlow entity data in the form of graph.

As shown in the following diagram, in this use case a connected temperature sensor sends an update message to the
FogFlow system, which triggers some running task instance of a pre-defined fog function to generate some analytics
result. The fog function is specified in advance via the FogFlow dashboard, however, it is triggerred only when the
temperature sensor joins the sytem. In a real distributed setup, the running task instance will be deployed at the edge
node closed to the temperature sensor. Once the generated analytics result is generated, it will be forwarded from the
FogFlow system to Orion Context Broker. This is because a subscription with Orion Context Broker as the reference
URL has been issued.

Here are the prerequisite commands for running FogFlow:

1. docker

11

https://dgraph.io/docs/get-started/

fogflow tutorial, Release v3.2.8

2. docker-compose

For ubuntu-16.04, you need to install docker-ce and docker-compose.

To install Docker CE, please refer to Install Docker CE, required version > 18.03.1-ce;

Important: please also allow your user to execute the Docker Command without Sudo

To install Docker Compose, please refer to Install Docker Compose, required version 18.03.1-ce, required version >
2.4.2

5.1 Fetch all required scripts

Download the docker-compose file and the configuration files as below.

the docker-compose file to start all FogFlow components on the cloud node
wget https://raw.githubusercontent.com/smartfog/fogflow/master/release/3.2.8/cloud/
→˓docker-compose.yml

the configuration file used by all FogFlow components
wget https://raw.githubusercontent.com/smartfog/fogflow/master/release/3.2.8/cloud/
→˓config.json

5.2 Change the IP configuration accordingly

You need to change the following IP addresses in config.json according to your own environment and also check if the
used port nubmers are blocked by your firewall.

• my_hostip: this is the IP of your host machine, which should be accessible for both the web browser on your
host machine and docker containers. Please DO NOT use “127.0.0.1” for this.

• site_id: each FogFlow node (either cloud node or edge node) requires to have a unique string-based ID to identify
itself in the system;

• physical_location: the geo-location of the FogFlow node;

• worker.capacity: it means the maximal number of docker containers that the FogFlow node can invoke;

Important: please DO NOT use “127.0.0.1” as the IP address of my_hostip, because it is only accessible to a running
task inside a docker container.

Firewall rules: To make FogFlow web portal accessible and for its proper functioning, the following ports must be
free and open over TCP in host machine.

Component Port

Discovery 8090
Broker 8070
Designer 8080
Nginx 80
Rabbitmq 5672
Task launched over any port internally

12 Chapter 5. Quick Start

https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-install-docker-compose-on-ubuntu-16-04

fogflow tutorial, Release v3.2.8

Note : Task Instance is launched over dynamically assigned port, which is not predefined. So, users can possibly
allow local ports using rule in his firewall. This will result in smooth functioning of Task Instances.

Above mentioned port number(s) are default port number(s). If user needs to change the port number(s), please
make sure the change is consistence in all the configuration files named as “config.json”.

Mac Users: if you like to test FogFlow on your Macbook, please install Docker Desktop and also use
“host.docker.internal” as my_hostip in the configuration file.

5.3 Start all Fogflow components

Pull the docker images of all FogFlow components and start the FogFlow system

#if you already download the docker images of FogFlow components, this command can fetch␣
→˓the updated images
docker-compose pull

docker-compose up -d

5.4 Validate your setup

There are two ways to check if the FogFlow cloud node is started correctly:

• Check all the containers are Up and Running using “docker ps -a”

docker-compose ps

795e6afe2857 nginx:latest "/docker-entrypoint...." About a minute ago ␣
→˓Up About a minute 0.0.0.0:80->80/tcp ␣
→˓ fogflow_nginx_1
33aa34869968 fogflow/worker:3.2.8 "/worker" About a minute ago ␣
→˓Up About a minute ␣
→˓ fogflow_cloud_worker_1
e4055b5cdfe5 fogflow/master:3.2.8 "/master" About a minute ago ␣
→˓Up About a minute 0.0.0.0:1060->1060/tcp ␣
→˓ fogflow_master_1
cdf8d4068959 fogflow/designer:3.2.8 "node main.js" About a minute ago ␣
→˓Up About a minute 0.0.0.0:1030->1030/tcp, 0.0.0.0:8080->8080/tcp ␣
→˓ fogflow_designer_1
56daf7f078a1 fogflow/broker:3.2.8 "/broker" About a minute ago ␣
→˓Up About a minute 0.0.0.0:8070->8070/tcp ␣
→˓ fogflow_cloud_broker_1
51901ce6ee5f fogflow/discovery:3.2.8 "/discovery" About a minute ago ␣
→˓Up About a minute 0.0.0.0:8090->8090/tcp ␣
→˓ fogflow_discovery_1
eb31cd255fde rabbitmq:3 "docker-entrypoint.s..." About a minute ago ␣
→˓Up About a minute 4369/tcp, 5671/tcp, 15691-15692/tcp, 25672/tcp, 0.0.0.0:5672->5672/
→˓tcp fogflow_rabbitmq_1

5.3. Start all Fogflow components 13

fogflow tutorial, Release v3.2.8

Important: if you see any container is missing, you can run “docker ps -a” to check if any FogFlow component is
terminated with some problem. If there is, you can further check its output log by running “docker logs [container ID]”

• Check the system status from the FogFlow DashBoard

You can open the FogFlow dashboard in your web browser to see the current system status via the URL: http:
//<my_hostip>/index.html

Important: If the FogFlow cloud node is behind a gateway, you need to create a mapping from the gateway IP to the
my_hostip and then access the FogFlow dashboard via the gateway IP; If the FogFlow cloud node is a VM in a public
cloud like Azure Cloud, Google Cloud, or Amazon Cloud, you need to access the FogFlow dashboard via the public
IP of your VM;

Once you are able to access the FogFlow dashboard, you can see the following web page

14 Chapter 5. Quick Start

http:/
http:/

CHAPTER

SIX

HELLO WORLD EXAMPLE

Once the FogFlow cloud node is set up, you can try out some existing IoT services without running any FogFlow edge
node. For example, you can try out a simple fog function as below.

6.1 Initialize all defined services with three clicks

• Click “Operator Registry” in the top navigator bar to triger the initialization of pre-defined operators.

After you first click “Operator Registry”, a list of pre-defined operators will be registered in the FogFlow system. With
a second click, you can see the refreshed list as shown in the following figure.

• Click “Service Topology” in the top navigator bar to triger the initialization of pre-defined service topologies.

After you first click “Service Topology”, a list of pre-defined topologies will be registered in the FogFlow system. With
a second click, you can see the refreshed list as shown in the following figure.

• Click “Fog Function” in the top navigator bar to triger the initialization of pre-defined fog functions.

After you first click “Fog Function”, a list of pre-defined functions will be registered in the FogFlow system. With a
second click, you can see the refreshed list as shown in the following figure.

15

fogflow tutorial, Release v3.2.8

16 Chapter 6. Hello World Example

fogflow tutorial, Release v3.2.8

6.2 Simulate an IoT device to trigger the Fog Function

There are two ways to trigger the fog function:

1. Create a “Temperature” sensor entity via the FogFlow dashboard

You can register a device entity via the device registration page: “System Status” -> “Device” -> “Add”. Then you
can create a “Temperature” sensor entity by filling the following element: - Device ID: to specify a unique entity ID -
Device Type: use “Temperature” as the entity type - Location: select a location on the map

2. Send an NGSI entity update to create the “Temperature” sensor entity

Send a curl request to the FogFlow broker for entity update:

curl -iX POST \
'http://my_hostip/ngsi10/updateContext' \
-H 'Content-Type: application/json' \
-d '

{
"contextElements": [

{
"entityId": {

"id": "Device.Temp001",
"type": "Temperature",
"isPattern": false
},

"attributes": [
{
"name": "temperature",
"type": "float",
"value": 73
},
{
"name": "pressure",

(continues on next page)

6.2. Simulate an IoT device to trigger the Fog Function 17

fogflow tutorial, Release v3.2.8

(continued from previous page)

"type": "float",
"value": 44
}

],
"domainMetadata": [

{
"name": "location",
"type": "point",
"value": {
"latitude": -33.1,
"longitude": -1.1
}}

]
}

],
"updateAction": "UPDATE"

}'

6.3 Check if the fog function is triggered

Check if a task is created under “Task” in System Management.**

Check if a Stream is created under “Stream” in System Management.**

In this part of the document a conceptual overview of FogFlow and how to use FogFlow in developing any instance is
being covered. FogFlow is a cloud and edge environment to orchestrate dynamic NGSI-based (Next Generation Service
Interface - based) data processing flows on-demand between producers and consumers for providing timely results to
make fast actions. A context producer will be a sensor based device whereas a consumer is an Actuator device that will
recieve command to perform some action.

18 Chapter 6. Hello World Example

https://knowage.readthedocs.io/en/6.1.1/user/NGSI/README/index.html

fogflow tutorial, Release v3.2.8

FogFlow can carry out IoT service orchestration decisions in a decentralized and autonomous manner. This means each
FogFlow edge node can make its own decisions only based on a local context view. This way the majority of workloads
can be directly handled at edges without always relying on the central cloud. With this “cloudless” approach, FogFlow
can not only provide fast response time, but also achieve high scalability and reliability.

To define and trigger FogFlow based instances refer Intent based programming model part of this document.

6.3. Check if the fog function is triggered 19

https://fogflow.readthedocs.io/en/latest/intent_based_program.html

fogflow tutorial, Release v3.2.8

20 Chapter 6. Hello World Example

CHAPTER

SEVEN

CORE CONCEPTS

7.1 Operator

In FogFlow an operator presents a type of data processing unit, which receives certain input streams as NGSI10 notify
messages via a listening port, processes the received data, generates certain results, and publishes the generated results
as NGSI10 updates.

The implementation of an operator is associated with at least one docker images. To support various hardware archi-
tectures (e.g., X86 and ARM for 64bits or 32 bits), the same operator can be associated with multiple docker images.

7.2 Task

A task is a data structure to represent a logic data processing unit within a service topology. Each task is associated
with an operator. A task is defined with the following properties:

• name: a unique name to present this task

• operator: the name of its associated operator

• groupBy: the granularity to control the unit of its task instances, which is used by service orchestrator to deter-
mine how many task instances must be created

• input_streams: the list of its selected input streams, each of which is identified by an entity type

• output_streams: the list of its generated output streams, each of which is identified by an entity type

In FogFlow, each input/output stream is represented as a type of NGSI context entities, which are usually generated
and updated by either an endpoint device or a data processing task.

During the runtime, multiple task instances can be created for the same task, according to its granularity defined by the
groupBy property. In order to determine which input stream goes to which task instances, the following two properties
are introduced to specify the input streams of tasks:

• Shuffling: associated with each type of input stream for a task; its value can be either broadcast or unicast.

– broadcast: the selected input streams should be repeatedly assigned to every task instance of this operator

– unicast: each of the selected input streams should be assigned to a specific task instance only once

• Scoped: determines whether the geo-scope in the requirement should be applied to select the input streams; its
value can be either true or false.

21

fogflow tutorial, Release v3.2.8

7.3 Task Instance

During the runtime, a task is configured by FogFlow with its input data and specified output type and then the configured
task will be launched as a task instance, running in a docker container. Currently, each task instance is deployed in a
dedicated docker container, either in the cloud or at an edge node.

7.4 IoT Service

The three key elements to program an IoT service is illustrated via below figure.

In FogFlow several operators form a graph which is defined as a service topology. Each operator in the service topology
is annotated with its inputs and outputs, which indicate their dependency to the other tasks in the same topology. Service
topology can easily compose different operators to form their service logic in just a few minutes. After that, during
the runtime data processing flows can be automatically triggerred based on the high level data usage intent defined by
service users. Service users can be either data producers or result consumers.

7.5 Service Topology

Each IoT service is described by a service topology, which is a directed acyclic graph (DAG) to link multiple operators
together according to their data dependency. For example, when a service topology is used to specify the service
topology, the following information will be included.

• topology name: the unique name of the topology

• service description: some text to describe what this service is about

• priority: define the priority level of all tasks in the topology, which will be utilized by edge nodes to decide how
resource should be assigned to tasks

• resource usage: define if the tasks in this topology can use the resources on edge nodes in an exclusive way,
meaning that not sharing resources with any task from the other topologies

22 Chapter 7. Core concepts

fogflow tutorial, Release v3.2.8

Currently, FogFlow provides a graphical editor to allow developers to easily define and annotate their service topology
or fog function during the design phrase.

7.6 Service Intent

A service intent defines how to trigger an existing service topology. It basically consists of these properties as illustrated
in below figure.

• Serivce topology specifies the computation logic for which the intent object is triggered.

• Geoscope is defined a geographical location where input streams should be selected. Geoscope can be selected
as global value as well as can be set custom geoscopes.

• Service Level Object (SLO) is the objective of maximum throughput, minimum latency and minimum cost can
be set for task assignment at workers. However, this feature is not fully supported yet, so User can ignore this. It
can be set as “None” for now.

• Resource Usage defines how a topology can use resources on edge nodes. It can either exlusive or inclusive. In
an exclusive way means the topology will not share the resources with any task from other topologies. Whereas
an inclusive topology will share the resources with any task from other topologies.

7.6. Service Intent 23

fogflow tutorial, Release v3.2.8

7.7 From Service Topology to Actual Execution

On receiving a requirement, Topology Master creates a dataflow execution graph and then deploys them over the cloud
and edges. The main procedure is illustrated by the following figure, including two major steps.

• from service topology to execution plan: done by the task generation algorithm of Topology Master.
The generated execution plan includes: 1) which part of service topology is triggered; 2) how many in-
stances need to be created for each triggered task; 3) and how each task instance should be configured with
its input streams and output streams.

• from execution plan to deployment plan: done by the task assignment algorithm of Topology Master.
The generated deployment plan determines which task instance should be assigned to which worker (in the
cloud or at edges), according to certain optimization objectives. Currently, the task assignment in FogFlow
is optimized to reduce across-node data traffic without overloading any edge node.

24 Chapter 7. Core concepts

fogflow tutorial, Release v3.2.8

7.8 Fog Function

Currently, FogFlow can support serverless fog computing by providing so-called Fog Function, which is a common easy
case of the intent-based programming model. As illustrated in the figure below, Fog Function represents a common
special case of the generic intent-based programming model in FogFlow, meaning that a fog function is associated with
a simple service topology that includes only one task (a task is mapped to an operator in FogFlow) and an default intent
that takes “global” as its geoscope. Therefore, when a fog function is submitted, its service topology will be triggered
immediately once its required input data is available.

7.8. Fog Function 25

fogflow tutorial, Release v3.2.8

26 Chapter 7. Core concepts

CHAPTER

EIGHT

PROGRAMMING MODEL

Currently the following two programing models are provided by FogFlow to support different types of workload pat-
terns.

1. Fog Function

2. Service Topology

8.1 Fog Function

8.1.1 Define and trigger a fog function

FogFlow enables serverless edge computing, meaning that developers can define and submit a so-called fog function
and then the rest will be done by FogFlow automatically, including:

• triggering the submitted fog function when its input data are available

• deciding how many instances to be created according to its defined granularity

• deciding where to deploy the created instances

The instances in the above text refer to the task instances which run a processing logic within them and this processing
logic is given by operators in fogflow. They must be registered beforehand by the users. Implementation of an example
operator is given in the next sections.

8.1.2 Register task operators

Operator code must be in the form of a docker image and must be available on docker hub. Registration of an operator
in FogFlow can be done in one of the following two ways.

Note: Please notice that each operator must have a unique name but the same operator can be associated with multiple
docker images, each of which is for one specific hardware or operating system but for implementing the same data
processing logic. During the runtime, FogFlow will select a proper docker image to run a scheduled task on an edge
node, based on the execution environment of the edge node.

27

fogflow tutorial, Release v3.2.8

8.1.3 Register it via FogFlow Task Designer

There are two steps to register an operator in Fogflow.

Register an Operator to define what would be the name of Operator and what input parameters it would need. Here
in this context, an operator is nothing but a named element having some parameters. The following picture shows the
list of all registered operators and their parameter count.

After clicking the “register” button, a design area can be seen below and an operator can be created and parameters
can be added to it. To define the port for the operator application, use “service_port” and give a valid port number as
its value. The application would be accessible to the outer world through this port.

Register a Docker Image and choose Operator to define the docker image and associate an already registered Oper-
ator with it.

The following picture shows the list of all registered docker images and the key information of each image.

28 Chapter 8. Programming Model

fogflow tutorial, Release v3.2.8

After clicking the “register” button, a form can be seen as below. Please fill out the required information and click the
“register” button to finish the registration. The form is explained as the following.

• Image: the name of your operator docker image

• Tag: the tag is used to publish the operator docker image; by default it is “latest”

• Hardware Type: the hardware type that the docker image supports, including X86 or ARM (e.g. Raspberry Pi)

• OS Type: the operating system type that the docker image supports; currently this is only limited to Linux

• Operator: the operator name, which must be unique and will be used when defining a service topology

• Prefetched: if this is checked, that means all edge nodes will start to fetch this docker image in advance; otherwise,
the operator docker image is fetched on demand, only when edge nodes need to run a scheduled task associated
with this operator.

Important: Please notice that the name of the docker image must be consistent with the one that is published to Docker
Hub. By default, FogFlow will fetch the required docker images from Docker Hub using the name that is registered
here for an operator.

8.1. Fog Function 29

https://github.com/smartfog/fogflow/tree/master/application/operator/anomaly
https://github.com/smartfog/fogflow/tree/master/application/operator/anomaly

fogflow tutorial, Release v3.2.8

8.1.4 Register it programmatically by sending a NGSI update

An operator can also be registered by sending docker image for a constructed NGSI update message to the IoT Broker
deployed in the cloud.

Here are the Curl and the Javascript-based code examples to register an operator and a docker image for that operator.

Note: In the Javascript code example, Javascript-based library is used to interact with FogFlow IoT Broker. It can
be find out in library from the github code repository (designer/public/lib/ngsi). It shall be included in ngsiclient.js of
web page.

Note: The Curl case assumes that the cloud IoT Broker is running on localhost on port 8070.

Curl

Javascript

curl -iX POST \
'http://localhost:8070/ngsi10/updateContext' \

-H 'Content-Type: application/json' \
-d '
{

"contextElements": [
{

"entityId":{
"id":"counter",
"type":"Operator"

},
(continues on next page)

30 Chapter 8. Programming Model

fogflow tutorial, Release v3.2.8

(continued from previous page)

"attributes":[
{

"name":"designboard",
"type":"object",
"value":{
}

},
{

"name":"operator",
"type":"object",
"value":{

"description":"",
"name":"counter",
"parameters":[

]
}

}
],
"domainMetadata":[
{

"name":"location",
"type":"global",
"value":"global"

}
]

},
{

"entityId":{
"id":"fogflow/counter.latest",
"type":"DockerImage"

},
"attributes":[

{
"name":"image",
"type":"string",
"value":"fogflow/counter"

},
{

"name":"tag",
"type":"string",
"value":"latest"

},
{

"name":"hwType",
"type":"string",
"value":"X86"

},
{

"name":"osType",
"type":"string",
"value":"Linux"

(continues on next page)

8.1. Fog Function 31

fogflow tutorial, Release v3.2.8

(continued from previous page)

},
{

"name":"operator",
"type":"string",
"value":"counter"

},
{

"name":"prefetched",
"type":"boolean",
"value":false

}
],
"domainMetadata":[

{
"name":"operator",
"type":"string",
"value":"counter"

},
{

"name":"location",
"type":"global",
"value":"global"

}
]

}
],

"updateAction": "UPDATE"
}'

name = "counter"

//register a new operator
var newOperatorObject = {};

newOperatorObject.entityId = {
id : name,
type: 'Operator',
isPattern: false

};

newOperatorObject.attributes = [];

newOperatorObject.attributes.designboard = {type: 'object', value: {}};

var operatorValue = {}
operatorValue = {description: "Description here...", name: name, parameters: []};
newOperatorObject.attributes.operator = {type: 'object', value: operatorValue};

newOperatorObject.metadata = [];
newOperatorObject.metadata.location = {type: 'global', value: 'global'};

// assume the config.brokerURL is the IP of cloud IoT Broker
(continues on next page)

32 Chapter 8. Programming Model

fogflow tutorial, Release v3.2.8

(continued from previous page)

var client = new NGSI10Client(config.brokerURL);
client.updateContext(newOperatorObject).then(function(data) {

console.log(data);
}).catch(function(error) {

console.log('failed to register the new Operator object');
});

image = {}

image = {
name: "fogflow/counter",
tag: "latest",
hwType: "X86",
osType: "Linux",
operator: "counter",
prefetched: false

};

newImageObject = {};

newImageObject.entityId = {
id : image.name + '.' + image.tag,
type: 'DockerImage',
isPattern: false

};

newImageObject.attributes = [];
newImageObject.attributes.image = {type: 'string', value: image.name};
newImageObject.attributes.tag = {type: 'string', value: image.tag};
newImageObject.attributes.hwType = {type: 'string', value: image.hwType};
newImageObject.attributes.osType = {type: 'string', value: image.osType};
newImageObject.attributes.operator = {type: 'string', value: image.operator};
newImageObject.attributes.prefetched = {type: 'boolean', value: image.prefetched};

newImageObject.metadata = [];
newImageObject.metadata.operator = {type: 'string', value: image.operator};
newImageObject.metadata.location = {type: 'global', value: 'global'};

client.updateContext(newImageObject).then(function(data) {
console.log(data);

}).catch(function(error) {
console.log('failed to register the new Docker Image object');

});

It is recommended to use fogflow dashboard to create an operator with parameters. However, if the users wish to use
curl, then they can refer the following for the example operator registration with parameters shown in the above image.
Afterwards, users can register a docker image that uses this operator.

The x and y variables here are simply the coordinates of designer board. If they are not given by user, by default, all
the element blocks will be placed at origin of the plane.

curl -iX POST \
'http://localhost:8070/ngsi10/updateContext' \

(continues on next page)

8.1. Fog Function 33

fogflow tutorial, Release v3.2.8

(continued from previous page)

-H 'Content-Type: application/json' \
-d '
{

"contextElements": [
{

"entityId":{
"id":"iota",
"type":"Operator"

},
"attributes":[

{
"name":"designboard",
"type":"object",
"value":{

"blocks":[
{

"id":1,
"module":null,
"type":"Parameter",
"values":{

"name":"service_port",
"values":[

"4041"
]

},
"x":-425,
"y":-158

},
{

"id":2,
"module":null,
"type":"Parameter",
"values":{
"name":"service_port",
"values":[

"7896"
]

},
"x":-393,
"y":-51

},
{

"id":3,
"module":null,
"type":"Operator",
"values":{

"description":"",
"name":"iota"

},
"x":-186,
"y":-69

}

(continues on next page)

34 Chapter 8. Programming Model

fogflow tutorial, Release v3.2.8

(continued from previous page)

],
"edges":[

{
"block1":2,
"block2":3,
"connector1":[

"parameter",
"output"

],
"connector2":[

"parameters",
"input"

],
"id":1

},
{

"block1":1,
"block2":3,
"connector1":[

"parameter",
"output"

],
"connector2":[

"parameters",
"input"

],
"id":2

}
]

}
},
{

"name":"operator",
"type":"object",
"value":{

"description":"",
"name":"iota",
"parameters":[

{
"name":"service_port",
"values":[

"7896"
]

},
{

"name":"service_port",
"values":[

"4041"
]

}
]

}

(continues on next page)

8.1. Fog Function 35

fogflow tutorial, Release v3.2.8

(continued from previous page)

}
],
"domainMetadata":[

{
"name":"location",
"type":"global",
"value":"global"

}
]

}
],

"updateAction": "UPDATE"
}'

8.1.5 Define a “Dummy” fog function

The following steps show how to define and test a simple ‘dummy’ fog function using the web portal provided by
FogFlow Task Designer. The “dummy” operator is already registered in Fogflow by default.

8.1.6 create a fog function from the FogFlow editor

A menu will pop up whenever click a right mouse on the task design board.

The displayed menu includes the following items:

• Task: is used to define the fog function name and the processing logic (or operator). A task has input and output
streams.

• EntityStream: is the input data element which can be linked with a fog function Task as its input data stream.

Click “Task” from the popup menu, a Task element will be placed on the design board, as shown below.

36 Chapter 8. Programming Model

fogflow tutorial, Release v3.2.8

Start task configuration by clicking the configuration button on the top-right corner, as illustrated in the following figure.
Please specify the name of the Task and choose an operator out of a list of some pre-registered operators.

Please click “EntityStream” from the popup menu to place an “EntityStream” element on the design board.

8.1. Fog Function 37

fogflow tutorial, Release v3.2.8

It contains the following things:

• Selected Type: is used to define the entity type of input stream whose availability will trigger the fog function.

• Selected Attributes: for the selected entity type, which entity attributes are required by your fog function; “all”
means to get all entity attributes.

• Group By: should be one of the selected entity attributes, which defines the granularity of this fog function.

• Scoped: tells if the Entity data are location-specific or not. True indicates that location-specific data are recorded
in the Entity and False is used in case of broadcasted data, for example, some rule or threshold data that holds
true for all locations, not for a specific location.

Note: granularity determines the number of instances for this fog function. In principle, the number of task instances
for the defined fog function will be equal to the total number of unique values of the selected entity attributes, for the
available input data. It also means, each instance will be assigned to handle all input entities with a specific attribute
value.

In this example, the granularity is defined by “id”, meaning that FogFlow will create a new task instance for each
individual entity ID.

Configure the EntityStream by clicking on its configuration button as shown below. In this example, we choose “Tem-
perature” as the entity type of input data for the “dummy” fog function.

38 Chapter 8. Programming Model

fogflow tutorial, Release v3.2.8

There can be multiple EntityStreams for a Task and they must be connected to the Task as shown here.

8.1. Fog Function 39

fogflow tutorial, Release v3.2.8

8.1.7 provide the code of your own function

Currently FogFlow allows developers to specify their own function code inside a registered operator. For a sample
operator, refer the .

exports.handler = function(contextEntity, publish, query, subscribe) {
console.log("enter into the user-defined fog function");

var entityID = contextEntity.entityId.id;

if (contextEntity == null) {
return;

}
if (contextEntity.attributes == null) {

return;
}

var updateEntity = {};
updateEntity.entityId = {

id: "Stream.result." + entityID,
type: 'result',
isPattern: false

};
updateEntity.attributes = {};
updateEntity.attributes.city = {

type: 'string',
value: 'Heidelberg'

};

updateEntity.metadata = {};
updateEntity.metadata.location = {

type: 'point',
value: {

'latitude': 33.0,
'longitude': -1.0

}
};

console.log("publish: ", updateEntity);
publish(updateEntity);

};

Above javascript code example can be taken as the implementation of fog function. This example fog function simple
writes a fixed entity by calling the “publish” callback function.

The input parameters of a fog function are predefined and fixed, including:

• contextEntity: representing the received entity data

• publish: the callback function to publish your generated result back to the FogFlow system

• query: optional, this is used only when your own internal function logic needs to query some extra entity data
from the FogFlow context management system.

• subscribe: optional, this is used only when your own internal function logic needs to subscribe some extra entity
data from the FogFlow context management system.

40 Chapter 8. Programming Model

fogflow tutorial, Release v3.2.8

Important: For the callback functions query and subscribe, “extra” means any entity data that are not defined as the
inputs in the annotation of your fog function.

A Javascript-based template of the implementation of fog functions is provided in the FogFlow repository as well.
Please refer to Javascript-based template for fog function

Templates for Java and python are also given in the repository.

Here are some examples to show how these three call back functions can be used.

• example usage of publish:

var updateEntity = {};
updateEntity.entityId = {

id: "Stream.Temperature.0001",
type: 'Temperature',
isPattern: false

};
updateEntity.attributes = {};
updateEntity.attributes.city = {type: 'string', value: 'Heidelberg'};

updateEntity.metadata = {};
updateEntity.metadata.location = {

type: 'point',
value: {'latitude': 33.0, 'longitude': -1.0}

};

publish(updateEntity);

• example usage of query:

var queryReq = {}
queryReq.entities = [{type:'Temperature', isPattern: true}];
var handleQueryResult = function(entityList) {

for(var i=0; i<entityList.length; i++) {
var entity = entityList[i];
console.log(entity);

}
}

query(queryReq, handleQueryResult);

• example usage of subscribe:

var subscribeCtxReq = {};
subscribeCtxReq.entities = [{type: 'Temperature', isPattern: true}];
subscribeCtxReq.attributes = ['avg'];

subscribe(subscribeCtxReq);

8.1. Fog Function 41

https://github.com/smartfog/fogflow/tree/master/application/template/javascript

fogflow tutorial, Release v3.2.8

8.1.8 submit fog function

After clicking the “Submit” button, the annotated fog function will be submitted to FogFlow.

8.1.9 Trigger “dummy” fog function

The defined “dummy” fog function is triggered only when its required input data are available. With the following
command, you can create a “Temperature” sensor entity to trigger the function. Please fill out the following required
information:

• Device ID: to specify a unique entity ID

• Device Type: use “Temperature” as the entity type

• Location: to place a location on the map

42 Chapter 8. Programming Model

fogflow tutorial, Release v3.2.8

Once the device profile is registered, a new “Temperature” sensor entity will be created and it will trigger the “dummy”
fog function automatically.

The other way to trigger the fog function is to send a NGSI entity update to create the “Temperature” sensor entity.
Following command can be executed to issue a POST request to the FogFlow broker.

curl -iX POST \
'http://localhost:8080/ngsi10/updateContext' \
-H 'Content-Type: application/json' \
-d '

{
"contextElements": [

{
"entityId": {

"id": "Device.temp001",
"type": "Temperature",
"isPattern": false

},
"attributes": [
{
"name": "temp",
"type": "integer",

(continues on next page)

8.1. Fog Function 43

fogflow tutorial, Release v3.2.8

(continued from previous page)

"value": 10
}
],
"domainMetadata": [
{

"name": "location",
"type": "point",
"value": {

"latitude": 49.406393,
"longitude": 8.684208

}
}
]

}
],
"updateAction": "UPDATE"

}'

Check whether the fog function is triggered or not in the following way.

• check the task instance of this fog function, as shown in the following picture

• check the result generated by its running task instance, as shown in the following picture

8.2 Service Topology

8.2.1 Define and trigger a service topology

In FogFlow a service topology is defined as a graph of several operators. Each operator in the service topology is
annotated with its inputs and outputs, which indicate their dependency to the other tasks in the same topology. Different
from fog functions, a service topology is triggerred on demand by a customized “intent” object.

With a simple example we explain how developers can define and test a service topology in the following section.

44 Chapter 8. Programming Model

fogflow tutorial, Release v3.2.8

8.2.2 Use case on anomaly detection

This use case study is for retail stores to detect abnormal energy consumption in real-time. As illustrated in the following
picture, a retail company has a large number of shops distributed in different locations. For each shop, a Raspberry Pi
device (edge node) is deployed to monitor the power consumption from all PowerPanels in the shop. Once an abnormal
power usage is detected on the edge, the alarm mechanism in the shop is triggered to inform the shop owner. Moreover,
the detected event is reported to the cloud for information aggregation. The aggregated information is then presented
to the system operator via a dashboard service. In addition, the system operator can dynamically update the rule for
anomaly detection.

• Anomaly Detector: this operator is to detect anomaly events based on the collected data from power panels in a
retail store. It has two types of inputs:

– detection rules, which are provided and updated by the operator; The detection rules input stream type is
associated with broadcast, meaning that the rules are needed by all task instances of this operator. The
granularity of this operator is based on shopID, meaning that a dedicated task instance will be created and
configured for each shop

– sensor data from power panel

• Counter: this operator is to count the total number of anomaly events for all shops in each city.
Therefore, its task granularity is by city. Its input stream type is the output stream type of the previous
operator (Anomaly Detector).

There are two types of result consumers:

(1) a dashboard service in the cloud, which subscribes to the final aggregation results generated by the counter
operator for the global scope;

(2) the alarm in each shop, which subscribes to the anomaly events generated by the Anomaly Detector task on the
local edge node in the retail store.

8.2. Service Topology 45

fogflow tutorial, Release v3.2.8

46 Chapter 8. Programming Model

fogflow tutorial, Release v3.2.8

8.2.3 Implement your operator functions required in your service topology

Before you can define the designed service topology, all operators used in your service topology must be provided
by you or the other provider in the FogFlow system. For this specific use case, we need to implement two operators:
anomaly_detector and counter. Please refer to the examples provided in our code repository.

• anomaly_detector

• counter

8.2.4 Specify a service topology

Assume that the tasks to be used in your service topology have been implemented and registered, you can have two
ways to specify your service topology.

8.2.5 using FogFlow Topology Editor

The first way is to use the FogFlow editor to specify a service topology.

As seen in the picture, the following important information must be provided.

1. define topology profile, including

• topology name: the unique name of your topology

• service description: some text to describe what this service is about

2. draw the graph of data processing flows within the service topology
With a right click at some place of the design board, you will see a menu pops up and then you can start to
choose either task or input streams or shuffle to define your data processing flows according to the design
you had in mind.

8.2. Service Topology 47

https://github.com/smartfog/fogflow/tree/master/application/operator/anomaly
https://github.com/smartfog/fogflow/tree/master/application/operator/counter

fogflow tutorial, Release v3.2.8

3. define the profile for each element in the data flow, including
As shown in the above picture, you can start to specify the profile of each element in the data processing
flow by clicking the configuration button.

The following information is required to specify a task profile.

• name: the name of the task

• operator: the name of the operator that implements the data processing logic of this task; please register
your operator beforehand so that it can be shown from the list

• entity type of output streams: to specify the entity type of the produced output stream.

The following information is required to specify an EntityStream Profile.

• SelectedType: is used to define what Entity Type will be chosen by the task as its Input Stream

• SelectedAttributes: is used to define what attribute (or attributes) of the Selected Entity Type will be
considered for changing the state of a task.

• Groupby: to determine how many instances of this task should be created on the fly; currently including
the following cases

– if there is only one instance to be created for this task, please use “groupby” = “all”

– if you need to create one instance for each entity ID of the input streams, please user “groupby” =
“entityID”

– if you need to create one instance for each unique value of some specific context metadata, please
use the name of this registered context metadata

• Scoped: tells if the Entity data are location-specific or not. True indicates that location-specific data
are recorded in the Entity and False is used in case of broadcasted data, for example, some rule or
threshold data that holds true for all locations, not for a specific location.

Shuffling element serves as a connector between two tasks such that output of a task is the input for the
shuffle element and same is forwarded by Shuffle to another task (or tasks) as input.

8.2.6 using NGSI Update to create it

Another way is to register a service topology by sending a constructed NGSI update message to the IoT Broker deployed
in the cloud.

Here are the Curl and the Javascript-based code to register the service topology that is given in the above image. Users
can take reference of the above service topology, i.e., anomaly detection to understand this code.

Note: In the Javascript code example, we use the Javascript-based library to interact with FogFlow IoT Broker. You
can find out the library from the github code repository (designer/public/lib/ngsi). You must include ngsiclient.js into
your web page.

Note: The Curl case assumes that the cloud IoT Broker is running on localhost on port 8070.

curl

JavaScript

48 Chapter 8. Programming Model

fogflow tutorial, Release v3.2.8

curl -iX POST \
'http://localhost:8070/ngsi10/updateContext' \
-H 'Content-Type: application/json' \
-d '
{

"contextElements": [
{

"entityId":{
"id":"Topology.anomaly-detection",
"type":"Topology"

},
"attributes":[
{

"name":"status",
"type":"string",
"value":"enabled"

},
{

"name":"designboard",
"type":"object",
"value":{

"blocks":[
{

"id":1,
"module":null,
"type":"Task",
"values":{

"name":"Counting",
"operator":"counter",
"outputs":[

"Stat"
]

},
"x":202,
"y":-146

},
{

"id":2,
"module":null,
"type":"Task",
"values":{

"name":"Detector",
"operator":"anomaly",
"outputs":[

"Anomaly"
]

},
"x":-194,
"y":-134

},
{

"id":3,
"module":null,

(continues on next page)

8.2. Service Topology 49

fogflow tutorial, Release v3.2.8

(continued from previous page)

"type":"Shuffle",
"values":{

"groupby":"ALL",
"selectedattributes":[

"all"
]

},
"x":4,
"y":-18

},
{

"id":4,
"module":null,
"type":"EntityStream",
"values":{

"groupby":"EntityID",
"scoped":true,
"selectedattributes":[

"all"
],
"selectedtype":"PowerPanel"

},
"x":-447,
"y":-179

},
{

"id":5,
"module":null,
"type":"EntityStream",
"values":{

"groupby":"ALL",
"scoped":false,
"selectedattributes":[

"all"
],
"selectedtype":"Rule"

},
"x":-438,
"y":-5

}
],
"edges":[
{

"block1":3,
"block2":1,
"connector1":[

"stream",
"output"

],
"connector2":[

"streams",
"input"

(continues on next page)

50 Chapter 8. Programming Model

fogflow tutorial, Release v3.2.8

(continued from previous page)

],
"id":2

},
{

"block1":2,
"block2":3,
"connector1":[

"outputs",
"output",
0

],
"connector2":[

"in",
"input"

],
"id":3

},
{

"block1":4,
"block2":2,
"connector1":[

"stream",
"output"

],
"connector2":[

"streams",
"input"

],
"id":4

},
{

"block1":5,
"block2":2,
"connector1":[

"stream",
"output"

],
"connector2":[

"streams",
"input"
],

"id":5
}
]

}
},
{

"name":"template",
"type":"object",
"value":{

"description":"detect anomaly events in shops",
"name":"anomaly-detection",

(continues on next page)

8.2. Service Topology 51

fogflow tutorial, Release v3.2.8

(continued from previous page)

"tasks":[
{

"input_streams":[
{

"groupby":"ALL",
"scoped":true,
"selected_attributes":[

],
"selected_type":"Anomaly"

}
],
"name":"Counting",
"operator":"counter",
"output_streams":[
{

"entity_type":"Stat"
}
]

},
{

"input_streams":[
{

"groupby":"EntityID",
"scoped":true,
"selected_attributes":[

],
"selected_type":"PowerPanel"

},
{

"groupby":"ALL",
"scoped":false,
"selected_attributes":[

],
"selected_type":"Rule"

}
],
"name":"Detector",
"operator":"anomaly",
"output_streams":[
{

"entity_type":"Anomaly"
}
]

}
]

}
}
],
"domainMetadata":[

(continues on next page)

52 Chapter 8. Programming Model

fogflow tutorial, Release v3.2.8

(continued from previous page)

{
"name":"location",
"type":"global",
"value":"global"

}
]

}
],
"updateAction": "UPDATE"

}'

// the json object that represent the structure of your service topology
// when using the FogFlow topology editor, this is generated by the editor
var topology = {

"name":"template",
"type":"object",
"value":{

"description":"detect anomaly events in shops",
"name":"anomaly-detection",
"tasks":[
{

"input_streams":[
{

"groupby":"ALL",
"scoped":true,
"selected_attributes":[

],
"selected_type":"Anomaly"

}
],
"name":"Counting",
"operator":"counter",
"output_streams":[
{

"entity_type":"Stat"
}
]

},
{

"input_streams":[
{

"groupby":"EntityID",
"scoped":true,
"selected_attributes":[

],
"selected_type":"PowerPanel"

},
{

"groupby":"ALL",
"scoped":false,

(continues on next page)

8.2. Service Topology 53

fogflow tutorial, Release v3.2.8

(continued from previous page)

"selected_attributes":[

],
"selected_type":"Rule"

}
],
"name":"Detector",
"operator":"anomaly",
"output_streams":[
{

"entity_type":"Anomaly"
}
]

}
]

}
}

var design = {
"name":"designboard",
"type":"object",
"value":{

"blocks":[
{

"id":1,
"module":null,
"type":"Task",
"values":{

"name":"Counting",
"operator":"counter",
"outputs":[

"Stat"
]

},
"x":202,
"y":-146

},
{

"id":2,
"module":null,
"type":"Task",
"values":{

"name":"Detector",
"operator":"anomaly",
"outputs":[

"Anomaly"
]

},
"x":-194,
"y":-134

},
{

(continues on next page)

54 Chapter 8. Programming Model

fogflow tutorial, Release v3.2.8

(continued from previous page)

"id":3,
"module":null,
"type":"Shuffle",
"values":{

"groupby":"ALL",
"selectedattributes":[

"all"
]

},
"x":4,
"y":-18

},
{

"id":4,
"module":null,
"type":"EntityStream",
"values":{

"groupby":"EntityID",
"scoped":true,
"selectedattributes":[

"all"
],
"selectedtype":"PowerPanel"

},
"x":-447,
"y":-179

},
{

"id":5,
"module":null,
"type":"EntityStream",
"values":{

"groupby":"ALL",
"scoped":false,
"selectedattributes":[

"all"
],
"selectedtype":"Rule"

},
"x":-438,
"y":-5

}
],
"edges":[
{

"block1":3,
"block2":1,
"connector1":[

"stream",
"output"

],
"connector2":[

(continues on next page)

8.2. Service Topology 55

fogflow tutorial, Release v3.2.8

(continued from previous page)

"streams",
"input"

],
"id":2

},
{

"block1":2,
"block2":3,
"connector1":[

"outputs",
"output",
0

],
"connector2":[

"in",
"input"

],
"id":3

},
{

"block1":4,
"block2":2,
"connector1":[

"stream",
"output"

],
"connector2":[

"streams",
"input"

],
"id":4

},
{

"block1":5,
"block2":2,
"connector1":[

"stream",
"output"

],
"connector2":[

"streams",
"input"

],
"id":5

}
]

}
}

//submit it to FogFlow via NGSI Update
var topologyCtxObj = {};

(continues on next page)

56 Chapter 8. Programming Model

fogflow tutorial, Release v3.2.8

(continued from previous page)

topologyCtxObj.entityId = {
id : 'Topology.' + topology.value.name,
type: 'Topology',
isPattern: false

};

topologyCtxObj.attributes = {};
topologyCtxObj.attributes.status = {type: 'string', value: 'enabled'};
topologyCtxObj.attributes.designboard = design;
topologyCtxObj.attributes.template = topology;

// assume the config.brokerURL is the IP of cloud IoT Broker
var client = new NGSI10Client(config.brokerURL);

// send NGSI10 update
client.updateContext(topologyCtxObj).then(function(data) {

console.log(data);
}).catch(function(error) {

console.log('failed to submit the topology');
});

8.2.7 Trigger the service topology by sending an Intent

Once developers submit a specified service topology and the implemented operators, the service data processing logic
can be triggered by following two steps:

• Sending a high level intent object which breaks the service topology into separate tasks

• Providing Input Streams to the tasks of that service topology.

The intent object is sent using the fogflow dashboard with the following properties:

• Topology: specifies which topology the intent object is meant for.

• Priority: defines the priority level of all tasks in your topology, which will be utilized by edge nodes to decide
how resources should be assigned to the tasks.

• Resource Usage: defines how a topology can use resources on edge nodes. Sharing in an exclusive way means
the topology will not share the resources with any task from other topologies. The other way is inclusive one.

• Objective: of maximum throughput, minimum latency and minimum cost can be set for task assignment at
workers. However, this feature is not fully supported yet, so it can be set as “None” for now.

• Geoscope: is a defined geographical area where input streams should be selected. Global as well as custom
geoscopes can be set.

Fogflow topology master will now be waiting for input streams for the tasks contained in the service topology. As soon
as context data are received, which fall within the scope of the intent object, tasks are launched on the nearest workers.

Here are curl examples to send Input streams for Anomaly-Detector use case. It requires PowerPanel as well as Rule
data.

Note: Users can also use to send PowerPanel data.

8.2. Service Topology 57

fogflow tutorial, Release v3.2.8

Note: The Curl case assumes that the cloud IoT Broker is running on localhost on port 8070.

curl -iX POST \
'http://localhost:8070/ngsi10/updateContext' \

-H 'Content-Type: application/json' \
-d '
{

"contextElements": [
{

"entityId":{
"id":"Device.PowerPanel.01",
"type":"PowerPanel"

},
"attributes":[

{
"name":"usage",
"type":"integer",
"value":4

},
{

"name":"shop",
"type":"string",
"value":"01"

},
{

"name":"iconURL",
"type":"string",
"value":"/img/shop.png"

(continues on next page)

58 Chapter 8. Programming Model

fogflow tutorial, Release v3.2.8

(continued from previous page)

}
],
"domainMetadata":[

{
"name":"location",
"type":"point",
"value":{

"latitude":35.7,
"longitude":138

}
},
{

"name":"shop",
"type":"string",
"value":"01"

}
]

}],
"updateAction": "UPDATE"

}'

curl -iX POST \
'http://localhost:8070/ngsi10/updateContext' \

-H 'Content-Type: application/json' \
-d '
{

"contextElements": [
{

"entityId":{
"id":"Stream.Rule.01",
"type":"Rule"

},
"attributes":[

{
"name":"threshold",
"type":"integer",
"value":30

}
]

}],
"updateAction": "UPDATE"

}'

8.2. Service Topology 59

fogflow tutorial, Release v3.2.8

60 Chapter 8. Programming Model

CHAPTER

NINE

API WALKTHROUGH

9.1 FogFlow Discovery API

9.1.1 Look up nearby brokers

For any external application or IoT devices, the only interface they need from FogFlow Discovery is to find out a nearby
Broker based on its own location. After that, they only need to interact with the assigned nearby Broker.

POST /ngsi9/discoverContextAvailability

Param Description
latitude latitude of your location
longitude latitude of your location
limit number of expected brokers

Please check the following examples.

Note: For the Javascript code example, library ngsiclient.js is needed. Please refer to the code repository at applica-
tion/device/powerpanel

curl

JavaScript

curl -iX POST \
'http://localhost:80/ngsi9/discoverContextAvailability' \
-H 'Content-Type: application/json' \
-d '
{

"entities":[
{

"type":"IoTBroker",
"isPattern":true

}
],
"restriction":{

"scopes":[
{

"scopeType":"nearby",
"scopeValue":{

(continues on next page)

61

fogflow tutorial, Release v3.2.8

(continued from previous page)

"latitude":35.692221,
"longitude":139.709059,
"limit":1

}
}

]
}

} '

const NGSI = require('./ngsi/ngsiclient.js');

var discoveryURL = "http://localhost:80/ngsi9";
var myLocation = {

"latitude": 35.692221,
"longitude": 139.709059

};

// find out the nearby IoT Broker according to my location
var discovery = new NGSI.NGSI9Client(discoveryURL)
discovery.findNearbyIoTBroker(myLocation, 1).then(function(brokers) {

console.log('-------nearbybroker----------');
console.log(brokers);
console.log('------------end-----------');

}).catch(function(error) {
console.log(error);

});

9.2 FogFlow Broker API

Note: Use port 80 for accessing the cloud broker, whereas for edge broker, the default port is 8070.

9.2.1 Create/update context

Note: It is the same API to create or update a context entity. For a context update, if there is no existing entity, a new
entity will be created.

POST /ngsi10/updateContext

Param Description
latitude latitude of your location
longitude latitude of your location
limit number of expected brokers

Example:

62 Chapter 9. API Walkthrough

https://app.swaggerhub.com/apis/fogflow/broker/1.0.0

fogflow tutorial, Release v3.2.8

curl

JavaScript

curl -iX POST \
'http://localhost:80/ngsi10/updateContext' \
-H 'Content-Type: application/json' \
-d '
{

"contextElements": [
{

"entityId": {
"id": "Device.temp001",
"type": "Temperature",
"isPattern": false

},
"attributes": [
{
"name": "temp",
"type": "integer",
"value": 10

}
],
"domainMetadata": [
{

"name": "location",
"type": "point",
"value": {

"latitude": 49.406393,
"longitude": 8.684208

}
},{

"name": "city",
"type": "string",
"value": "Heidelberg"

}
]

}
],
"updateAction": "UPDATE"

}'

const NGSI = require('./ngsi/ngsiclient.js');
var brokerURL = "http://localhost:80/ngsi10"

var ngsi10client = new NGSI.NGSI10Client(brokerURL);

var profile = {
"type": "PowerPanel",
"id": "01"};

var ctxObj = {};
ctxObj.entityId = {

id: 'Device.' + profile.type + '.' + profile.id,
(continues on next page)

9.2. FogFlow Broker API 63

fogflow tutorial, Release v3.2.8

(continued from previous page)

type: profile.type,
isPattern: false

};

ctxObj.attributes = {};

var degree = Math.floor((Math.random() * 100) + 1);
ctxObj.attributes.usage = {

type: 'integer',
value: degree

};
ctxObj.attributes.shop = {

type: 'string',
value: profile.id

};
ctxObj.attributes.iconURL = {

type: 'string',
value: profile.iconURL

};

ctxObj.metadata = {};

ctxObj.metadata.location = {
type: 'point',
value: profile.location

};

ngsi10client.updateContext(ctxObj).then(function(data) {
console.log(data);

}).catch(function(error) {
console.log('failed to update context');

});

9.2.2 Query Context via GET

Fetch a context entity by ID

GET /ngsi10/entity/#eid

Param Description
eid entity ID

Example:

curl http://localhost:80/ngsi10/entity/Device.temp001

64 Chapter 9. API Walkthrough

fogflow tutorial, Release v3.2.8

Fetch a specific attribute of a specific context entity

GET /ngsi10/entity/#eid/#attr

Param Description
eid entity ID
attr specify the attribute name to be fetched

Example:

curl http://localhost:80/ngsi10/entity/Device.temp001/temp

Check all context entities on a single Broker

GET /ngsi10/entity

Example:

curl http://localhost:80/ngsi10/entity

9.2.3 Query context via POST

POST /ngsi10/queryContext

Param Description
entityId specify the entity filter, which can define a specific entity ID, ID pattern, or type
restriction a list of scopes and each scope defines a filter based on domain metadata

query context by the pattern of entity ID

curl

JavaScript

curl -X POST 'http://localhost:80/ngsi10/queryContext' \
-H 'Content-Type: application/json' \
-d '{"entities":[{"id":"Device.*","isPattern":true}]}'

const NGSI = require('./ngsi/ngsiclient.js');
var brokerURL = "http://localhost:80/ngsi10"
var ngsi10client = new NGSI.NGSI10Client(brokerURL);

var queryReq = {}
queryReq.entities = [{id:'Device.*', isPattern: true}];

ngsi10client.queryContext(queryReq).then(function(deviceList) {
console.log(deviceList);

}).catch(function(error) {
console.log(error);
console.log('failed to query context');

});

9.2. FogFlow Broker API 65

fogflow tutorial, Release v3.2.8

query context by entity type

curl

JavaScript

curl -X POST 'http://localhost:80/ngsi10/queryContext' \
-H 'Content-Type: application/json' \
-d '{"entities":[{"type":"Temperature","isPattern":true}]}'

const NGSI = require('./ngsi/ngsiclient.js');
var brokerURL = "http://localhost:80/ngsi10"
var ngsi10client = new NGSI.NGSI10Client(brokerURL);

var queryReq = {}
queryReq.entities = [{type:'Temperature', isPattern: true}];

ngsi10client.queryContext(queryReq).then(function(deviceList) {
console.log(deviceList);

}).catch(function(error) {
console.log(error);
console.log('failed to query context');

});

query context by geo-scope (circle)

curl

JavaScript

curl -X POST 'http://localhost:80/ngsi10/queryContext' \
-H 'Content-Type: application/json' \
-d '{

"entities": [{
"id": ".*",
"isPattern": true

}],
"restriction": {

"scopes": [{
"scopeType": "circle",
"scopeValue": {

"centerLatitude": 49.406393,
"centerLongitude": 8.684208,
"radius": 10.0

}
}]

}
}'

const NGSI = require('./ngsi/ngsiclient.js');
var brokerURL = "http://localhost:80/ngsi10"
var ngsi10client = new NGSI.NGSI10Client(brokerURL);

(continues on next page)

66 Chapter 9. API Walkthrough

fogflow tutorial, Release v3.2.8

(continued from previous page)

var queryReq = {}
queryReq.entities = [{type:'.*', isPattern: true}];
queryReq.restriction = {scopes: [{

"scopeType": "circle",
"scopeValue": {

"centerLatitude": 49.406393,
"centerLongitude": 8.684208,
"radius": 10.0

}
}]};

ngsi10client.queryContext(queryReq).then(function(deviceList) {
console.log(deviceList);

}).catch(function(error) {
console.log(error);
console.log('failed to query context');

});

query context by geo-scope (polygon)

curl

JavaScript

curl -X POST 'http://localhost:80/ngsi10/queryContext' \
-H 'Content-Type: application/json' \
-d '{
"entities":[

{
"id":".*",
"isPattern":true

}
],
"restriction":{

"scopes":[
{

"scopeType":"polygon",
"scopeValue":{

"vertices":[
{

"latitude":34.4069096565206,
"longitude":135.84594726562503

},
{

"latitude":37.18657859524883,
"longitude":135.84594726562503

},
{

"latitude":37.18657859524883,
"longitude":141.51489257812503

},
(continues on next page)

9.2. FogFlow Broker API 67

fogflow tutorial, Release v3.2.8

(continued from previous page)

{
"latitude":34.4069096565206,
"longitude":141.51489257812503

},
{

"latitude":34.4069096565206,
"longitude":135.84594726562503

}
]

}
}]

}
}'

const NGSI = require('./ngsi/ngsiclient.js');
var brokerURL = "http://localhost:80/ngsi10"
var ngsi10client = new NGSI.NGSI10Client(brokerURL);

var queryReq = {}
queryReq.entities = [{type:'.*', isPattern: true}];
queryReq.restriction = {

"scopes":[
{

"scopeType":"polygon",
"scopeValue":{

"vertices":[
{

"latitude":34.4069096565206,
"longitude":135.84594726562503

},
{

"latitude":37.18657859524883,
"longitude":135.84594726562503

},
{

"latitude":37.18657859524883,
"longitude":141.51489257812503

},
{

"latitude":34.4069096565206,
"longitude":141.51489257812503

},
{

"latitude":34.4069096565206,
"longitude":135.84594726562503

}
]

}
}

]
}

(continues on next page)

68 Chapter 9. API Walkthrough

fogflow tutorial, Release v3.2.8

(continued from previous page)

ngsi10client.queryContext(queryReq).then(function(deviceList) {
console.log(deviceList);

}).catch(function(error) {
console.log(error);
console.log('failed to query context');

});

query context with the filter of domain metadata values

Note: the conditional statement can be defined only with the domain matadata of your context entities For the time
being, it is not supported to filter out entities based on specific attribute values.

curl

JavaScript

curl -X POST 'http://localhost:80/ngsi10/queryContext' \
-H 'Content-Type: application/json' \
-d '{

"entities": [{
"id": ".*",
"isPattern": true

}],
"restriction": {

"scopes": [{
"scopeType": "stringQuery",
"scopeValue":"city=Heidelberg"

}]
}

}'

const NGSI = require('./ngsi/ngsiclient.js');
var brokerURL = "http://localhost:80/ngsi10"
var ngsi10client = new NGSI.NGSI10Client(brokerURL);

var queryReq = {}
queryReq.entities = [{type:'.*', isPattern: true}];
queryReq.restriction = {scopes: [{

"scopeType": "stringQuery",
"scopeValue":"city=Heidelberg"

}]};

ngsi10client.queryContext(queryReq).then(function(deviceList) {
console.log(deviceList);

}).catch(function(error) {
console.log(error);
console.log('failed to query context');

});

9.2. FogFlow Broker API 69

fogflow tutorial, Release v3.2.8

query context with multiple filters

curl

JavaScript

curl -X POST 'http://localhost:80/ngsi10/queryContext' \
-H 'Content-Type: application/json' \
-d '{

"entities": [{
"id": ".*",
"isPattern": true

}],
"restriction": {

"scopes": [{
"scopeType": "circle",
"scopeValue": {

"centerLatitude": 49.406393,
"centerLongitude": 8.684208,
"radius": 10.0

}
}, {

"scopeType": "stringQuery",
"scopeValue":"city=Heidelberg"

}]
}

}'

const NGSI = require('./ngsi/ngsiclient.js');
var brokerURL = "http://localhost:80/ngsi10"
var ngsi10client = new NGSI.NGSI10Client(brokerURL);

var queryReq = {}
queryReq.entities = [{type:'.*', isPattern: true}];
queryReq.restriction = {scopes: [{

"scopeType": "circle",
"scopeValue": {

"centerLatitude": 49.406393,
"centerLongitude": 8.684208,
"radius": 10.0

}
}, {

"scopeType": "stringQuery",
"scopeValue":"city=Heidelberg"

}]};

ngsi10client.queryContext(queryReq).then(function(deviceList) {
console.log(deviceList);

}).catch(function(error) {
console.log(error);
console.log('failed to query context');

});

70 Chapter 9. API Walkthrough

fogflow tutorial, Release v3.2.8

9.2.4 Delete context

Delete a specific context entity by ID

DELETE /ngsi10/entity/#eid

Param Description
eid entity ID

Example:

curl -iX DELETE http://localhost:80/ngsi10/entity/Device.temp001

9.2.5 Subscribe context

POST /ngsi10/subscribeContext

Param Description
entityId specify the entity filter, which can define a specific entity ID, ID pattern, or type
restriction a list of scopes and each scope defines a filter based on domain metadata
reference the destination to receive notifications

subscribe context by the pattern of entity ID

curl

JavaScript

curl -X POST 'http://localhost:80/ngsi10/subscribeContext' \
-H 'Content-Type: application/json' \
-d '{

"entities":[{"id":"Device.*","isPattern":true}],
"reference": "http://localhost:8066"

}'

const NGSI = require('./ngsi/ngsiclient.js');
var brokerURL = "http://localhost:80/ngsi10"
var ngsi10client = new NGSI.NGSI10Client(brokerURL);
var mySubscriptionId;

var subscribeReq = {}
subscribeReq.entities = [{id:'Device.*', isPattern: true}];

ngsi10client.subscribeContext(subscribeReq).then(function(subscriptionId) {
console.log("subscription id = " + subscriptionId);

mySubscriptionId = subscriptionId;
}).catch(function(error) {

console.log('failed to subscribe context');
});

9.2. FogFlow Broker API 71

fogflow tutorial, Release v3.2.8

subscribe context by entity type

curl

JavaScript

curl -X POST 'http://localhost:80/ngsi10/subscribeContext' \
-H 'Content-Type: application/json' \
-d '{

"entities":[{"type":"Temperature","isPattern":true}]
"reference": "http://localhost:8066"

}'

const NGSI = require('./ngsi/ngsiclient.js');
var brokerURL = "http://localhost:80/ngsi10"
var ngsi10client = new NGSI.NGSI10Client(brokerURL);

var subscribeReq = {}
subscribeReq.entities = [{type:'Temperature', isPattern: true}];

ngsi10client.subscribeContext(subscribeReq).then(function(subscriptionId) {
console.log("subscription id = " + subscriptionId);

mySubscriptionId = subscriptionId;
}).catch(function(error) {

console.log('failed to subscribe context');
});

subscribe context by geo-scope

curl

JavaScript

curl -X POST 'http://localhost:80/ngsi10/subscribeContext' \
-H 'Content-Type: application/json' \
-d '{

"entities": [{
"id": ".*",
"isPattern": true

}],
"reference": "http://localhost:8066",
"restriction": {

"scopes": [{
"scopeType": "circle",
"scopeValue": {

"centerLatitude": 49.406393,
"centerLongitude": 8.684208,
"radius": 10.0

}
}]

}
}'

72 Chapter 9. API Walkthrough

fogflow tutorial, Release v3.2.8

const NGSI = require('./ngsi/ngsiclient.js');
var brokerURL = "http://localhost:80/ngsi10"
var ngsi10client = new NGSI.NGSI10Client(brokerURL);

var subscribeReq = {}
subscribeReq.entities = [{type:'.*', isPattern: true}];
subscribeReq.restriction = {scopes: [{

"scopeType": "circle",
"scopeValue": {

"centerLatitude": 49.406393,
"centerLongitude": 8.684208,
"radius": 10.0

}
}]};

ngsi10client.subscribeContext(subscribeReq).then(function(subscriptionId) {
console.log("subscription id = " + subscriptionId);

mySubscriptionId = subscriptionId;
}).catch(function(error) {

console.log('failed to subscribe context');
});

subscribe context with the filter of domain metadata values

Note: the conditional statement can be defined only with the domain matadata of your context entities For the time
being, it is not supported to filter out entities based on specific attribute values.

curl

JavaScript

curl -X POST 'http://localhost:80/ngsi10/subscribeContext' \
-H 'Content-Type: application/json' \
-d '{

"entities": [{
"id": ".*",
"isPattern": true

}],
"reference": "http://localhost:8066",
"restriction": {

"scopes": [{
"scopeType": "stringQuery",
"scopeValue":"city=Heidelberg"

}]
}

}'

const NGSI = require('./ngsi/ngsiclient.js');
var brokerURL = "http://localhost:80/ngsi10"
var ngsi10client = new NGSI.NGSI10Client(brokerURL);

(continues on next page)

9.2. FogFlow Broker API 73

fogflow tutorial, Release v3.2.8

(continued from previous page)

var subscribeReq = {}
subscribeReq.entities = [{type:'.*', isPattern: true}];
subscribeReq.restriction = {scopes: [{

"scopeType": "stringQuery",
"scopeValue":"city=Heidelberg"

}]};

ngsi10client.subscribeContext(subscribeReq).then(function(subscriptionId) {
console.log("subscription id = " + subscriptionId);

mySubscriptionId = subscriptionId;
}).catch(function(error) {

console.log('failed to subscribe context');
});

subscribe context with multiple filters

curl

JavaScript

curl -X POST 'http://localhost:80/ngsi10/subscribeContext' \
-H 'Content-Type: application/json' \
-d '{

"entities": [{
"id": ".*",
"isPattern": true

}],
"reference": "http://localhost:8066",
"restriction": {

"scopes": [{
"scopeType": "circle",
"scopeValue": {

"centerLatitude": 49.406393,
"centerLongitude": 8.684208,
"radius": 10.0

}
}, {

"scopeType": "stringQuery",
"scopeValue":"city=Heidelberg"

}]
}

}'

const NGSI = require('./ngsi/ngsiclient.js');
var brokerURL = "http://localhost:80/ngsi10"
var ngsi10client = new NGSI.NGSI10Client(brokerURL);

var subscribeReq = {}
subscribeReq.entities = [{type:'.*', isPattern: true}];
subscribeReq.restriction = {scopes: [{

(continues on next page)

74 Chapter 9. API Walkthrough

fogflow tutorial, Release v3.2.8

(continued from previous page)

"scopeType": "circle",
"scopeValue": {

"centerLatitude": 49.406393,
"centerLongitude": 8.684208,
"radius": 10.0

}
}, {

"scopeType": "stringQuery",
"scopeValue":"city=Heidelberg"

}]};

// use the IP and Port number your receiver is listening
subscribeReq.reference = 'http://' + agentIP + ':' + agentPort;

ngsi10client.subscribeContext(subscribeReq).then(function(subscriptionId) {
console.log("subscription id = " + subscriptionId);

mySubscriptionId = subscriptionId;
}).catch(function(error) {

console.log('failed to subscribe context');
});

Cancel a subscription by subscription ID

DELETE /ngsi10/subscription/#sid

Param Description
sid the subscription ID created when the subscription is issued

curl -iX DELETE http://localhost:80/ngsi10/subscription/#sid

9.3 FogFlow Designer API

FogFlow uses its own REST APIs to manage all internal objects, including operator, docker image, service topology,
service intent, and fog function. In addition, FogFlow also provides the extra interface for device registration and the
management of subscriptions to exchange data with other FIWARE brokers, such as Orion/Orion-LD and Scorpio,
which could be used both as the data sources to fetch the original data or as the destination to publish the generated
results.

9.3.1 Operator

a. To create a new Operator

POST /operator

Example

9.3. FogFlow Designer API 75

http://localhost:80/ngsi10/subscription/#sid

fogflow tutorial, Release v3.2.8

curl -X POST \
'http://127.0.0.1:8080/operator' \
-H 'Content-Type: application/json' \
-d '
[{

"name": "dummy",
"description": "test",
"parameters": []

}]
'

b. To retrieve all the operators

GET /operator

Example:

curl -iX GET \
'http://127.0.0.1:8080/operator'

c. To retrieve a specific operator based on operator name

GET /operator/<name>

Param Description
name Name of existing operator

Example:

curl -iX GET \
'http://127.0.0.1:8080/operator/dummy'

9.3.2 DockerImage

a. To create a new DockerImage

POST /dockerimage

Example

curl -X POST \
'http://127.0.0.1:8080/dockerimage' \
-H 'Content-Type: application/json' \
-d '
[

{
"name": "fogflow/dummy",
"hwType": "X86",
"osType": "Linux",
"operatorName": "dummy",

(continues on next page)

76 Chapter 9. API Walkthrough

fogflow tutorial, Release v3.2.8

(continued from previous page)

"prefetched": false,
"tag": "latest"

}
]
'

b. To retrieve all the DockerImage

GET /dockerimage

Example:

curl -iX GET \
'http://127.0.0.1:8080/dockerimage'

c. To retrieve a specific DockerImage based on operator name

GET /dockerimage/<operator name>

Param Description
name Name of existing operator

Example:

curl -iX GET \
'http://127.0.0.1:8080/dockerimage/dummy'

9.3.3 Service Topology

a. To create a new Service

POST /service

Example

curl -X POST \
'http://127.0.0.1:8080/service' \
-H 'Content-Type: application/json' \
-d '
[

{
"topology": {

"name": "MyTest",
"description": "a simple case",
"tasks": [

{
"name": "main",
"operator": "dummy",
"input_streams": [

(continues on next page)

9.3. FogFlow Designer API 77

fogflow tutorial, Release v3.2.8

(continued from previous page)

{
"selected_type": "Temperature",
"selected_attributes": [],
"groupby": "EntityID",
"scoped": false

}
],
"output_streams": [

{
"entity_type": "Out"

}
]

}
]

}
}

]
'

b. To retrieve all the Service

GET /service

Example:

curl -iX GET \
'http://127.0.0.1:8080/service'

c. To retrieve a specific service based on service name

GET /service/<service name>

Param Description
name Name of existing service

Example:

curl -iX GET \
'http://127.0.0.1:8080/service/MyTest'

d. To delete a specific service based on service name

DELETE /service/<service name>

Param Description
name Name of existing service

Example:

78 Chapter 9. API Walkthrough

fogflow tutorial, Release v3.2.8

curl -X DELETE 'http://localhost:8080/service/MyTest' \
-H 'Content-Type: application/json'

9.3.4 Intent

a. To create a new Intent

POST /intent

Example

curl -X POST \
'http://127.0.0.1:8080/intent' \
-H 'Content-Type: application/json' \
-d '
{

"id": "ServiceIntent.594e3d10-59f9-4ee6-97be-fe50b9c99bd8",
"topology": "MyTest",
"stype": "ASYN",
"priority": {

"exclusive": false,
"level": 0

},
"qos": "NONE",
"geoscope": {

"scopeType": "global",
"scopeValue": "global"

}
}

'

b. To retrieve all the Intent

GET /intent

Example:

curl -iX GET \
'http://127.0.0.1:8080/intent'

c. To retrieve a specific Intent based on Intent ID

GET /intent/<intent id>

Param Description
id ID of existing intent

Example:

9.3. FogFlow Designer API 79

fogflow tutorial, Release v3.2.8

curl -iX GET \
'http://127.0.0.1:8080/intent/ServiceIntent.594e3d10-59f9-4ee6-97be-fe50b9c99bd8'

d. To delete a specific Intent based on intent id

DELETE /intent/<intent id>

Param Description
id ID of the existing intent

Example:

curl -iX DELETE
‘http://127.0.0.1:8080/intent/ServiceIntent.594e3d10-59f9-4ee6-97be-fe50b9c99bd8’

e. To retrieve list service intents for the given service topology

GET /intent/topology/<TopologeName>

Param Description
TopologeName name of the given service topology

Example:

curl -iX GET \
'http://127.0.0.1:8080/intent/topology/MyTest'

9.3.5 Topology

a. To retrieve all the Topology

GET /topology

Example:

curl -X GET 'http://localhost:8080/topology' \
-H 'Content-Type: application/json'

80 Chapter 9. API Walkthrough

http://127.0.0.1:8080/intent/ServiceIntent.594e3d10-59f9-4ee6-97be-fe50b9c99bd8

fogflow tutorial, Release v3.2.8

b. To retrieve a specific Topology based on topology name

GET /topology/<topology name>

Param Description
Name name of the existing Topology

Example:

curl -X GET 'http://localhost:8080/topology/MyTest' \
-H 'Content-Type: application/json'

9.3.6 Fog Function

a. To create a new Fogfunction

POST /fogfunction

Example

curl -X POST \
'http://127.0.0.1:8080/fogfunction' \
-H 'Content-Type: application/json' \
-d '

[
{

"name": "ffTest",
"topology": {

"name": "ffTest",
"description": "a fog function",
"tasks": [

{
"name": "main",
"operator": "mqtt-adapter",
"input_streams": [

{
"selected_type": "HOPU",
"selected_attributes": [],
"groupby": "EntityID",
"scoped": false

}
],
"output_streams": [

{
"entity_type": "Out"

}
]

}
]

},
"intent": {

"id": "ServiceIntent.1c6396bb-281d-4c14-b61d-f0cc0dcc1006",
(continues on next page)

9.3. FogFlow Designer API 81

fogflow tutorial, Release v3.2.8

(continued from previous page)

"topology": "ffTest",
"priority": {

"exclusive": false,
"level": 0

},
"qos": "default",
"geoscope": {

"scopeType": "global",
"scopeValue": "global"

}
},
"status": "enabled"

}
]

'

b. To retrieve all the Fogfunction

GET /fogfunction

Example:

curl -iX GET \
'http://127.0.0.1:8080/fogfunction'

c. To retrieve a specific Fogfunction based on fogfunction name

GET /fogfunction/<name>

Param Description
name Name of existing fogfunction

Example:

curl -iX GET \
'http://127.0.0.1:8080/fogfunction/ffTest'

d. To delete a specific fogfunction based on fogfunction name

DELETE /fogfunction/<fogfunction name>

Param Description
name Name of existing fogfunction

Example:

curl -iX DELETE \
'http://127.0.0.1:8080/fogfunction/ffTest'

82 Chapter 9. API Walkthrough

fogflow tutorial, Release v3.2.8

e. To enable a specific fogfunction based on fogfunction name

GET /fogfunction/<fogfunction name>/enable

Param Description
name Name of existing fogfunction

Example:

curl -iX GET \
'http://127.0.0.1:8080/fogfunction/ffTest/enable'

F. To disable a specific fogfunction based on fogfunction name

GET /fogfunction/<fogfunction name>/disable

Param Description
name Name of existing fogfunction

Example:

curl -iX GET \
'http://127.0.0.1:8080/fogfunction/ffTest/disable'

9.3.7 Device

a. To create a new device

POST /device

Example

curl -iX POST \
'http://127.0.0.1:8080/device' \
-H 'Content-Type: application/json' \
-d '
{

"id": "urn:Device.12345",
"type": "HOPU",
"attributes": {

"protocol": {
"type": "string",
"value": "MQTT"
},

"mqttbroker": {
"type": "string",
"value": "mqtt://mqtt.cdtidev.nec-ccoc.com:1883"
},

"topic": {
"type": "string",

(continues on next page)

9.3. FogFlow Designer API 83

fogflow tutorial, Release v3.2.8

(continued from previous page)

"value": "/api/12345/attrs"
},

"mappings": {
"type": "object",
"value": {

"temp8": {
"name": "temperature",
"type": "float",
"entity_type": "AirQualityObserved"

},
"hum8": {

"name": "humidity",
"type": "float",
"entity_type": "AirQualityObserved"

}
}

}
},
"metadata": {

"location": {
"type": "point",
"value": {

"latitude": 49.406393,
"longitude": 8.684208

}
}

}
}'

b. To get the list of all registered devices

GET /device

Example:

curl -iX GET \
'http://127.0.0.1:8080/device'

c. To delete a specific device

DELETE /device/<device_id>

Param Description
device_id entity ID of this device

Example:

curl -iX DELETE \
'http://127.0.0.1:8080/device/urn:Device.12345'

84 Chapter 9. API Walkthrough

fogflow tutorial, Release v3.2.8

9.3.8 Subscription

a. To create a subscription for a given destination

POST /subscription

Example

curl -iX POST \
'http://127.0.0.1:8080/subscription' \
-H 'Content-Type: application/json' \
-d '{

"entity_type": "AirQualityObserved",
"destination_broker": "NGSI-LD",
"reference_url": "http://127.0.0.1:9090",
"tenant": "ccoc"

}'

b. To get the list of all registered subscription

GET /subscription

Example:

curl -iX GET \
'http://127.0.0.1:8080/subscription'

c. To delete a specific subscription

DELETE /subscription/<subscription_id>

Param Description
subscription_id ID of this subscription

Example:

curl -iX DELETE \
'http://127.0.0.1:8080/subscription/88bba05c-dda2-11ec-ba1d-acde48001122'

9.4 NGSI-LD Supported API’s

The following figure shows a brief overview of how the APIs in current scope will be used to achieve the goal of NGSI-
LD API support in FogFlow. The API support includes Entity creation, registration, subscription and notification.

9.4. NGSI-LD Supported API’s 85

fogflow tutorial, Release v3.2.8

9.4.1 Entities API

For the purpose of interaction with Fogflow, IOT devices approaches broker with entity creation request where it is
resolved as per given context. Broker further forwards the registration request to Fogflow Discovery in correspondence
to the created entity.

Note: Use port 80 for accessing the cloud broker, whereas for edge broker, the default port is 8070. The localhost is
the coreservice IP for the system hosting fogflow.

POST /ngsi-ld/v1/entities/

a. To create NGSI-LD context entity, with context in Link in Header

key Value
Content-
Type

application/json

Accept application/ld+json
Link <{{link}}>; rel=”https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld”;

type=”application/ld+json”

Request

curl -iX POST \
'http://localhost:80/ngsi-ld/v1/entities/' \
-H 'Content-Type: application/json' \
-H 'Accept: application/ld+json' \
-H 'Link: <{{link}}>; rel="https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld

→˓"; type="application/ld+json"' \
(continues on next page)

86 Chapter 9. API Walkthrough

https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld

fogflow tutorial, Release v3.2.8

(continued from previous page)

-d '
{

"id": "urn:ngsi-ld:Vehicle:A100",
"type": "Vehicle",
"brandName": {

"type": "Property",
"value": "Mercedes"

},
"isParked": {

"type": "Relationship",
"object": "urn:ngsi-ld:OffStreetParking:Downtown1",
"observedAt": "2017-07-29T12:00:04",
"providedBy": {

"type": "Relationship",
"object": "urn:ngsi-ld:Person:Bob"

}
},
"speed": {

"type": "Property",
"value": 80

},
"createdAt": "2017-07-29T12:00:04",
"location": {

"type": "GeoProperty",
"value": {

"type": "Point",
"coordinates": [-8.5, 41.2]

}
}

}'

b. To create a new NGSI-LD context entity, with context in Link header and request payload is already
expanded

key Value
Content-Type application/json
Accept application/ld+json

Request

curl -iX POST \
'http://localhost:80/ngsi-ld/v1/entities/' \
-H 'Content-Type: application/json' \
-H 'Accept: application/ld+json' \
-d'
{

"http://example.org/vehicle/brandName": [
{

"@type": [
"http://uri.etsi.org/ngsi-ld/Property"

(continues on next page)

9.4. NGSI-LD Supported API’s 87

fogflow tutorial, Release v3.2.8

(continued from previous page)

],
"http://uri.etsi.org/ngsi-ld/hasValue": [

{
"@value": "Mercedes"

}
]

}
],
"http://uri.etsi.org/ngsi-ld/createdAt": [
{

"@type": "http://uri.etsi.org/ngsi-ld/DateTime",
"@value": "2017-07-29T12:00:04"

}
],
"@id": "urn:ngsi-ld:Vehicle:A8866",
"http://example.org/common/isParked": [
{

"http://uri.etsi.org/ngsi-ld/hasObject": [
{

"@id": "urn:ngsi-ld:OffStreetParking:Downtown1"
}

],
"http://uri.etsi.org/ngsi-ld/observedAt": [
{

"@type": "http://uri.etsi.org/ngsi-ld/DateTime",
"@value": "2017-07-29T12:00:04"

}
],
"http://example.org/common/providedBy": [
{

"http://uri.etsi.org/ngsi-ld/hasObject": [
{

"@id": "urn:ngsi-ld:Person:Bob"
}

],
"@type": [

"http://uri.etsi.org/ngsi-ld/Relationship"
]

}
],
"@type": [

"http://uri.etsi.org/ngsi-ld/Relationship"
]

}
],
"http://uri.etsi.org/ngsi-ld/location": [
{

"@type": [
"http://uri.etsi.org/ngsi-ld/GeoProperty"

],
"http://uri.etsi.org/ngsi-ld/hasValue": [
{

(continues on next page)

88 Chapter 9. API Walkthrough

fogflow tutorial, Release v3.2.8

(continued from previous page)

"@value": "{ \"type\":\"Point\", \"coordinates\":[-8.5,␣
→˓41.2] }"

}
]

}
],
"http://example.org/vehicle/speed": [
{

"@type": [
"http://uri.etsi.org/ngsi-ld/Property"

],
"http://uri.etsi.org/ngsi-ld/hasValue": [
{

"@value": 80
}

]
}

],
"@type": [

"http://example.org/vehicle/Vehicle"
]

}'

c. To append additional attributes to an existing entity

POST /ngsi-ld/v1/entities/

key Value
Content-Type application/json
Accept application/ld+json

Request

curl -iX POST \
'http://localhost:80/ngsi-ld/v1/entities/' \
-H 'Content-Type: application/json' \
-H 'Accept: application/ld+json' \
-H 'Link: <{{link}}>; rel="https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld";␣
→˓type="application/ld+json"' \
-d'
{

"id": ""urn:ngsi-ld:Vehicle:A100",
"type": "Vehicle",

""brandName1"": {
"type": "Property",
"value": "BMW"

}
}'

9.4. NGSI-LD Supported API’s 89

fogflow tutorial, Release v3.2.8

d. To update specific attributes of an existing entity

POST /ngsi-ld/v1/entities/

key Value
Content-Type application/json
Accept application/ld+json

Request

curl -iX POST \
'http://localhost:80/ngsi-ld/v1/entities/' \
-H 'Content-Type: application/json' \
-H 'Accept: application/ld+json' \
-H 'Link: <{{link}}>; rel="https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld";␣
→˓type="application/ld+json"' \
-d'
{

"id": ""urn:ngsi-ld:Vehicle:A100",
"type": "Vehicle",

"brandName": {
"type": "Property",
"value": "AUDI"

}
}'

e. To delete an NGSI-LD context entity

DELETE /ngsi-ld/v1/entities/#eid

Param Description
eid Entity Id

Example:

curl -iX DELETE http://localhost:80/ngsi-ld/v1/entities/urn:ngsi-ld:Vehicle:A100 -H
→˓'Content-Type: application/json' -H 'Accept: application/ld+json'

f. To delete an attribute of an NGSI-LD context entity

DELETE /ngsi-ld/v1/entities/#eid/attrs/#attrName

Param Description
eid Entity Id
attrName Attribute Name

Example:

90 Chapter 9. API Walkthrough

fogflow tutorial, Release v3.2.8

curl -iX DELETE http://localhost:80/ngsi-ld/v1/entities/urn:ngsi-ld:Vehicle:A100/attrs/
→˓brandName1

g. To retrieve a specific entity

GET /ngsi-ld/v1/entities/#eid

Param Description
eid Entity Id

Example:

curl http://localhost:80/ngsi-ld/v1/entities/urn:ngsi-ld:Vehicle:A4569

9.4.2 Subscription API

A new subscription is issued by the subscriber which is enrouted to broker where the details of subscriber is stored for
notification purpose. The broker initiate a request to Fogflow Discovery, where this is registered as new subscription
and looks for availabltiy of corresponding data. On receiving data is passes the information back to subscribing broker.

a. To create a new Subscription to with context in Link header

POST /ngsi-ld/v1/subscriptions

Header Format

key Value
Content-
Type

application/ld+json

Link <{{link}}>; rel=”https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld”;
type=”application/ld+json”

Request

curl -iX POST\
'http://localhost:80/ngsi-ld/v1/subscriptions/' \
-H 'Content-Type: application/ld+json' \
-H 'Link: <{{link}}>; rel="https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld

→˓"; type="application/ld+json"' \
-d '
{

"type": "Subscription",
"id" : "urn:ngsi-ld:Subscription:71",
"entities": [{

"id": "urn:ngsi-ld:Vehicle:71",
"type": "Vehicle"

}],
"watchedAttributes": ["brandName"],
"notification": {

(continues on next page)

9.4. NGSI-LD Supported API’s 91

https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld

fogflow tutorial, Release v3.2.8

(continued from previous page)

"attributes": ["brandName"],
"format": "keyValues",
"endpoint": {

"uri": "http://my.endpoint.org/notify",
"accept": "application/json"

}
}

}'

b. To retrieve all the subscriptions

GET /ngsi-ld/v1/subscriptions

Example:

curl http://localhost:80/ngsi-ld/v1/subscriptions/ -H 'Accept: application/ld+json'

c. To retrieve a specific subscription based on subscription id

GET /ngsi-ld/v1/subscriptions/#sid

Param Description
sid subscription Id

Example:

curl http://localhost:80/ngsi-ld/v1/subscriptions/urn:ngsi-ld:Subscription:71

d. To delete a specific subscription based on subscription id

DELETE /ngsi-ld/v1/subscriptions/#sid

Param Description
sid subscription Id

Example:

curl -iX DELETE http://localhost:80/ngsi-ld/v1/subscriptions/urn:ngsi-ld:Subscription:71

92 Chapter 9. API Walkthrough

CHAPTER

TEN

SYSTEM SETUP

10.1 Start FogFlow Cloud node

10.1.1 Prerequisite

Here are the prerequisite commands for starting FogFlow:

1. docker

2. docker-compose

For ubuntu-16.04, you need to install docker-ce and docker-compose.

To install Docker CE, please refer to Install Docker CE, required version > 18.03.1-ce;

Important: please also allow your user to execute the Docker Command without Sudo

To install Docker Compose, please refer to Install Docker Compose, required version 18.03.1-ce, required version >
2.4.2

10.1.2 Fetch all required scripts

Download the docker-compose file and the configuration files as below.

the docker-compose file to start all FogFlow components on the cloud node
wget https://raw.githubusercontent.com/smartfog/fogflow/master/release/3.2.8/cloud/
→˓docker-compose.yml

the configuration file used by all FogFlow components
wget https://raw.githubusercontent.com/smartfog/fogflow/master/release/3.2.8/cloud/
→˓config.json

93

https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-install-docker-compose-on-ubuntu-16-04

fogflow tutorial, Release v3.2.8

10.1.3 Change the IP configuration accordingly

You need to change the following IP addresses in config.json according to your own environment.

• my_hostip: the IP of the FogFlow cloud node and this IP address should be accessible to the FogFlow edge
node. Please DO NOT use “127.0.0.1” for this.

• site_id: each FogFlow node (either cloud node or edge node) requires to have a unique string-based ID to identify
itself in the system;

• physical_location: the geo-location of the FogFlow node;

• worker.capacity: it means the maximal number of docker containers that the FogFlow node can invoke;

Important: please DO NOT use “127.0.0.1” as the IP address of my_hostip , because they will be used by a running
task inside a docker container.

Firewall rules: to make your FogFlow web portal accessible via the external_ip; the following ports must be open as
well: 80 and 5672 for TCP

10.1.4 Start all components on the FogFlow Cloud Node

Pull the docker images of all FogFlow components and start the FogFlow system

if you already download the docker images of FogFlow components, this command can␣
→˓fetch the updated images

docker-compose pull

docker-compose up -d

10.1.5 Validate your setup

There are two ways to check if the FogFlow cloud node is started correctly:

• Check all the containers are Up and Running using “docker ps -a”

docker ps -a

CONTAINER ID IMAGE COMMAND CREATED ␣
→˓ STATUS PORTS ␣
→˓ NAMES
d4fd1aee2655 fogflow/worker "/worker" 6 seconds ago ␣
→˓Up 2 seconds ␣
→˓ fogflow_cloud_worker_1
428e69bf5998 fogflow/master "/master" 6 seconds ago ␣
→˓Up 4 seconds 0.0.0.0:1060->1060/tcp ␣
→˓ fogflow_master_1
9da1124a43b4 fogflow/designer "node main.js" 7 seconds ago ␣
→˓Up 5 seconds 0.0.0.0:1030->1030/tcp, 0.0.0.0:8080->8080/tcp ␣
→˓ fogflow_designer_1
bb8e25e5a75d fogflow/broker "/broker" 9 seconds ago ␣
→˓Up 7 seconds 0.0.0.0:8070->8070/tcp ␣
→˓ fogflow_cloud_broker_1

(continues on next page)

94 Chapter 10. System Setup

fogflow tutorial, Release v3.2.8

(continued from previous page)

7f3ce330c204 rabbitmq:3 "docker-entrypoint.s..." 10 seconds ago ␣
→˓Up 6 seconds 4369/tcp, 5671/tcp, 25672/tcp, 0.0.0.0:5672->5672/tcp ␣
→˓ fogflow_rabbitmq_1
9e95c55a1eb7 fogflow/discovery "/discovery" 10 seconds ago ␣
→˓Up 8 seconds 0.0.0.0:8090->8090/tcp ␣
→˓ fogflow_discovery_1

Important: if you see any container is missing, you can run “docker ps -a” to check if any FogFlow component is
terminated with some problem. If there is, you can further check its output log by running “docker logs [container ID]”

10.1.6 Try out existing IoT services

Once the FogFlow cloud node is set up, you can try out some existing IoT services without running any FogFlow edge
node. For example, you can try out a simple fog function as below.

• Click “Operator Registry” in the top navigator bar to triger the initialization of pre-defined operators.

After you first click “Operator Registry”, a list of pre-defined operators will be registered in the FogFlow system. With
a second click, you can see the refreshed list as shown in the following figure.

• Click “Service Topology” in the top navigator bar to triger the initialization of pre-defined service topologies.

After you first click “Service Topology”, a list of pre-defined topologies will be registered in the FogFlow system. With
a second click, you can see the refreshed list as shown in the following figure.

• Click “Fog Function” in the top navigator bar to triger the initialization of pre-defined fog functions.

After you first click “Fog Function”, a list of pre-defined functions will be registered in the FogFlow system. With a
second click, you can see the refreshed list as shown in the following figure.

• Create an IoT device entity to trigger the Fog Function

You can register a device entity via the device registration page: 1) click “System Status”; 2) click “Device”; 3) click
“Add”;

10.1. Start FogFlow Cloud node 95

fogflow tutorial, Release v3.2.8

96 Chapter 10. System Setup

fogflow tutorial, Release v3.2.8

Then you will see the following device registration page.

• Check if the fog function is triggered

Check if a task is created under “Task” in System Management.**

Check if a Stream is created under “Stream” in System Management.**

10.1. Start FogFlow Cloud node 97

fogflow tutorial, Release v3.2.8

10.2 Start FogFlow edge node

Typically, an FogFlow edge node needs to deploy a Worker, an IoT broker and a system monitoring agent metricbeat.
The Edge IoT Broker at the edge node can establish the data flows between all task instances launched on the same
edge node. However, this Edge IoT Broker is optional, especially when the edge node is a very constrained device that
can only support a few tasks without any data dependency.

Here are the steps to start an FogFlow edge node:

10.2.1 Install Docker Engine

To install Docker CE and Docker Compose, please refer to Install Docker CE and Docker Compose on Respberry Pi.

Note: Docker engine must be installed on each edge node, because all task instances in FogFlow will be launched
within a docker container.

10.2.2 Download the deployment script

the docker-compose file to start all FogFlow components on the edge node
wget https://raw.githubusercontent.com/smartfog/fogflow/master/release/3.2.8/edge/docker-
→˓compose.yml

#download the deployment scripts
wget https://raw.githubusercontent.com/smartfog/fogflow/master/release/3.2.8/edge/start.
→˓sh
wget https://raw.githubusercontent.com/smartfog/fogflow/master/release/3.2.8/edge/stop.sh

#make them executable
chmod +x start.sh stop.sh

10.2.3 Download the default configuration file

#download the configuration file
wget https://raw.githubusercontent.com/smartfog/fogflow/master/release/3.2.8/edge/config.
→˓json

10.2.4 Change the configuration file accordingly

You can use the default setting for a simple test, but you need to change the following addresses according to your own
environment:

• coreservice_ip: please refer to the configuration of the cloud part. This is the accessible address of your FogFlow
core services running in the cloud node;

• external_hostip: this is the external IP address, accessible for the cloud broker. It is useful when your edge node
is behind NAT;

• my_hostip is the IP of your default docker bridge, which is the “docker0” network interface on your host.

98 Chapter 10. System Setup

https://withblue.ink/2019/07/13/yes-you-can-run-docker-on-raspbian.html

fogflow tutorial, Release v3.2.8

• site_id is the user-defined ID for the edge Node. Broker and Worker IDs on that node will be formed according
to this Site ID.

• container_autoremove is used to configure that the container associated with a task will be removed once its
processing is complete.

• start_actual_task configures the Fogflow worker to include all those activities that are required to start or ter-
minate a task or maintain a running task along with task configurations instead of performing the minimal effort.
It is recommended to keep it true.

• capacity is the maximum number of docker containers that the FogFlow node can invoke. The user can set the
limit by considering resource availability on a node.

//you can see the following part in the default configuration file
{

"coreservice_ip": "155.54.239.141",
"external_hostip": "35.234.116.177",
"my_hostip": "172.17.0.1",

"site_id": "002",

"worker": {
"container_autoremove": false,
"start_actual_task": true,
"capacity": 4
}

}

10.2.5 Start Edge node components

Note: the edge node is ARM-basd, such as Raspberry Pi.

#start both components in the same script
./start.sh

10.2.6 Stop Edge node components

#stop both components in the same script
./stop.sh

10.2. Start FogFlow edge node 99

fogflow tutorial, Release v3.2.8

100 Chapter 10. System Setup

CHAPTER

ELEVEN

MONITORING

Fogflow system health can be monitored by system monitoring tools Metricbeat, Elasticsearch and Grafana in short
EMG. With these tools edges and Fogflow Docker service health can be monitored. Metricbeat deployed on Edge node.
Elasticsearch and Grafana on Cloud node.

As illustrated in following picture, set up System Monitoring tools to monitor system resource usage.

11.1 Set up Monitoring components on Cloud node

11.1.1 Fetch all required scripts

Download the docker-compose file and the configuration files as below.

the docker-compose file to start all Monitoring components on the cloud node
wget https://raw.githubusercontent.com/smartfog/fogflow/master/docker/core/http/grafana/
→˓docker-compose.yml

the configuration file used by Grafana
wget https://raw.githubusercontent.com/smartfog/fogflow/master/docker/core/http/grafana/
→˓grafana.yaml

the configuration file used by metric beat
(continues on next page)

101

fogflow tutorial, Release v3.2.8

(continued from previous page)

wget https://raw.githubusercontent.com/smartfog/fogflow/master/docker/core/http/grafana/
→˓metricbeat.docker.yml

JSON files to configure grafana dashboard
wget https://raw.githubusercontent.com/smartfog/fogflow/master/docker/core/http/grafana/
→˓dashboards.zip

install unzip tool on system to extract JSON files from dashboards.zip

#command to install unzip in ubuntu
apt-get install unzip

#command to unzip the file dashboards.zip
unzip dashboards.zip

Note: It is supposed that FogFlow cloud components are in running state before setting up system monitoring.

11.1.2 Start all Monitoring components

docker-compose up -d

#Check all the containers are Up and Running using "docker ps -a"
docker ps -a

11.2 Configure Elasticsearch on Grafana Dashboard

Grafana dashboard can be accessible on web browser via the URL: http://<Cloud_Public_IP>:3003/. The default
username and password for Grafana login are admin and admin respectively.

• After successful login to grafana, click on “Add data source” in Home Dashboard to setup the source of data.

• Select Elasticsearch from Add Data Source page. Now the new page is Data Sources/Elasticsearch same as below
figure.

1. Put a name for the Data Source i.e. “Elasticsearch”.

2. In HTTP detail ,mention URL of your elasticsearch and Port. URL shall include HTTP for eg: “http://192.168.
100.112:9200”

3. In Access select “Server(default)”. URL needs to be accessible from the Grafana backend/server.

4. In Elasticsearch details, put “@timestamp” for Time field name.

5. Select Elasticsearch Version i.e. “7.0+”.

Then click on “Save & Test” button.

On successful configuration the dashboard will return “Index OK. Time field name OK.”

102 Chapter 11. Monitoring

http:/
http://192.168.100.112:9200
http://192.168.100.112:9200

fogflow tutorial, Release v3.2.8

11.2. Configure Elasticsearch on Grafana Dashboard 103

fogflow tutorial, Release v3.2.8

11.3 Grafana-based monitoring

Grafana based system metrics can be seen on grafana dashboard. Follow the steps:

1. In the sidebar, take the cursor over Dashboards (squares) icon.

2. click Manage.

3. The dashboard appears in a Services folder.

Select particular dashboard to see the corresponding monitoring metrics.

• Below dashboard diagram for containers list with maximum memory usage.

• Below dashboard diagram to show system memory used in bytes on cloud node.

• Below dashboard diagram to show system metric data rate in packet per second on cloud node.

104 Chapter 11. Monitoring

fogflow tutorial, Release v3.2.8

• Below dashboard diagram to show FogFlow Cloud node that are live.

Note: Before proceeding please clear the browser cache, browser might saves some information from websites in its
cache and cookies. Clearing them fixes certain problems, like loading or formatting issues on sites.

11.3.1 Set up Metricbeat on Edge node

Download the metricbeat yml file for edge node.

the configuration file used by metric beat
wget https://raw.githubusercontent.com/smartfog/fogflow/master/docker/core/http/grafana/
→˓metricbeat.docker.yml

Optional - Edit “name” in metricbeat.docker.yml file to add particular name for better identification of edge node.
Further user can update the output.elasticsearch.hosts in the metricbeat.docker.yml file.

name: "<155.54.239.141/edge02>"
metricbeat.modules:
- module: docker
#Docker module parameters to monitor based on user requirement,example as below
metricsets: ["cpu","memory","network"]
hosts: ["unix:///var/run/docker.sock"]
period: 10s
enabled: true

- module: system
#System module parameters to monitor based on user requirement, example as below
metricsets: ["cpu","load","memory","network"]
period: 10s

User can update this while executing docker run command also.
output.elasticsearch:
hosts: '155.54.239.141:9200'

Copy below Docker run command, edit and replace <Cloud_Public_IP> with IP/URL of elasticsearch in out-
put.elasticsearch.hosts=[“<Cloud_Public_IP>:9200”]>. This command will deploy metric beat on edge node.

docker run -d --name=metricbeat --user=root --volume="$(pwd)/metricbeat.docker.
→˓yml:/usr/share/metricbeat/metricbeat.yml:ro" --volume="/var/run/docker.sock:/var/run/
→˓docker.sock:ro" --volume="/sys/fs/cgroup:/hostfs/sys/fs/cgroup:ro" --volume="/

(continues on next page)

11.3. Grafana-based monitoring 105

fogflow tutorial, Release v3.2.8

(continued from previous page)

→˓proc:/hostfs/proc:ro" --volume="/:/hostfs:ro" docker.elastic.co/beats/metricbeat:7.
→˓6.0 metricbeat -e -E output.elasticsearch.hosts=["<Cloud_Public_IP>:9200"]

Metrices for Edge node can be seen on same Grafana dashboard with cloud node metrics via URL: http:
//<Cloud_Public_IP>:3003/.

• Below dashboard diagram to show system memory used in bytes on cloud as well as on edge node.

• Below dashboard diagram to show system metric data rate in packet per second on cloud as well as on
edge node.

• Below dashboard diagram to show FogFlow Cloud and Edge nodes that are live.

106 Chapter 11. Monitoring

http:/
http:/

CHAPTER

TWELVE

SECURITY

12.1 HTTPs-based communication

12.1.1 Secure the cloud-edge communication

To secure the communication between the FogFlow cloud node and the FogFlow edge nodes, FogFlow can be configured
to use HTTPs for the NGSI9 and NGSI10 communication, which is mainly for data exchange between cloud node and
edge nodes, or between two edge nodes. Also, the control channel between Topology Master and Worker can be secured
by enabling TLS in RabbitMQ. The introduction steps to secure the data exchange between one FogFlow cloud node
and one FogFlow edge node.

12.1.2 Configure DNS server

As illustrated by the following picture, in order to set up FogFlow to support the HTTPs-based communication, the
FogFlow cloud node and the FogFlow edge node are required to have their own domain names, because their signed
certificates must be associated with their domain namers. Therefore, DNS service is needed to be used to resolve the
domain names for both the cloud node and the edge node. For example, freeDNS can be used for this purpose.

Important: please make sure that the domain names of the cloud node and the edge node can be properly resolved
and correct IP address can be seen.

12.1.3 Set up the FogFlow cloud node

12.1.4 Fetch all required scripts

Download the docker-compose file and the configuration files as below.

download the script that can fetch all required files
wget https://raw.githubusercontent.com/smartfog/fogflow/master/docker/core/https/fetch.sh

make this script executable
chmod +x fetch.sh

run this script to fetch all required files
./fetch.sh

107

https://freedns.afraid.org

fogflow tutorial, Release v3.2.8

108 Chapter 12. Security

fogflow tutorial, Release v3.2.8

12.1.5 Change the configuration file

{
"coreservice_ip": "cloudnode.fogflow.io", #change this to the domain name of your␣

→˓own cloud node
"external_hostip": "cloudnode.fogflow.io", #change this to the domain name of your␣

→˓own cloud node
...

}

12.1.6 Generate the key and certificate files

make this script executable
chmod +x key4cloudnode.sh

run this script to fetch all required files
./key4cloudnode.sh cloudnode.fogflow.io

12.1.7 Start the FogFlow components on the cloud node

docker-compose up -d

12.1.8 Validate setup

docker ps

CONTAINER ID IMAGE COMMAND CREATED ␣
→˓ STATUS PORTS NAMES

90868b310608 nginx:latest "nginx -g 'daemon of..." 5 seconds ago ␣
→˓ Up 3 seconds 0.0.0.0:80->80/tcp ␣
→˓fogflow_nginx_1

d4fd1aee2655 fogflow/worker "/worker" 6 seconds ago ␣
→˓ Up 2 seconds fogflow_
→˓cloud_worker_1

428e69bf5998 fogflow/master "/master" 6 seconds ago ␣
→˓ Up 4 seconds 0.0.0.0:1060->1060/tcp fogflow_
→˓master_1

9da1124a43b4 fogflow/designer "node main.js" 7 seconds ago ␣
→˓ Up 5 seconds 0.0.0.0:1030->1030/tcp, 0.0.0.0:8080->8080/tcp fogflow_
→˓designer_1

bb8e25e5a75d fogflow/broker "/broker" 9 seconds ago ␣
→˓ Up 7 seconds 0.0.0.0:8070->8070/tcp fogflow_
→˓cloud_broker_1

7f3ce330c204 rabbitmq:3 "docker-entrypoint.s..." 10 seconds ago ␣
→˓ Up 6 seconds 4369/tcp, 5671/tcp, 25672/tcp, 0.0.0.0:5672->5672/tcp ␣
→˓fogflow_rabbitmq_1

9e95c55a1eb7 fogflow/discovery "/discovery" 10 seconds ago ␣
→˓ Up 8 seconds 0.0.0.0:8090->8090/tcp fogflow_

(continues on next page)

12.1. HTTPs-based communication 109

fogflow tutorial, Release v3.2.8

(continued from previous page)

→˓discovery_1
399958d8d88a grafana/grafana:6.5.0 "/run.sh" 29 seconds ago ␣

→˓ Up 27 seconds 0.0.0.0:3003->3000/tcp fogflow_
→˓grafana_1

9f99315a1a1d fogflow/elasticsearch:7.5.1 "/usr/local/bin/dock..." 32 seconds␣
→˓ago Up 29 seconds 0.0.0.0:9200->9200/tcp, 0.0.0.0:9300->9300/tcp ␣
→˓fogflow_elasticsearch_1

57eac616a67e fogflow/metricbeat:7.6.0 "/usr/local/bin/dock..." 32 seconds ago␣
→˓ Up 29 seconds ␣
→˓fogflow_metricbeat_1

12.1.9 Set up the FogFlow edge node

12.1.10 Fetch all required scripts

Download the docker-compose file and the configuration files as below.

download the script that can fetch all required files
wget https://raw.githubusercontent.com/smartfog/fogflow/master/docker/edge/https/fetch.sh

make this script executable
chmod +x fetch.sh

run this script to fetch all required files
./fetch.sh

12.1.11 Change the configuration file

{
"coreservice_ip": "cloudnode.fogflow.io", #change this to the domain name of your␣

→˓own cloud node
"external_hostip": "edgenode1.fogflow.io", #change this to the domain name of your␣

→˓own edge node
...

}

12.1.12 Generate the key and certificate files

make this script executable
chmod +x key4edgenode.sh

run this script to fetch all required files
./key4edgenode.sh edgenode1.fogflow.io

110 Chapter 12. Security

fogflow tutorial, Release v3.2.8

12.1.13 Start the FogFlow components on the edge node

docker-compose up -d

12.1.14 Validate setup

docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS ␣
→˓ PORTS NAMES
16af186fb54e fogflow/worker "/worker" About a minute ago Up␣
→˓About a minute https_edge_worker_1
195bb8e44f5b fogflow/broker "/broker" About a minute ago Up␣
→˓About a minute 0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp https_edge_broker_1

12.1.15 Check system status via FogFlow Dashboard

FogFlow dashboard can be opened in web browser to see the current system status via the URL: https://cloudnode.
fogflow.io/index.html

Important: please make sure that the domain names of the cloud node can be properly resolved.

If self-signed SSL certificate is being used, a browser warning indication can be seen that the crtificate should not be
trusted. It can be proceeded past this warning to view the FogFlow dashboard web page via https.

12.2 Secure FogFlow using Identity Management

Identity management(IdM) is a process for identifying, authenticating individuals or groups to have access to applica-
tions or system by associating some auth token with established identities. IdM is the task of controlling data about users
or applications. In this tutorialFogFlow Designer security implementation and secure Cloud-Edge communication is
explained and tested.

12.2.1 Terminology

Keyrock: Keyrock is the FIWARE component responsible for Identity Management. Keyrock also provide feature to
add OAuth2-based authentication and authorization security in order to secure services and applications.

PEP Proxy Wilma: PEP Proxy Wilma is a FIWARE Generic Enabler that enhances the performance of Identity
Management. It combines with Keyrock to secure access to endpoints exposed by FIWARE Generic Enablers. Wilma
listens for any request, authenticates it from Keyrock and stores it in its cache for a limited period of time. If a new
request arrives, Wilma will first check in its cache and if any grant is stored, it will directly authenticate otherwise it
will send the request to Keyrock for authentication.

12.2. Secure FogFlow using Identity Management 111

https://cloudnode.fogflow.io/index.html
https://cloudnode.fogflow.io/index.html
https://fiware-idm.readthedocs.io/en/latest/
https://fiware-pep-proxy.readthedocs.io/en/latest/

fogflow tutorial, Release v3.2.8

12.2.2 Security Architecture

12.2.3 Cloud and Edge Interaction with IDM

FogFlow cloud node flow:

1. As in architecture diagram, PEP Proxy will register itself on behalf FogFlow Designer first on Keyrock. Detail
explanation is given in below topics of this tutorial.

2. User can access Designer via PEP proxy proxy by using the access-token of PEP proxy in reaquest header.

FogFlow edge node flow:

1. On behalf of edge node, one instance of PEP Proxy will be pre-registered on keyrock, edge will be using oauth
credentials to fetch PEP Proxy details. Detail explanation is given in below topics of this tutorial. Click here to
refer.

2. After the authentication edge node will be able to communicate with FogFlow cloud node.

3. Any device can register itself or communicate with FogFlow edge node using access-token generated on behalf
of each IoT Device registered at Keyrock.

112 Chapter 12. Security

https://fogflow.readthedocs.io/en/latest/https.html#setup-security-components-on-cloud-node
https://fogflow.readthedocs.io/en/latest/https.html#setup-components-on-edge

fogflow tutorial, Release v3.2.8

12.2.4 Installation of Security Components on Cloud

the docker-compose file to start Identity Manager on the cloud node
wget https://raw.githubusercontent.com/smartfog/fogflow/development/docker/core/http/
→˓security_setup/docker-compose.idm.yml

the configuration file used by IdM
wget https://raw.githubusercontent.com/smartfog/fogflow/development/docker/core/http/
→˓security_setup/idm_config.js

the docker-compose file to start PEP Proxy (Wilma) on the cloud node
wget https://raw.githubusercontent.com/smartfog/fogflow/development/docker/core/http/
→˓security_setup/docker-compose.pep.yml

the configuration file used by PEP Proxy
wget https://raw.githubusercontent.com/smartfog/fogflow/development/docker/core/http/
→˓security_setup/pep_config.js

12.2.5 Change the IP configuration accordingly

Configuration file need to be modified at the following places with IP addresses according to user own environment.

• Change the IdM config file (idm_config.js) at following places as per the environment.

config.port = 3000;
config.host = '<IdM_IP>'; // eg; config.host = '180.179.214.215';

Note: IdM_IP denotes the IP of cloud node in this case, if IdM instance is to be set on platform other than cloud; user
must provide IP of that platform.

• If user wants to setup database according to their need, they can do so by changing following places in
idm_config.js as per environment. For default usage, do not change below mentioned configuration in
idm_config.js.

// Database info
config.database = {
host: 'localhost',
password: 'idm',
username: 'root',
database: 'idm',
dialect: 'mysql',
port: undefined
};

12.2. Secure FogFlow using Identity Management 113

fogflow tutorial, Release v3.2.8

12.2.6 Start Security Components on Cloud Node

Start Identity Manager

docker-compose -f docker-compose.idm.yml up -d

#Check all the containers are Up and Running using "docker ps -a"
docker ps -a

Note: IdM dashboard can be accessed on the http://<Idm_Ip>:3000 (for eg. http://180.179.214.215:3000) on browser.

Register Application with IdM

For accessig above dashboard, user needs to login with his credentials i.e. username and password. By default user
can use admin credentialswhich are “admin@test.com” and “1234”. After login, the below screen would appear.

• Now to register application, click on register tab under application heading.

• Now enter details as below

Name : (Provided by user)
Description : (Provided by User)

(continues on next page)

114 Chapter 12. Security

http:/
http://180.179.214.215:3000
mailto:admin@test.com

fogflow tutorial, Release v3.2.8

(continued from previous page)

Url : (Cloud Node's Designer IP for eg: http://180.179.214.215 where "180.179.214.215"␣
→˓is the IP for woking cloud node)
Callback Url : (in case of designer as an application it would be http://180.179.214.
→˓215/index.html)

click on Next button.

• If user wants to add image icon for his application he can do that by uploading it. Click Next button after that.

• Again click Save button to finish the registration.

12.2. Secure FogFlow using Identity Management 115

fogflow tutorial, Release v3.2.8

12.2.7 Start PEP Proxy (Wilma) on Cloud node

Below are the steps that need to be done to setup communication between IdM and PEP Proxy.

• Authenticate PEP Proxy itself with Keyrock Identity Management.

Login to Keyrock (http://180.179.214.135:3000/idm/) account with user credentials i.e. Email and Password.
For Example: admin@test.com and 1234.

After Login, Click “Applications” then select the registered Application. Click “PEP Proxy” link to get Application ID
, PEP Proxy Username and PEP Proxy Password.

Note: Application ID , PEP Proxy Username and PEP Proxy Password will generate by clicking ‘Register PEP Proxy’
button.

116 Chapter 12. Security

http://180.179.214.135:3000/idm/
mailto:admin@test.com

fogflow tutorial, Release v3.2.8

To setup PEP proxy for securing Designer, change the followings inside the pep_config file. Get PEP Proxy Credentials
from Keyrock Dashboard while registering an application.

config.pep_port = process.env.PEP_PROXY_PORT || 80;
config.idm = {
host: process.env.PEP_PROXY_IDM_HOST || '180.179.214.135',
port: process.env.PEP_PROXY_IDM_PORT || 3000,
ssl: toBoolean(process.env.PEP_PROXY_IDM_SSL_ENABLED, false),

};
config.app = {
host: process.env.PEP_PROXY_APP_HOST || '180.179.214.135',
port: process.env.PEP_PROXY_APP_PORT || ’80’,
ssl: toBoolean(process.env.PEP_PROXY_APP_SSL_ENABLED, false), // Use true if the app␣

→˓server listens in https
};

config.pep = {
app_id: process.env.PEP_PROXY_APP_ID || '9b51b184-808c-498c-8aac-74ffedc1ee72',
username: process.env.PEP_PROXY_USERNAME || 'pep_proxy_4abf36da-0936-46f9-a7f5-

→˓ac7edb7c86b6',
password: process.env.PEP_PASSWORD || 'pep_proxy_fb4955df-79fb-4dd7-8968-e8e60e4d6159',
token: {

secret: process.env.PEP_TOKEN_SECRET || '', // Secret must be configured in order␣
→˓validate a jwt
},
trusted_apps: [],

};

Note: PEP_PORT should be changed by user as per need. PEP_PROXY_IDM_HOST and PEP_PROXY_IDM_PORT
should match with above setup for IdM, that means PEP_PROXY_IDM_HOST should be the IP where IdM is
working and PEP_PROXY_IDM_PORT be the one, on which IdM is listening. PEP_PROXY_APP_HOST is the
IP of cloud node where designer is running and PEP_PROXY_APP_PORT be the one where designer is listening.
PEP_PROXY_APP_ID, PEP_PROXY_USERNAME and PEP_PASSWORD is retrived from the registered applica-
tion as shown in above image.

• Now start the PEP Proxy container, as shown below

docker-compose -f docker-compose.pep.yml up -d

// To check the status of conatiner, use
docker ps -a

12.2.8 Generate Application Access Token

Request Keyrock IDM to generate application access-token and refresh token.

1. Set the HTTP request Header, payload and Authorization field as per below screen shots.

2. Click “Send” Button to get application access-token.

Note: Above request is sent using POSTMAN Application. User can obtain Client ID and Client Secret from Keyrock
dashboard. To retrieve Client ID and Client Secret, click on registered application and under ‘Oauth2 Credentials’, user
can find Client ID and Client Secret.

Note: The Authorization code can be generated using below command.
echo -n Client_ID:Client_SECRET | base64 | tr -d ” \t\n\r”

12.2. Secure FogFlow using Identity Management 117

fogflow tutorial, Release v3.2.8

Fig. 1: Above request can be made using curl, as shown below

118 Chapter 12. Security

fogflow tutorial, Release v3.2.8

curl --request POST '<IdM_IP>:3000/oauth2/token/' \
--header 'Authorization: Basic␣
→˓YzNlZGU1NTUtOTIyOC00YjhlLTllNTktZTAxZWQ0Y2VhNDFjOmU4OWRlNzBlLTU3M2QtNDBhYS1hNjljLWVhZDYwNGFkYTAyYw==
→˓' \
--header 'Content-Type: application/x-www-form-urlencoded' \
--data-urlencode 'grant_type=password' \
--data-urlencode 'username=admin@test.com' \
--data-urlencode 'password=1234'

• The request can be made in either of the above two mentioned ways. The result will provide access token.

The flow of cloud security implementation can be understand by below figure.

Below are some points related to above architecture diagram:

1. Registered a PEP Proxy for designer as an application in Keyrock.

2. Keyrock will send access-token to pep.

3. Using that token user will send create entity request to designer.

4. Designer will send token to keyrock to authenticate.

5. Entity creation request will transfer to FogFlow.

entity Registration using token_access

12.2. Secure FogFlow using Identity Management 119

fogflow tutorial, Release v3.2.8

curl -iX POST 'http://<Cloud_Public_IP>:<PEP_Host-port>/ngsi10/updateContext' -H
→˓'X-Auth-Token: <token>' -H 'Content-Type: application/json'
-d '
{
"contextElements": [
{
"entityId": {

"id": "Temperature100",
"type": "Temperature",
"isPattern": false

},
"attributes": [

{
"name": "temp",
"type": "float",
"value": 34
}

],
"domainMetadata": [
{
"name": "location",
"type": "point",
"value": {
"latitude": 49.406393,
"longitude": 8.684208
}

}
],

"updateAction": "UPDATE"
}

]
}'

12.2.9 Setup components on Edge

FogFlow edge node mainly contains edge broker and edge worker. To secure FogFlow edge communication between
Iot device and edge node, PEP Proxy has been used. In order to create an Auth Token, firstly register an IoT device on
Keyrock. So, a script will call with the start of edge node and it will instantiate a PEP Proxy with the keyrock and also
setup configuration file for PEP Proxy to work, using the Keyrock APIs. The script will perform following steps:

Prerequisite

Two commands need to install before setup edge:

1. Curl

2. jq

120 Chapter 12. Security

fogflow tutorial, Release v3.2.8

12.2.10 scripts Installation

Below scripts need to download for setting up edge node.

#download the deployment scripts
wget https://raw.githubusercontent.com/smartfog/fogflow/development/docker/edge/http/
→˓start.sh
wget https://raw.githubusercontent.com/smartfog/fogflow/development/docker/edge/http/
→˓stop.sh
wget https://raw.githubusercontent.com/smartfog/fogflow/development/docker/edge/http/
→˓script.sh
wget https://raw.githubusercontent.com/smartfog/fogflow/development/docker/edge/http/
→˓oauth_config.js
wget https://raw.githubusercontent.com/smartfog/fogflow/development/docker/edge/http/pep-
→˓config.js

#make them executable
chmod +x script.sh start.sh stop.sh

12.2.11 Change the IP configuration accordingly

Chanage the following things in configuration file:

• Change the oauth_config.js and add IdM IP, Edge IP which is needed to fetch configuration settings for PEP
Proxy.

Start Edge node components

#start components in the same script
./start.sh

To secure FogFlow edge-IoT device communication Auth Token has been used on behalf of each IoT device. In order
to create an Auth Token,

• An IoT device is needed to be registered on Keyrock.

• A script will be called with the start of edge node and it will configure PEP Proxy with keyrock on behalf of that
edge node using the Keyrock APIs.

Note: the start.sh script will return Application ID, Application Secret, PEP Proxy ID, PEP Proxy Secret, Authorization
code, IDM Token and the access token on console. Please save these for further use.

IoT Device Interaction with FogFlow

Flow of Requests as shown in diagram:

Step 1 : User will make a request to IDM using his credentials to generate user access token specific for that user. For
this, user can use the script along with his username and password.

./user_token_generation.sh admin@test.com 1234

Note: For example, in above snippet admin username is “admin@test.com” and password is “1234”

Step 2 : Script will return an user access token as shown below.

Step 3 : User shares his access token (i.e. User Access Token) with IoT Device.

Step 4 : Then IoT devices get registered using the user access token passed as an argument to a script.

12.2. Secure FogFlow using Identity Management 121

mailto:admin@test.com

fogflow tutorial, Release v3.2.8

122 Chapter 12. Security

fogflow tutorial, Release v3.2.8

./device_token_generation.sh f9ffa629-9aff-4c98-ac57-1caa2917fed2

Note: For example, in above snippet “f9ffa629-9aff-4c98-ac57-1caa2917fed2” is the user access token.

Step 5 : Script will return device access token and device credentials(ID and password) as shown below.

Step 6 : Now, using the above device access token, the IoT Device can interact with Edge node via making Fogflow
specific requests to PEP Proxy port.

12.2.12 Register IoT Device on Keyrock Using curl request

An example request to register IoT Device is given below

curl --include \
--request POST \
--header "Content-Type: application/json" \
--header "X-Auth-token: <token-generated-from-script>" \

'http://keyrock/v1/applications/6e396def-3fa9-4ff9-84eb-266c13e93964/iot_agents'

Note: Please save the device Id and device password for further utilisation

An example request to generate Auth token for each registered IoT sensor is given below

12.2. Secure FogFlow using Identity Management 123

fogflow tutorial, Release v3.2.8

curl -iX POST \
'http://<IDM_IP>:3000/oauth2/token' \
-H 'Accept: application/json' \
-H 'Authorization: Basic <code-generated-from-script>' \
-H 'Content-Type: application/x-www-form-urlencoded' \
--data "username=iot_sensor_02bc0f75-07b5-411a-8792-4381df9a1c7f&password=iot_sensor_
→˓277bc253-5a2f-491f-abaa-c7b4e1599d6e&grant_type=password"

Note: Please save the Access Token for further utilisation

12.2.13 Register Device on Edge Node using curl request

An example payload of registration device is given below.

Curl -iX POST 'http://<Application_IP>:<Application_Port>/NGSI9/registerContext' -H
→˓'Content-Type: application/json' -H 'fiware-service: openiot' -H 'X-Auth-token: <token-
→˓generated-for-IoT-device>' -H 'fiware-servicepath: /' -d '
{

"contextRegistrations": [
{

"entities": [
{

"type": "Lamp",
"isPattern": "false",
"id": "Lamp.0020"

}
],
"attributes": [

{
"name": "on",
"type": "command"

},
{

"name": "off",
"type": "command"

}
],
"providingApplication": "http://0.0.0.0:8888"

}
],

"duration": "P1Y"
}'

Stop Edge Node Components

• Use the below script to stop edge components that is broker and worker.

#stop all components in the same script
./stop.sh

124 Chapter 12. Security

CHAPTER

THIRTEEN

COMPILE THE SOURCE CODE

FogFlow can be build and installed on Linux for both ARM and X86 processors (32bits and 64bits).

13.1 Install dependencies

1. To build FogFlow, first install the following dependencies.

• install git client: please follow the instruction at https://www.digitalocean.com/community/tutorials/
how-to-install-git-on-ubuntu-16-04

• install Docker CE: please follow the instruction at https://www.digitalocean.com/community/tutorials/
how-to-install-and-use-docker-on-ubuntu-16-04

Note: all the scripts are prepared under the assumption that docker can be run without sudo.

2. To check out the code repository

cd /home/smartfog/go/src/
git clone https://github.com/smartfog/fogflow.git

3. To build all components from the source code with multistage building

./build.sh multistage

125

https://www.digitalocean.com/community/tutorials/how-to-install-git-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-install-git-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-16-04

fogflow tutorial, Release v3.2.8

126 Chapter 13. Compile the source code

CHAPTER

FOURTEEN

TEST

Please follow the following steps to deploy the entire FogFlow system on a single Linux machine before your test.

Set up all FogFlow component on a single machine

Once the FogFlow is up and running, an end-to-end function test can be carried out by JMeter with a provided test plan.
More detailed steps are available here.

JMeter Test

127

https://fogflow.readthedocs.io/en/latest/setup.html
https://github.com/Fiware/test.Functional/tree/master/API.test/data.FogFlow/2.0.0

fogflow tutorial, Release v3.2.8

128 Chapter 14. Test

CHAPTER

FIFTEEN

RELATED PUBLICATIONS

1. F. Cirillo, B. Cheng, R. Porcellana, M. Russo, G. Solmaz, H. Sakamoto, and S. P. Romano. “IntentKeeper:
Intent-Oriented Data Usage Control for Federated Data Analytics, ” In IEEE LCN’20, November 2020.

2. B. Cheng, J. Fürst, G. Solmaz, T. Sanada, “Fog Function: Serverless Fog Computing for Data Intensive IoT
Services,” in the proceedings of 2019 IEEE Conference on Service Computing (IEEE SCC’19) (Won the best
paper award), Milan, 2019, pp.28-35

3. M. Fadel Argerich, B. Cheng, J. Fuerst, “Reinforcement Learning based Orchestration for Elastic Services”, in
the proceedings of the 5th IEEE World Forum on Internet of Things, WF-IoT 2019, Limerick, Ireland, April
15-18, 2019, pp. 352-357

4. B. Cheng, E. Kovacs, A. Kitazawa, K. Terasawa, T. Hada, M. Takeuchi, “FogFlow: Orchestrating IoT Services
over Cloud and Edges”, NEC Technical Journal, 2018/11

5. B. Cheng, G. Solmaz, F. Cirillo, E. Kovacs, K. Terasawa and A. Kitazawa, “FogFlow: Easy Programming of
IoT Services Over Cloud and Edges for Smart Cities”, in IEEE Internet of Things Journal, 2017 (Won the Best
Paper Runner-up award)

6. B. Cheng, A. Papageorgiou and M. Bauer, “Geelytics: Enabling On-Demand Edge Analytics over Scoped Data
Sources”, 2016 IEEE International Congress on Big Data (IEEE BigData Congress), San Francisco, CA, 2016,
pp. 101-108

7. B. Cheng, A. Papageorgiou, F. Cirillo and E. Kovacs, “GeeLytics: Geo-distributed Edge Analytics for Large
Scale IoT Systems Based on Dynamic Topology”, IEEE 2nd World Forum on Internet of Things (WF-IoT),
Milan, 2015, pp. 565-570.

129

https://ieeexplore.ieee.org/document/9314823
https://ieeexplore.ieee.org/document/9314823
https://arxiv.org/abs/1907.08278
https://arxiv.org/abs/1907.08278
https://arxiv.org/pdf/1904.12676.pdf
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180110.pdf
https://www.nec.com/en/global/techrep/journal/g18/n01/pdf/180110.pdf
http://ieeexplore.ieee.org/document/8022859/
http://ieeexplore.ieee.org/document/8022859/
http://ieeexplore.ieee.org/document/7584926/
http://ieeexplore.ieee.org/document/7584926/
http://ieeexplore.ieee.org/document/7584926/
http://ieeexplore.ieee.org/document/7584926/

fogflow tutorial, Release v3.2.8

130 Chapter 15. Related publications

CHAPTER

SIXTEEN

TROUBLESHOOTING

This document discusses some common problems that people run into when using FogFlow as well as some known
problems. If you encounter other problems, please let us know. .. let us know: https://github.com/smartfog/fogflow/
issues

• edge node is behind NAT
If your edge node is behind NAT or a firewall that blocks any incoming notify to your IoT Broker at edge,
your edge node can not work properly. We are going to support this type of setup in the near future.

131

https://github.com/smartfog/fogflow/issues
https://github.com/smartfog/fogflow/issues

fogflow tutorial, Release v3.2.8

132 Chapter 16. Troubleshooting

CHAPTER

SEVENTEEN

CONTACT

The following are good places to discuss FogFlow.

1. Our Mailing List: Sending us an email to discuss anything related to development, usage, or other general ques-
tions.

2. FIWARE Q&A: To discuss any question or issue with other FIWARE users.

3. GitHub Issues: For bug reports and feature requests.

133

mailto:fogflow@listserv.neclab.eu
https://ask.fiware.org
https://github.com/smartfog/fogflow/issues

	Motivation
	High level view
	Technical benefit
	Differentiation
	Quick Start
	Fetch all required scripts
	Change the IP configuration accordingly
	Start all Fogflow components
	Validate your setup

	Hello World Example
	Initialize all defined services with three clicks
	Simulate an IoT device to trigger the Fog Function
	Check if the fog function is triggered

	Core concepts
	Operator
	Task
	Task Instance
	IoT Service
	Service Topology
	Service Intent
	From Service Topology to Actual Execution
	Fog Function

	Programming Model
	Fog Function
	Define and trigger a fog function
	Register task operators
	Register it via FogFlow Task Designer
	Register it programmatically by sending a NGSI update
	Define a “Dummy” fog function
	create a fog function from the FogFlow editor
	provide the code of your own function
	submit fog function
	Trigger “dummy” fog function

	Service Topology
	Define and trigger a service topology
	Use case on anomaly detection
	Implement your operator functions required in your service topology
	Specify a service topology
	using FogFlow Topology Editor
	using NGSI Update to create it
	Trigger the service topology by sending an Intent

	API Walkthrough
	FogFlow Discovery API
	Look up nearby brokers

	FogFlow Broker API
	Create/update context
	Query Context via GET
	Fetch a context entity by ID
	Fetch a specific attribute of a specific context entity
	Check all context entities on a single Broker

	Query context via POST
	query context by the pattern of entity ID
	query context by entity type
	query context by geo-scope (circle)
	query context by geo-scope (polygon)
	query context with the filter of domain metadata values
	query context with multiple filters

	Delete context
	Delete a specific context entity by ID

	Subscribe context
	subscribe context by the pattern of entity ID
	subscribe context by entity type
	subscribe context by geo-scope
	subscribe context with the filter of domain metadata values
	subscribe context with multiple filters
	Cancel a subscription by subscription ID

	FogFlow Designer API
	Operator
	a. To create a new Operator
	b. To retrieve all the operators
	c. To retrieve a specific operator based on operator name

	DockerImage
	a. To create a new DockerImage
	b. To retrieve all the DockerImage
	c. To retrieve a specific DockerImage based on operator name

	Service Topology
	a. To create a new Service
	b. To retrieve all the Service
	c. To retrieve a specific service based on service name
	d. To delete a specific service based on service name

	Intent
	a. To create a new Intent
	b. To retrieve all the Intent
	c. To retrieve a specific Intent based on Intent ID
	d. To delete a specific Intent based on intent id
	e. To retrieve list service intents for the given service topology

	Topology
	a. To retrieve all the Topology
	b. To retrieve a specific Topology based on topology name

	Fog Function
	a. To create a new Fogfunction
	b. To retrieve all the Fogfunction
	c. To retrieve a specific Fogfunction based on fogfunction name
	d. To delete a specific fogfunction based on fogfunction name
	e. To enable a specific fogfunction based on fogfunction name
	F. To disable a specific fogfunction based on fogfunction name

	Device
	a. To create a new device
	b. To get the list of all registered devices
	c. To delete a specific device

	Subscription
	a. To create a subscription for a given destination
	b. To get the list of all registered subscription
	c. To delete a specific subscription

	NGSI-LD Supported API’s
	Entities API
	a. To create NGSI-LD context entity, with context in Link in Header
	b. To create a new NGSI-LD context entity, with context in Link header and request payload is already expanded
	c. To append additional attributes to an existing entity
	d. To update specific attributes of an existing entity
	e. To delete an NGSI-LD context entity
	f. To delete an attribute of an NGSI-LD context entity
	g. To retrieve a specific entity

	Subscription API
	a. To create a new Subscription to with context in Link header
	b. To retrieve all the subscriptions
	c. To retrieve a specific subscription based on subscription id
	d. To delete a specific subscription based on subscription id

	System Setup
	Start FogFlow Cloud node
	Prerequisite
	Fetch all required scripts
	Change the IP configuration accordingly
	Start all components on the FogFlow Cloud Node
	Validate your setup
	Try out existing IoT services

	Start FogFlow edge node
	Install Docker Engine
	Download the deployment script
	Download the default configuration file
	Change the configuration file accordingly
	Start Edge node components
	Stop Edge node components

	Monitoring
	Set up Monitoring components on Cloud node
	Fetch all required scripts
	Start all Monitoring components

	Configure Elasticsearch on Grafana Dashboard
	Grafana-based monitoring
	Set up Metricbeat on Edge node

	Security
	HTTPs-based communication
	Secure the cloud-edge communication
	Configure DNS server
	Set up the FogFlow cloud node
	Fetch all required scripts
	Change the configuration file
	Generate the key and certificate files
	Start the FogFlow components on the cloud node
	Validate setup
	Set up the FogFlow edge node
	Fetch all required scripts
	Change the configuration file
	Generate the key and certificate files
	Start the FogFlow components on the edge node
	Validate setup
	Check system status via FogFlow Dashboard

	Secure FogFlow using Identity Management
	Terminology
	Security Architecture
	Cloud and Edge Interaction with IDM
	Installation of Security Components on Cloud
	Change the IP configuration accordingly
	Start Security Components on Cloud Node
	Start PEP Proxy (Wilma) on Cloud node
	Generate Application Access Token
	Setup components on Edge
	scripts Installation
	Change the IP configuration accordingly
	Register IoT Device on Keyrock Using curl request
	Register Device on Edge Node using curl request

	Compile the source code
	Install dependencies

	Test
	Related publications
	Troubleshooting
	Contact

