

Flywheel - Object Mapper for DynamoDB

Flywheel is a library for mapping python objects to DynamoDB tables. It uses a
SQLAlchemy-like syntax for queries.

Code lives here: https://github.com/stevearc/flywheel

User Guide

	Getting Started

	Models
	Model Basics

	Data Types

	Schema

	Composite Fields

	Metadata

	Table Queries
	Shorthand

	Table Scans

	CRUD
	Save

	Refresh

	Get

	Delete

	Sync

	Default Conflict Behavior

	Developing
	Running Tests

	Changelog
	0.5.3

	0.5.2

	0.5.1

	0.5.0

	0.4.11

	0.4.10

	0.4.9

	0.4.8

	0.4.7

	0.4.6

	0.4.5

	0.4.4

	0.4.3

	0.4.2

	0.4.1

	0.4.0

	0.3.0

	0.2.1

	0.2.0

	0.1.3

	0.1.2

	0.1.1

	0.1.0

API Reference

	flywheel package
	Subpackages
	flywheel.fields package

	Submodules
	flywheel.compat module

	flywheel.engine module

	flywheel.model_meta module

	flywheel.models module

	flywheel.query module

	flywheel.tests module

	Module contents

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Flywheel can be installed with pip

pip install flywheel

Here are the steps to set up a simple example model with flywheel:

Take care of some imports
from datetime import datetime
from flywheel import Model, Field, Engine

Set up our data model
class Tweet(Model):
 userid = Field(hash_key=True)
 id = Field(range_key=True)
 ts = Field(type=datetime, index='ts-index')
 text = Field()

 def __init__(self, userid, id, ts, text):
 self.userid = userid
 self.id = id
 self.ts = ts
 self.text = text

Create an engine and connect to an AWS region
engine = Engine()
engine.connect_to_region('us-east-1')

Register our model with the engine so it can create the Dynamo table
engine.register(Tweet)

Create the dynamo table for our registered model
engine.create_schema()

Now that you have your model, your engine, and the Dynamo table, you can begin
adding tweets:

tweet = Tweet('myuser', '1234', datetime.utcnow(), text='@awscloud hey '
 'I found this cool new python library for AWS...')
engine.save(tweet)

To get data back out, query it using the engine:

Get the 10 most recent tweets by 'myuser'
recent = engine.query(Tweet)\
 .filter(Tweet.ts <= datetime.utcnow(), userid='myuser')\
 .limit(10).all(desc=True)

Get a specific tweet by a user
tweet = engine.query(Tweet).filter(userid='myuser', id='1234').first()

If you want to change a field, just make the change and sync it:

tweet.text = 'This tweet has been removed due to shameless promotion'
tweet.sync()

That’s enough to give you a taste. The rest of the docs have more information
on creating models, writing queries, or how
updates work.

Models

	Model Basics

	Data Types
	Set types

	Field Validation

	Custom Types

	Schema
	Local Secondary Indexes

	Global Secondary Indexes

	Composite Fields

	Metadata

Model Basics

This is what a model looks like:

class Tweet(Model):
 userid = Field(hash_key=True)
 id = Field(range_key=True)
 ts = Field(type=datetime, index='ts-index')
 text = Field()

The model declares the fields an object has, their data
types, and the schema of the table.

Since models define the schema of a table, you can use them to create or delete
tables. Every model has a meta_ field attached to it which contains
metadata about the model. This metadata object has the create and delete methods.

from dynamo3 import DynamoDBConnection

connection = DynamoDBConnection.connect_to_region('us-east-1')
Tweet.meta_.create_dynamo_schema(connection)
Tweet.meta_.delete_dynamo_schema(connection)

You can also register your models with the engine and create all the tables at once:

engine.register(User, Tweet, Message)
engine.create_schema()

Data Types

DynamoDB supports three different data types: STRING, NUMBER, and BINARY. It
also supports sets of these types: STRING_SET, NUMBER_SET, BINARY_SET.

You can use these values directly for the model declarations, though they
require an import:

from flywheel import Model, Field, STRING, NUMBER

class Tweet(Model):
 userid = Field(type=STRING, hash_key=True)
 id = Field(type=STRING, range_key=True)
 ts = Field(type=NUMBER, index='ts-index')
 text = Field(type=STRING)

There are other settings for type that are represented by python
primitives. Some of them (like unicode) are functionally equivalent to the
DynamoDB option (STRING). Others, like int, enforce an additional
application-level constraint on the data. Each option works transparently, so a
datetime field would be set with datetime objects and you could query
against it using other datetime’s.

Below is a table of python types, how they are stored in DynamoDB, and any
special notes. For more information, the code for data types is located in
types.

	PY2 Type

	PY3 Type

	Dynamo Type

	Notes

	unicode

	str

	STRING

	Basic STRING type. This is the default for fields

	str

	bytes

	BINARY

	Binary data, (serialized objects, compressed data, etc)

	int/long

	int

	NUMBER

	Enforces integer constraint on data

	float

	
	NUMBER

	

	Decimal

	
	NUMBER

	

	set

	
	*_SET

	This will use the appropriate type of DynamoDB set

	bool

	
	BOOL

	

	datetime

	
	NUMBER

	Stored with UTC timezone. See
DateTimeType for more.

	date

	
	NUMBER

	

	dict

	
	MAP

	

	list

	
	LIST

	

If you attempt to set a field with a type that doesn’t match, it will raise a
TypeError. If a field was created with coerce=True it will first
attempt to convert the value to the correct type. This means you could set an
int field with the value "123" and it would perform the conversion for
you.

Note

Certain fields will auto-coerce specific data types. For example, a
bytes field will auto-encode a unicode to utf-8 even if
coerce=False. Similarly, a unicode field will auto-decode a
bytes value to a unicode string.

Warning

If an int field is set to coerce values, it will still refuse to drop
floating point data. This has the following effect:

>>> class Game(Model):
... title = Field(hash_key=True)
... points = Field(type=int, coerce=True)

>>> mygame = Game()
>>> mygame.points = 1.8
ValueError: Field 'points' refusing to convert 1.8 to int! Results in data loss!

Set types

If you define a set field with no additional parameters
Field(type=set), flywheel will ensure that the field is a set, but
will perform no type checking on the items within the set. This should work
fine for basic uses when you are storing a number or string, but sets are able
to contain any data type listed in the table above (and any custom type you declare). All you have to do is specify it in the
type like so:

from flywheel import Model, Field, set_
from datetime import date

class Location(Model):
 name = Field(hash_key=True)
 events = Field(type=set_(date))

If you don’t want to import set_, you can use an equivalent expression with
the python frozenset builtin:

events = Field(type=frozenset([date]))

Field Validation

You can apply one or more validators to a field. These are functions that
enforce some constraint on the field value beyond the type. Unlike the type
checking done above, the validation checks are only run when saving to the
database. An example:

class Widget(Model):
 id = Field(type=int, check=lambda x: x > 0)

To apply multiple validation checks, pass them in as a list or tuple:

def is_odd(x):
 return x % 2 == 1

def is_natural(x):
 return x >= 0

class Widget(Model):
 odd_natural_num = Field(type=int, check=(is_odd, is_natural))

There is a special case for enforcing that a field is non-null, since it is a
common case:

username = Field(nullable=False)

The nullable=False will generate an additional check to make sure the value
is non-null.

Custom Types

You can define your own custom data types and make them available across all of
your models. All you need to do is create a subclass of
TypeDefinition. Let’s make a type that will
store any python object in pickled format.

from flywheel.fields.types import TypeDefinition, BINARY, Binary
import cPickle as pickle

class PickleType(TypeDefinition):
 type = pickle # name you use to reference this type
 aliases = ['pickle'] # alternate names that reference this type
 ddb_data_type = BINARY # data type of the field in dynamo

 def coerce(self, value, force):
 # Perform no type checking because we can pickle ANYTHING
 return value

 def ddb_dump(self, value):
 # Pickle and convert to a Binary object
 return Binary(pickle.dumps(value))

 def ddb_load(self, value):
 # Convert from a Binary object and unpickle
 return pickle.loads(value.value)

Now that you have your type definition, you can either use it directly in your code:

class MyModel(Model):
 myobj = Field(type=PickleType())

Or you can register it globally and reference it by its type or any
aliases that were defined.

from flywheel.fields.types import register_type

register_type(PickleType)

class MyModel(Model):
 myobj = Field(type='pickle')

Schema

There are four main key concepts to understanding a DynamoDB table.

Hash key: This field will be sharded. Pick something with relatively random
access (e.g. userid is good, timestamp is bad)

Range key: Optional. This field will be indexed, so you can query against
it (within a specific hash key).

The hash key and range key together make the Primary key, which is the
unique identifier for each object.

Local Secondary Indexes: Optional, up to 5. You may only use these if your
table has a range key. These fields are indexed in a similar fashion as the
range key. You may also query against them within a specific hash key. You can
think of these as range keys with no uniqueness requirements.

Global Secondary Indexes: Optional, up to 5. These indexes have a hash key
and optional range key, and can be put on any declared field. This allows you
to shard your tables by more than one value.

For additional information on table design, read the AWS docs on best
practices [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BestPractices.html]

Example declaration of hash and range key:

class Tweet(Model):
 userid = Field(hash_key=True)
 ts = Field(type=datetime, range_key=True)

For this version of a Tweet, each (userid, ts) pair is a unique value. The
Dynamo table will be sharded across userids.

Local Secondary Indexes

Indexes also have a Projection Type. Creating an index requires duplicating
some amount of data in the storage, and the projection type allows you to
optimize how much additional storage is used. The projection types are:

All: All fields are projected into the index

Keys only: Only the primary key and indexed keys are projected into the index

Include: Like the “keys only” projection, but allows you to specify
additional fields to project into the index

This is how they it looks in the model declaration:

class Tweet(Model):
 userid = Field(hash_key=True)
 id = Field(range_key=True)
 ts = Field(type=datetime).all_index('ts-index')
 retweets = Field(type=int).keys_index('rt-index')
 likes = Field(type=int).include_index('like-index', ['text'])
 text = Field()

The default index projection is “All”, so you could replace the ts field
above with:

ts = Field(type=datetime, index='ts-index')

Global Secondary Indexes

Like their Local counterparts, Global Secondary Indexes can specify a
projection type. Unlike their Local counterparts, Global Secondary Indexes are
provisioned with a separate read/write throughput from the base table. This
can be specified in the model declaration. Here are some examples below:

class Tweet(Model):
 __metadata__ = {
 'global_indexes': [
 GlobalIndex.all('ts-index', 'city', 'ts').throughput(read=10, write=2),
 GlobalIndex.keys('rt-index', 'city', 'retweets')\
 .throughput(read=10, write=2),
 GlobalIndex.include('like-index', 'city', 'likes',
 includes=['text']).throughput(read=10, write=2),
],
 }
 userid = Field(hash_key=True)
 city = Field()
 id = Field(range_key=True)
 ts = Field(type=datetime)
 retweets = Field(type=int)
 likes = Field(type=int)
 text = Field()

If you want more on indexes, check out the AWS docs on indexes [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.html].

Composite Fields

Composite fields allow you to create fields that are combinations of multiple
other fields. Suppose you’re creating a table where you plan to store a
collection of social media items (tweets, facebook posts, instagram pics, etc).
If you make the hash key the id of the item, there is the remote possiblity
that a tweet id will collide with a facebook id. Here is the solution:

class SocialMediaItem(Model):
 userid = Field(hash_key=True)
 type = Field()
 id = Field()
 uid = Composite('type', 'id', range_key=True)

This will automatically generate a uid field from the values of type and id. For example:

>>> item = SocialMediaItem(type='facebook', id='12345')
>>> print item.uid
facebook:12345

Note that setting a Composite field just doesn’t work:

>>> item.uid = 'ILikeThisIDBetter'
>>> print item.uid
facebook:12345

By default, a Composite field simply joins its subfields with a ':'. You can
change that behavior for fancier applications:

def score_merge(likes, replies, deleted):
 if deleted:
 return None
 return likes + 5 * replies

class Post(Model):
 userid = Field(hash_key=True)
 id = Field(range_key=True)
 likes = Field(type=int)
 replies = Field(type=int)
 deleted = Field(type=bool)
 score = Composite('likes', 'replies', 'deleted', type=int,
 merge=score_merge, index='score-index')

So now you can update the likes or replies count, and the score will
automatically change. Which will re-arrange it in the index that you created.
Then, if you mark the post as “deleted”, it will remove the score field which
removes it from the index.

Whooooaaahh…

The last neat little thing about Composite fields is how you can query them.
For numeric Composite fields you probably want to query directly on the score
like any other field. But if you’re merging strings like with SocialMediaItem,
it can be cleaner to refer to the component fields themselves:

>>> fb_post = engine.query(SocialMediaItem).filter(userid='abc123',
... type='facebook', id='12345').first()

The engine will automatically detect that you’re trying to query on the range
key, and construct the uid from the pieces you provided.

Metadata

Part of the model declaration is the __metadata__ attribute, which is a
dict that configures the Model.meta_ object. Models will inherit and merge
the __metadata__ fields from their ancestors. Keys that begin with an
underscore will not be merged. For example:

class Vehicle(Model):
 __metadata__ = {
 '_name': 'all-vehicles',
 'throughput': {
 'read': 10,
 'write': 2,
 }
 }

class Car(Vehicle):
 pass

>>> print Car.__metadata__
{'throughput': {'read': 10, 'write': 2}}

Below is a list of all the values that may be set in the __metadata__
attribute of a model.

	Key

	Type

	Description

	_name

	str

	The name of the DynamoDB table (defaults to class name)

	_abstract

	bool

	If True, no DynamoDB table will be created for this model (useful if you just want a class to inherit from)

	throughput

	dict

	The table read/write throughput (defaults to {‘read’: 5, ‘write’: 5})

	global_indexes

	list

	A list of GlobalIndex objects

Table Queries

The query syntax is heavily inspired by SQLAlchemy [http://www.sqlalchemy.org/].
In DynamoDB, queries must use one of the table’s indexes. Queries are
constrained to a single hash key value. This means that for a query there will
always be at least one call to filter which will, at a minimum, set the
hash key to search on.

Fetch all tweets made by a user
engine.query(Tweet).filter(Tweet.userid == 'abc123').all()

You may also use inequality filters on range keys and secondary indexes

Fetch all tweets made by a user in the past day
earlyts = datetime.utcnow() - timedelta(days=1)
engine.query(Tweet).filter(Tweet.userid == 'abc123',
 Tweet.ts >= earlyts).all()

There are two finalizing statements that will return all results:
all() and gen().
Calling all() will return a list of results.
Calling gen() will return a generator. If your
query will return a large number of results, using
gen() can help you avoid storing them all in
memory at the same time.

Count how many retweets a user has in total
retweets = 0
all_tweets = engine.query(Tweet).filter(Tweet.userid == 'abc123').gen()
for tweet in all_tweets:
 retweets += tweet.retweets

There are two finalizing statements that retrieve a single item:
first() and one().
Calling first() will return the first element of
the results, or None if there are no results. Calling
one() will return the first element of the results
only if there is exactly one result. If there are no results or more
results it will raise a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].

Get a single tweet by a user
tweet = engine.query(Tweet).filter(Tweet.userid == 'abc123').first()

Get a specific tweet and fail if missing
tweet = engine.query(Tweet).filter(Tweet.userid == 'abc123',
 Tweet.id == '1234').one()

There is one more finalizing statement: count().
This will return the number of results that matched the query, instead of
returning the results themselves.

Get the number of tweets made by user abc123
num = engine.query(Tweet).filter(Tweet.userid == 'abc123').count()

You can set a limit() on a query to limit the
number of results it returns:

Get the first 10 tweets by a user after a timestamp
afterts = datetime.utcnow() - timedelta(hours=1)
tweets = engine.query(Tweet).filter(Tweet.userid == 'abc123',
 Tweet.ts >= afterts).limit(10).all()

One way to delete items from a table is with a query. Calling
delete() will delete all items that match a query:

Delete all of a user's tweets older than 1 year
oldts = datetime.utcnow() - timedelta(days=365)
engine.query(Tweet).filter(Tweet.userid == 'abc123',
 Tweet.ts < oldts).delete()

Most of the time the query engine will be able to automatically detect which
local or global secondary index you intend to use. If the index is ambiguous,
you can manually specify the index. This can also be useful if you want the
results to be sorted by a particular index when only querying the hash key.

This is the schema for the following example
class Tweet(Model):
 userid = Field(hash_key=True)
 id = Field(range_key=True)
 ts = Field(type=datetime, index='ts-index')
 retweets = Field(type=int, index='rt-index')

This returns 10 tweets in id order (more-or-less random)
ten_tweets = engine.query(Tweet).filter(userid='abc123').limit(10).all()

Get the 10 most retweeted tweets for a user
top_ten = engine.query(Tweet).filter(userid='abc123').index('rt-index')\
 .limit(10).all(desc=True)

Get The 10 most recent tweets for a user
ten_recent = engine.query(Tweet).filter(userid='abc123').index('ts-index')\
 .limit(10).all(desc=True)

New in 0.2.1

Queries can filter on fields that are not the hash or range key. Filtering this
way will strip out the results server-side, but it will not use an index. When
filtering on these extra fields, you may use the additional filter operations
that are listed under Table Scans.

Shorthand

If you want to avoid typing ‘query’ everywhere, you can simply call the engine:

Long form query
engine.query(Tweet).filter(Tweet.userid == 'abc123').all()

Abbreviated query
engine(Tweet).filter(Tweet.userid == 'abc123').all()

Filter constraints with == can be instead passed in as keyword arguments:

Abbreviated filter
engine(Tweet).filter(userid='abc123').all()

engine(Tweet).filter(userid='abc123', id='1234').first()

You can still pass in other constraints as positional arguments to the same
filter:

Multiple filters in same statement
engine(Tweet).filter(Tweet.ts <= earlyts, userid='abc123').all()

Table Scans

Table scans are similar to table queries, but they do not use an index. This
means they have to read every item in the table. This is EXTREMELY SLOW. The
benefit is that they do not have to filter based on the hash key, and they have
a few additional filter arguments that may be used.

Fetch all tweets ever
alltweets = engine.scan(Tweet).gen()

Fetch all tweets that tag awscloud
tagged = engine.scan(Tweet).filter(Tweet.tags.contains_('awscloud')).all()

Fetch all tweets with annoying, predictable text
annoying = set(['first post', 'hey guys', 'LOOK AT MY CAT'])
first = engine.scan(Tweets).filter(Tweet.text.in_(annoying)).all()

Fetch all tweets with a link
linked = engine.scan(Tweet).filter(Tweet.link != None).all()

Since table scans don’t use indexes, you can filter on fields that are not
declared in the model. Here are some examples:

Fetch all tweets that link to wikipedia
educational = engine.scan(Tweet)\
 .filter(Tweet.field_('link').beginswith_('http://wikipedia')).all()

You can also use the keyword arguments to filter
best_tweets = engine.scan(Tweet)\
 .filter(link='http://en.wikipedia.org/wiki/Morgan_freeman').all()

CRUD

This section covers the operations you can do to save, read, update, and delete
items from the database. All of these methods exist on the
Engine object and can be called on one or many items.
After being saved-to or loaded-from Dynamo, the items themselves will have
these methods attached to them as well. For example, these are both valid:

>>> engine.sync(tweet)
>>> tweet.sync()

Save

Save the item to Dynamo. This is intended for new items that were just created
and need to be added to the database. If you save() an item that already
exists in Dynamo, it will raise an exception. You may optionally use
save(overwrite=True) to instead clobber existing data and write your
version of the item to Dynamo.

>>> tweet = Tweet()
>>> engine.save(tweet)
>>> tweet.text = "Let's replace the whole item"
>>> tweet.save(overwrite=True)

Refresh

Query dynamo to get the most up-to-date version of a model. Clobbers any
existing data on the item. To force a consistent read use
refresh(consistent=True).

This call is very useful if you query indexes that use an incomplete projection
type. The results won’t have all of the item’s fields, so you can call
refresh() to get any attributes that weren’t projected onto the index.

>>> tweet = engine.query(Tweet).filter(userid='abc123')\
... .index('ts-index').first(desc=True)
>>> tweet.refresh()

Get

Fetch an item from its primary key fields. This will be faster than a query,
but requires you to know the primary keys of all items you want fetched.

>>> my_tweet = engine.get(Tweet, userid='abc123', id='1')

You can also fetch many at a time:

>>> key1 = {'userid': 'abc123', 'id': '1'}
>>> key2 = {'userid': 'abc123', 'id': '2'}
>>> key3 = {'userid': 'abc123', 'id': '3'}
>>> some_tweets = engine.get(Tweet, [key1, key2, key3])

Delete

Deletes an item. You may pass in delete(raise_on_conflict=True), which will
only delete the item if none of the values have changed since it was read.

>>> tweet = engine.query(Tweet).filter(userid='abc123', id='123').first()
>>> tweet.delete()

You may also delete an item from a primary key specification:

>>> engine.delete_key(Tweet, userid='abc123', id='1')

And you may delete many at once:

>>> key1 = {'userid': 'abc123', 'id': '1'}
>>> key2 = {'userid': 'abc123', 'id': '2'}
>>> key3 = {'userid': 'abc123', 'id': '3'}
>>> engine.delete_key(Tweet, [key1, key2, key3])

Sync

Save any fields that have been changed on an item. This will update changed
fields in Dynamo and ensure that all fields exactly reflect the item in the
database. This is usually used for updates, but it can be used to create new
items as well.

>>> tweet = Tweet()
>>> engine.sync(tweet)
>>> tweet.text = "Update just this field"
>>> tweet.sync()

Models will automatically detect changes to mutable fields, such as dict,
list, and set.

>>> tweet.tags.add('awscloud')
>>> tweet.sync()

Since sync does a partial update, it can tolerate concurrent writes of
different fields.

>>> tweet = engine.query(Tweet).filter(userid='abc123', id='1234').first()
>>> tweet2 = engine.query(Tweet).filter(userid='abc123', id='1234').first()
>>> tweet.author = "The Pope"
>>> tweet.sync()
>>> tweet2.text = "Mo' money mo' problems"
>>> tweet2.sync() # it works!
>>> print tweet2.author
The Pope

This “merge” behavior is also what happens when you sync() items to create
them. If the item to create already exists in Dynamo, that’s fine as long as
there are no conflicting fields. Note that this behavior is distinctly
different from save(), so make sure you pick the right call for your use
case.

If you call sync() on an object that has not been changed, it is equivalent
to calling refresh().

Safe Sync

If you use sync(raise_on_conflict=True), the sync operation will check that
the fields that you’re updating have not been changed since you last read them.
This is very useful for preventing concurrent writes.

Note

If you change a key that is part of a composite
field, flywheel will force the sync to raise on
conflict. This avoids the risk of corrupting the value of the composite
field.

Atomic Increment

DynamoDB supports truly atomic increment/decrement of NUMBER fields. To use
this functionality, there is a special call you need to make:

>>> # Increment the number of retweets by 1
>>> tweet.incr_(retweets=1)
>>> tweet.sync()

BOOM.

Note

Incrementing a field that is part of a composite field will also force the
sync to raise on conflict.

Atomic Add/Remove

DynamoDB also supports truly atomic add/remove to SET fields. To use this
functionality, there is another special call:

>>> # Add two users to the set of tagged users
>>> tweet.add_(tags=set(['stevearc', 'dsa']))
>>> tweet.sync()

And to delete:

>>> tweet.remove_(tags='stevearc')
>>> tweet.sync()

Note than you can pass in a single value or a set of values to both add_
and remove_.

Sync-if-Constraints

New in 0.2.1

You may pass in a list of constraints to check upon sync. If any of the
constraints fail, then the sync will not complete. This should be used with
raise_on_conflict=True. For example:

>>> account = engine.get(Account, username='dsa')
>>> account.incr_(moneys=-200)
>>> # atomically remove $200 from DSA's account, iff there is at least $200 to remove.
>>> account.sync(constraints=[Account.moneys >= 200])

Default Conflict Behavior

You can configure the default behavior for each of these endpoints using
default_conflict. The default setting will
cause sync() to check for conflicts, delete() not to check for
conflicts, and save() to overwrite existing values. Check the attribute
docs for more options. You can, of course, pass in the argument to the calls
directly to override this behavior on a case-by-case basis.

Developing

To get started developing flywheel, run the following command:

wget https://raw.github.com/stevearc/devbox/0.1.0/devbox/unbox.py && \
python unbox.py git@github.com:stevearc/flywheel

This will clone the repository and install the package into a virtualenv

Running Tests

The command to run tests is python setup.py nosetests, or tox. Most of
these tests require DynamoDB Local [http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tools.html].
There is a nose plugin that will download and run the DynamoDB Local service
during the tests. It requires the java 6/7 runtime, so make sure you have that
installed.

Changelog

0.5.3

	Bug fix: Fix refresh when using custom-typed primary keys (:pr:`63`)

0.5.2

	Bug fix: Change limit behavior to match docs. query().limit() will limit the number of results, query().scan_limit() will limit number of items scanned (issue 57 [https://github.com/stevearc/flywheel/issues/57])

0.5.1

	Feature: Add update_schema() method to Engine (:pr:`53`)

0.5.0

	Breakage: Removing support for overflow fields. The only fields flywheel will care about now are those that are explicitly set as a Field()

	Flywheel no longer forces raise_on_conflict to be True when you sync changes to fields that are part of a composite field. It is now up to the user to avoid putting their composite fields into an inconsistent state.

	Feature: sync() has a new argument, no_read, which changes the behavior for syncing models with no changes. Instead of performing a GET, it will leave them as-is. This should make it easer to perform batch syncs without worrying as much about wasted bandwidth on GETs.

	Field has renamed the data_type argument to type (data_type will still work)

0.4.11

	Bug fix: Boolean overflow fields no longer decoded as decimals (:pr:`46`)

0.4.10

	Feature: Add exists() method to Engine (issue 45 [https://github.com/stevearc/flywheel/issues/45])

0.4.9

	Feature: Add save() method to Models (issue 40 [https://github.com/stevearc/flywheel/issues/40])

	Feature: Add update_field() method to Engine (issue 43 [https://github.com/stevearc/flywheel/issues/43])

0.4.8

	Bug fix: Bad function call in index_pk_dict_

0.4.7

	New index_pk_dict_ method for constructing exclusive_start_key for index queries (issue 34 [https://github.com/stevearc/flywheel/issues/34])

0.4.6

	Pass exclusive_start_key through to dynamo3 (issue 34 [https://github.com/stevearc/flywheel/issues/34])

0.4.5

	Bug fix: Calling refresh() could sometimes crash from unordered results.

0.4.4

	Bug fix: Mutable field defaults are no longer shared among model instances

0.4.3

	Bug fix: Incorrect ConditionalCheckFailedException when syncing changes to a Composite field.

	Allow DateTimeType to be stored as a naive datetime.

0.4.2

	Make the dict, list, and bool types backwards-compatible with the old json-serialized format (:pr:`24`)

	Allow queries to use in, not null, and a few other constraints that were missing (commit 8b8854d [https://github.com/stevearc/flywheel/commit/8b8854d])

	Models are smarter about marking fields as dirty for sync (issue 26 [https://github.com/stevearc/flywheel/issues/26])

	Stopped using deprecated expected syntax for dynamo3

0.4.1

	Warning: Stored datetime objects will now be timezone-aware (commit a7c253d [https://github.com/stevearc/flywheel/commit/a7c253d])

	Warning: Stored datetime objects will now keep their microseconds (commit fffe92c [https://github.com/stevearc/flywheel/commit/fffe92c])

0.4.0

	Breakage: Dropping support for python 3.2 due to lack of botocore support

	Breakage: Changing the list, dict, and bool data types to use native DynamoDB types instead of JSON serializing

	Breakage and bug fix: Fixing serialization of datetime and date objects (for more info see the commit) (commit df049af [https://github.com/stevearc/flywheel/commit/df049af])

	Feature: Can now do ‘contains’ filters on lists

	Feature: Fields support multiple validation checks

	Feature: Fields have an easy way to enforce non-null values (nullable=False)

Data type changes are due to an update in the DynamoDB API [https://aws.amazon.com/blogs/aws/dynamodb-update-json-and-more/]

0.3.0

	Breakage: Engine namespace is slightly different. If you pass in a string it will be used as the table name prefix with no additional ‘-‘ added.

0.2.1

	Breakage: Certain queries may now require you to specify an index where it was auto-detected before

	Feature: Queries can now filter on non-indexed fields

	Feature: More powerful “sync-if” constraints

	Feature: Can OR together filter constraints in queries

All changes are due to an update in the DynamoDB API [http://aws.amazon.com/blogs/aws/improved-queries-and-updates-for-dynamodb/]

0.2.0

	Breakage: Engine no longer accepts boto connections (using dynamo3 instead)

	Breakage: Removing S3Type (no longer have boto as dependency)

	Feature: Support Python 3.2 and 3.3

	Feature: .count() terminator for queries (commit bf3261c [https://github.com/stevearc/flywheel/commit/bf3261c])

	Feature: Can override throughputs in Engine.create_schema() (commit 4d1abe0 [https://github.com/stevearc/flywheel/commit/4d1abe0])

	Bug fix: Engine namespace is truly isolated (commit 3b4fad7 [https://github.com/stevearc/flywheel/commit/3b4fad7])

0.1.3

	Bug fix: Some queries fail when global index has no range key (issue 9 [https://github.com/stevearc/flywheel/issues/9], commit edce6e2 [https://github.com/stevearc/flywheel/commit/edce6e2])

0.1.2

	Bug fix: Field names can begin with an underscore (commit 637f1ee [https://github.com/stevearc/flywheel/commit/637f1ee], issue 7 [https://github.com/stevearc/flywheel/issues/7])

	Feature: Models have a nice default __init__ method (commit 40068c2 [https://github.com/stevearc/flywheel/commit/40068c2])

0.1.1

	Bug fix: Can call incr_() on models that have not been saved yet (commit 0a1990f [https://github.com/stevearc/flywheel/commit/0a1990f])

	Bug fix: Model comparison with None (commit 374dda1 [https://github.com/stevearc/flywheel/commit/374dda1])

0.1.0

	First public release

flywheel package

Subpackages

	flywheel.fields package
	Submodules
	flywheel.fields.conditions module

	flywheel.fields.indexes module

	flywheel.fields.types module

	Module contents

Submodules

	flywheel.compat module

	flywheel.engine module

	flywheel.model_meta module

	flywheel.models module

	flywheel.query module

	flywheel.tests module

Module contents

flywheel

flywheel.fields package

Submodules

	flywheel.fields.conditions module

	flywheel.fields.indexes module

	flywheel.fields.types module

Module contents

Field declarations for models

	
class flywheel.fields.Composite(*args, **kwargs)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L386]

	Bases: flywheel.fields.Field

A field that is composed of multiple other fields

	Parameters

	
	*fieldslist

	List of names of fields that compose this composite field

	hash_keybool, optional

	This key is a DynamoDB hash key (default False)

	range_keybool, optional

	This key is a DynamoDB range key (default False)

	indexstr, optional

	If present, create a local secondary index on this field with this as
the name.

	data_typestr, optional

	The dynamo data type. Valid values are (NUMBER, STRING, BINARY,
NUMBER_SET, STRING_SET, BINARY_SET, dict, list, bool, str, unicode,
int, float, set, datetime, date, Decimal) (default unicode)

	coercebool, optional

	Attempt to coerce the value if it’s the incorrect type (default False)

	checkcallable, optional

	A function that takes the value and returns True if the value is valid
(default None)

	mergecallable, optional

	The function that merges the subfields together. By default it simply
joins them with a ‘:’.

	
get_cached_value(obj)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L443]

	Get the cached value of a field before any local modifications

	
resolve(obj=None, scope=None)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L435]

	Resolve a field value from an object or scope dict

	
class flywheel.fields.Field(hash_key=False, range_key=False, index=None, data_type=<object object>, type=<type 'unicode'>, coerce=False, check=None, nullable=True, default=<object object>)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L17]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Declarative way to specify model fields

	Parameters

	
	hash_keybool, optional

	This key is a DynamoDB hash key (default False)

	range_keybool, optional

	This key is a DynamoDB range key (default False)

	indexstr, optional

	If present, create a local secondary index on this field with this as
the name.

	typeobject, optional

	The field data type. You may use int, unicode, set, etc. or you may
pass in an instance of TypeDefinition
(default unicode)

	coercebool, optional

	Attempt to coerce the value if it’s the incorrect type (default False)

	checkcallable or list, optional

	A function that takes the value and returns True if the value is valid.
May also be a list of such functions. (default None)

	nullablebool, optional

	If false, will add a check (above) to ensure the value is not null
(default True).

	defaultobject, optional

	The default value for this field that will be set when creating a model
(default None, except for set data types which default to set())

Notes

Field(index='my-index')

Is shorthand for:

Field().all_index('my-index')

	Attributes

	
	namestr

	The name of the attribute on the model

	modelclass

	The Model this field is attached to

	compositebool

	True if this is a composite field

	
all_index(name)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L158]

	Index this field and project all attributes

	Parameters

	
	namestr

	The name of the index

	
beginswith_(other)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L357]

	Create a query condition that this field must begin with a string

	
between_(low, high)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L368]

	Create a query condition that this field must be between two values
(inclusive)

	
betwixt_(low, high)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L381]

	Poetic version of between_()

	
can_resolve(fields)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L246]

	Check if the provided fields are enough to fully resolve this field

	Parameters

	
	fieldslist or set

	

	Returns

	
	neededset

	Set of the subfields needed to resolve this field. If empty, then
it cannot be resolved.

	
coerce(value, force_coerce=None)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L200]

	Coerce the value to the field’s data type

	
contains_(other)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L337]

	Create a query condition that this field must contain a value

	
ddb_data_type[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L17]

	Get the native DynamoDB data type

	
ddb_dump(value)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L224]

	Dump a value to its Dynamo format

	
ddb_dump_for_query(value)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L230]

	Dump a value to format for use in a Dynamo query

	
ddb_load(val)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L237]

	Decode a value retrieved from Dynamo

	
default[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L17]

	Get a shallow copy of the default value

	
get_cached_value(obj)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L282]

	Get the cached value of a field before any local modifications

	
get_ddb_index()[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L119]

	Construct a dynamo local index object

	
in_(other)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L345]

	Create a query condition that this field must be within a set of values

	
include_index(name, includes=None)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L184]

	Index this field and project selected attributes

	Parameters

	
	namestr

	The name of the index

	includeslist, optional

	List of non-key attributes to project into this index

	
is_mutable[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L17]

	Return True if the data type is mutable

	
is_set[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L17]

	Return True if data type is a set

	
keys_index(name)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L171]

	Index this field and project all key attributes

	Parameters

	
	namestr

	The name of the index

	
ncontains_(other)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L341]

	Create a query condition that this field cannot contain a value

	
resolve(obj=None, scope=None)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L275]

	Resolve a field value from an object or scope dict

	
validate(obj)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/__init__.py#L136]

	Run the validation checks for this field on a model object.

	Parameters

	
	objModel

	

	Raises

	
	errValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

	Raised if any of the checks fail.

flywheel.fields.conditions module

Query constraints

	
class flywheel.fields.conditions.Condition[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/conditions.py#L9]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A constraint that will be applied to a query or scan

	Attributes

	
	eq_fieldsdict

	Mapping of field name to field value

	fieldsdict

	Mapping of field name to (operator, value) tuples

	limitint or dynamo3.Limit

	Maximum number of results

	scan_limitint

	Maximum number of items to scan in DynamoDB

	index_namestr

	Name of index to use for a query

	
classmethod construct(field, op, other)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/conditions.py#L76]

	Create a Condition on a field

	Parameters

	
	fieldstr

	Name of the field to constrain

	opstr

	Operator, such as ‘eq’, ‘lt’, or ‘contains’

	otherobject

	The value to constrain the field with

	Returns

	
	conditionCondition

	

	
classmethod construct_index(name)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/conditions.py#L145]

	Force the query to use a certain index

	Parameters

	
	namestr

	

	Returns

	
	conditionCondition

	

	
classmethod construct_limit(count)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/conditions.py#L109]

	Create a condition that will limit the results to a count

	Parameters

	
	countint

	

	Returns

	
	conditionCondition

	

	
classmethod construct_scan_limit(count)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/conditions.py#L127]

	Create a condition that will limit the number of items scanned

	Parameters

	
	countint

	

	Returns

	
	conditionCondition

	

	
query_kwargs(model)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/conditions.py#L55]

	Get the kwargs for doing a table query

	
scan_kwargs()[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/conditions.py#L45]

	Get the kwargs for doing a table scan

flywheel.fields.indexes module

Index definitions

	
class flywheel.fields.indexes.GlobalIndex(name, hash_key, range_key=None)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/indexes.py#L6]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A global index for DynamoDB

	Parameters

	
	namestr

	The name of the index

	hash_keystr

	The name of the field that is the hash key for the index

	range_keystr, optional

	The name of the field that is the range key for the index

	throughputdict, optional

	The read/write throughput of this global index. Used when creating a
table. Dict has a ‘read’ and a ‘write’ key. (Default 5, 5)

	
classmethod all(name, hash_key, range_key=None)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/indexes.py#L33]

	Project all attributes into the index

	
get_ddb_index(fields)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/indexes.py#L54]

	Get the dynamo index class for this GlobalIndex

	
classmethod include(name, hash_key, range_key=None, includes=None)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/indexes.py#L45]

	Select which attributes to project into the index

	
classmethod keys(name, hash_key, range_key=None)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/indexes.py#L38]

	Project key attributes into the index

	
throughput(read=5, write=5)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/indexes.py#L66]

	Set the index throughput

	Parameters

	
	readint, optional

	Amount of read throughput (default 5)

	writeint, optional

	Amount of write throughput (default 5)

Notes

This is meant to be used as a chain:

class MyModel(Model):
 __metadata__ = {
 'global_indexes': [
 GlobalIndex('myindex', 'hkey', 'rkey').throughput(5, 2)
]
 }

flywheel.fields.types module

Field type definitions

	
class flywheel.fields.types.BinaryType[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L367]

	Bases: flywheel.fields.types.TypeDefinition

Binary strings, stored as a str/bytes

	
aliases = ['B', <class 'dynamo3.types.Binary'>][source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L367]

	

	
coerce(value, force)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L374]

	Check the type of a value and possible convert it

	Parameters

	
	valueobject

	The value to check

	forcebool

	If True, always attempt to convert a bad type to the correct type

	Returns

	
	valueobject

	A variable of the correct type

	Raises

	
	excTypeError or ValueError

	If the value is the incorrect type and could not be converted

	
data_type[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L367]

	alias of __builtin__.str

	
ddb_data_type = 'B'[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L367]

	

	
ddb_dump(value)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L385]

	Dump a value to a form that can be stored in DynamoDB

	
ddb_load(value)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L388]

	Turn a value into this type from a DynamoDB value

	
class flywheel.fields.types.BoolType[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L322]

	Bases: flywheel.fields.types.TypeDefinition

Boolean type

	
coerce(value, force)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L332]

	Check the type of a value and possible convert it

	Parameters

	
	valueobject

	The value to check

	forcebool

	If True, always attempt to convert a bad type to the correct type

	Returns

	
	valueobject

	A variable of the correct type

	Raises

	
	excTypeError or ValueError

	If the value is the incorrect type and could not be converted

	
data_type[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L322]

	alias of __builtin__.bool

	
ddb_data_type = 'BOOL'[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L322]

	

	
class flywheel.fields.types.DateTimeType(naive=False)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L463]

	Bases: flywheel.fields.types.TypeDefinition

Datetimes, stored as a unix timestamp

	Parameters

	
	naivebool, optional

	If True, will load values from Dynamo with no timezone. If False, will
add a UTC timezone. (Default False).

Notes

If you want to use naive datetimes, you will need to reference the type
class directly instead of going through an alias. For example:

from flywheel.fields.types import DateTimeType

field = Field(data_type=DateTimeType(naive=True))

	
data_type[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L463]

	alias of datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]

	
ddb_data_type = 'N'[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L463]

	

	
ddb_dump(value)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L493]

	Dump a value to a form that can be stored in DynamoDB

	
ddb_load(value)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L498]

	Turn a value into this type from a DynamoDB value

	
class flywheel.fields.types.DateType[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L511]

	Bases: flywheel.fields.types.TypeDefinition

Dates, stored as timestamps

	
data_type[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L511]

	alias of datetime.date [https://docs.python.org/3/library/datetime.html#datetime.date]

	
ddb_data_type = 'N'[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L511]

	

	
ddb_dump(value)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L517]

	Dump a value to a form that can be stored in DynamoDB

	
ddb_load(value)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L520]

	Turn a value into this type from a DynamoDB value

	
class flywheel.fields.types.DecimalType[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L293]

	Bases: flywheel.fields.types.TypeDefinition

Numerical values that use Decimal in the application layer.

This should be used if you want to work with floats but need the additional
precision of the Decimal type.

	
coerce(value, force)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L306]

	Check the type of a value and possible convert it

	Parameters

	
	valueobject

	The value to check

	forcebool

	If True, always attempt to convert a bad type to the correct type

	Returns

	
	valueobject

	A variable of the correct type

	Raises

	
	excTypeError or ValueError

	If the value is the incorrect type and could not be converted

	
data_type[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L505]

	alias of decimal.Decimal [https://docs.python.org/3/library/decimal.html#decimal.Decimal]

	
ddb_data_type = 'N'[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L293]

	

	
class flywheel.fields.types.DictType[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L395]

	Bases: flywheel.fields.types.TypeDefinition

Dict type, stored as a map

	
coerce(value, force)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L405]

	Check the type of a value and possible convert it

	Parameters

	
	valueobject

	The value to check

	forcebool

	If True, always attempt to convert a bad type to the correct type

	Returns

	
	valueobject

	A variable of the correct type

	Raises

	
	excTypeError or ValueError

	If the value is the incorrect type and could not be converted

	
data_type[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L395]

	alias of __builtin__.dict

	
ddb_data_type = 'M'[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L395]

	

	
mutable = True[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L395]

	

	
class flywheel.fields.types.FloatType[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L240]

	Bases: flywheel.fields.types.TypeDefinition

Float values

	
coerce(value, force)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L246]

	Check the type of a value and possible convert it

	Parameters

	
	valueobject

	The value to check

	forcebool

	If True, always attempt to convert a bad type to the correct type

	Returns

	
	valueobject

	A variable of the correct type

	Raises

	
	excTypeError or ValueError

	If the value is the incorrect type and could not be converted

	
data_type[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L240]

	alias of __builtin__.float

	
ddb_data_type = 'N'[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L240]

	

	
ddb_load(value)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L258]

	Turn a value into this type from a DynamoDB value

	
class flywheel.fields.types.IntType[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L265]

	Bases: flywheel.fields.types.TypeDefinition

Integer values (includes longs)

	
aliases = [<type 'int'>, <type 'long'>][source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L265]

	

	
coerce(value, force)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L272]

	Check the type of a value and possible convert it

	Parameters

	
	valueobject

	The value to check

	forcebool

	If True, always attempt to convert a bad type to the correct type

	Returns

	
	valueobject

	A variable of the correct type

	Raises

	
	excTypeError or ValueError

	If the value is the incorrect type and could not be converted

	
data_type[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L265]

	alias of __builtin__.int

	
ddb_data_type = 'N'[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L265]

	

	
ddb_load(value)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L286]

	Turn a value into this type from a DynamoDB value

	
class flywheel.fields.types.ListType[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L418]

	Bases: flywheel.fields.types.TypeDefinition

List type

	
coerce(value, force)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L428]

	Check the type of a value and possible convert it

	Parameters

	
	valueobject

	The value to check

	forcebool

	If True, always attempt to convert a bad type to the correct type

	Returns

	
	valueobject

	A variable of the correct type

	Raises

	
	excTypeError or ValueError

	If the value is the incorrect type and could not be converted

	
data_type[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L418]

	alias of __builtin__.list

	
ddb_data_type = 'L'[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L418]

	

	
mutable = True[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L418]

	

	
class flywheel.fields.types.NumberType[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L210]

	Bases: flywheel.fields.types.TypeDefinition

Any kind of numerical value

	
coerce(value, force)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L216]

	Check the type of a value and possible convert it

	Parameters

	
	valueobject

	The value to check

	forcebool

	If True, always attempt to convert a bad type to the correct type

	Returns

	
	valueobject

	A variable of the correct type

	Raises

	
	excTypeError or ValueError

	If the value is the incorrect type and could not be converted

	
data_type = 'N'[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L210]

	

	
ddb_data_type = 'N'[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L210]

	

	
ddb_load(value)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L228]

	Turn a value into this type from a DynamoDB value

	
class flywheel.fields.types.SetType(item_type=None, type_class=None)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L139]

	Bases: flywheel.fields.types.TypeDefinition

Set types

	
classmethod bind(item_type)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L198]

	Create a set factory that will contain a specific data type

	
coerce(value, force)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L163]

	Check the type of a value and possible convert it

	Parameters

	
	valueobject

	The value to check

	forcebool

	If True, always attempt to convert a bad type to the correct type

	Returns

	
	valueobject

	A variable of the correct type

	Raises

	
	excTypeError or ValueError

	If the value is the incorrect type and could not be converted

	
data_type[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L139]

	alias of __builtin__.set

	
ddb_dump(value)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L182]

	Dump a value to a form that can be stored in DynamoDB

	
ddb_dump_inner(value)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L176]

	We need to expose this for ‘contains’ and ‘ncontains’

	
ddb_load(value)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L187]

	Turn a value into this type from a DynamoDB value

	
mutable = True[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L139]

	

	
class flywheel.fields.types.StringType[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L345]

	Bases: flywheel.fields.types.TypeDefinition

String values, stored as unicode

	
aliases = ['S'][source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L345]

	

	
coerce(value, force)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L352]

	Check the type of a value and possible convert it

	Parameters

	
	valueobject

	The value to check

	forcebool

	If True, always attempt to convert a bad type to the correct type

	Returns

	
	valueobject

	A variable of the correct type

	Raises

	
	excTypeError or ValueError

	If the value is the incorrect type and could not be converted

	
data_type[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L345]

	alias of __builtin__.unicode

	
ddb_data_type = 'S'[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L345]

	

	
class flywheel.fields.types.TypeDefinition[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L33]

	Bases: flywheel.compat.UnicodeMixin

Base class for all Field types

	Attributes

	
	data_typeobject

	The value you wish to pass in to Field as the data_type.

	aliaseslist

	Other values that will reference this type if passed to Field

	ddb_data_type{STRING, BINARY, NUMBER, STRING_SET, BINARY_SET, NUMBER_SET, BOOL, LIST, MAP}

	The DynamoDB data type that backs this type

	mutablebool

	If True, flywheel will track updates to this field automatically when
making calls to sync()

	allowed_filtersset

	The set of filters that can be used on this field type

	
aliases = [][source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L33]

	

	
coerce(value, force)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L75]

	Check the type of a value and possible convert it

	Parameters

	
	valueobject

	The value to check

	forcebool

	If True, always attempt to convert a bad type to the correct type

	Returns

	
	valueobject

	A variable of the correct type

	Raises

	
	excTypeError or ValueError

	If the value is the incorrect type and could not be converted

	
data_type = None[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L33]

	

	
ddb_data_type = None[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L33]

	

	
ddb_dump(value)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L109]

	Dump a value to a form that can be stored in DynamoDB

	
ddb_dump_inner(value)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L102]

	If this is a set type, dump a value to the type contained in the set

	
ddb_load(value)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L113]

	Turn a value into this type from a DynamoDB value

	
mutable = False[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L33]

	

	
class flywheel.fields.types.UTCTimezone[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L446]

	Bases: datetime.tzinfo [https://docs.python.org/3/library/datetime.html#datetime.tzinfo]

UTC

	
dst(dt)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L456]

	datetime -> DST offset in minutes east of UTC.

	
tzname(dt)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L453]

	datetime -> string name of time zone.

	
utcoffset(dt)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L450]

	datetime -> minutes east of UTC (negative for west of UTC).

	
flywheel.fields.types.register_type(type_class, allow_in_set=True)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L22]

	Register a type class for use with Fields

	
flywheel.fields.types.set_(data_type)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/fields/types.py#L17]

	Create an alias for a SetType that contains this data type

flywheel.compat module

Utilities for Python 2/3 compatibility

	
class flywheel.compat.UnicodeMixin[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/compat.py#L5]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Mixin that handles __str__ and __bytes__. Just define __unicode__.

flywheel.engine module

Query engine

	
class flywheel.engine.Engine(dynamo=None, namespace=(), default_conflict='update')[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/engine.py#L20]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Query engine for models

	Parameters

	
	dynamodynamodb3.DynamoDBConnection, optional

	

	namespacelist or str, optional

	String prefix or list of component parts of a prefix for models. All
table names will be prefixed by this string or strings (joined by ‘-‘).

	default_conflict{‘update’, ‘overwrite’, ‘raise’}, optional

	Default setting for delete(), save(), and sync() (default ‘update’)

Notes

The engine is used to save, sync, delete, and query DynamoDB. Here is a
basic example of saving items:

item1 = MyModel()
engine.save(item1)
item1.foobar = 'baz'
item2 = MyModel()
engine.save([item1, item2], overwrite=True)

You can also use the engine to query tables:

user = engine.query(User).filter(User.id == 'abcdef).first()

calling engine() is a shortcut for engine.query()
user = engine(User).filter(User.id == 'abcdef).first()

d_users = engine(User).filter(User.school == 'MIT',
 User.name.beginswith_('D')).all()

You can pass in equality constraints as keyword args
user = engine(User).filter(id='abcdef').first()

Scans are like queries, except that they don’t use an index. Scans iterate
over the ENTIRE TABLE so they are REALLY SLOW. Scans have access to
additional filter conditions such as “contains” and “in”.

This is suuuuuper slow!
user = engine.scan(User).filter(id='abcdef').first()

If you're doing an extremely large scan, you should tell it to return
a generator
all_users = engine.scan(User).gen()

to filter a field not specified in the model declaration:
prince = engine.scan(User).filter(User.field_('bio').beginswith_(
 'Now this is a story all about how')).first()

	
connect(*args, **kwargs)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/engine.py#L151]

	Connect to a specific host

	
connect_to_host(**kwargs)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/engine.py#L147]

	Connect to a specific host

	
connect_to_region(region, **kwargs)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/engine.py#L143]

	Connect to an AWS region

	
create_schema(test=False, throughput=None)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/engine.py#L168]

	Create the DynamoDB tables required by the registered models

	Parameters

	
	testbool, optional

	If True, perform a dry run (default False)

	throughputdict, optional

	If provided, override the throughputs of the Models when creating
them. Details below.

	Returns

	
	nameslist

	List of table names that were created

Examples

The throughput argument is a mapping of table names to their
throughputs. The throughput is a dict with a ‘read’ and ‘write’ value.
It may also include the names of global indexes that map to their own
dicts with a ‘read’ and ‘write’ value.

engine.create_schema(throughput={
 'table1': {
 'read': 4,
 'write': 10,
 'gindex-1': {
 'read': 6,
 'write': 3,
 }
 }
})

	
default_conflict[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/engine.py#L20]

	Get the default_conflict value

Notes

The default_conflict setting configures the default behavior of
save(), sync(), and
delete(). Below is an explanation of the different
values of default_conflict.

	default_conflict

	method

	default

	‘update’

	
	

	
	save

	overwrite=True

	
	sync

	raise_on_conflict=True

	
	delete

	raise_on_conflict=False

	‘overwrite’

	
	

	
	save

	overwrite=True

	
	sync

	raise_on_conflict=False

	
	delete

	raise_on_conflict=False

	‘raise’

	
	

	
	save

	overwrite=False

	
	sync

	raise_on_conflict=True

	
	delete

	raise_on_conflict=True

	
delete(items, raise_on_conflict=None)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/engine.py#L422]

	Delete items from dynamo

	Parameters

	
	itemslist or Model

	List of Model objects to delete

	raise_on_conflictbool, optional

	If True, raise exception if the object was changed concurrently in
the database (default set by default_conflict)

	Raises

	
	excdynamo3.ConditionalCheckFailedException

	If overwrite is False and an item already exists in the database

Notes

Due to the structure of the AWS API, deleting with
raise_on_conflict=False is much faster because the requests can be
batched.

	
delete_key(model, pkeys=None, **kwargs)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/engine.py#L374]

	Delete one or more items from dynamo as specified by primary keys

	Parameters

	
	modelModel

	

	pkeyslist, optional

	List of primary key dicts

	**kwargsdict

	If pkeys is None, delete only a single item and use kwargs as the
primary key dict

	Returns

	
	countint

	The number of deleted items

Notes

If the model being deleted has no range key, you may use strings
instead of primary key dicts. ex:

>>> class Item(Model):
... id = Field(hash_key=True)
...
>>> items = engine.delete_key(Item, ['abc', 'def', '123', '456'])

	
delete_keys(model, pkeys=None, **kwargs)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/engine.py#L374]

	Delete one or more items from dynamo as specified by primary keys

	Parameters

	
	modelModel

	

	pkeyslist, optional

	List of primary key dicts

	**kwargsdict

	If pkeys is None, delete only a single item and use kwargs as the
primary key dict

	Returns

	
	countint

	The number of deleted items

Notes

If the model being deleted has no range key, you may use strings
instead of primary key dicts. ex:

>>> class Item(Model):
... id = Field(hash_key=True)
...
>>> items = engine.delete_key(Item, ['abc', 'def', '123', '456'])

	
delete_schema(test=False)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/engine.py#L265]

	Drop the DynamoDB tables for all registered models

	Parameters

	
	testbool, optional

	If True, perform a dry run (default False)

	Returns

	
	nameslist

	List of table names that were deleted

	
exists(model, key_or_item, range_key=None, consistent=False)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/engine.py#L733]

	Check if an item exists in the database

	Parameters

	
	modeldynamodb3.Model

	The model class of the item to check

	key_or_itemdict or dynamodb3.Model or object

	Either the value of the hash key, a model instance, or a dict that
contains the primary key.

	range_keyobject, optional

	Value of the range key (if the previous argument is the hash key)

	consistentbool, optional

	Perform a consistent read from dynamo (default False)

	
get(model, pkeys=None, consistent=False, **kwargs)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/engine.py#L323]

	Fetch one or more items from dynamo from the primary keys

	Parameters

	
	modelModel

	

	pkeyslist, optional

	List of primary key dicts

	consistentbool, optional

	Perform a consistent read from dynamo (default False)

	**kwargsdict

	If pkeys is None, fetch only a single item and use kwargs as the
primary key dict.

	Returns

	
	itemslist or object

	If pkeys is a list of key dicts, this will be a list of items. If
pkeys is None and **kwargs is used, this will be a single object.

Notes

If the model being fetched has no range key, you may use strings
instead of primary key dicts. ex:

>>> class Item(Model):
... id = Field(hash_key=True)
...
>>> items = engine.get(Item, ['abc', 'def', '123', '456'])

	
get_schema()[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/engine.py#L290]

	Get the schema for the registered models

	
query(model)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/engine.py#L301]

	Create a table query for a specific model

	Returns

	
	queryQuery

	

	
refresh(items, consistent=False)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/engine.py#L526]

	Overwrite model data with freshest from database

	Parameters

	
	itemslist or Model

	Models to sync

	consistentbool, optional

	If True, force a consistent read from the db. (default False)

	
register(*models)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/engine.py#L155]

	Register one or more models with the engine

Registering is required for schema creation or deletion

	
save(items, overwrite=None)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/engine.py#L475]

	Save models to dynamo

	Parameters

	
	itemslist or Model

	

	overwritebool, optional

	If False, raise exception if item already exists (default set by
default_conflict)

	Raises

	
	excdynamo3.ConditionalCheckFailedException

	If overwrite is False and an item already exists in the database

Notes

Overwrite will replace the entire item with the new one, not just
different fields. After calling save(overwrite=True) you are guaranteed
that the item in the database is exactly the item you saved.

Due to the structure of the AWS API, saving with overwrite=True is much
faster because the requests can be batched.

	
scan(model)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/engine.py#L312]

	Create a table scan for a specific model

	Returns

	
	scanScan

	

	
sync(items, raise_on_conflict=None, consistent=False, constraints=None, no_read=False)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/engine.py#L566]

	Sync model changes back to database

This will push any updates to the database, and ensure that all of the
synced items have the most up-to-date data.

	Parameters

	
	itemslist or Model

	Models to sync

	raise_on_conflictbool, optional

	If True, raise exception if any of the fields that are being
updated were concurrently changed in the database (default set by
default_conflict)

	consistentbool, optional

	If True, force a consistent read from the db. This will only take
effect if the sync is only performing a read. (default False)

	constraintslist, optional

	List of more complex constraints that must pass for the update to
complete. Must be used with raise_on_conflict=True. Format is the
same as query filters (e.g. Model.fieldname > 5)

	no_readbool, optional

	If True, don’t perform a GET on models with no changes. (default False)

	Raises

	
	excdynamo3.CheckFailed

	If raise_on_conflict=True and the data in dynamo fails the
contraint checks.

	
update_field(item, name, value=<object object>, action='PUT', constraints=None)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/engine.py#L678]

	Update the value of a single field

Note that this method bypasses field validators and will ignore any
special behavior around Composite fields.

	Parameters

	
	itemModel

	The model to update

	namestr

	The name of the field to update

	valueobject, optional

	The new value for the field. Default will use the value currently
on the model.

	actionstr, optional

	PUT, ADD, or DELETE. (default PUT)

	constraintslist, optional

	List of constraints that must pass for the update to complete.
Format is the same as query filters (e.g. Model.fieldname > 5)

	
update_schema(test=False, throughput=None)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/engine.py#L218]

	Updates the DynamoDB table global indexes required by the registered models

	Parameters

	
	testbool, optional

	If True, perform a dry run (default False)

	throughputdict, optional

	If provided, override the throughputs of the Models when creating
them. Details below.

	Returns

	
	nameslist

	List of table names that were updated

Examples

The throughput argument is a mapping of table names to their
throughputs. The throughput is a dict with a ‘read’ and ‘write’ value.
It may also include the names of global indexes that map to their own
dicts with a ‘read’ and ‘write’ value.

engine.create_schema(throughput={
 'table1': {
 'gindex-1': {
 'read': 6,
 'write': 3,
 }
 }
})

flywheel.model_meta module

Model metadata and metaclass objects

	
class flywheel.model_meta.ModelMetaclass(name, bases, dct)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/model_meta.py#L121]

	Bases: type [https://docs.python.org/3/library/functions.html#type]

Metaclass for Model objects

Merges model metadata, sets the meta_ attribute, and performs
validation checks.

	
class flywheel.model_meta.ModelMetadata(model)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/model_meta.py#L152]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Container for model metadata

	Parameters

	
	modelModel

	

	Attributes

	
	namestr

	The unique name of the model. This is set by the ‘_name’ field in
__metadata__. Defaults to the name of the model class.

	abstractbool

	Getter for abstract

	global_indexeslist

	List of global indexes (hash_key, [range_key]) pairs.

	related_fieldsdict

	Mapping of field names to set of fields that change when that field
changes (usually just that field name, but can be more if composite
fields use it)

	orderingslist

	List of Ordering

	throughputdict

	Mapping of ‘read’ and ‘write’ to the table throughput (default 5, 5)

	
abstract[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/model_meta.py#L152]

	Getter for abstract

	
create_dynamo_schema(connection, tablenames=None, test=False, wait=False, throughput=None, namespace=())[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/model_meta.py#L422]

	Create all Dynamo tables for this model

	Parameters

	
	connectionDynamoDBConnection

	

	tablenameslist, optional

	List of tables that already exist. Will call ‘describe’ if not
provided.

	testbool, optional

	If True, don’t actually create the table (default False)

	waitbool, optional

	If True, block until table has been created (default False)

	throughputdict, optional

	The throughput of the table and global indexes. Has the keys ‘read’
and ‘write’. To specify throughput for global indexes, add the name
of the index as a key and another ‘read’, ‘write’ dict as the
value.

	namespacestr or tuple, optional

	The namespace of the table

	Returns

	
	tablestr

	Table name that was created, or None if nothing created

	
ddb_tablename(namespace=())[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/model_meta.py#L370]

	The name of the DynamoDB table

	Parameters

	
	namespacelist or str, optional

	String prefix or list of component parts of a prefix for the table
name. The prefix will be this string or strings (joined by ‘-‘).

	
delete_dynamo_schema(connection, tablenames=None, test=False, wait=False, namespace=())[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/model_meta.py#L576]

	Drop all Dynamo tables for this model

	Parameters

	
	connectionDynamoDBConnection

	

	tablenameslist, optional

	List of tables that already exist. Will call ‘describe’ if not
provided.

	testbool, optional

	If True, don’t actually delete the table (default False)

	waitbool, optional

	If True, block until table has been deleted (default False)

	namespacestr or tuple, optional

	The namespace of the table

	Returns

	
	tablestr

	Table name that was deleted, or None if nothing deleted

	
get_ordering_from_fields(eq_fields, fields)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/model_meta.py#L259]

	Get a unique ordering from constraint fields.

This does a best-effort guess of which index is being queried. It
prioritizes indexes that have a constraint on the range key. It
prioritizes the primary key over local and global indexes.

	Parameters

	
	eq_fieldslist

	List of field names that are constrained with ‘=’.

	fieldslist

	List of field names that are constrained with inequality operators
(‘>’, ‘<’, ‘beginswith’, etc)

	Returns

	
	orderingOrdering

	

	Raises

	
	excTypeError [https://docs.python.org/3/library/exceptions.html#TypeError]

	If more than one possible Ordering is found

	
get_ordering_from_index(index)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/model_meta.py#L319]

	Get the ordering with matching index name

	
hk(obj=None, scope=None)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/model_meta.py#L331]

	Construct the primary key value

	
index_pk_dict(index_name, obj=None, scope=None, ddb_dump=False)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/model_meta.py#L355]

	Get the primary key dict for an index (includes the table key)

	
pk_dict(obj=None, scope=None, ddb_dump=False)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/model_meta.py#L351]

	Get the dynamo primary key dict for an item

	
pk_tuple(obj=None, scope=None, ddb_dump=False, ddb_load=False)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/model_meta.py#L335]

	Get a tuple that represents the primary key for an item

	
post_create()[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/model_meta.py#L206]

	Create the orderings

	
post_validate()[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/model_meta.py#L244]

	Build the dict of related fields

	
rk(obj=None, scope=None)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/model_meta.py#L326]

	Construct the range key value

	
update_dynamo_schema(connection, test=False, wait=False, throughput=None, namespace=())[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/model_meta.py#L499]

	Updates all Dynamo table global indexes for this model

	Parameters

	
	connectionDynamoDBConnection

	

	testbool, optional

	If True, don’t actually create the table (default False)

	waitbool, optional

	If True, block until table has been created (default False)

	throughputdict, optional

	The throughput of the table and global indexes. Has the keys ‘read’
and ‘write’. To specify throughput for global indexes, add the name
of the index as a key and another ‘read’, ‘write’ dict as the
value.

	namespacestr or tuple, optional

	The namespace of the table

	Returns

	
	tablestr

	Table name that altered, or None if nothing altered

	
validate_model()[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/model_meta.py#L388]

	Perform validation checks on the model declaration

	
class flywheel.model_meta.Ordering(meta, hash_key, range_key=None, index_name=None)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/model_meta.py#L19]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A way that the models are ordered

This will be a combination of a hash key and a range key. It may be the
primary key, a local secondary index, or a global secondary index.

	
pk_dict(obj=None, scope=None, ddb_dump=False)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/model_meta.py#L71]

	Get the dynamo primary key dict for this ordering

	
query_kwargs(eq_fields, fields)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/model_meta.py#L35]

	Get the query and filter kwargs for querying against this index

	
exception flywheel.model_meta.ValidationError[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/model_meta.py#L13]

	Bases: exceptions.Exception

Model inconsistency

	
flywheel.model_meta.merge_metadata(cls)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/model_meta.py#L100]

	Merge all the __metadata__ dicts in a class’s hierarchy

keys that do not begin with ‘_’ will be inherited.

keys that begin with ‘_’ will only apply to the object that defines them.

flywheel.models module

Model code

	
class flywheel.models.Model(*args, **kwargs)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L87]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for all tube models

For documentation on the metadata fields, check the attributes on the
ModelMetadata class.

	Attributes

	
	__metadata_class__class

	Container for model metadata

	__metadata__dict

	For details see Metadata

	meta_ModelMetadata

	The metadata for the model

	__engine__Engine

	Cached copy of the Engine that was used to save/load the model. This
will be set after saving or loading a model.

	__dirty__set

	The set of all immutable fields that have been changed since the last
save operation.

	__cache__dict

	The last seen value that was stored in the database. This is used to
construct the expects dict when making updates that raise on
conflict.

	__incrs__dict

	Mapping of fields to atomic add/delete operations for numbers and sets.

	
add_(**kwargs)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L341]

	Atomically add to a set

	
cached_(name, default=None)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L304]

	Get the cached (server) value of a field

	
construct_ddb_expects_(fields=None)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L461]

	Construct a dynamo “expects” mapping based on the cached fields

	
ddb_dump_()[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L431]

	Return a dict for inserting into DynamoDB

	
ddb_dump_cached_(name)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L456]

	Dump a cached field to a Dynamo-friendly value

	
ddb_dump_field_(name)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L426]

	Dump a field to a Dynamo-friendly value

	
classmethod ddb_load_(engine, data)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L447]

	Load a model from DynamoDB data

	
delete(*args, **kwargs)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L160]

	Delete the model from the database

	
classmethod field_(name)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L474]

	Get Field or construct a placeholder for an undeclared field

This is used for creating scan filter constraints on fields that were
not declared in the model

	
hk_[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L87]

	The value of the hash key

	
incr_(**kwargs)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L314]

	Atomically increment a number value

	
index_pk_dict_(index_name)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L286]

	The primary key dict for an index, encoded for dynamo

	
keys_()[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L300]

	All declared fields

	
loading_(**kwds)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L82]

	Context manager to speed up object load process

	
mark_dirty_(name)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L253]

	Mark that a field is dirty

	
meta_ = <flywheel.model_meta.ModelMetadata object>[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L87]

	

	
mutate_(action, **kwargs)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L349]

	Atomically mutate a set

	
partial_loading_(**kwds)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L82]

	For use when loading a partial object (i.e. from update_field)

	
persisted_[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L87]

	True if the model exists in DynamoDB, False otherwise

	
pk_dict_[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L87]

	The primary key dict, encoded for dynamo

	
pk_tuple_[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L87]

	The primary key dict, encoded for dynamo

	
post_load_(engine)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L395]

	Called after model loaded from database

	
post_save_()[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L388]

	Called after item is saved to database

	
post_save_fields_(fields)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L380]

	Called after update_field or update_fields

	
pre_save_(engine)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L374]

	Called before saving items

	
refresh(consistent=False)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L139]

	Overwrite model data with freshest from database

	
remove_(**kwargs)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L345]

	Atomically remove from a set

	
rk_[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L87]

	The value of the range key

	
save(overwrite=None)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L146]

	Save model data to database (see also: sync)

	
set_ddb_val_(key, val)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L439]

	Decode and set a value retrieved from Dynamo

	
sync(*args, **kwargs)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L153]

	Sync model changes back to database

	
class flywheel.models.SetDelta[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L19]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Wrapper for an atomic change to a Dynamo set

Used to track the changes when using add_() and
remove_()

	
add(action, value)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L56]

	Add another update to the delta

	Parameters

	
	action{‘ADD’, ‘DELETE’}

	

	valueobject

	The value to add or remove

	
merge(other)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/models.py#L33]

	Merge the delta with a set

	Parameters

	
	otherset

	The original set to merge the changes with

flywheel.query module

Query and Scan builders

	
exception flywheel.query.DuplicateEntityException[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/query.py#L12]

	Bases: exceptions.ValueError

Raised when too many results are found.

	
exception flywheel.query.EntityNotFoundException[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/query.py#L7]

	Bases: exceptions.ValueError

Raised when results are expected and not found.

	
class flywheel.query.Query(engine, model)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/query.py#L17]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An object used to query dynamo tables

See the Engine for query examples

	Parameters

	
	engineEngine

	

	modelclass

	Subclass of Model

	
all(desc=False, consistent=False, attributes=None, filter_or=False, exclusive_start_key=None)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/query.py#L88]

	Return the query results as a list

	Parameters

	
	descbool, optional

	Return results in descending order (default False)

	consistentbool, optional

	Force a consistent read of the data (default False)

	attributeslist, optional

	List of fields to retrieve from dynamo. If supplied, returns dicts
instead of model objects.

	filter_orbool, optional

	If True, multiple filter() constraints will be joined with an OR
(default AND).

	exclusive_start_keydict, optional

	The ExclusiveStartKey to resume a previous query

	Returns

	
	resultslist

	

	
count(filter_or=False)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/query.py#L117]

	Find the number of elements the match this query

	Parameters

	
	filter_orbool, optional

	If True, multiple filter() constraints will be joined with an OR
(default AND).

	Returns

	
	countint

	

	
delete(filter_or=False)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/query.py#L217]

	Delete all items that match the query

	Parameters

	
	filter_orbool, optional

	If True, multiple filter() constraints will be joined with an OR
(default AND).

	
dynamo[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/query.py#L17]

	Shortcut to access DynamoDBConnection

	
filter(*conditions, **kwargs)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/query.py#L235]

	Add a Condition to constrain the query

Notes

The conditions may be passed in as positional arguments:

engine.query(User).filter(User.id == 12345)

Or they may be passed in as keyword arguments:

engine.query(User).filter(firstname='Monty', lastname='Python')

The limitations of the keyword method is that you may only create
equality conditions. You may use both types in a single filter:

engine.query(User).filter(User.num_friends > 10, name='Monty')

	
first(desc=False, consistent=False, attributes=None, filter_or=False)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/query.py#L136]

	Return the first result of the query, or None if no results

	Parameters

	
	descbool, optional

	Return results in descending order (default False)

	consistentbool, optional

	Force a consistent read of the data (default False)

	attributeslist, optional

	List of fields to retrieve from dynamo. If supplied, returns dicts
instead of model objects.

	filter_orbool, optional

	If True, multiple filter() constraints will be joined with an OR
(default AND).

	Returns

	
	resultModel or None

	

	
gen(desc=False, consistent=False, attributes=None, filter_or=False, exclusive_start_key=None)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/query.py#L47]

	Return the query results as a generator

	Parameters

	
	descbool, optional

	Return results in descending order (default False)

	consistentbool, optional

	Force a consistent read of the data (default False)

	attributeslist, optional

	List of fields to retrieve from dynamo. If supplied, gen() will
iterate over dicts instead of model objects.

	filter_orbool, optional

	If True, multiple filter() constraints will be joined with an OR
(default AND).

	exclusive_start_keydict, optional

	The ExclusiveStartKey to resume a previous query

	Returns

	
	resultsgenerator

	

	
index(name)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/query.py#L212]

	Use a specific local or global index for the query

	
limit(count)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/query.py#L202]

	Limit the number of query results

	
one(consistent=False, attributes=None, filter_or=False)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/query.py#L165]

	Return the result of the query. If there is not exactly one result,
raises an exception (details below)

	Parameters

	
	consistentbool, optional

	Force a consistent read of the data (default False)

	attributeslist, optional

	List of fields to retrieve from dynamo. If supplied, returns dicts
instead of model objects.

	filter_orbool, optional

	If True, multiple filter() constraints will be joined with an OR
(default AND).

	Returns

	
	resultModel

	

	Raises

	
	e1EntityNotFoundException

	If no entity is found. Subclasses ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].

	e2DuplicateEntityException

	If more than one entity is found. Subclasses ValueError [https://docs.python.org/3/library/exceptions.html#ValueError].

	
scan_limit(count)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/query.py#L207]

	Limit the number of items scanned

	
tablename[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/query.py#L17]

	Shortcut to access dynamo table name

	
class flywheel.query.Scan(engine, model)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/query.py#L273]

	Bases: flywheel.query.Query

An object used to scan dynamo tables

scans are like Queries except they don’t use indexes. This means they
iterate over all data in the table and are SLOW

	Parameters

	
	engineEngine

	

	modelclass

	Subclass of Model

	
count(filter_or=False)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/query.py#L308]

	Find the number of elements the match this query

	Parameters

	
	filter_orbool, optional

	If True, multiple filter() constraints will be joined with an OR
(default AND).

	Returns

	
	countint

	

	
gen(attributes=None, desc=False, consistent=False, filter_or=False, exclusive_start_key=None)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/query.py#L289]

	Return the query results as a generator

	Parameters

	
	descbool, optional

	Return results in descending order (default False)

	consistentbool, optional

	Force a consistent read of the data (default False)

	attributeslist, optional

	List of fields to retrieve from dynamo. If supplied, gen() will
iterate over dicts instead of model objects.

	filter_orbool, optional

	If True, multiple filter() constraints will be joined with an OR
(default AND).

	exclusive_start_keydict, optional

	The ExclusiveStartKey to resume a previous query

	Returns

	
	resultsgenerator

	

	
index(name)[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/query.py#L313]

	Use a specific local or global index for the query

flywheel.tests module

Unit and system tests for flywheel

	
class flywheel.tests.DynamoSystemTest(methodName='runTest')[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/tests.py#L12]

	Bases: unittest.case.TestCase

Base class for tests that need an Engine

	
dynamo = None[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/tests.py#L12]

	

	
models = [][source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/tests.py#L12]

	

	
classmethod setUpClass()[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/tests.py#L18]

	Hook method for setting up class fixture before running tests in the class.

	
tearDown()[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/tests.py#L30]

	Hook method for deconstructing the test fixture after testing it.

	
classmethod tearDownClass()[source] [https://github.com/stevearc/flywheel/blob/0.5.3/flywheel/tests.py#L25]

	Hook method for deconstructing the class fixture after running all tests in the class.

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 flywheel	

 	
 	
 flywheel.compat	

 	
 	
 flywheel.engine	

 	
 	
 flywheel.fields	

 	
 	
 flywheel.fields.conditions	

 	
 	
 flywheel.fields.indexes	

 	
 	
 flywheel.fields.types	

 	
 	
 flywheel.model_meta	

 	
 	
 flywheel.models	

 	
 	
 flywheel.query	

 	
 	
 flywheel.tests	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

A

 	
 	abstract (flywheel.model_meta.ModelMetadata attribute)

 	add() (flywheel.models.SetDelta method)

 	add_() (flywheel.models.Model method)

 	aliases (flywheel.fields.types.BinaryType attribute)

 	(flywheel.fields.types.IntType attribute)

 	(flywheel.fields.types.StringType attribute)

 	(flywheel.fields.types.TypeDefinition attribute)

 	
 	all() (flywheel.fields.indexes.GlobalIndex class method)

 	(flywheel.query.Query method)

 	all_index() (flywheel.fields.Field method)

B

 	
 	beginswith_() (flywheel.fields.Field method)

 	between_() (flywheel.fields.Field method)

 	betwixt_() (flywheel.fields.Field method)

 	
 	BinaryType (class in flywheel.fields.types)

 	bind() (flywheel.fields.types.SetType class method)

 	BoolType (class in flywheel.fields.types)

C

 	
 	cached_() (flywheel.models.Model method)

 	can_resolve() (flywheel.fields.Field method)

 	coerce() (flywheel.fields.Field method)

 	(flywheel.fields.types.BinaryType method)

 	(flywheel.fields.types.BoolType method)

 	(flywheel.fields.types.DecimalType method)

 	(flywheel.fields.types.DictType method)

 	(flywheel.fields.types.FloatType method)

 	(flywheel.fields.types.IntType method)

 	(flywheel.fields.types.ListType method)

 	(flywheel.fields.types.NumberType method)

 	(flywheel.fields.types.SetType method)

 	(flywheel.fields.types.StringType method)

 	(flywheel.fields.types.TypeDefinition method)

 	
 	Composite (class in flywheel.fields)

 	Condition (class in flywheel.fields.conditions)

 	connect() (flywheel.engine.Engine method)

 	connect_to_host() (flywheel.engine.Engine method)

 	connect_to_region() (flywheel.engine.Engine method)

 	construct() (flywheel.fields.conditions.Condition class method)

 	construct_ddb_expects_() (flywheel.models.Model method)

 	construct_index() (flywheel.fields.conditions.Condition class method)

 	construct_limit() (flywheel.fields.conditions.Condition class method)

 	construct_scan_limit() (flywheel.fields.conditions.Condition class method)

 	contains_() (flywheel.fields.Field method)

 	count() (flywheel.query.Query method)

 	(flywheel.query.Scan method)

 	create_dynamo_schema() (flywheel.model_meta.ModelMetadata method)

 	create_schema() (flywheel.engine.Engine method)

D

 	
 	data_type (flywheel.fields.types.BinaryType attribute)

 	(flywheel.fields.types.BoolType attribute)

 	(flywheel.fields.types.DateTimeType attribute)

 	(flywheel.fields.types.DateType attribute)

 	(flywheel.fields.types.DecimalType attribute)

 	(flywheel.fields.types.DictType attribute)

 	(flywheel.fields.types.FloatType attribute)

 	(flywheel.fields.types.IntType attribute)

 	(flywheel.fields.types.ListType attribute)

 	(flywheel.fields.types.NumberType attribute)

 	(flywheel.fields.types.SetType attribute)

 	(flywheel.fields.types.StringType attribute)

 	(flywheel.fields.types.TypeDefinition attribute)

 	DateTimeType (class in flywheel.fields.types)

 	DateType (class in flywheel.fields.types)

 	ddb_data_type (flywheel.fields.Field attribute)

 	(flywheel.fields.types.BinaryType attribute)

 	(flywheel.fields.types.BoolType attribute)

 	(flywheel.fields.types.DateTimeType attribute)

 	(flywheel.fields.types.DateType attribute)

 	(flywheel.fields.types.DecimalType attribute)

 	(flywheel.fields.types.DictType attribute)

 	(flywheel.fields.types.FloatType attribute)

 	(flywheel.fields.types.IntType attribute)

 	(flywheel.fields.types.ListType attribute)

 	(flywheel.fields.types.NumberType attribute)

 	(flywheel.fields.types.StringType attribute)

 	(flywheel.fields.types.TypeDefinition attribute)

 	ddb_dump() (flywheel.fields.Field method)

 	(flywheel.fields.types.BinaryType method)

 	(flywheel.fields.types.DateTimeType method)

 	(flywheel.fields.types.DateType method)

 	(flywheel.fields.types.SetType method)

 	(flywheel.fields.types.TypeDefinition method)

 	
 	ddb_dump_() (flywheel.models.Model method)

 	ddb_dump_cached_() (flywheel.models.Model method)

 	ddb_dump_field_() (flywheel.models.Model method)

 	ddb_dump_for_query() (flywheel.fields.Field method)

 	ddb_dump_inner() (flywheel.fields.types.SetType method)

 	(flywheel.fields.types.TypeDefinition method)

 	ddb_load() (flywheel.fields.Field method)

 	(flywheel.fields.types.BinaryType method)

 	(flywheel.fields.types.DateTimeType method)

 	(flywheel.fields.types.DateType method)

 	(flywheel.fields.types.FloatType method)

 	(flywheel.fields.types.IntType method)

 	(flywheel.fields.types.NumberType method)

 	(flywheel.fields.types.SetType method)

 	(flywheel.fields.types.TypeDefinition method)

 	ddb_load_() (flywheel.models.Model class method)

 	ddb_tablename() (flywheel.model_meta.ModelMetadata method)

 	DecimalType (class in flywheel.fields.types)

 	default (flywheel.fields.Field attribute)

 	default_conflict (flywheel.engine.Engine attribute)

 	delete() (flywheel.engine.Engine method)

 	(flywheel.models.Model method)

 	(flywheel.query.Query method)

 	delete_dynamo_schema() (flywheel.model_meta.ModelMetadata method)

 	delete_key() (flywheel.engine.Engine method)

 	delete_keys() (flywheel.engine.Engine method)

 	delete_schema() (flywheel.engine.Engine method)

 	DictType (class in flywheel.fields.types)

 	dst() (flywheel.fields.types.UTCTimezone method)

 	DuplicateEntityException

 	dynamo (flywheel.query.Query attribute)

 	(flywheel.tests.DynamoSystemTest attribute)

 	DynamoSystemTest (class in flywheel.tests)

E

 	
 	Engine (class in flywheel.engine)

 	
 	EntityNotFoundException

 	exists() (flywheel.engine.Engine method)

F

 	
 	Field (class in flywheel.fields)

 	field_() (flywheel.models.Model class method)

 	filter() (flywheel.query.Query method)

 	first() (flywheel.query.Query method)

 	FloatType (class in flywheel.fields.types)

 	flywheel (module)

 	flywheel.compat (module)

 	flywheel.engine (module)

 	
 	flywheel.fields (module)

 	flywheel.fields.conditions (module)

 	flywheel.fields.indexes (module)

 	flywheel.fields.types (module)

 	flywheel.model_meta (module)

 	flywheel.models (module)

 	flywheel.query (module)

 	flywheel.tests (module)

G

 	
 	gen() (flywheel.query.Query method)

 	(flywheel.query.Scan method)

 	get() (flywheel.engine.Engine method)

 	get_cached_value() (flywheel.fields.Composite method)

 	(flywheel.fields.Field method)

 	
 	get_ddb_index() (flywheel.fields.Field method)

 	(flywheel.fields.indexes.GlobalIndex method)

 	get_ordering_from_fields() (flywheel.model_meta.ModelMetadata method)

 	get_ordering_from_index() (flywheel.model_meta.ModelMetadata method)

 	get_schema() (flywheel.engine.Engine method)

 	GlobalIndex (class in flywheel.fields.indexes)

H

 	
 	hk() (flywheel.model_meta.ModelMetadata method)

 	
 	hk_ (flywheel.models.Model attribute)

I

 	
 	in_() (flywheel.fields.Field method)

 	include() (flywheel.fields.indexes.GlobalIndex class method)

 	include_index() (flywheel.fields.Field method)

 	incr_() (flywheel.models.Model method)

 	index() (flywheel.query.Query method)

 	(flywheel.query.Scan method)

 	
 	index_pk_dict() (flywheel.model_meta.ModelMetadata method)

 	index_pk_dict_() (flywheel.models.Model method)

 	IntType (class in flywheel.fields.types)

 	is_mutable (flywheel.fields.Field attribute)

 	is_set (flywheel.fields.Field attribute)

K

 	
 	keys() (flywheel.fields.indexes.GlobalIndex class method)

 	
 	keys_() (flywheel.models.Model method)

 	keys_index() (flywheel.fields.Field method)

L

 	
 	limit() (flywheel.query.Query method)

 	
 	ListType (class in flywheel.fields.types)

 	loading_() (flywheel.models.Model method)

M

 	
 	mark_dirty_() (flywheel.models.Model method)

 	merge() (flywheel.models.SetDelta method)

 	merge_metadata() (in module flywheel.model_meta)

 	meta_ (flywheel.models.Model attribute)

 	Model (class in flywheel.models)

 	ModelMetaclass (class in flywheel.model_meta)

 	
 	ModelMetadata (class in flywheel.model_meta)

 	models (flywheel.tests.DynamoSystemTest attribute)

 	mutable (flywheel.fields.types.DictType attribute)

 	(flywheel.fields.types.ListType attribute)

 	(flywheel.fields.types.SetType attribute)

 	(flywheel.fields.types.TypeDefinition attribute)

 	mutate_() (flywheel.models.Model method)

N

 	
 	ncontains_() (flywheel.fields.Field method)

 	
 	NumberType (class in flywheel.fields.types)

O

 	
 	one() (flywheel.query.Query method)

 	
 	Ordering (class in flywheel.model_meta)

P

 	
 	partial_loading_() (flywheel.models.Model method)

 	persisted_ (flywheel.models.Model attribute)

 	pk_dict() (flywheel.model_meta.ModelMetadata method)

 	(flywheel.model_meta.Ordering method)

 	pk_dict_ (flywheel.models.Model attribute)

 	pk_tuple() (flywheel.model_meta.ModelMetadata method)

 	
 	pk_tuple_ (flywheel.models.Model attribute)

 	post_create() (flywheel.model_meta.ModelMetadata method)

 	post_load_() (flywheel.models.Model method)

 	post_save_() (flywheel.models.Model method)

 	post_save_fields_() (flywheel.models.Model method)

 	post_validate() (flywheel.model_meta.ModelMetadata method)

 	pre_save_() (flywheel.models.Model method)

Q

 	
 	Query (class in flywheel.query)

 	query() (flywheel.engine.Engine method)

 	
 	query_kwargs() (flywheel.fields.conditions.Condition method)

 	(flywheel.model_meta.Ordering method)

R

 	
 	refresh() (flywheel.engine.Engine method)

 	(flywheel.models.Model method)

 	register() (flywheel.engine.Engine method)

 	register_type() (in module flywheel.fields.types)

 	
 	remove_() (flywheel.models.Model method)

 	resolve() (flywheel.fields.Composite method)

 	(flywheel.fields.Field method)

 	rk() (flywheel.model_meta.ModelMetadata method)

 	rk_ (flywheel.models.Model attribute)

S

 	
 	save() (flywheel.engine.Engine method)

 	(flywheel.models.Model method)

 	Scan (class in flywheel.query)

 	scan() (flywheel.engine.Engine method)

 	scan_kwargs() (flywheel.fields.conditions.Condition method)

 	scan_limit() (flywheel.query.Query method)

 	set_() (in module flywheel.fields.types)

 	
 	set_ddb_val_() (flywheel.models.Model method)

 	SetDelta (class in flywheel.models)

 	SetType (class in flywheel.fields.types)

 	setUpClass() (flywheel.tests.DynamoSystemTest class method)

 	StringType (class in flywheel.fields.types)

 	sync() (flywheel.engine.Engine method)

 	(flywheel.models.Model method)

T

 	
 	tablename (flywheel.query.Query attribute)

 	tearDown() (flywheel.tests.DynamoSystemTest method)

 	tearDownClass() (flywheel.tests.DynamoSystemTest class method)

 	
 	throughput() (flywheel.fields.indexes.GlobalIndex method)

 	TypeDefinition (class in flywheel.fields.types)

 	tzname() (flywheel.fields.types.UTCTimezone method)

U

 	
 	UnicodeMixin (class in flywheel.compat)

 	update_dynamo_schema() (flywheel.model_meta.ModelMetadata method)

 	update_field() (flywheel.engine.Engine method)

 	
 	update_schema() (flywheel.engine.Engine method)

 	utcoffset() (flywheel.fields.types.UTCTimezone method)

 	UTCTimezone (class in flywheel.fields.types)

V

 	
 	validate() (flywheel.fields.Field method)

 	
 	validate_model() (flywheel.model_meta.ModelMetadata method)

 	ValidationError

flywheel

	flywheel package
	Subpackages
	flywheel.fields package
	Submodules

	Module contents

	Submodules
	flywheel.compat module

	flywheel.engine module

	flywheel.model_meta module

	flywheel.models module

	flywheel.query module

	flywheel.tests module

	Module contents

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Flywheel - Object Mapper for DynamoDB

 		
 Getting Started

 		
 Models

 		
 Model Basics

 		
 Data Types

 		
 Set types

 		
 Field Validation

 		
 Custom Types

 		
 Schema

 		
 Local Secondary Indexes

 		
 Global Secondary Indexes

 		
 Composite Fields

 		
 Metadata

 		
 Table Queries

 		
 Shorthand

 		
 Table Scans

 		
 CRUD

 		
 Save

 		
 Refresh

 		
 Get

 		
 Delete

 		
 Sync

 		
 Safe Sync

 		
 Atomic Increment

 		
 Atomic Add/Remove

 		
 Sync-if-Constraints

 		
 Default Conflict Behavior

 		
 Developing

 		
 Running Tests

 		
 Changelog

 		
 0.5.3

 		
 0.5.2

 		
 0.5.1

 		
 0.5.0

 		
 0.4.11

 		
 0.4.10

 		
 0.4.9

 		
 0.4.8

 		
 0.4.7

 		
 0.4.6

 		
 0.4.5

 		
 0.4.4

 		
 0.4.3

 		
 0.4.2

 		
 0.4.1

 		
 0.4.0

 		
 0.3.0

 		
 0.2.1

 		
 0.2.0

 		
 0.1.3

 		
 0.1.2

 		
 0.1.1

 		
 0.1.0

 		
 flywheel package

 		
 Subpackages

 		
 flywheel.fields package

 		
 Submodules

 		
 flywheel.compat module

 		
 flywheel.engine module

 		
 flywheel.model_meta module

 		
 flywheel.models module

 		
 flywheel.query module

 		
 flywheel.tests module

 		
 Module contents

_static/ajax-loader.gif

