

 Navigation

 	
 index

 	
 next |

 	Fluent Test 3.0.0 documentation

Fluent Unit Testing

“When a failing test makes us read 20+ lines of test code,
we die inside.” - C.J. Gaconnet

[image: Version] [image: Downloads] [image: Status] [image: License]

Why?

This is an attempt to make Python testing more readable while maintaining a
Pythonic look and feel. As powerful and useful as the unittest [http://docs.python.org/2/library/unittest.html] module is,
I’ve always disliked the Java-esque naming convention amongst other things.

While truly awesome, attempts to bring BDD to Python never feel Pythonic.
Most of the frameworks that I have seen rely on duplicated information between
the specification and the test cases. My belief is that we need something
closer to what RSpec [http://rspec.info/] offers but one that feels like Python.

Where?

	Source Code: https://github.com/dave-shawley/fluent-test

	CI: https://travis-ci.org/dave-shawley/fluent-test

	Documentation: https://fluent-test.readthedocs.org/

How?

fluenttest.test_case.TestCase implements the Arrange, Act, Assert method
of testing. The configuration for the test case and the execution of the
single action under test is run precisely once per test case instance.
The test case contains multiple assertions each in its own method. The
implementation leverages existing test case runners such as nose [http://nose.readthedocs.org] and
py.test [http://pytest.org]. In order to run the arrange and act steps once per test,
fluenttest calls arrange and act from within the setUpClass
class method. Each assertion is then written in its own test method.
The following snippet rewrites the simple example from the Python Standard
library unittest documentation:

import random
import unittest

class TestSequenceFunctions(unittest.TestCase):
 def setUp(self):
 self.seq = list(range(10))

 def test_shuffle(self):
 # make sure the shuffled sequence does not lose any elements
 random.shuffle(self.seq)
 self.seq.sort()
 self.assertEqual(self.seq, list(range(10)))

 # should raise an exception for an immutable sequence
 self.assertRaises(TypeError, random.shuffle, (1, 2, 3))

This very simple test looks like the following when written using
fluenttest. Notice that the comments in the original test really
pointed out that there were multiple assertions buried in the test
method. This is much more explicit with fluenttest:

import random
import unittest

from fluenttest import test_case

class WhenShufflingSequence(test_case.TestCase, unittest.TestCase):
 @classmethod
 def arrange(cls):
 super(WhenShufflingSequence, cls).arrange()
 cls.input_sequence = list(range(10))
 cls.result_sequence = cls.input_sequence[:]

 @classmethod
 def act(cls):
 random.shuffle(cls.result_sequence)

 def test_should_not_loose_elements(self):
 self.assertEqual(sorted(self.result_sequence),
 sorted(self.input_sequence))

class WhenShufflingImmutableSequence(test_case.TestCase, unittest.TestCase):
 allowed_exceptions = TypeError

 @classmethod
 def act(cls):
 random.shuffle((1, 2, 3))

 def test_should_raise_type_error(self):
 self.assertIsInstance(self.exception, TypeError)

The fluenttest version is almost twice the length of the original so
brevity is not a quality to expect from this style of testing. The first
thing that you gain is that the comments that explained what each test is
doing is replace with very explicit code. In this simplistic example, the
gain isn’t very notable. Look at the tests directory for a realistic
example of tests written in this style.

Contributing

Contributions are welcome as long as they follow a few basic rules:

	They start out life by forking the central repo and creating a new
branch off of master.

	All tests pass and coverage is at 100% - make test

	All quality checks pass - make lint

	Issue a pull-request through github.

Development Environment

Like many other projects, the development environment is contained in a
virtual environment and controlled by a Makefile. The inclusion of make is
less than perfect, but it is the easiest way to bootstrap a project on just
about any platform. Start out by cloning the repository with git and
building a virtual environment to work with:

$ git clone https://github.com/my-org/fluent-test.git
$ cd fluent-test
$ make environment

This will create a Python 3 environment in the env directory using mkvenv
and install the various prerequisites such as pip and nose. You can
activate the environment source source env/bin/activate, launch a Python
interpreter with env/bin/python, and run the test suite with
env/bin/nosetests.

The Makefile exports a few other useful targets:

	make test: run the tests

	make lint: run various static analysis tools

	make clean: remove cache files

	make mostly-clean: remove built and cached eggs

	make dist-clean: remove generated distributions

	make maintainer-clean: remove virtual environment

	make sdist: create a distribution tarball

	make docs: build the HTML documentation

	Unit Testing
	Patching

	Exception Handling

	API Reference
	TestCase

	Change Log
	Version 3.0.0

	Version 2.0.1 (15-Feb-2014)

	Version 2.0.0 (15-Feb-2014)

	Version 1 (27-Jul-2013)

 Copyright 2013, 2014, Dave Shawley.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Fluent Test 3.0.0 documentation

Unit Testing

TestCase follows the Arrange, Act, Assert pattern
espoused by the TDD community; however, the implementation may seem
confounding at first. The arrange and action steps are implemented as class
methods and the assertions are implemented as instance methods. This is a
side-effect of using existing test runners and little more. The goal is to
assure that the arrangement and action methods are run precisely once before
the assertions are checked. The common unit test running tools follow the
same approach as their xUnit brethren.

	Run class-level setup method(s)

	
	For each test case defined in the class, do the following:

	
	Run the instance-level setup methods(s)

	Run the test function

	Run the instance-level tear down method(s)

	Run class-level tear down methods

The AAA approach to unit testing encourages a single action under test
along with many atomic assertions. In an xUnit framework, it is natural to
model assertions as specific tests. Each test should be a single assertion
to ensure that the root of a failure is as succinct as possible. Since we
want many small assertions for a single arrangement or environment, we use
the class-level setup and tear down methods.

TestCase implements a class-level setup method that
delegates the arrange and action steps to sub-class defined methods named
arrange and act. Test case implementations should implement class
methods named arrange and act then implement test cases for each
assertion:

class TheFrobinator(TestCase):
 @classmethod
 def arrange(cls):
 super(TheFrobinator, cls).arrange()
 cls.swizzle = cls.patch('frobination.internal.swizzle')
 cls.argument = 'One'
 cls.frobinator = Frobinator()

 @classmethod
 def act(cls):
 cls.return_value = cls.frobinator.frobinate(cls.argument)

 def test_should_return_True(self):
 assert self.return_value == True

 def test_should_swizzle_the_argument(self):
 self.swizzle.assert_called_once_with(self.argument)

Patching

The example included an instance of creating a patch as well. Fluent Test
incorporates Michael Foord’s excellent mock [https://mock.readthedocs.org/en/latest/] library and exposes patching
as the TestCase.patch() and TestCase.patch_instance()
methods. Both methods patch out a specific target from the time that the
patch method is called until the class-level tear down method is invoked.
Patching is a great method for isolating the class that is under test since
you can replace the collaborating classes, control their behavior, and place
assertions over each of the interactions.

There are two primary use cases that TestCase exposes. The most
common one is exposed by TestCase.patch(). It patches the target by
calling mock.patch(), starts the patch [https://mock.readthedocs.org/en/latest/patch.html#patch-methods-start-and-stop], and returns the patched
object. TestCase.patch_instance() is similar except that it is
really meant for patching types. It returns a tuple of the patcher and
patcher.return_value. This simplifies the common case of patching a class
to control/inspect the instance of the class created in the unit under test.
To continue our previous example, if the Frobinator creates an instance
of the Swizzler, then we can use the following to test it:

class TheFrobinator(TestCase):
 @classmethod
 def arrange(cls);
 super(TheFrobinator, cls).arrange()
 cls.swizzler_cls, cls.swizzler_inst = cls.patch_instance(
 'frobination.Swizzler')
 cls.argument = 'One'
 cls.frobinator = Frobinator()

 @classmethod
 def act(cls):
 cls.return_value = cls.frobinator.frobinate(cls.argument)

 def test_should_create_a_Swizzler(self):
 self.swizzler_cls.assert_called_once_with()

 def test_should_swizzle_the_arguments(self):
 self.swizzler_inst.swizzle.assert_called_once_with(self.argument)

Exception Handling

Another useful extension that TestCase provides is to wrap the
action in a try-except block. The test case can list exceptions that
it is interested in receiving by adding the class attribute
allowed_exceptions containing a tuple of exception
classes. When an exception is raised from act() and it is
listed in allowed_exceptions, then it is saved in the
exception for later inspection. Otherwise, it is raised
and propagates outward.

 Copyright 2013, 2014, Dave Shawley.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Fluent Test 3.0.0 documentation

API Reference

TestCase

	
class fluenttest.test_case.TestCase[source]

	Arrange, Act, Assert test case.

Sub-classes implement test cases by arranging the environment in
the arrange() class method, perform the action in the
act() class method, and implement assertions as test
methods. The individual assertion methods have to be written in such
a way that the test runner in use finds them.

	
allowed_exceptions

	The exception or list of exceptions that the test case is
interested in capturing. An exception raised from act()
will be stored in exception.

	
exception

	The exception that was thrown during the action or None.

	
classmethod act()[source]

	The action to test.

Subclasses are required to replace this method.

	
allowed_exceptions = ()

	Catch this set of exception classes.

	
classmethod arrange()[source]

	Arrange the testing environment.

Concrete test classes will probably override this method and
should invoke this implementation via super().

	
classmethod destroy()[source]

	Perform post-test cleanup.

Concrete tests classes may override this method if there are
actions that need to be performed after act() is called.
Subclasses should invoke this implementation via super().

This method is guaranteed to be called after the action under
test is invoked and before teardown_class(). It will be
called after any captured exception has been caught.

	
classmethod patch(target, **kwargs)[source]

	Patch a named class or method.

	Parameters:	target (str [http://docs.python.org/library/functions.html#str]) – the dotted-name to patch

	Returns:	the result of starting the patch.

This method calls mock.patch() with target and
**kwargs, saves the result, and returns the running patch.

	
classmethod patch_instance(target, **kwargs)[source]

	Patch a named class and return the created instance.

	Parameters:	target (str [http://docs.python.org/library/functions.html#str]) – the dotted-name of the class to patch

	Returns:	tuple of (patched class, patched instance)

This method calls patch() with **kwargs to patch
target and returns a tuple containing the patched class as
well as the return_value attribute of the patched class.
This is useful if you want to patch a class and manipulate the
result of the code under test creating an instance of the class.

	
classmethod setUpClass()[source]

	Arrange the environment and perform the action.

This method ensures that arrange() and act() are
invoked exactly once before the assertions are fired. If you do
find the need to extend this method, you should call this
implementation as the last statement in your extension method as
it will perform the action under test when it is called.

	
classmethod tearDownClass()[source]

	Stop any patches that have been created.

 Copyright 2013, 2014, Dave Shawley.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Fluent Test 3.0.0 documentation

Change Log

Version 3.0.0

	Remove class based testing module.

After using this library for a while, it has become apparent that the
class-based testing isn’t useful. It also is rather un-pythonic to
assert structural type information. If you are using this, then feel
free to copy and paste the code from the previous version.

	Remove top-level exports from package __init__.py.

If you were referencing the test case as fluenttest.TestCase, I
apologize. Removing the top level import statements makes it
possible to reach into the version information without loading the
package and its dependencies.

	Switch to Python unittest naming conventions.

Using setup_class and teardown_class causes problems if you
run tests with unittest.main. Not to mention that the Standard
Library uses setUpClass and tearDownClass regardless of how
un-pythonic the names are.

Version 2.0.1 (15-Feb-2014)

	Correct a packaging version defect.

Setup.py cannot safely retrieve the version from the __version__
attribute of the package since the import requires mock to be
present. The immediate hot-fix is to duplicate the version number
until I can come up with a cleaner solution.

Version 2.0.0 (15-Feb-2014)

	Remove fluenttest.TestCase.patches attribute.

The patches attribute was just a little too magical for my tastes and
it wasn’t really necessary. Removing this attribute also removed the
patch_name parameter to patch. The latter
change actually simplifies things quite a bit since we no longer have to
derive safe attribute names.

	Add fluenttest.TestCase.destroy()

	Switch to semantic versioning

	Expose library version with __version__ attribute

	Add Makefile to simplify development process

	Remove usage of tox

Version 1 (27-Jul-2013)

	Implements fluenttest.TestCase

	Implements fluenttest.ClassTester

 Copyright 2013, 2014, Dave Shawley.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Fluent Test 3.0.0 documentation

Index

 A
 | D
 | E
 | P
 | S
 | T

A

 	

 	act() (fluenttest.test_case.TestCase class method)

 	allowed_exceptions (fluenttest.test_case.TestCase attribute)

 	

 	(TestCase attribute)

 	

 	arrange() (fluenttest.test_case.TestCase class method)

D

 	

 	destroy() (fluenttest.test_case.TestCase class method)

E

 	

 	exception (TestCase attribute)

P

 	

 	patch() (fluenttest.test_case.TestCase class method)

 	

 	patch_instance() (fluenttest.test_case.TestCase class method)

S

 	

 	setUpClass() (fluenttest.test_case.TestCase class method)

T

 	

 	tearDownClass() (fluenttest.test_case.TestCase class method)

 	

 	TestCase (class in fluenttest.test_case)

 Copyright 2013, 2014, Dave Shawley.
 Created using Sphinx 1.3.5.

 _static/up.png

_static/minus.png

_static/comment.png

search.html

 Navigation

 		
 index

 		Fluent Test 3.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, 2014, Dave Shawley.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/up-pressed.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/down.png

_modules/fluenttest/test_case.html

 Navigation

 		
 index

 		Fluent Test 3.0.0 documentation »

 		Module code »

 Source code for fluenttest.test_case

"""Expose a TestCase class.

- TestCase: a basic Arrange, Act, Assert test case implementation

"""
import mock

[docs]class TestCase(object):

 """Arrange, Act, Assert test case.

 Sub-classes implement test cases by *arranging* the environment in
 the :meth:`.arrange` class method, perform the *action* in the
 :meth:`.act` class method, and implement *assertions* as test
 methods. The individual assertion methods have to be written in such
 a way that the test runner in use finds them.

 .. py:attribute:: allowed_exceptions

 The exception or list of exceptions that the test case is
 interested in capturing. An exception raised from :meth:`.act`
 will be stored in :attr:`exception`.

 .. py:attribute:: exception

 The exception that was thrown during the action or ``None``.

 """

 allowed_exceptions = ()
 """Catch this set of exception classes."""

 @classmethod
[docs] def setUpClass(cls):
 """Arrange the environment and perform the action.

 This method ensures that :meth:`.arrange` and :meth:`.act` are
 invoked exactly once before the assertions are fired. If you do
 find the need to extend this method, you should call this
 implementation as the last statement in your extension method as
 it will perform the action under test when it is called.

 """
 cls.exception = None
 cls._patches = []

 cls.arrange()
 try:
 cls.act()
 except cls.allowed_exceptions as exc:
 cls.exception = exc
 finally:
 cls.destroy()

 @classmethod
[docs] def tearDownClass(cls):
 """Stop any patches that have been created."""
 for patcher in cls._patches:
 patcher.stop()

 @classmethod
[docs] def arrange(cls):
 """Arrange the testing environment.

 Concrete test classes will probably override this method and
 should invoke this implementation via ``super()``.

 """
 pass

 @classmethod
[docs] def destroy(cls):
 """Perform post-test cleanup.

 Concrete tests classes may override this method if there are
 actions that need to be performed after :meth:`.act` is called.
 Subclasses should invoke this implementation via ``super()``.

 This method is guaranteed to be called *after* the action under
 test is invoked and before :meth:`.teardown_class`. It will be
 called after any captured exception has been caught.

 """
 pass

 @classmethod
[docs] def patch(cls, target, **kwargs):
 r"""Patch a named class or method.

 :param str target: the dotted-name to patch
 :returns: the result of starting the patch.

 This method calls :func:`mock.patch` with *target* and
 ***kwargs*, saves the result, and returns the running patch.

 """
 patcher = mock.patch(target, **kwargs)
 patched = patcher.start()
 cls._patches.append(patcher)
 return patched

 @classmethod
[docs] def patch_instance(cls, target, **kwargs):
 r"""Patch a named class and return the created instance.

 :param str target: the dotted-name of the class to patch
 :returns: tuple of (patched class, patched instance)

 This method calls :meth:`.patch` with ***kwargs* to patch
 target and returns a tuple containing the patched class as
 well as the ``return_value`` attribute of the patched class.
 This is useful if you want to patch a class and manipulate the
 result of the code under test creating an instance of the class.

 """
 patched_class = cls.patch(target, **kwargs)
 return patched_class, patched_class.return_value

 @classmethod
[docs] def act(cls):
 """The action to test.

 Subclasses are required to replace this method.

 """
 raise NotImplementedError

 © Copyright 2013, 2014, Dave Shawley.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		Fluent Test 3.0.0 documentation »

 All modules for which code is available

		fluenttest.test_case

 © Copyright 2013, 2014, Dave Shawley.
 Created using Sphinx 1.3.5.

_static/comment-close.png

