

 Navigation

 	
 index

 	
 modules |

 	Python documentation

flowthings

	
class flowthings.Token(account, token)

	Token objects may be passed to an API. This will be used to
sign requests to the platform.

>>> creds = Token('<account>', '<token>')

	
static from_bluemix(default=None, env_var='VCAP_SERVICES')

	Loads a Token object from an IBM Bluemix environment. If a
default Token is provided, it will be returned in case of
a failure, otherwise a FlowThingsError will be raised.

	
class flowthings.API(creds, async_lib=DEFAULT, secure=DEFAULT, params=DEFAULT)

	Creates a new API instance for interacting with the platform.

>>> api = API(creds)

Options labelled as DEFAULT will use the options set in the
defaults configuration object.

An API is comprised of services for querying the different
domains on the platform:

	flow

	drop

	track

	group

	identity

	api_task

	mqtt_task

	rss_task

	token

	share

	device

	statistics

	websocket

For documentation on these services, read Service Methods,
Authentication, Statistics, Aggregation,
and WebSockets.

	
async([pool])

	Returns an API wrapper for making asynchronous requests using either
eventlet or gevent. Requests made using an async() API
will return green threads.

For more documentation, read Asynchronous and Parallel Requests.

	
lazy([pool])

	Returns an API wrapper for making implicitly parallel requests using
either eventlet or gevent. Requests made using a lazy()
API will return thunks that wait on their respective green thread when
accessed.

For more documentation, read Asynchronous and Parallel Requests.

	
request(method, path, data=None, params=None)

	

	Parameters:	
	method (str) – HTTP method

	path (str) – Request path

	data (dict) – Request data

	params (dict) – Request query parameters

Makes an arbitrary platform request.

	
creds

	Get or set the API’s Token.

	
flowthings.defaults

	Configuration object for globally setting default options for
API instances.

	
defaults.async_lib

	Defaults to None. Supports eventlet and gevent.

import eventlet

flowthings.defaults.async_lib = eventlet

	
defaults.secure

	Defaults to True. When set to False, requests will be made over
http:// rather than https://.

	
defaults.params

	The default set of query string parameters sent with all requests.
Defaults to {}.

Service Methods

All API service requests return plain dictionaries of the request
body. They may throw exceptions in case of an error.

	
service.read(id, **params)

	

	Parameters:	id (str) – The resource id

>>> api.flow.read('<flow_id>')

	
service.read_or_else(id, default=None, **params)

	

	Parameters:	
	id (str) – The resource id

	default (any) – Default value when the resource is not found

>>> api.flow.read_or_else('<flow_id>', None)

	
service.read_many(ids, **params)

	

	Parameters:	ids (list) – List of resource ids

>>> api.flow.read_many(['<flow_id_1>', '<flow_id_2'])

	
service.find_many(*filters, **params)

	

	Parameters:	filters (Filter) – Request filters

>>> api.flow.find_many(mem.displayName == 'Foo')

	
service.find(..., **params)

	An overloaded method which may call one of read(),
read_many(), or find_many() depending upon the type of
the first argument.

>>> api.flow.find('<flow_id>')
>>> api.flow.find(['<flow_id_1>', '<flow_id_2'])
>>> api.flow.find(mem.displayName == 'Foo')

	
service.create(model, **params)

	

	Parameters:	model (dict) – Initial data for a new resource

>>> api.flow.create({'path': '/path/to/flow'})

	
service.update(model, **params)

	

	Parameters:	model (dict or M) – Updated model

Requests are made based on the model’s 'id' key.

>>> api.flow.update({'id': '<flow_id>', 'displayName': 'Foo'})
>>> api.flow.update(M(model, displayName='Foo'))

	
service.update_many(models, **params)

	

	Parameters:	models (list) – List of updated models

	
service.save(..., **params)

	An overloaded method which may call one of create(),
update(), or update_many() depending upon the type of the
first argument. create() or update() are called based on
the presence of an 'id' key.

	
service.delete(id, data=None, **params)

	

	Parameters:	
	id (str) – The resource to delete

	data (any) – Request data

>>> api.flow.delete('<flow_id>')

Note

The drop service is slightly different in that it must first be
parameterized by the Flow id.

>>> api.drop('<flow_id>').find(limit=10)

Request Parameters

Service methods take additional keyword arguments that act
as query parameters on the requests. These are not fixed in any way, so please
refer to the platform documentation for the options.

Note

When a request is made with the refs parameter set to True, the return
type becomes a tuple rather than a single dictionary:

>>> resp, refs = api.flow.find('<flow_id>', refs=True)

Request Filters

Service find methods understand a query DSL that
lets you express filters using Python operations instead of manually splicing
strings together.

>>> api.flow.find(mem.displayName == 'foo', mem.path.re('^/foo', 'i'))

	
class flowthings.mem

	mem represents members of the objects you are querying. You can use use
properties or key indexing to represent a member.:

>>> api.drop(<flow_id>).find(mem.elems.foo > 12)

The supported operators are ==, <, <=, >, and >= along
with the following methods, mirroring the platform:

	
re(pattern[, flags])

	

	
IN(*items)

	

	
CONTAINS(*items)

	

	
WITHIN(distance, unit[, coords=(lat, lon)[, zip=zipcode]])

	

Additional platform filter operations are supported:

	
flowthings.EXISTS(member)

	

	
flowthings.HAS(elem_type)

	

	
flowthings.MATCHES(pattern[, flags])

	

	
flowthings.NOT(filter)

	

	
flowthings.AGE

	Age comparisons can be made using normal python operators with AGE.:

>>> api.flow.find(AGE > time_millis)

Boolean operations are supported on filters using AND and OR.:

>>> api.flow.find((mem.displayName == 'foo').OR(mem.displayName == 'bar'))

Authentication

If you create your API using a master token, you can create and
manage tokens and shares.

	
api.token.create(model, **params)

	

	
api.share.create(model, **params)

	

Both tokens and shares support find and delete methods like other
services. They are, however, immutable and do not support updates.

Statistics

	
api.statistics.flow_drop_added(flow_id, year=None, month=None, day=None, level=None)

	

	
api.statistics.flow_tracked(flow_id, year=None, month=None, day=None, level=None)

	

	
api.statistics.track_hit(track_id, year=None, month=None, day=None, level=None)

	

	
api.statistics.track_pass(track_id, year=None, month=None, day=None, level=None)

	

	
api.statistics.api_call_by_identity(identity_id, year=None, month=None, day=None, level=None)

	

	
api.statistics.drop_created_by(identity_id, year=None, month=None, day=None, level=None)

	

Aggregation

	
api.drop(flow_id).aggregate(outputs, group_by=None, filter=None, rules=None, sorts=None)

	

Both filter and rules support Request Filters.:

>>> api.drop(flow_id).aggregate(['$avg:test'], rules={'test': mem.foo > 42})

Exceptions

	
class flowthings.FlowThingsError

	

	
class flowthings.FlowThingsException

	
	
errors

	List of errors returned from the platform

	
creds

	Request credentials

	
method

	Request HTTP method

	
path

	Request path

	
class flowthings.FlowThingsBadRequest

	

	
class flowthings.FlowThingsForbidden

	

	
class flowthings.FlowThingsNotFound

	

	
class flowthings.FlowThingsServerError

	

Modifications

Service update methods can also take an instance
of a modification helper called M. It lets you gradually make
updates to a model and then extract the diff and model with the changes
applied.

When passed directly to an update method, only the changes will be sent to the
server instead of the entire model.

	
class flowthings.M(model, **changes)

	
	
modify(key, val)

	

	
done()

	Returns a tuple of (new_model, diff).

Asynchronous and Parallel Requests

Two workflows are supported for making asynchronous and parallel requests.

The API.async() workflow is an imperative API where requests are
queued internally. Once you’ve made all the requests you need, you can invoke
the results() method to wait. This can be useful when making large batches
of similar requests:

paths = [...]
async_api = api.async()

for path in paths
 async_api.flow.find(mem.path == path)

for flows in async_api.results():
 # Do something with the flows
 pass

If some of your requests might fail, and you want to know which ones, you may
set the with_exceptions keyword argument:

flows = [...]
async_api = api.async()

for flow in flows:
 async_api.drop(flow['id']).find(limit=10)

for e, drops in async_api.results(with_exceptions=True):
 if e:
 # Do something if there was an error
 pass
 else:
 # Do something with the drops
 pass

The API.lazy() worklow is useful when building complex compositions of
dependent requests which can benefit from implicit parallelization. All
requests are executed in parallel, but wait when you try to read the data. This
works by requests returning a GreenThunk, which is a MutableMapping
around a green thread. This object acts just like a regular dictionary or list,
but waits on the green thread before performing any look-ups or mutations.

lazy_api = api.lazy()
flow_a = lazy_api.flow.find(mem.path == '/path/to/flow_a')
flow_b = lazy_api.flow.find(mem.path == '/path/to/flow_b')
drops = lazy_api.drop(flow_a[0]['id']).find(limit=10)

In this example, the two requests for Flows are performed in parallel, while
the requests for drops waits for the flow_a request to complete first.

You can retrieve the pure data of a GreenThunk by invoking its unwrap()
method.

Note

It is assumed the user has done the necessary green thread monkey-patching
for their chosen library before importing the flowthings package.

WebSockets

WebSockets are supported using the websocket-client package. Here is a
short example:

def on_open(ws):
 ws.subscribe('<flow_id>')

def on_message(ws, resource, data):
 print 'Got message:', resource, data

def on_close(ws):
 print 'Closed'

def on_error(ws, e):
 print 'Error:', e

ws = api.websocket.connect(on_open=on_open,
 on_message=on_message,
 on_close=on_close,
 on_error=on_error)
ws.run()

Examples

from flowthings import API, Token, mem

creds = Token('<account_name>', '<token_string>')
api = API(creds)

Get a Flow by id
api.flow.find('<flow_id>')

Get a Flow by path
api.flow.find(mem.path == '<flow_path>')

Get 10 recent Flows, with references
flows, refs = api.flow.find(limit=10, refs=True)

Create a flow
api.flow.create({ 'path': '<flow_path' })

Delete a flow
api.flow.delete('<flow_id>')

Get drops in a flow
api.drop('<flow_id>').find()

Filter drops in a flow
api.drop('<flow_id>').find(mem.elems.foo == 'value')

 Copyright 2015 Flow Search, Corp.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Python documentation

 Python Module Index

 f

 			

 		
 f	

 	
 	
 flowthings	

 Copyright 2015 Flow Search, Corp.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Python documentation

Index

 A
 | C
 | D
 | E
 | F
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W

A

 	

 	AGE (in module flowthings)

 	API (class in flowthings)

 	api.drop() (in module flowthings)

 	api.share.create() (in module flowthings)

 	api.statistics.api_call_by_identity() (in module flowthings)

 	api.statistics.drop_created_by() (in module flowthings)

 	api.statistics.flow_drop_added() (in module flowthings)

 	

 	api.statistics.flow_tracked() (in module flowthings)

 	api.statistics.track_hit() (in module flowthings)

 	api.statistics.track_pass() (in module flowthings)

 	api.token.create() (in module flowthings)

 	async() (flowthings.API method)

 	async_lib (flowthings.defaults attribute)

C

 	

 	CONTAINS() (flowthings.mem method)

 	create() (flowthings.service method)

 	

 	creds (flowthings.API attribute)

 	

 	(flowthings.FlowThingsException attribute)

D

 	

 	defaults (in module flowthings)

 	delete() (flowthings.service method)

 	

 	done() (flowthings.M method)

E

 	

 	errors (flowthings.FlowThingsException attribute)

 	

 	EXISTS() (in module flowthings)

F

 	

 	find() (flowthings.service method)

 	find_many() (flowthings.service method)

 	flowthings (module)

 	FlowThingsBadRequest (class in flowthings)

 	FlowThingsError (class in flowthings)

 	

 	FlowThingsException (class in flowthings)

 	FlowThingsForbidden (class in flowthings)

 	FlowThingsNotFound (class in flowthings)

 	FlowThingsServerError (class in flowthings)

 	from_bluemix() (flowthings.Token static method)

H

 	

 	HAS() (in module flowthings)

I

 	

 	IN() (flowthings.mem method)

L

 	

 	lazy() (flowthings.API method)

M

 	

 	M (class in flowthings)

 	MATCHES() (in module flowthings)

 	mem (class in flowthings)

 	

 	method (flowthings.FlowThingsException attribute)

 	modify() (flowthings.M method)

N

 	

 	NOT() (in module flowthings)

P

 	

 	params (flowthings.defaults attribute)

 	

 	path (flowthings.FlowThingsException attribute)

R

 	

 	re() (flowthings.mem method)

 	read() (flowthings.service method)

 	read_many() (flowthings.service method)

 	

 	read_or_else() (flowthings.service method)

 	request() (flowthings.API method)

S

 	

 	save() (flowthings.service method)

 	

 	secure (flowthings.defaults attribute)

T

 	

 	Token (class in flowthings)

U

 	

 	update() (flowthings.service method)

 	

 	update_many() (flowthings.service method)

W

 	

 	WITHIN() (flowthings.mem method)

 Copyright 2015 Flow Search, Corp.
 Created using Sphinx 1.3.1.

 _static/file.png

_static/ajax-loader.gif

_static/plus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Python documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015 Flow Search, Corp.
 Created using Sphinx 1.3.1.

_static/up.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/up-pressed.png

_static/down.png

_static/comment-bright.png

_static/comment-close.png

