
Flowpack Single sign-on Server
Documentation

Release 1.0.0

Author name(s)

July 11, 2016

Contents

1 Contents 3
1.1 Overview . 3
1.2 Getting started . 6
1.3 Single sign-on server . 12
1.4 Single sign-on client . 21
1.5 Development . 28

i

ii

Flowpack Single sign-on Server Documentation, Release 1.0.0

The Flowpack Single sign-on packages provide a distributed authentication and authorization solution for TYPO3
Flow applications. It is based on the Flow security framework and makes no special assumptions about the actual
authentication method, source of account data and the authorization data that is exchanged between the systems.

Contents 1

Flowpack Single sign-on Server Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Contents

1.1 Overview

The Flowpack Single sign-on is designed for integration in TYPO3 Flow applications and offers a full single sign-on
solution without the need of external components. The Server package can be used to build a custom authentication
server based on TYPO3 Flow while the Client package can be used to integrate existing TYPO3 Flow applications
into the single sign-on.

We designed the solution for ease of use and a seamless authentication experience for the user.

1.1.1 Features

• Easy integration into existing TYPO3 Flow applications

• Flow security framework integration, re-use of existing authentication providers (e.g. LDAP, UsernamePass-
word, OpenID)

• Flexible account data mapping (transfer custom properties of parties)

• Session expiration synchronization

• Remote session management capabilities

• Single Sign-off

• Account switching (impersonate)

• Sessions can use existing Flow cache backends (Redis, Memcache, APC)

• RSA signing of server-side requests

3

http://github.com/Flowpack/Flowpack.SingleSignOn.Server/
http://github.com/Flowpack/Flowpack.SingleSignOn.Client/

Flowpack Single sign-on Server Documentation, Release 1.0.0

1.1.2 Architecture

The architecture is designed to be highly extensible and fully integratable in an existing TYPO3 Flow application.

Server

A Single sign-on server is a TYPO3 Flow application that provides a central authentication system which is accessed
by the instances. The server consists of the Server package and a domain package that implements a party model for
the authentication and provides possible extensions to the Single sign-on data exchange.

The server has a public / private key pair and exports HTTP service as the Service base URI (e.g.
http://ssoserver.local/sso/). The service base URI is also used as the unique server identifier.

All the instances have to be registered as a single sign-on client with their public key and service base URI. This
allows for (signed) server-side requests initiated by the client or the server. The client public key restricts access to the
single sign-on only to explicitly registered clients. The clients are persisted as entities inside a configured database. A
management interface for the clients can be implemented in a custom package.

See Single sign-on server for more information about implementing a custom server application.

4 Chapter 1. Contents

http://github.com/Flowpack/Flowpack.SingleSignOn.Server/

Flowpack Single sign-on Server Documentation, Release 1.0.0

Instance

An instance is a (TYPO3 Flow) application that utilizes a Single sign-on server for authentication using the Client
package. The Flowpack Single sign-on can be one of multiple authentication methods on the instance. Usually there
will be a larger number of instances in a typical setup.

The single sign-on client on the instance has a public / private key pair and a Service base URI as a unique client
identifier. The client needs at least one configured single sign-on server with the server public key and service base
URI. The client is used by the instance through the Flow security framework as a special authentication provider.

1.1.3 Authentication round trip

This is a simple round trip for access to a secured resource on an instance without prior authentication:

1. A user accesses a secured resource on an instance

1.1. Overview 5

http://github.com/Flowpack/Flowpack.SingleSignOn.Client/
http://github.com/Flowpack/Flowpack.SingleSignOn.Client/

Flowpack Single sign-on Server Documentation, Release 1.0.0

2. Since no account is authenticated on the instance the user is redirected to a configured server

3. The user will authenticate on the server through a configured authentication provider (e.g. username / password)

4. The server redirects back to the instance and passes an encrypted access token

5. The instance decrypts the access token and does a server-side request to redeem the token on the server, the
server verifies the token and returns the account data and authorization information (e.g. roles)

6. The instance authenticates an account locally and redirects to the original secured resource

1.2 Getting started

Tip: Before building a custom single sign-on server and integration of the client in existing Flow applications we
recommend to have a look at a the demo setup.

We provide TYPO3 Flow demo applications for both the server and an exemplary instance. To make the setup easier
we also provide the demo as a Vagrant box (a tool for a development environment in virtual machines).

Warning: Do not use the Flowpack.SingleSignOn.DemoServer package in production! It contains code that is
meant for testing and allows creation of users and session management over an unsecured HTTP API.

The following demo credentials are available on the server:

Username Password Role
admin password Administrator
user1 password User
user2 password User

1.2.1 Setting up the Vagrant demo

First clone the DemoVagrant repository that contains the Vagrant box setup:

$ git clone https://github.com/Flowpack/Flowpack.SingleSignOn.Demo-Vagrant.git DemoVagrant
$ cd DemoVagrant

Then install Vagrant for your operating system, install the librarian gem for downloading bundled cookbooks and start
the vagrant box:

$ gem install librarian
$ librarian-chef install

...
$ vagrant up

The virtual machine should now boot and start to provision the demo setup (this can take a while).

Set up host entries in your /etc/hosts (or similar file, depending on your operating system):

10.11.12.23 ssodemoserver.vagrant
10.11.12.23 ssodemoinstance.vagrant ssodemoinstance2.vagrant

Browse to http://ssodemoserver.vagrant/ and you should see the demo server frontend. A second instance is available
on http://ssodemoserver2.vagrant/ for running multi-instance acceptance tests.

6 Chapter 1. Contents

http://www.vagrantup.com/
http://www.vagrantup.com/
http://ssodemoserver.vagrant/
http://ssodemoserver2.vagrant/

Flowpack Single sign-on Server Documentation, Release 1.0.0

1.2.2 Manually setting up the demo server and instance

The demo setup consists of a demo server and a demo instance bundled in two TYPO3 Flow distributions. You should
follow the steps in the TYPO3 Flow Quickstart for a general setup for Flow development if not yet done.

Each distribution should be cloned into a separate directory:

$ mkdir singlesignon-demo
$ cd singlesignon-demo

Setting up the server

Clone the repository, install dependencies with Composer:

$ git clone https://github.com/Flowpack/Flowpack.SingleSignOn.DemoServer-Distribution.git DemoServer
$ cd DemoServer
$ path/to/composer.phar install --dev

Create a Configuration/Settings.yaml:

TYPO3:
Flow:
persistence:

backendOptions:
dbname: ssodemoserver # Create this database
host: localhost
user: root # Fill in username
password: '' # Fill in password

Flowpack:
SingleSignOn:
Server:

server:
serviceBaseUri: 'http://ssodemoserver.local/sso/'
publicKeyFingerprint: ''

DemoServer:
demoInstanceUri: 'http://ssodemoinstance.local/'
clients:

-
serviceBaseUri: 'http://ssodemoinstance.local/sso/'

Run migrations and demo setup:

$./flow doctrine:migrate
$./flow flowpack.singlesignon.demoserver:demo:setup

Setting up the instance

Clone the repository, install dependencies with Composer:

$ git clone https://github.com/Flowpack/Flowpack.SingleSignOn.DemoInstance-Distribution.git DemoInstance
$ cd DemoInstance
$ path/to/composer.phar install --dev

Create a Configuration/Settings.yaml:

1.2. Getting started 7

http://docs.typo3.org/flow/TYPO3FlowDocumentation/Quickstart/

Flowpack Single sign-on Server Documentation, Release 1.0.0

TYPO3:
Flow:
persistence:

backendOptions:
dbname: ssodemoinstance # Create this database
host: localhost
user: root # Fill in username
password: '' # Fill in password

Flowpack:
SingleSignOn:
Client:

client:
serviceBaseUri: 'http://ssodemoinstance.local/sso/'
publicKeyFingerprint: ''

server:
DemoServer:
serviceBaseUri: 'http://ssodemoserver.local/sso/'
publicKeyFingerprint: ''

DemoInstance:
demoServerUri: 'http://ssodemoserver.local/'

Run migrations and demo setup:

$./flow doctrine:migrate
$./flow flowpack.singlesignon.demoinstance:demo:setup

You should create a virtual host configuration for both distributions. We expect the hosts ssodemoinstance.local and
ssodemoserver.local for the example configuration.

After setting up everything you should be able to access http://ssodemoserver.local/ and see the demo server front
page.

1.2.3 Demo walkthrough

You could test the following scenarios:

• Go to demo instance, request secure action: A login form on the server will be displayed. After login with one
of the demo credentials you should be redirected back to the secure action and be authenticated on the server
and instance.

• Authenticate on server, request secure action on instance: No login form is displayed if an authenticated session
already exists and the session is transferred to the instance using redirects and server-side requests.

• Authenticate on server and instance, logout from server: When going to the instance again you should see, that
the session was automatically invalidated using a server-side request.

• Authenticate on server and instance, logout on instance: When going to the server you should see, that the
session was automatically invalidated using a server-side request.

About the demo server

The demo server distribution has a package Flowpack.SingleSignOn.DemoServer for custom domain models and
extensions to the single sign-on. This package also implements a UI for demonstration and requires the Flow-
pack.SingleSignOn.Server package which does all the heavy-lifting for the single sign-on.

8 Chapter 1. Contents

http://ssodemoserver.local/

Flowpack Single sign-on Server Documentation, Release 1.0.0

The User entity of the DemoServer is a simple AbstractParty implementation:

/**
* @Flow\Entity

*/
class User extends AbstractParty {

/**
* @var string

*/
protected $firstname = '';

/**
* @var string

*/
protected $lastname = '';

/**
* @var string

*/
protected $company = '';

...
}

Basically any AbstractParty implementation will work for the single sign-on.

The LoginController in the DemoServer package handles the actual authentication (on redirection from an instance or
directly on the server) against a configured authentication provider and is the same as for any other Flow application:

class LoginController extends AbstractAuthenticationController {

public function indexAction() {
}

protected function onAuthenticationSuccess(\TYPO3\Flow\Mvc\ActionRequest $originalRequest = NULL) {
if ($originalRequest !== NULL) {

$this->redirectToRequest($originalRequest);
}

$this->addFlashMessage('No original SSO request present. Account authenticated on server.', 'Authentication successful', \TYPO3\Flow\Error\Message::SEVERITY_OK);
$this->redirect('index', 'Standard');

}

public function logoutAction() {
parent::logoutAction();

$this->addFlashMessage('You have been logged out');
$this->redirect('index', 'Standard');

}

}

In the onAuthenticationSuccess method a check is made for an original request (which is passed from an entry point)
and a flash message is displayed otherwise. The magic happens because the client package redirects the user to an
SSO authentication endpoint where the authentication is started and a configured entry point redirects the user to the
LoginController if no account is authenticated.

The configuration of the entry point is done like in any other Flow application:

1.2. Getting started 9

Flowpack Single sign-on Server Documentation, Release 1.0.0

TYPO3:
Flow:
security:

authentication:
providers:
DefaultProvider:

provider: PersistedUsernamePasswordProvider
entryPoint: WebRedirect
entryPointOptions:
uri: 'login'

Tip: See the TYPO3 Flow security framework documentation for more information about authentication providers
and entry points.

The only other relevant configuration contains the server key pair fingerprint and service base URI:

Flowpack:
SingleSignOn:
Server:

server:
keyPairFingerprint: bb5abb57faa122cc031e3c904db3d751
serviceBaseUri: 'http://ssodemoserver.local/sso/'

The REST services of the server package have to be registered by mounting the routes in the global Routes.yaml:

-
name: 'SingleSignOn'
uriPattern: 'sso/<SingleSignOnSubroutes>'
subRoutes:
SingleSignOnSubroutes:

package: Flowpack.SingleSignOn.Server

This route also defines the service base URI of the server, which is a mandatory configuration for all SSO clients.

For the demo setup we have provided a convenient setup command for the key creation and SSO client registration.
To create a new key pair the ssokey:generatekeypair command can be used.

The DemoServer package contains some special controllers for demonstration purposes (SessionsController and Con-
figurationController) which are not needed for the single sign-on.

About the demo instance

The demo instance distribution also has a package Flowpack.SingleSignOn.DemoInstance which implements a demo
UI and configures the single sign-on as a Flow authentication provider. The secure action is implemented by restricting
access to a controller action in the Policy.yaml just like in every other Flow application.

The user entity on the instance is mostly a copy of the server model but is not meant for persistance but transient usage:

/**
* @Flow\Entity

*/
class User extends \TYPO3\Party\Domain\Model\AbstractParty {

/**
* The username of the user

*
* @var string

10 Chapter 1. Contents

http://docs.typo3.org/flow/TYPO3FlowDocumentation/TheDefinitiveGuide/PartIII/Security.html

Flowpack Single sign-on Server Documentation, Release 1.0.0

*/
protected $username;

/**
* @var string

*/
protected $firstname = '';

/**
* @var string

*/
protected $lastname = '';

/**
* @var string

*/
protected $company = '';

/**
* @var string

*/
protected $role = '';

...
}

The single sign-on does not require a transient party model, but the SimpleGlobalAccountMapper that
comes with the Flowpack.SingleSignOn.Client package does always create a fresh account instance and
maps the properties of the server party to a configured type on the instance (see setting Flow-
pack.SingleSignOn.Client.accountMapper.typeMapping).

The instance uses the single sign-on by configuring the authentication provider SingleSignOnProvider in its Set-
tings.yaml:

TYPO3:
Flow:
security:

authentication:
providers:
SingleSignOnProvider:

provider: 'Flowpack\SingleSignOn\Client\Security\SingleSignOnProvider'
providerOptions:
server: DemoServer
globalSessionTouchInterval: 5

entryPoint: 'Flowpack\SingleSignOn\Client\Security\EntryPoint\SingleSignOnRedirect'
entryPointOptions:
server: DemoServer

This configures an authentication provider with name SingleSignOnProvider to use the SingleSignOnProvider from the
single sign-on client package. It’s important to also configure the entry point when using the single sign-on provider.
The entry point will redirect the user to the server if no session is authenticated locally and handles the parameter
passing.

The provider and entry point options refer to a server by an identifier DemoServer. This identifier is configured in the
Flowpack.SingleSignOn.Client settings:

Flowpack:
SingleSignOn:
Client:

1.2. Getting started 11

Flowpack Single sign-on Server Documentation, Release 1.0.0

client:
serviceBaseUri: http://ssodemoinstance.dev/sso
publicKeyFingerprint: bb45dfda9f461c22cfdd6bbb0a252d8e

server:
DemoServer:
serviceBaseUri: http://ssodemoserver.dev/sso/
publicKeyFingerprint: bb5abb57faa122cc031e3c904db3d751

accountMapper:
typeMapping:
Map a user type from the server to one of the instance, more complex scenarios
need a specialized account mapper implementation (see GlobalAccountMapperInterface)
'Flowpack\SingleSignOn\DemoServer\Domain\Model\User': 'Flowpack\SingleSignOn\DemoInstance\Domain\Model\User'

Configuring the authentication provider and entry point tells the Flow security framework to use the single sign-on for
authentication. The single sign-on client needs some more settings for the client / server public key fingerprints and
the service base URIs to use for redirecting back and forth during authentication.

1.3 Single sign-on server

The Flowpack.SingleSignOn.Server package provides the components for implementing a custom single sign-on
server. This package should be installed in a Flow application that implements custom domain logic and authenti-
cation configuration in a project specific package.

Requirements for a single sign-on server:

• Implementation of a Party domain model and domain logic

• Configuration of authentication

• Inclusion of routes for HTTP services

• Establish a secure server-side communication between the server and instances (e.g. SSL with certificates)

• Party and account management (optional)

• Basic user interface for login and display of messages (optional)

1.3.1 Components

This is a schematic view of the single sign-on server components:

12 Chapter 1. Contents

Flowpack Single sign-on Server Documentation, Release 1.0.0

Server key pair The server has a public / private key pair for encryption and verification of requests. The public key
is shared with all instances that should access the server.

Service base URI The server exports HTTP services on a specific URL path. This path acts as the Service base URI
(e.g. http://ssoserver.local/sso/) or server identifier.

Clients All the instances have to be registered as a single sign-on client with their public key and service base URI.
This allows for (signed) server-side requests initiated by the client or the server. The client public key restricts
access to the single sign-on only to explicitly registered clients. The clients are persisted as entities inside a
configured database. A management interface for the clients can be implemented in a custom package.

Note: The server uses the default Flow security framework for authentication during single sign-on requests. So a
user that doesn’t have an authenticated session on the server will be delegated to one of the configured authentication
providers.

TODO Show usage of authentication provider and accounts on server

1.3.2 Configuration

Package configuration

The Flowpack.SingleSignOn.Server package provides the following default configuration:

Flowpack:
SingleSignOn:
Server:

server:
The service base URI for this server
serviceBaseUri: ''
Mandatory key pair uuid (fingerprint) for the SSO server
keyPairFingerprint: ''

log:
backend: TYPO3\Flow\Log\Backend\FileBackend
backendOptions:
logFileURL: %FLOW_PATH_DATA%Logs/SingleSignOn_Server.log
createParentDirectories: TRUE

1.3. Single sign-on server 13

Flowpack Single sign-on Server Documentation, Release 1.0.0

severityThreshold: %LOG_WARN%
maximumLogFileSize: 10485760
logFilesToKeep: 1
logMessageOrigin: FALSE

Enable logging of request signing (all signed requests)
logRequestSigning: FALSE

Option Description Mandatory Type Default

server.serviceBaseUri The service base URI for this server Yes string

server.keyPairFingerprint Key pair fingerprint for the server Yes string

log.backend Log backend type for the single sign-on logger No string FileBackend

log.backendOptions Log backend options for the single sign-on logger No array see Settings

log.logRequestSigning Controls logging of signed requests via an aspect (for debugging)No boolean FALSE

accountMapper.configuration
Serialization of account data for client
account mapping in the default
SimpleClientAccountMapper.

No array NULL

Note: The package also configures some settings for TYPO3 Flow. For the signed requests a security firewall filter
with the name ssoServerSignedRequests is configured. This filter can be modified or removed in another package
configuration or global configuration.

Caches

A special cache with the identifier Flowpack_SingleSignOn_Server_AccessToken_Storage is used for the storage of
Access tokens. It defaults to a FileBackend as the cache backend.

Routes

The routes of the server package have to be registered in the global Routes.yaml:

##
Flowpack.SingleSignOn.Server subroutes
#

14 Chapter 1. Contents

Flowpack Single sign-on Server Documentation, Release 1.0.0

-
name: 'SingleSignOn'
uriPattern: 'sso/<SingleSignOnSubroutes>'
subRoutes:
SingleSignOnSubroutes:

package: Flowpack.SingleSignOn.Server

The path sso/ can be freely chosen but will be part of the server service base URI that needs to be configured in the
client configuration on a single sign-on instance.

1.3.3 Commands

ssoserver:registerclient

The server exposes a ssoserver:registerclient command for client registration from the CLI:

Add a client

COMMAND:
flowpack.singlesignon.server:ssoserver:registerclient

USAGE:
./flow ssoserver:registerclient <base uri> <public key>

ARGUMENTS:
--base-uri The client base URI as the client identifier
--public-key The public key fingerprint (has to be imported using the

RSA wallet service first)

DESCRIPTION:
This command registers the specified client at the SSO server.

The key pair has to be created on the instance using the ssokey:generatekeypair command (TODO reference section
in the client doc).

Example:

$./flow ssoserver:registerclient --base-uri http://ssoinstance.local/sso/ --public-key c1285a470f0fc8f14f54851c5d8eb32f

ssoserver:removeexpiredaccesstokens

The ssoserver:removeexpiredaccesstokens command cleans up expired access tokens from the underlying cache back-
end.

Remove expired access tokens

COMMAND:
flowpack.singlesignon.server:ssoserver:removeexpiredaccesstokens

USAGE:
./flow ssoserver:removeexpiredaccesstokens

DESCRIPTION:
This will remove all expired access tokens that were not redeemed from the underlying storage.
This command should be executed in regular intervals for cleanup.

This command should be executed in regular intervals (e.g. using a cron task) to clean up the access token storage.

1.3. Single sign-on server 15

Flowpack Single sign-on Server Documentation, Release 1.0.0

1.3.4 Logging

The server package Configuration configures a default logger that is used in the single sign-on package for logging
various events. The default file for the logger in Production context is Data/Logs/SingleSignOn_Server.log.

Tip: The log should always be consulted if problems with the single sign-on need to be investigated. In the log level
INFO it provides an overview of all single sign-on authentications.

Warning: Access to the logs must be restricted in production since it contains sensible information (session
identifiers and access tokens).

The logger interface can be injected in any package to log into the same destination:

/**
* @var \Flowpack\SingleSignOn\Server\Log\SsoLoggerInterface

* @Flow\Inject

*/
protected $ssoLogger;

1.3.5 Client registration

Clients of single sign-on instances need to be registered on the server before they can participate in the single sign-on.
The server needs the client service base URI and public key for encryption of request parameters, server-side client
notification and request signing.

The server package implements the ssoserver:registerclient command for that purpose.

Programmatic client registration

For deployments with many single sign-on instance and respective clients a programmatic registration could be wanted.
Since clients are represented by persisted entities this is as easy as creating a new entity and adding it to the repository.

$ssoClient = new \Flowpack\SingleSignOn\Server\Domain\Model\SsoClient();
$ssoClient->setServiceBaseUri($baseUri);
$ssoClient->setPublicKey($publicKeyFingerprint);
$this->ssoClientRepository->add($ssoClient);

It should be trivial to build a management interface for client management.

Tip: Programmatic access to the RSA wallet for key management is easy with an instance of
TYPO3FlowSecurityCryptographyRsaWalletServiceInterface.

1.3.6 Authentication endpoint

The single sign-on server exposes a public controller action for handling authentication requests from clients. This is
called the authentication endpoint.

16 Chapter 1. Contents

Flowpack Single sign-on Server Documentation, Release 1.0.0

The single sign-on client entry point on the instance will redirect a user to the authentication endpoint on the server if
no authenticated session is present locally on the client. This redirect happens in the browser of the user to access an
existing web session of the server (if the user authenticated on the server or another instance before).

To secure the parameters and guard against a possible redirection attack the parameters are signed by the client in the
signature query argument. This is done using the private key of the client, so the server can verify the signature with
the client public key and also verify the identity of the request.

A ClientNotFoundException will be thrown if the client was not registered on the server.

The authentication endpoint action will act as an authentication controller and eventually call $this-
>authenticationManager->authenticate(), so the user has to authenticate using a configured authentication provider
to proceed. This approach integrates nicely with the Flow security framework and allows the usage of all available
authentication providers and entry points.

Note: There has to be an entry point (e.g. WebRedirect) that matches the authentication endpoint request. Otherwise
a user would not have a chance to authenticate using a login form (or other means depending on the authentication
provider). See About the demo server for an example configuration.

1.3.7 Authentication callback

After the user was authenticated on the server or if the user was already authenticated an access token is created on the
server and sent to the instance via an redirect in the browser to the client authentication callback.

Since the redirect to the client should be considered insecure the access token is encrypted and signed with the client
public key and server private key.

1.3. Single sign-on server 17

https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards

Flowpack Single sign-on Server Documentation, Release 1.0.0

Access tokens

The access token stores the account that was authenticated on the server and the client that initiated the authentication
request. An access token is identified by a string of 32 random characters. An access token has an expiry setting which
defaults to 60 seconds. This and the fact that an access token is deleted after redemption should prevent replay attacks.

Access tokens are stored in a cache backend Flowpack_SingleSignOn_Server_AccessToken_Storage. The default
configuration uses a FileBackend. The cache backend allows for a flexible and lightweight storage of access tokens
with automatic expiration and garbage collection.

The server package provides a ssoserver:removeexpiredaccesstokens command for the maintenance of the cache back-
end that will remove expired access tokens that were not redeemed. This command should be executed in regular
intervals for garbage collection of the cache backend.

1.3.8 Access token redemption

After the single sign-on client has verified the access token a server-side ‘signed request‘_ is made to exchange the
access token for the actual account data and single sign-on session identifier. This measure also prevents injection of
arbitrary account data into the callback URI by breaking the signature.

With a valid access token the server will:

• get the original session identifier and account from the access token

• invalidate (remove) the access token

• register the single sign-on client in the session for Client notification

• perform Account mapping to transform the server account into authentication and authorization information for
the client

• respond with a JSON representation of the mapped account and the server session identifier

The client will transform the returned account data into a local account (persistent or transient) using a global account
mapper and authenticate this account locally.

Note: The redeem access token request is not public and is guarded by a signed request filter by default. Additional
measures to secure this channel should be installed in production environments.

1.3.9 Account mapping

Since the account and party information that is needed on an instance is dependent on the actual requirements of an
application the single sign-on solution does not impose a fixed schema for the information.

18 Chapter 1. Contents

Flowpack Single sign-on Server Documentation, Release 1.0.0

With an implementation of the ClientAccountMapperInterface any strategy for a transformation given the account and
client instance can be implemented:

interface ClientAccountMapperInterface {

/**
* Map the given account as account data for an instance

*
* @param \Flowpack\SingleSignOn\Server\Domain\Model\SsoClient $ssoClient

* @param \TYPO3\Flow\Security\Account $account

* @return array

*/
public function getAccountData(

\Flowpack\SingleSignOn\Server\Domain\Model\SsoClient $ssoClient,
\TYPO3\Flow\Security\Account $account

);

}

The getAccountData method has to return the serialized account information based on the given single sign-on client
and account object. It is possible to differentiate between clients and return different account information depending
on the client with this approach.

SimpleClientAccountMapper

A basic implementation of a client account mapper is included in the server package with the SimpleClientAc-
countMapper class and will be used by default.

Example account data:

accountIdentifier: 'jdoe'
roles: ['Vendor.MyPackage:User']
party:

__type: 'Vendor\MyPackage\ExampleParty'
company: 'Acme Inc.'

The accountIdentifier and roles keys are always returned and do not need any configuration.

The implementation will serialize the party properties according to the configuration property which is configurable
via the Flowpack.SingleSignOn.Server.accountMapper.configuration setting.

The default configuration will handle the party type Person and returns all simple properties including the name:

array(
'party' => array(

'_exposeType' => TRUE,
'_descend' => array('name' => array())

)
);

For any other party implementation it will just return accessible properties directly under the party object, so for
relational party data a custom configuration has to be given.

It is important that the type of the party is exposed as the key __type for the default implementation of the ‘global
account mapper‘_ on the client (class SimpleGlobalAccountMapper).

Note: The exchange of account data is deliberately unconstrained to allow for a fully flexible exchange of data. But
the implementation of the ClientAccountMapperInterface on the server and GlobalAccountMapperInterface on the

1.3. Single sign-on server 19

Flowpack Single sign-on Server Documentation, Release 1.0.0

client have to match in terms of the exported and expecteded properties.

1.3.10 Client notification

The client notification is used to destroy sessions remotely by a server-side request to the client. This is mainly used
for synchronized logout (Single sign-off) and account switching on the server.

The server declares a SsoClientNotifierInterface interface for this purpose and provides two implementations using a
synchronous (SimpleSsoClientNotifier) and parallel (ParallelSsoClientNotifier) strategy for the HTTP requests. The
SimpleSsoClientNotifier is the default implementation configured in the server package Objects.yaml. In scenarios that
register a lot of instances for one session the ParallelSsoClientNotifier can reduce the latency on logout or account
switching by using parallel HTTP requests with a multi-threading engine.

A destroyed session on the client will require authentication through the single sign-on mechanism on the next request
to a secured resource on the client. This ensures an updated authentication state on the instance.

Note: The client notification will destroy all session data on the client. If the instance stores important data in the
session this data will be lost on logout or account switching on another instance or the server.

1.3.11 Session synchronization

The TYPO3 Flow session has a configurable interval for inactivity that is used to expire sessions after a certain time
of inactivity on the next access or through garbage collection.

In a single sign-on scenario we have to consider multiple Flow sessions (after authentication with at least one instance):

• One global session on the single sign-on server

• One ore more local sessions on the instances

The server and instances could have different inactivity timeouts configured for the Flow session which leads to an
effect where the user is still authenticated on the client but the server session is already expired due to inactivity (for
most scenarios the user will access the server very infrequently). It is desirable that the session lifetime is synchronized
in a single sign-on setup, such that an expired session on the server will also expire the session on the instances.

The Flowpack single sign-on solution does use a regular touch on the global session from the client through a special
server-side signed request. The interval and frequency is configurable for the single sign-on client.

The server will respond with an error code SessionNotFound if the session was not found / inactive and the client will
mark the authentication token as no longer authenticated.

1.3.12 Account impersonation

The authentication endpoint gets the current account that should be passed to the instance through the AccountMan-
ager service, which is implemented in the server package.

The method impersonateAccount allows to impersonate another account that will be visible as the globally authenti-
cated account. The original account is still authenticated on the server which allows to switch back to the original or
yet another account. As in the case of re-authentication on the server all registered client sessions are destroyed on
impersonation.

This feature could be used to implement multi-tenant applications where one global account is able to use multiple
other accounts and the user should be able to select the currently active account.

20 Chapter 1. Contents

Flowpack Single sign-on Server Documentation, Release 1.0.0

Note: A single sign-on server UI should always use the methods in AccountManager to get the currently active
account (through getServerAccount or getImpersonatedAccount) to display authentication information.

1.3.13 HTTP services

This is a list of all HTTP services (controller actions) that are exposed by the server. The URI path de-
pends on the global Routes.yaml that mounts the package subroutes, we expect the routes to be mounted at
/sso/<SingleSignOnSubroutes>.

Public

/sso/authentication Route for the authentication endpoint, has to be accessible for all users that should authenticate
using the single sign-on.

Private

The controller for these routes are protected by a signed request firewall filter and should only be accessible by
instances. We strongly suggest to take additional measures for securing the server-side channel between the server and
instances (e.g. SSL with client certificates, firewall rules, additional request filter).

Warning: The default TYPO3 Flow routes could allow access to controller actions even though the URI paths
are secured by a firewall or webserver configuration.

/sso/token/{accessToken}/redeem Route for the access token redemption, is used by the single sign-on client to verify
the access token and to exchange it for account data and the global session identifier.

/sso/session/{sessionId}/touch Route for the session synchronization by allowing a client to touch the global session
in regular intervals and get feedback about the session status.

/sso/session/{sessionId}/destroy Route for the single sign-off to destroy the global session when a user logs out on an
instance.

1.4 Single sign-on client

The Flowpack.SingleSignOn.Client package is needed on any instance that should participate in the single sign-on
process. It can be installed in any TYPO3 Flow (> version 2.x) application and configured through the security
framework.

No special requirements exist for an application to become a single sign-on instance, except that it should be reachable
by the server for the server-side requests (e.g. for Client notification). Furthermore the client does not require any
persistence storage (besides the default Flow session) or database access.

1.4.1 Components

This is a schematic view of the single sign-on client components that are part of a TYPO Flow application which is
called an instance.

1.4. Single sign-on client 21

Flowpack Single sign-on Server Documentation, Release 1.0.0

Client key pair The client has a public / private key pair for encryption and request verification. The public key is
shared with all servers that are used by the client (most of the time there will be only one server).

Service base URI The client exports HTTP services on a specific URL path. This path acts as the Service base URI
(e.g. http://ssoinstance.local/sso/) or client identifier. It is used to register the client on the server.

Servers The client configuration has a list of servers that could be used for the actual authentication provider options.
From an architecture point of view it’s possible to use different single sign-on servers in the same application,
although that should be a rare use-case.

Authentication provider and entry point The client package provides a special SingleSignOnProvider authentica-
tion provider and SingleSignOnRedirect entry point which have to be configured in the TYPO3 Flow security
framework for the single sign-on to be used as the authentication method. See Configuration / Authentication.

1.4.2 Installation

Installation of the single sign-on client package should be done via Composer:

$ path/to/composer.phar require flowpack/singlesignon-client

Note: If you extend the client package or want to provide configuration in a custom package you should add the
flowpack/singlesignon-client composer package as a dependency of that package for correct initialization order.

1.4.3 Configuration

Package configuration

The Flowpack.SingleSignOn.Client package provides the following default configuration:

Flowpack:
SingleSignOn:
Client:

SSO client configuration
client:

The client service base URI as the client identifier

22 Chapter 1. Contents

Flowpack Single sign-on Server Documentation, Release 1.0.0

Must point to the URI where the SSO client routes are mounted
serviceBaseUri: ''
The client key pair fingerprint
publicKeyFingerprint: ''

A list of named SSO server configurations
server:

Example server configuration
#
DemoServer:
publicKeyFingerprint: 'bb5abb57faa122cc031e3c904db3d751'
serviceBaseUri: 'http://ssoserver/sso'

accountMapper:
Map a party type from the server to the instance, more complex scenarios
need a specialized account mapper implementation (see GlobalAccountMapperInterface)
#
typeMapping:
'Vendor\MyServer\Domain\Model\SomeParty': 'Vendor\MyApplication\Domain\Model\OtherParty'
#
typeMapping: []

log:
Enable logging of failed signed requests (signature verification errors)
logFailedSignedRequests: FALSE

Option Description MandatoryType Default

client.serviceBaseUri The service base URI for this client Yes string

client.publicKeyFingerprint Key pair fingerprint for the client Yes string

server Array of named server configurations, server name (not identifier) as the keyYes array

server.ServerName.publicKeyFingerprintPublic key fingerprint of the server Yes string

server.ServerName.serviceBaseUriService base URI of the server Yes string

accountMapper.typeMapping Party type mapping from server to client for SimpleGlobalAccountMapperNo array

log.logFailedSignedRequests Controls logging of failed signed requests via an aspect (for debugging)No boolean FALSE

Note: The package also configures some settings for TYPO3 Flow. For the signed requests a security firewall filter
with the name ssoClientSignedRequests is configured. This filter can be modified or removed in another package

1.4. Single sign-on client 23

Flowpack Single sign-on Server Documentation, Release 1.0.0

configuration or global configuration.

Authentication

The client has to be configured as an authentication provider on the instance to use a server for the single sign-on.

TYPO3:
Flow:
security:

authentication:
providers:
SingleSignOnProvider:

provider: 'Flowpack\SingleSignOn\Client\Security\SingleSignOnProvider'
providerOptions:
server: DemoServer
globalSessionTouchInterval: 60

entryPoint: 'Flowpack\SingleSignOn\Client\Security\EntryPoint\SingleSignOnRedirect'
entryPointOptions:
server: DemoServer

This example configuration configures an authentication provider with name SingleSignOnProvider (this can be cho-
sen freely) that uses a single sign-on server configured in Flowpack.SingleSignOn.Client.server.DemoServer. The
entry point SingleSignOnRedirect needs to be registered for the single sign-on to intercept unauthenticated requests to
secured resources (e.g. policy restriction of a controller action) and continue after the session is transferred from the
server.

The globalSessionTouchInterval is a provider level option that configures the amount of seconds that can pass without
touching the global session on the server (see Session synchronization).

Routes

The routes of the client package have to be registered in the global Routes.yaml:

##
Flowpack.SingleSignOn.Client subroutes
#

-
name: 'SingleSignOn'
uriPattern: 'sso/<SingleSignOnSubroutes>'
subRoutes:
SingleSignOnSubroutes:

package: Flowpack.SingleSignOn.Client

The path sso/ can be freely chosen but will be part of the client service base URI that needs to be used for Client
registration.

1.4.4 Commands

ssokey:generatekeypair

The client package provides a ssokey:generatekeypair command to create a new public / private key pair (usable for
client or server):

24 Chapter 1. Contents

Flowpack Single sign-on Server Documentation, Release 1.0.0

Generate key pair command

COMMAND:
flowpack.singlesignon.client:ssokey:generatekeypair

USAGE:
./flow ssokey:generatekeypair

DESCRIPTION:
Creates a new key pair and imports it into the wallet.
Used by SSO client and server.

Example:

$./flow ssokey:generatekeypair
Created key with fingerprint: ee60cb20fab84db9136903e107657b7f

The returned hash is the public key fingerprint of the created key pair.

Note: The generated private key is unencrypted and should be kept secretly (the keys are stored in the RsaWallet by
default in Data/Persistent/RsaWalletData).

ssokey:exportpublickey

The server and client need the full public key from either side. This can be done by exporting the public from a key
pair on the server or instance and importing it on the other side by using the core command security:importpublickey.
For the export of a public key the client package ships a ssokey:exportpublickey command:

Export a public key

COMMAND:
flowpack.singlesignon.client:ssokey:exportpublickey

USAGE:
./flow ssokey:exportpublickey <public key fingerprint>

ARGUMENTS:
--public-key-fingerprint

Example:

Generating a key pair for the single sign-on client on an instance:

$ cd path/to/instance

$./flow ssokey:generatekeypair
Created key with fingerprint: ee60cb20fab84db9136903e107657b7f

$./flow ssokey:exportpublickey ee60cb20fab84db9136903e107657b7f > instance.pub

Importing the key for the client on the server (needs file instance.pub on the server):

$ cd path/to/server

$./flow security:importpublickey < instance.pub
The public key has been successfully imported. Use the following uuid to refer to it in the RSAWalletService:

1.4. Single sign-on client 25

Flowpack Single sign-on Server Documentation, Release 1.0.0

ee60cb20fab84db9136903e107657b7f

1.4.5 Authentication callback

The client exposes a public action for authentication callback that accepts a request from the server after the authenti-
cation on the server for the single sign-on was successful. The request contains query arguments for the callbackUri,
a server generated encrypted Access token and a signature over the arguments for verification.

To verify the authenticity of the request the signature is checked against the public key of the configured server and the
access token is decrypted with the client private key. The next step is the Access token redemption with a server-side
signed request from the instance to the server.

1.4.6 Account mapping

The server will respond with the account data of the authenticated account in the global session that is prepared through
account mapping on the server.

The client needs to map this data to a local account with a GlobalAccountMapperInterface implementation:

interface GlobalAccountMapperInterface {

/**
* @param \Flowpack\SingleSignOn\Client\Domain\Model\SsoClient $ssoClient

* @param array $globalAccountData

* @return \TYPO3\Flow\Security\Account

*/
public function getAccount(

\Flowpack\SingleSignOn\Client\Domain\Model\SsoClient $ssoClient,
array $globalAccountData

);

26 Chapter 1. Contents

Flowpack Single sign-on Server Documentation, Release 1.0.0

}

A default implementation of this interface is shipped in the client package with the class SimpleGlobalAccountMapper
that will be used by default.

SimpleGlobalAccountMapper

This global account mapper implementation expects the account data in a schema that matches the SimpleClientAc-
countMapper on the server:

Example account data:

accountIdentifier: 'jdoe'
roles: ['Vendor.MyPackage:User']
party:

__type: 'Vendor\MyPackage\ExampleParty'
company: 'Acme Inc.'

The account mapper will instantiate a new Account instance that is transient and should not be persisted as for every
single sign-on process a new Account will be created. If the authenticated account needs to be referenced by other
domain models a custom global account mapper implementation has to be created that could create new persisted
accounts lazily and update their data according to the given account data. Because this is very domain specific we do
not ship a default implementation for this mapping strategy.

The party type is given as the key party.__type and will be mapped to a type on the instance using the Flow-
pack.SingleSignOn.Client.accountMapper.typeMapping setting. This setting allows to have a simple one-to-one map-
ping between classes on the server and on the instance. The property names in the account data have to match for the
default implementation.

1.4.7 Logging

The client package performs no special logging besides a logging aspect for signed request debugging.
The aspect to log failed signed requests with signature verification errors can be enabled via the Flow-
pack.SingleSignOn.Client.log.logFailedSignedRequests setting. The requests are logged to the Flow security logger.

1.4.8 HTTP services

This is a list of all HTTP services (controller actions) that are exposed by the client. The URI path de-
pends on the global Routes.yaml that mounts the package subroutes, we expect the routes to be mounted at
/sso/<SingleSignOnSubroutes>.

Public

/sso/authentication/callback Route for the authentication callback, has to be accessible for all users that should
authenticate using the single sign-on.

Private

The controller for these routes are protected by a signed request firewall filter and should only be accessible by a
single sign-on server. We strongly suggest to take additional measures for securing the server-side channel between
the server and instances (e.g. SSL with client certificates, firewall rules, additional request filter).

1.4. Single sign-on client 27

Flowpack Single sign-on Server Documentation, Release 1.0.0

Warning: The default TYPO3 Flow routes could allow access to controller actions even though the URI paths
are secured by a firewall or webserver configuration.

/sso/session/{sessionId}/destroy Route for the Client notification to destroy the local session on an instance when a
user logs out on another instance or the server.

1.5 Development

Development of the Flowpack.SingleSignOn packages and distributions is coordinated on GitHub:
http://github.com/Flowpack

1.5.1 Running the tests

We have a test suite that covers all scenarios of the single sign-on with acceptance tests through Behat in the TestSuite
repository. The tests need a running demo setup with two different instances (configured via subcontexts).

Install Behat via Composer:

$ git clone https://github.com/Flowpack/Flowpack.SingleSignon.TestSuite.git TestSuite
$ cd TestSuite
$ path/to/composer.phar install

The default behat.yml.dist configuration expects the demo installation with the URL http://ssodemoinstance.dev/,
http://ssodemoinstance2.dev/ and http://ssodemoserver.dev/. A custom configuration for Behat can be used by copying
the file behat.yml.dist to behat.yml.

Running the Behat tests:

$ bin/behat

This should execute all features and display the results of the scenarios.

28 Chapter 1. Contents

http://github.com/Flowpack
http://behat.org/
https://github.com/Flowpack/Flowpack.SingleSignon.TestSuite

Index

A
Account

Impersonation, 20

C
Client, 21

Account mapping, 26
Authentication callback, 26
Authentication provider, 22
Commands, 24
Configuration, 22
Entry point, 22
HTTP services, 27
Installation, 22
Key pair, 22
Logging, 27
Registration, 16
Servers, 22
Service base URI, 22
SimpleGlobalAccountMapper, 27

Command
ssokey:exportpublickey, 25
ssokey:generatekeypair, 24
ssoserver:registerclient, 15
ssoserver:removeexpiredaccesstokens, 15

D
Demo, 6

Credentials, 6
Instance, 10
Server, 8
Setup, 6
Vagrant, 6
Walkthrough, 8

S
Server, 12

Access token, 17
Access token redemption, 18
Account mapping, 18

Authentication callback, 17
Authentication endpoint, 16
Client notification, 20
Client registration, 16
Clients, 13
Commands, 15
Configuration, 13
HTTP services, 21
Key pair, 13
Logging, 15
Logs, 15
Redeem access token, 18
Service base URI, 13
SimpleClientAccountMapper, 19

Session
global, 20
local, 20
Synchronization, 20

Single sign-off, 20

V
Vagrant

Demo, 6

29

	Contents
	Overview
	Getting started
	Single sign-on server
	Single sign-on client
	Development

