

FlowCraft

[image: _images/logo_large.png]
A NextFlow pipeline assembler for genomics.

Getting Started

	Overview

	Installation

	About

User Guide

	Basic Usage

	Pipeline building

	Pipeline configuration

	Pipeline inspection

	Pipeline reports

	Components

Developer Guide

	General orientation

	Process creation guidelines

	Template creation guidelines

	Recipe creation guidelines

	Docker containers guidelines

	Dotfiles

	Pipeline reporting

	Reports

Source API

	flowcraft package
	Subpackages

	Submodules

	Module contents

Overview

FlowCraft is an assembler of pipelines written in nextflow [https://www.nextflow.io/] for
analyses of genomic data. The premisse is simple:

Software are container blocks → Build your lego-like pipeline → Execute it (almost) anywhere.

What is Nextflow

If you do not know nextflow, be sure to check it out. It’s an awesome
framework based on the dataflow programming model used for building
parallelized, scalable and reproducible workflows using software containers.
It provides an abstraction layer between the execution and the logic of the
pipeline, which means that the same pipeline code can be executed on
multiple platforms, from a local laptop to clusters managed with SLURM, SGE,
etc. These are quite attractive features since genomic pipelines are
increasingly executed on large computer clusters to handle large volumes
of data and/or tasks. Moreover, portability and reproducibility are becoming
central pillars in modern data science.

What FlowCraft does

FlowCraft is a python engine that automatically builds nextflow pipelines
by assembling pre-made ready-to-use components. These components are modular
pieces of software or scripts, such as fastqc, trimmomatic, spades,
etc, that are written for nextflow and have a set of attributes, such as
input and output types, parameters, directives, etc. This modular nature
allows them to be freely connected as long as they respect some basic rules,
such as the input type of a component must match with the output type of
the preceding component. In this way, nextflow processes can be
written only once, and FlowCraft is the magic glue that connects them,
handling the linking and forking of channels automatically. Moreover, each
component is associated with a docker image, which means that there is no
need to install any dependencies at all and all software runs on a
transparent and reliable box. To illustrate:

	A linear genome assembly pipeline can be easily built using FlowCraft
with the following pipeline string:

trimmomatic fastqc spades

Which will generate all the necessary files to run the nextflow
pipeline on any linux system that has nextflow and a container engine.

	You can easily add more components to perform assembly polishing, in this
case, pilon:

trimmomatic fastqc spades pilon

	If a new assembler comes along and you want to switch that component in the
pipeline, its as easy as replacing spades (or any other component):

trimmomatic fastqc skesa pilon

	And you can also fork the output of a component into multiple ones. For
instance, we could annotate the resulting assemblies with multiple software:

trimmomatic fastqc spades pilon (abricate | prokka)

	Or fork the execution of a pipeline early on to compare different software:

trimmomatic fastqc (spades pilon | skesa pilon)

This will fork the output of fastqc into spades and skesa, and
the pipeline will proceed independently in these two new ‘lanes’.

	Directives for each process can be dynamically set when building the pipeline,
such as the cpu/RAM usage or the software version:

trimmomatic={'cpus':'4'} fastqc={'version':'0.11.5'} skesa={'memory':'10GB'} pilon (abricate | prokka)

	And extra input can be directly inserted in any part of the pipeline. For
example, it is possible to assemble genomes from both fastq files and SRR
accessions (downloaded from public databases) in a single workflow:

download_reads trimmomatic={'extra_input':'reads'} fastqc skesa pilon

This pipeline can be executed by providing a file with accession numbers
(--accessions parameter by default) and fastq reads, using the
--reads parameter defined with the extra_input directive.

Who is FlowCraft for

FlowCraft can be useful for bioinformaticians with varied levels of expertise
that need to executed genomic pipelines often and potentially in different
platforms. Building and executing pipelines requires no programming knowledge,
but familiarization with nextflow is highly recommended to take full advantage
of the generated pipelines.

At the moment, the available pre-made processes are mainly focused on
bacterial genome assembly simply because that was how we started.
However, our goal is to expand the library of existing components to other
commonly used tools in the field of genomics and to widen the applicability
and usefulness of FlowCraft pipelines.

Why not just write a Nextflow pipeline?

In many cases, building a static nextflow pipeline is sufficient for our goals.
However, when building our own pipelines, we often felt the need to add
dynamism to this process, particularly if we take into account how fast new
tools arise and existing ones change. Our biological goals also change over
time and we might need different pipelines to answer different questions.
FlowCraft makes this very easy by having a set of pre-made and ready-to-use
components that can be freely assembled. By using components (fastqc,
trimmomatic) as its atomic elements, very complex pielines that take
full advantage of nextflow can be built with little effort. Moreover,
these components have explicit and standardized
input and output types, which means that the addition of new modules does not
require any changes in the existing code base. They just need to take into
account how data will be received by the process and how data may be emitted
from the process, to ensure that it can link with other components.

However, why not both?

FlowCraft generates a complete Nextflow pipeline file, which ca be used
as a starting point for your customized processes!

Installation

User installation

FlowCraft is available as a bioconda package, which already comes with
nextflow:

conda install flowcraft

Alternatively, you can install only FlowCraft, via pip:

pip install flowcraft

You will also need a container engine (see Container engine below)

Container engine

All components of FlowCraft are executed in docker containers, which
means that you’ll need to have a container engine installed. The container
engines available are the ones supported by Nextflow:

	Docker [https://www.nextflow.io/docs/latest/docker.html],

	Singularity [https://www.nextflow.io/docs/latest/singularity.html]

	Shifter (undocumented)

If you already have any one of these installed, you are good to go. If not,
you’ll need to install one. We recommend singularity because it does not
require the processes to run on a separate root daemon.

Singularity

Singularity is available to download and install here [http://singularity.lbl.gov/install-linux].
Make sure that you have singularity v2.5.x or higher.
Note that singularity should be installed as root and available on the machine(s) that
will be running the nextflow processes.

Important

Singularity is available as a bioconda package. However, conda installs singularity
in user space without root privileges, which may prevent singularity images from
being correctly downloaded. Therefore it is not recommended that you install
singularity via bioconda.

Docker

Docker can be installed following the instructions on the website:
https://www.docker.com/community-edition#/download.
To run docker as anon-root user, you’ll need to following the instructions
on the website: https://docs.docker.com/install/linux/linux-postinstall/#manage-docker-as-a-non-root-user

Developer installation

If you are looking to contribute to FlowCraft or simply interested in
tweaking it, clone the github repository and its submodule and then run
setup.py:

git clone https://github.com/assemblerflow/flowcraft.git
cd flowcraft
git submodule update --init --recursive
python3 setup.py install

About

FlowCraft is developed by the Molecular Microbiology and Infection Unit (UMMI) [http://darwin.phyloviz.net/wiki/doku.php]
at the Instituto de Medicina Molecular Joao Antunes [https://imm.medicina.ulisboa.pt/en/].

This project is licensed under the GPLv3 license [https://github.com/assemblerflow/flowcraft/blob/master/LICENSE].
The source code of FlowCraft is available at https://github.com/assemblerflow/flowcraft and the
webservice is available at https://github.com/assemblerflow/flowcraft-webapp.

Basic Usage

FlowCraft has currently two execution modes, build and inspect, that are
used to build and inspect the nextflow pipeline, respectively. However, a
report mode is also being developed.

Build

Assembling a pipeline

Pipelines are generated using the build mode of FlowCraft
and the -t parameter to specify the components inside quotes:

flowcraft build -t "trimmomatic fastqc spades" -o my_pipe.nf

All components should be written inside quotes and be space separated.
This command will generate a linear pipeline with three components on the
current working directory (for more features and tips on how pipelines can be
built, see the pipeline building section). A linear pipeline means that
there are no bifurcations between components, and the input data will flow
linearly.

The rationale of how the data flows across the pipeline is simple and intuitive.
Data enters a component and is processed in some way, which may result on the
creation of result files (stored in the results directory) and reports
files (stored in the reports directory) (see Results and reports below). If that
component has an output_type, it will feed the processed data into the
next component (or components) and this will repeated until the end of the
pipeline.

If you are interesting in checking the pipeline DAG tree, open the
my_pipe.html file (same name as the pipeline with the html extension)
in any browser.

[image: ../_images/fork_4.png]
The integrity_coverage component is a dependency of trimmomatic, so
it was automatically added to the pipeline.

Important

Not all pipeline configurations will work. You always need to ensure
that the output type of a component matches the input type of the next
component, otherwise FlowCraft will exit with an error.

Pipeline directory

In addition to the main nextflow pipeline file (my_pipe.nf),
FlowCraft will write several auxiliary files that are necessary for
the pipeline to run. The contents of the directory should look something like
this:

$ ls
bin lib my_pipe.nf params.config templates
containers.config my_pipe.html nextflow.config profiles.config resources.config user.config

You do not have to worry about most of these files. However, the
*.config files can be modified to change several aspects of the pipeline run
(see Pipeline configuration for more details). Briefly:

	params.config: Contains all the available parameters of the pipeline (see
Parameters below). These can be changed here, or provided directly on
run-time (e.g.: nextflow run --fastq value).

	resources.config: Contains the resource directives of the pipeline processes,
such as cpus, allocated RAM and other nextflow process directives.

	containers.config: Specifies the container and version tag of each process
in the pipeline.

	profiles.config: Contains a number of predefined profiles of executor and
container engine.

	user.config: Empty configuration file that is not over-written if you build
another pipeline in the same directory. Used to set persistent configurations
across different pipelines.

Parameters

The parameters of the pipeline can be viewed by running the pipeline file
with nextflow and using the --help option:

$ nextflow run my_pipe.nf --help
N E X T F L O W ~ version 0.30.1
Launching `my_pipe.nf` [kickass_mcclintock] - revision: 480b3455ba

==
 F L O W C R A F T
==
Built using flowcraft v1.2.1.dev1

Usage:
 nextflow run my_pipe.nf

 --fastq Path expression to paired-end fastq files. (default: fastq/*_{1,2}.*) (default: 'fastq/*_{1,2}.*')

 Component 'INTEGRITY_COVERAGE_1_1'

 --genomeSize_1_1 Genome size estimate for the samples in Mb. It is used to estimate the coverage and other assembly parameters andchecks (default: 1)
 --minCoverage_1_1 Minimum coverage for a sample to proceed. By default it's setto 0 to allow any coverage (default: 0)

 Component 'TRIMMOMATIC_1_2'

 --adapters_1_2 Path to adapters files, if any. (default: 'None')
 --trimSlidingWindow_1_2 Perform sliding window trimming, cutting once the average quality within the window falls below a threshold (default: '5:20')
 --trimLeading_1_2 Cut bases off the start of a read, if below a threshold quality (default: 3)
 --trimTrailing_1_2 Cut bases of the end of a read, if below a threshold quality (default: 3)
 --trimMinLength_1_2 Drop the read if it is below a specified length (default: 55)

 Component 'FASTQC_1_3'

 --adapters_1_3 Path to adapters files, if any. (default: 'None')

 Component 'SPADES_1_4'

 --spadesMinCoverage_1_4 The minimum number of reads to consider an edge in the de Bruijn graph during the assembly (default: 2)
 --spadesMinKmerCoverage_1_4 Minimum contigs K-mer coverage. After assembly only keep contigs with reported k-mer coverage equal or above this value (default: 2)
 --spadesKmers_1_4 If 'auto' the SPAdes k-mer lengths will be determined from the maximum read length of each assembly. If 'default', SPAdes will use the default k-mer lengths. (default: 'auto')

All these parameters are specific to the components of the pipeline. However,
the main input parameter (or parameters) of the pipeline is always available.
In this case, since the pipeline started with fastq paired-end files as the
main input, the --fastq parameter is available. If the pipeline started
with any other input type or with more than one input type, the appropriate
parameters will appear (more information in the raw input types section).

The parameters are composed by their name (adapters) followed by the ID of
the process it refers to (_1_2). The IDs can be consulted in the DAG tree
(See Assembling a pipeline). This is done to prevent issues when duplicating
components and, as such, all parameters will be independent between different
components. This
behaviour can be changed when building the pipeline by using the
--merge-params option (See Merge parameters).

Note

The --merge-params option of the build mode will merge all parameters
with identical names (e.g.: --genomeSize_1_1 and --genomeSize_1_5
become simply --genomeSize) . This is usually more appropriate and useful
in linear pipelines without component duplication.

Providing/modifying parameters

These parameters can be provided on run-time:

nextflow run my_pipe.nf --genomeSize_1_1 5 --adapters_1_2 "/path/to/adapters"

or edited in the params.config file:

params {
 genomeSize_1_1 = 5
 adapters_1_2 = "path/to/adapters"
}

Most parameters in FlowCraft’s components already come with sensible
defaults, which means that usually you’ll only need to provide a small number
of arguments. In the example above, the --fastq is the only parameter
required. I have placed fastq files on the data directory:

$ ls data
sample_1.fastq.gz sample_2.fastq.gz

We’ll need to provide the pattern to the fastq files. This pattern is perhaps
a bit confusing at first, but it’s necessary for the correct inference of the
paired:

--fastq "data/*_{1,2}.*"

In this case, the pairs are separated by the “_1.” or “_2.” substring, which leads
to the pattern *_{1,2}.*. Another common nomenclature for paired fastq
files is something like sample_R1_L001.fastq.gz. In this case, an
acceptable pattern would be *_R{1,2}_*.

Important

Note the quotes around the fastq path pattern. These quotes are necessary
to allow nextflow to resolve the pattern, otherwise your shell might try
to resolve it and provide the wrong input to nextflow.

Execution

Once you build your pipeline with Flowcraft you have a standard nextflow pipeline
ready to run. Therefore, all you need to do is:

nextflow run my_pipe.nf --fastq "data/*_{1,2}.*

Changing executor and container engine

The default run mode of an FlowCraft pipeline is to be executed locally
and using the singularity container engine. In nextflow terms, this is
equivalent to have executor = "local" and singularity.enabled = true.
If you want to change these settings, you can modify the
nextflow.config file, or use one of the available profiles in the
profiles.config file. These profiles provide a combination of common
<executor>_<container_engine> that are supported by nextflow [https://www.nextflow.io/docs/latest/executor.html]. Therefore,
if you want to run the pipeline on a cluster with SLURM and shifter, you’ll
just need to specify the `` slurm_shifter`` profile:

nextflow run my_pipe.nf --fastq "data/*_{1,2}.*" -profile slurm_shifter

Common executors include:

	slurm

	sge

	lsf

	pbs

Other container engines are:

	docker

	singularity

	shifter

Docker images

All components of FlowCraft are executed in containers, which means that
the first time they are executed in a machine, the corresponding image will have
to be downloaded. In the case of docker, images are pulled and stored in
var/lib/docker by default. In the case of singularity, the
nextflow.config generated by FlowCraft sets the cache dir for the
images at $HOME/.singularity_cache. Note that when an image is downloading,
nextflow does not display any informative message, except for singularity where you’ll
get something like:

Pulling Singularity image docker://ummidock/trimmomatic:0.36-2 [cache /home/diogosilva/.singularity_cache/ummidock-trimmomatic-0.36-2.img]

So, if a process seems to take too long to run the first time, it’s probably
because the image is being downloaded.

Results and reports

As the pipeline runs, processes may write result and report files to the
results and reports directories, respectively. For example, the
reports of the pipeline above, would look something like this:

reports
├── coverage_1_1
│ └── estimated_coverage_initial.csv
├── fastqc_1_3
│ ├── FastQC_2run_report.csv
│ ├── run_2
│ │ ├── sample_1_0_summary.txt
│ │ └── sample_1_1_summary.txt
│ ├── sample_1_1_trim_fastqc.html
│ └── sample_1_2_trim_fastqc.html
└── status
 ├── master_fail.csv
 ├── master_status.csv
 └── master_warning.csv

The estimated_coverage_initial.csv file contains a very rough coverage
estimation for each sample, the fastqc* directory contains the html
reports and summary files of FastQC for each sample, and the status
directory contains a log of the status, warnings and fails of each process for
each sample.

The actual results for each process that produces them, are stored in the
results directory:

results
├── assembly
│ └── spades_1_4
│ └── sample_1_trim_spades3111.fasta
└── trimmomatic_1_2
 ├── sample_1_1_trim.fastq.gz
 └── sample_1_2_trim.fastq.gz

If you are interested in checking the actual environment where the execution
of a particular process occurred for any given sample, you can inspected the
pipeline_stats.txt file in the root of the pipeline directory. This file
contains rich information about the execution of each process, including
the working directory:

task_id hash process tag status exit start container cpus duration realtime queue %cpu %mem rss vmem
5 7c/cae270 trimmomatic_1_2 sample_1 COMPLETED 0 2018-04-12 11:42:29.599 docker:ummidock/trimmomatic:0.36-2 2 1m 25s 1m 17s - 329.3% 1.1% 1.5 GB 33.3 GB

The hash column contains the start of the current working directory of that
process. In the example below, the directory would be:

work/7c/cae270*

Inspect

FlowCraft has two options (overview and broadcast) for inspecting the
progress of a pipeline that is running locally, either in a personal computer
or a server machine. In both cases, the progress of the pipeline will be
continuously updated in real-time.

In a terminal

To open inspect in the terminal just write the following command on the folder
that the pipeline is running:

flowcraft inspect

[image: ../_images/flowcraft_inspect_terminal.png]
overview is the default behavior of this module, but it can also be called
like this:

flowcraft inspect -m overview

Note

To exit the inspection just type q or ctrl+c.

In a browser

It is also possible to track the pipeline progress in a browser in any
device using the flowcraft web application. To do so, the following command
should be run in the folder where the pipeline is running:

flowcraft inspect -m broadcast

This will output an URL to the terminal that can be opened in a browser.
This is an example of the screen that is displayed once the url is opened:

[image: ../_images/flowcraft_inspect_broadcast.png]

Important

This pipeline inspection will be available for anyone via the provided URL,
which means that the URL can be shared with anyone and/or any device with
a browser. However, the inspection section will only be available while
the flowcraft inspect -m broadcast command is running. Once this command
is cancelled, the data will be erased from the service and the URL will
no longer be available.

Want to know more?

Pipeline inspection is the full documentation of the inspect mode.

Reports

The reporting of a FlowCraft pipeline is saved on a JSON file that is stored
in pipeline_reports/pipeline_report.json. To visualize the reports you’ll just
need to execute the following command in the folder where the pipeline was executed:

flowcraft report

This will output an URL to the terminal that can be opened in a browser.
This is an example of the screen that is displayed once the url is opened:

[image: ../_images/flowcraft_report.png]
The actual layout and content of the reports will depend on the pipeline you
build and it will only provide the information that is directly related to
your pipeline components.

Important

This pipeline report will be available for anyone via the provided URL,
which means that the URL can be shared with anyone and/or any device with
a browser. However, the report section will only be available while
the flowcraft report command is running. Once this command
is cancelled, the data will be erased from the service and the URL will
no longer be available.

Real time reports

The reports of any FlowCraft pipeline can be monitored in real-time using the
--watch option:

flowcraft report --watch

This will output an URL exactly as in the previous section and will render the
same reports page with a small addition. In the top right of the screen in the
navigation bar, there will be a new icon that informs the user when new
reports are available:

[image: ../_images/flowcraft_report_watch.png]

Local visualization

The FlowCraft report JSON file can also be visualized locally by drag and dropping
it into the FlowCraft web application page, currently hosted at http://www.flowcraft.live/reports

Offline visualization

The complete FlowCraft report is also available as a standalone HTML file that
can be visualized offline. This HTML file, stored in
pipeline_reports/pipeline_report.html, can be opened in any modern browser.

Pipeline building

FlowCraft offers a few extra features when building pipelines using the
build execution mode.

Raw input types

The first component (or components) you place at the start of the pipeline
determine the raw input type, and the parameter for providing input data.
The input type information is provided in the documentation page of each
component. For instance, if the first component is FastQC, which has an input
type of FastQ, the parameter for providing the raw input data will be
--fastq. Here are the currently supported input types and their
respective parameters:

	FastQ: --fastq

	Fasta: --fasta

	Accessions: --accessions

Merge parameters

By default, parameters in a FlowCraft pipeline are unique and independent
between different components, even if the parameters have the same name and/or
the components are the same. This allows for the execution of the same software
using different parameters in a single workflow. The params.config of these
pipelines will look something like:

params {
 /*
 Component 'trimmomatic_1_2'

 */
 adapters_1_2 = 'None'
 trimSlidingWindow_1_2 = '5:20'
 trimLeading_1_2 = 3
 trimTrailing_1_2 = 3
 trimMinLength_1_2 = 55

 /*
 Component 'fastqc_1_3'

 */
 adapters_1_3 = 'None'
}

Notice that the adapters parameter occurs twice and can be independently set
in each component.

If you want to override this behaviour, FlowCraft has a --merge-params option
that merges all parameters with the same name in a single parameter, which is then
equally applied to all components. So, if we generate the pipeline above
with this option:

flowcraft build -t "trimmomatic fastqc" -o pipe.nf --merge-params

Then, the params.config will become:

params {
 adapters = 'None'
 trimSlidingWindow = '5:20'
 trimLeading = 3
 trimTrailing = 3
 trimMinLength = 5
}

Forks

The output of any component in an FlowCraft pipeline can be forked into
two or more components, using the following fork syntax:

trimmomatic fastqc (spades | skesa)

[image: ../_images/fork_1.png]
In this example, the output of fastqc will be fork into two new lanes,
which will proceed independently from each other. In this syntax, a fork is
triggered by the (symbol (and the corresponding closing)) and each
lane will be separated by a | symbol. There is no limitation to the number
of forks or lanes that a pipeline has. For instance, we could add more
components after the skesa module, including another fork:

trimmomatic fastqc (spades | skesa pilon (abricate | prokka | chewbbaca))

[image: ../_images/fork_2.png]
In this example, data will be forked after fastqc into two new lanes,
processed by spades and skesa. In the skesa lane, data will continue
to flow into the pilon component and its output will fork into three new
lanes.

It is also possible to start a fork at the beggining of the pipeline, which
basically means that the pipeline will have multiple starting points. If we
want to provide the raw input two multiple process, the fork syntax can start
at the beginning of the pipeline:

(seq_typing | trimmomatic fastqc (spades | skesa))

[image: ../_images/fork_3.png]
In this case, since both initial components (seq_typing and
integrity_coverage) received fastq files as input, the data provided
via the --fastq parameter will be forked and provided to both processes.

Note

Some components have dependencies which need to be included previously
in the pipeline. For instance, trimmomatic requires
integrity_coverage and pilon requires assembly_mapping. By
default, FlowCraft will insert any missing dependencies right before
the process, which is why these components appear in the figures above.

Warning

Pay special attention to the syntax of the pipeline string when using
forks. However, when unable to parse it, FlowCraft will do its best
to inform you where the parsing error occurred.

Directives

Several directives with information on cpu usage, RAM, version, etc. can be
specified for each individual component when building the pipeline using the
={} notation. These
directives are written to the resources.config and
containers.config files that are generated in the pipeline directory. You
can pass any of the directives already supported by nextflow (https://www.nextflow.io/docs/latest/process.html#directives),
but the most commonly used include:

	cpus

	memory

	queue

In addition, you can also pass the container and version directives
which are parsed by FlowCraft to dynamically change the container and/or
version tag of any process.

Here is an example where we specify cpu usage, allocated memory and container
version in the pipeline string:

flowcraft build -t "fastqc={'version':'0.11.5'} \
 trimmomatic={'cpus':'2'} \
 spades={'memory':'\'10GB\''}" -o my_pipeline.nf

When a directive is not specified, it will assume the default value of the
nextflow directive.

Warning

Take special care not to include any white space characters inside the
directives field. Common mistakes occur when specifying directives like
fastqc={'version': '0.11.5'}.

Note

The values specified in these directives are placed in the
respective config files exactly as they are. For instance,
spades={'memory':'10GB'}" will appear in the config as
spades.memory = 10Gb, which will raise an error in nextflow because
10Gb should be a string. Therefore, if you want a string you’ll need to add
the ' as in this example: spades={'memory':'\'10GB\''}". The
reason why these directives are not automatically converted is to allow
the specification of dynamic computing resources, such as
spades={'memory':'{10.Gb*task.attempt}'}"

Extra inputs

By default, only the first process (or processes) in a pipeline will receive
the raw input data provided by the user. However, the extra_input special
directive allows one or more processes to receive input from an additional parameter
that is provided by the user:

reads_download integrity_coverage={'extra_input':'local'} trimmomatic spades

The default main input of this pipeline is a text file with accession numbers
for the reads_download component. The extra_input creates
a new parameter, named local in this example, that allows us to provide
additional input data to the integrity_coverage component directly:

nextflow run pipe.nf --accessions accession_list.txt --local "fastq/*_{1,2}.*"

What will happen in this pipeline, is that the fastq files provided to the
integrity_coverage component will be mixed with the ones provided by the
reads_download component. Therefore, if we provide 10 accessions and 10
fastq samples, we’ll end up with 20 samples being processed by the end of the
pieline.

It is important to note that the extra input parameter expected data
compliant with the input type of the process. If files other than fastq files
would be provided in the pipeline above, this would result in a pipeline error.

If the extra_input directive is used on a component that has a different
input type from the first component in the pipeline, it is possible to use
the default value:

trimmomatic spades abricate={'extra_input':'default'}

In this case, the input type of the first component if fastq and the input
type of abricate is fasta. The default value will make available the
default parameter for fasta raw input, which is fasta:

nextflow run pipe.nf --fastq "fastq/*_{1,2}.*" --fasta "fasta/*.fasta"

Pipeline file

Instead of providing the pipeline components via the command line, you can
specify them in a text file:

my_pipe.txt
trimmomatic fastqc spades

And then provide the pipeline file to the -t parameter:

flowcraft build -t my_pipe.txt -o my_pipe.nf

Pipeline files are usually more readable, particularly when they become more
complex. Consider the following example:

integrity_coverage (
 spades={'memory':'\'50GB\''} |
 skesa={'memory':'\'40GB\'','cpus':'4'} |
 trimmomatic fastqc (
 spades pilon (abricate={'extra_input':'default'} | prokka) |
 skesa pilon (abricate | prokka)
)
)

In addition to be more readable, it is also easier to edit, re-use and share.

Pipeline configuration

When a nextflow pipeline is built with FlowCraft, a number of configuration
files are automatically generated in the same directory. They are all imported
at the end of the nextflow.config file and are sorted by their configuration
role. All configuration files are overwritten if you build another pipeline
in the same directory, with the exception of the user.config file, which
is meant to be a persistent configuration file.

Parameters

The params.config file includes all available paramenters for the pipeline
and their respective default values. Most of these parameters already contain
sensible defaults.

Resources

The resources.config file includes the majority of the directives provided
for each process, including cpus and memory. You’ll note that each
process name has a suffix like _1_1, which is a unique process identifier
composed of <lane>_<process_number>. This ensures that even when the same
component is specified multiple times in a pipeline, you’ll still be able to
set directives for each one individually.

Containers

The containers.config file includes the container directive for each
process in the pipeline. These containers are retrieved from dockerhub, if they
do not exist locally yet. You can change the container string to any other
value, but it should point to an image that exist on dockerhub or locally.

Profiles

The profiles.config file includes a set of pre-made profiles with all
possible combinations of executors and container engines. You can add new ones
or modify existing one.

User configutations

The user.config file is configuration file that is not overwritten when a
new pipeline is build in the same directory. It can contain any configuration
that is supported by nextflow and will overwrite all other configuration files.

Pipeline inspection

FlowCraft offers an inspect mode for tracking the progress of a nextflow
pipeline either directly in a terminal (overview) or by broadcasting information to
the flowcraft web application [https://github.com/assemblerflow/flowcraft-webapp]
(broadcast).

Note

This mode was design for nextflow pipelines generated by FlowCraft. It should
be possible to inspect any nextflow pipeline, provided that the requirements
below are met, but compatibility it’s not guaranteed.

How it works: Simply run flowcraft inspect -m <mode> in the directory
where the pipeline is running. In either run mode, FlowCraft will keep running
(until you cancel it) and continuously update the progress of a pipeline. If
the pipeline is interrupted or fails for some reason, FlowCraft should be able
to correctly reset the inspection automatically when resuming its execution.

Requirements for inspect

While the inspect mode is running, it will parse the information written
into two files that are generated by nextflow:

	.nextflow.log: The log file that is automatically generated by nextflow.

	trace file: The trace file that is generated by nextflow when using the
-with-trace option. By default, it searches for the pipeline_stats.txt file,
but this can be changed using the -i option.

Trace fields

FlowCraft parses several fields of the trace file, but only a few are mandatory
for its execution. If the trace file does not contain any of the optional fields,
that information will simply not appear on the terminal or web app. Nevertheless, to take
full advantage of the inspect mode, the following trace fields should be present:

	
	Mandatory:

	
	tag: The tag of the nextflow process. Flowcraft assumes that this is a string
with only the sample name (e.g.: SampleA). While this is not strictly required,
providing strings with other information (e.g.: Running bowtie for sampleA)
may result in some inconsistencies in the inspection.

	task_id: The task ID is used to skip entries that have already been parsed.

	
	Optional:

	
	hash: Used to get the work directory the process execution.

	cpus, %cpu, memory, rss, rchar and wchar: Used for statistics
of computational resources.

Note

Any additional fields present in the trace file are ignored.

Usage

flowcraft inspect --help
usage: flowcraft inspect [-h] [-i TRACE_FILE] [-r REFRESH_RATE]
 [-m {overview,broadcast}] [-u URL] [--pretty]

optional arguments:
 -h, --help show this help message and exit
 -i TRACE_FILE Specify the nextflow trace file.
 -r REFRESH_RATE Set the refresh frequency for the continuous inspect
 functions
 -m {overview,broadcast}, --mode {overview,broadcast}
 Specify the inspection run mode.
 -u URL, --url URL Specify the URL to where the data should be broadcast
 --pretty Pretty inspection mode that removes usual reporting
 processes.

	-i: Used to specify the path to the trace file that should be parsed. By
default, FlowCraft will try to parse the pipeline_stats.txt file in current
working directory.

	-r: Sets the time interval in seconds between each parsing of the
relevant nextflow files. By default it is set to 0.01.

	-m: The inspection mode. overview is the terminal display while
broadcast sends the data to FlowCraft’s web service.

	-u: The URL of FlowCraft’s web service. By default it is already set to the
main service and you do not need to specify it. It is only useful when the service
is running on local host or in other custom instance.

	--pretty: By default the inspection shows the progress of all processes in
the pipeline. Using this option filters the processes to the most relevant ones
of FlowCraft’s pipelines.

Pipeline reports

abricate

Table data

	AMR table:

	
	<abricate database>: Number of hits for a particular given database

[image: ../_images/abricate_table.png]

Plot data

	Sliding window AMR annotation: Provides annotation of Abricate hits for
each database along the genome. This report component is only available when
the pilon component was used downstream of abricate.

[image: ../_images/sliding_window_amr.png]

assembly_mapping

Plot data

	Data loss chart: Gives a trend of the data loss
(in total number of base pairs) across components that may filter this data.

[image: ../_images/sparkline.png]

Warnings

	Assembly table:

	
	When the number of contigs exceeds the threshold of 100 contigs per 1.5Mb.

Fails

	Assembly table:

	
	When the assembly size if smaller than 80% or larger than 150% of the
expected genome size.

check_coverage

Table data

	Quality control table:

	
	Coverage: Estimated coverage based on the number of base pairs and the expected
genome size.

[image: ../_images/quality_control_table.png]

Warnings

	Quality control table:

	
	When the enconding and phred score cannot be guessed from the FastQ file(s).

Fails

	Quality control table:

	
	When the sample has lower estimated coverage than the provided coverage threshold.

chewbbaca

Table data

	Chewbbaca table:

	
	Table with the summary statistics of ChewBBACA allele calling, including
the number of exact matches, inferred loci, loci not found, etc.

[image: ../_images/chewbbaca_table.png]

dengue_typing

Table data

	Typing table:

	
	seqtyping: The sequence typing result (serotypy-genotype).

[image: ../_images/typing_table_dengue.png]

fastqc

Plot data

	Base sequence quality: The average quality score across the read length.

[image: ../_images/fastqc_base_sequence_quality.png]

	Sequence quality: Distribution of the mean sequence quality score.

[image: ../_images/fastqc_per_base_sequence_quality.png]

	Base GC content: Distribution of the GC content of each sequence.

[image: ../_images/fastqc_base_gc_content.png]

	Sequence length: Distribution of the read sequence length.

[image: ../_images/fastqc_sequence_length.png]

	Missing data: Normalized count of missing data across the read length.

[image: ../_images/fastqc_missing_data.png]

Warnings

	The following FastQC categories will issue a warning when they have a WARN flag:

	
	Per base sequence quality.

	Overrepresented sequences.

	The following FastQC categories will issue a warning when do not have a PASS flag:

	
	Per base sequence content.

Fails

	The following FastQC categories will issue a fail when they have a FAIL flag:

	
	Per base sequence quality.

	Overrepresented sequences.

	Sequence length distribution.

	Per sequence GC content.

	The following FastQC categories will issue a fail when the do not have a PASS flag:

	
	Per base N content.

	Adapter content.

fastqc_trimmomatic

Table data

	Quality control table:

	
	Trimmed (%): Percentage of trimmed base pairs.

[image: ../_images/quality_control_table.png]

Plot data

	Data loss chart: Gives a trend of the data loss
(in total number of base pairs) across components that may filter this data.

[image: ../_images/sparkline.png]

integrity_coverage

Table data

	Quality control table:

	
	Raw BP: Number of raw base pairs from the FastQ file(s).

	Reads: Number of reads in the FastQ file(s)

	Coverage: Estimated coverage based on the number of base pairs and the expected
genome size.

[image: ../_images/quality_control_table.png]

Plot data

	Data loss chart: Gives a trend of the data loss
(in total number of base pairs) across components that may filter this data.

[image: ../_images/sparkline.png]

Warnings

	Quality control table:

	
	When the enconding and phred score cannot be guessed from the FastQ file(s).

Fails

	Quality control table:

	
	When the sample has lower estimated coverage than the provided coverage threshold.

mash_dist

Table data

	Plasmids table:

	
	Mash Dist: Number of plasmid hits

[image: ../_images/mash_dist_table.png]

Plot data

	Sliding window Plasmid annotation: Provides annotation of plasmid
hits along the genome assembly. This report component is only available
when the mash_dist component is used.

[image: ../_images/sliding_window_mash_dist.png]

mlst

Table data

	Typing table:

	
	MLST species: The inferred species name.

	MLST ST: The inferred sequence type.

[image: ../_images/typing_table.png]

patho_typing

Table data

	Typing table:

	
	Patho_typing: The pathotyping result.

[image: ../_images/typing_table.png]

pilon

Table data

	Quality control table:

	
	Contigs: Number of assembled contigs.

	Assembled BP: Total number of assembled base pairs.

[image: ../_images/assembly_table_skesa.png]

Plot data

	Contig size distribution: Distribution of the size of each assembled contig.

[image: ../_images/contig_size_distribution.png]

	Sliding window coverage and GC content: Provides coverage and GC content
metrics along the genome using a sliding window approach and two synchronised
charts.

[image: ../_images/sliding_window_amr.png]

Warnings

	Quality control table:

	
	When the enconding and phred score cannot be guessed from the FastQ file(s).

Fails

	Quality control table:

	
	When the sample has lower estimated coverage than the provided coverage threshold.

process_mapping

Table data

	Read mapping table:

	
	Reads: Number reads in the the FastQ file(s).

	Unmapped: Number of unmapped reads

	Mapped 1x: Number of reads that aligned, concordantly and discordantly, exactly 1 time

	Mapped >1x: Number of reads that aligned, concordantly or disconrdantly, more than 1 times

	Overall alignment rate (%): Overall alignment rate

[image: ../_images/read_mapping_remove_host.png]

process_newick

Tree data

Phylogenetic reconstruction with bootstrap values for the provided tree.

[image: ../_images/phylogenetic_tree.png]

process_skesa

Table data

	Quality control table:

	
	Contigs (skesa): Number of assembled contigs.

	Assembled BP: Total number of assembled base pairs.

[image: ../_images/assembly_table_skesa.png]

Warnings

	Assembly table:

	
	When the number of contigs exceeds the threshold of 100 contigs per 1.5Mb.

Fails

	Assembly table:

	
	When the assembly size if smaller than 80% or larger than 150% of the
expected genome size.

process_spades

Table data

	Quality control table:

	
	Contigs (spades): Number of assembled contigs.

	Assembled BP: Total number of assembled base pairs.

[image: ../_images/assembly_table_spades.png]

Warnings

	Assembly table:

	
	When the number of contigs exceeds the threshold of 100 contigs per 1.5Mb.

Fails

	Assembly table:

	
	When the assembly size if smaller than 80% or larger than 150% of the
expected genome size.

process_viral_assembly

Table data

	Quality control table:

	
	Contigs (SPAdes): Number of assembled contigs.

	Assembled BP (SPAdes): Total number of assembled base pairs.

	ORFs: Number of complete ORFs in the assembly.

	Contigs (MEGAHIT): Number of assembled contigs.

	Assembled BP (MEGAHIT): Total number of assembled base pairs.

[image: ../_images/assembly_table_viral_assembly.png]

Fails

	Assembly table:

	
	When the assembly size if smaller than 80% or larger than 150% of the
expected genome size.

seq_typing

Table data

	Typing table:

	
	seqtyping: The sequence typing result.

[image: ../_images/typing_table.png]

sistr

Table data

	Typing table:

	
	sistr: The sequence typing result.

[image: ../_images/typing_table.png]

trimmomatic

Table data

	Quality control table:

	
	Trimmed (%): Percentage of trimmed base pairs.

[image: ../_images/quality_control_table.png]

Plot data

	Data loss chart: Gives a trend of the data loss
(in total number of base pairs) across components that may filter this data.

[image: ../_images/sparkline.png]

true_coverage

Table data

	Quality control table:

	
	True Coverage: Estimated coverage based on read mapping on MLST genes.

[image: ../_images/quality_control_table.png]

Fails

	Quality control table:

	
	When the sample has lower estimated coverage than the provided coverage threshold.

Components

These are the currently available FlowCraft components with a short
description of their tasks. For a more detailed information, follow the
links of each component.

Download

	reads_download: Downloads reads from the SRA/ENA public
databases from a list of accessions.

	fasterq_dump: Downloads reads from the SRA public databases
from a list of accessions, using fasterq-dump.

Reads Quality Control

	check_coverage: Estimates the coverage for each sample and
filters FastQ files according to a specified minimum coverage threshold.

	fastqc: Runs FastQC on paired-end FastQ files.

	fastqc_trimmomatic: Runs Trimmomatic on
paired-end FastQ files informed by the FastQC report.

	filter_poly: Runs PrinSeq on paired-end
FastQ files to remove low complexity sequences.

	integrity_coverage: Tests the integrity
of the provided FastQ files, provides the option to filter FastQ files
based on the expected assembly coverage and provides information about
the maximum read length and sequence encoding.

	trimmomatic: Runs Trimmomatic on paired-end FastQ files.

	downsample_fastq: Subsamples fastq files up to a target coverage
depth.

Assembly

	megahit: Assembles metagenomic paired-end FastQ files
using megahit.

	metaspades: Assembles metagenomic paired-end FastQ files
using metaSPAdes.

	skesa: Assembles paired-end FastQ files using
skesa.

	spades: Assembles paired-end FastQ files
using SPAdes.

Post-assembly

	pilon: Corrects and filters assemblies using Pilon.

	process_skesa: Processes the assembly output
from Skesa and performs filtering base on quality criteria of GC content
k-mer coverage and read length.

	process_spades: Processes the assembly output
from Spades and performs filtering base on quality criteria of GC content
k-mer coverage and read length.

Binning

	maxbin2: An automatic tool for binning metagenomic sequences

Annotation

	abricate: Performs anti-microbial gene screening using
abricate.

	card_rgi: Performs anti-microbial resistance gene screening using
CARD rgi (with contigs as input).

	prokka: Performs assembly annotation using prokka.

Distance Estimation

	mash_dist: Executes mash distance against a reference index
plasmid database and generates a JSON for pATLAS. This component calculates
pairwise distances between sequences (one from the database and the query
sequence). However if a different database is provided it can use mash dist
for other purposes.

	mash_screen: Performs mash screen against a reference index
plasmid database and generates a JSON input file for pATLAS. This component
searches for containment of a given sequence in read sequencing data.
However if a different database is provided it can use mash screen for other
purposes.

	fast_ani: Performs pairwise comparisons between fastas,

given a multifasta as input for fastANI. It will split the multifasta into
single fastas that will then be provided as a matrix. The output will be the
all pairwise comparisons that pass the minimum of 50 aligned sequences with a
default length of 200 bp.

	mash_sketch_fasta: Performs mash sketch for fasta files.

	mash_sketch_fastq: Performes mash sketch for fastq files.

Mapping

	assembly_mapping: Performs a mapping
procedure of FastQ files into a their assembly and performs filtering
based on quality criteria of read coverage and genome size.

	bowtie: Align short paired-end sequencing reads to long reference sequences

	mapping_patlas: Performs read mapping and generates a JSON
input file for pATLAS.

	remove_host: Performs read mapping with bowtie2
against the target host genome (default hg19) and removes the mapping reads

	retrieve_mapped: Retrieves the mapped reads of a previous
bowtie2 mapping process.

Taxonomic Profiling

	kraken: Performs taxonomic identification with kraken on FastQ files
(minikrakenDB2017 as default database)

	midas_species: Performs taxonomic identification on FastQ files at the
species level with midas (requires database)

Typing

	chewbbaca: Performs a core-genome/whole-genome Multilocus
Sequence Typing analysis on an assembly using ChewBBACA.

	metamlst: Checks the Sequence Type of metagenomic reads using
Multilocus Sequence Typing.

	mlst: Checks the Sequence Type of an assembly using
Multilocus Sequence Typing.

	patho_typing: In silico pathogenic typing from raw
illumina reads.

	seq_typing: Determines the type of a given sample from a set
of reference sequences.

	sistr: Serovar predictions from whole-genome sequence assemblies
by determination of antigen gene and cgMLST gene alleles.

	momps: Multi-locus sequence typing for Legionella pneumophila
from assemblies and reads.

General orientation

Codebase structure

The most important elements of FlowCraft’s directory structure are:

	
	generator:

	
	components: Contains the Process classes for each component

	templates: Contains the nextflow jinja template files for each component

	engine.py: The engine of FlowCraft that builds the pipeline

	process.py: Contains the abstract Process class that is inherited

	by all component classes

	pipeline_parser.py: Functions that parse and check the pipeline string

	recipe.py: Class responsible for creating recipes

	templates: A git submodule of the templates [https://github.com/ODiogoSilva/templates] repository that contain
the template scripts for the components.

Code style

	Style: the code base of flowcraft should adhere (the best it can) to
the PEP8 [https://www.python.org/dev/peps/pep-0008/] style guidelines.

	Docstrings: code should be generally well documented following the
numpy docstring [https://numpydoc.readthedocs.io/en/latest/format.html] style.

	Quality: there is also an integration with the codacy [https://app.codacy.com/app/o.diogosilva/assemblerflow/dashboard] service to
evaluate code quality, which is useful for detecting several coding
issues that may appear.

Testing

Tests are performed using pytest [https://docs.pytest.org/en/latest/] and the source files are stored in the
flowcraft/tests directory. Tests must be executed on the root directory
of the repository

Documentation

Documentation source files are stored in the docs directory. The general
configuration file is found in docs/conf.py and the entry
point to the documentation is docs/index.html.

Process creation guidelines

Basic process creation

The addition of a new process to FlowCraft requires three main steps:

	Create process template: Create a jinja2 template in flowcraft.generator.templates with the
nextflow code.

	Create Process class: Create a Process subclass in
flowcraft.generator.process with
information about the process (e.g., expected input/output, secondary inputs,
etc.).

Create process template

First, create the nextflow template that will be integrated into the pipeline
as a process. This file must be placed in flowcraft.generator.templates
and have the .nf extension. In order to allow the template to be
dynamically added to a pipeline file, we use the jinja2 [http://jinja.pocoo.org/docs/2.10/] template language to
substitute key variables in the process, such as input/output channels.

An example created as a my_process.nf file is as follows:

some_channel_{{ pid }} = Channel.value(params.param1{{ param_id}})
other_channel_{{ pid }} = Chanel.fromPath(params.param2{{ param_id}})

process myProcess_{{ pid }} {

 {% include "post.txt" ignore missing %}

 publishDir "results/myProcess_{{ pid }}", pattern: "*.tsv"

 input:
 set sample_id, <data> from {{ input_channel }}
 val x from some_channel_{{ pid }}
 file y from other_channel_{{ pid }}
 val direct_from_parms from Channel.value(params.param3{{param_id}}

 // The output is optional
 output:
 set sample_id, <data> into {{ output_channel }}
 {% with task_name="abricate" %}
 {%- include "compiler_channels.txt" ignore missing -%}
 {% endwith %}

 """
 <process code/commands>
 """
}

{{ forks }}

The fields surrounded by curly brackets are jinja placeholders that will be
dynamically substituted when building the pipeline. They will ensure that the
processes and potential forks correctly link with each other and that
channels are unique and correctly linked. This example contains all
placeholder variables that are currently supported by FlowCraft.

{{pid}}

Used as a unique process identifier that prevent issues
from process and channel duplication in the pipeline. Therefore, is should be
appended to each process and channel name as _{{ pid }} (note the underscore):

some_channel_{{ pid }}
process myProcess_{{ pid }}

{{param_id}}

Same as the {{ pid }}, but sets the identified for nextflow params. It should
be appended to each param as {{ param_id }}. This will allow parameters
to be specific to each component in the pipeline:

Channel.value(params.param1{{ param_id}})

Note that the parameters used in the template, should also be defined in the
Process class params attribute (see Parameters).

{% include “post.txt” %}

Inserts beforeScript and afterScript statements to the process that
sets environmental variables and a series of dotfiles for the process to
log their status, warnings, fails and reports (see Dotfiles for
more information). It also includes scripts for sending requests to
REST APIs (only when certain pipeline parameters are used).

{{input_channel}}

All processes must include one and only one input channel. In most cases,
this channel should be defined with a two element tuple that contains the
sample ID and then the actual data file/stream. We suggest the sample ID
variable to be named sample_id as a standard. If other name variable name
is specified and you include the compiler_channels.txt in the process,
you’ll need to change the sample ID variable (see Sample ID variable).

{{output_channel}}

Terminal processes may skip the output channel entirely. However, if you want
to link the main output of this process with subsequent ones, this placeholder
must be used only once. Like in the input channel, this channel should
be defined with a two element tuple with the sample ID and the data. The
sample ID must match the one specified in the input_channel.

{% include “compiler_channels.txt %}

This will include the special channels that will compile the status/logging
of the processes throughout the pipeline. You must include the whole
block (see Status channels):

{% with task_name="abricate" %}
{%- include "compiler_channels.txt" ignore missing -%}
{% endwith %}

{{forks}}

Inserts potential forks of the main output channel. It is mandatory if
the output_channel is set.

Complete example

As an example of a complete process, this is the template of spades.nf:

IN_spades_opts_{{ pid }} = Channel.value([params.spadesMinCoverage{{ param_id }},params.spadesMinKmerCoverage{{ param_id }}])
IN_spades_kmers_{{pid}} = Channel.value(params.spadesKmers{{ param_id }})

process spades_{{ pid }} {

 // Send POST request to platform
 {% include "post.txt" ignore missing %}

 tag { fastq_id + " getStats" }
 publishDir 'results/assembly/spades/', pattern: '*_spades.assembly.fasta', mode: 'copy'

 input:
 set fastq_id, file(fastq_pair), max_len from {{ input_channel }}.join(SIDE_max_len_{{ pid }})
 val opts from IN_spades_opts_{{ pid }}
 val kmers from IN_spades_kmers_{{ pid }}

 output:
 set fastq_id, file('*_spades.assembly.fasta') optional true into {{ output_channel }}
 set fastq_id, val("spades"), file(".status"), file(".warning"), file(".fail") into STATUS_{{ pid }}
 file ".report.json"

 script:
 template "spades.py"
}

{{ forks }}

Create Process class

The process class will contain the information that FlowCraft
will use to build the pipeline and assess potential conflicts/dependencies
between process. This class should be created in one the category files in the
flowcraft.generator.components module (e.g.: assembly.py). If
the new component does not fit in any of the existing categories, create a
new one that imports flowcraft.generator.process.Process and add
your new class. This class should inherit from the
Process base
class:

class MyProcess(Process):

 def __init__(self, **kwargs):

 super().__init__(**kwargs)

 self.input_type = "fastq"
 self.output_type = "fasta"

This is the simplest working example of a process class, which basically needs
to inherit the parent class attributes (the super part).
Then we only need to define the expected input
and output types of the process. There are no limitations to the
input/output types.
However, a pipeline will only build successfully when all processes correctly
link the output with the input type.

Depending on the process, other attributes may be required:

	Parameters: Parameters provided by the user to be used in the process.

	Secondary inputs: Channels created from parameters provided by the
user.

	Secondary Link start and Link end: Secondary links that connect
secondary information between two processes.

	Dependencies: List of other processes that may be required for
the current process.

	Directives: Default information for RAM/CPU/Container directives
and more.

Add to available components

Contrary to previous implementation (version <= 1.3.1), the available components
are now retrieved automatically by FlowCraft and there is no need to add the
process to any dictionary (previous process_map). In order for the component
to be accessible to flowcraft build the process template name in
snake_case must match the process class in CamelCase. For instance,
if the process template is named my_process.nf, the process class must
be MyProcess, then the FlowCraft will be able to automatically add it to the
list of available components.

Note

Note that the template string does not include the .nf extension.

Process attributes

This section describes the main attributes of the
Process class: what they
do and how do they impact the pipeline generation.

Input/Output types

The input_type and
output_type attributes
set the expected type of input and output of the process. There are no
limitations to the type of input/output that are provided. However, processes
will only link when the output of one process matches the input of the
subsequent process (unless the
ignore_type attribute is set
to True). Otherwise, FlowCraft will raise an exception stating that
two processes could not be linked.

Note

The input/ouput types that are currently used are fastq, fasta.

Parameters

The params attribute sets
the parameters that can be used by the process. For each parameter, a default
value and a description should be provided. The default value will be set
in the params.config file in the pipeline directory and the description
will be used to generated the custom help message of the pipeline:

self.params = {
 "genomeSize": {
 "default": 2.1,
 "description": "Expected genome size (default: params.genomeSiz)
 },
 "minCoverage": {
 "default": 15,
 "description": "Minimum coverage to proceed (default: params.minCoverage)"
 }
}

These parameters can be simple values that are not feed into
any channel, or can be automatically set to a secondary input channel via
Secondary inputs (see below).

They can be specified when running the pipeline like any nextflow parameter
(e.g.: --genomeSize 5) and used in the nextflow process as usual
(e.g.: params.genomeSize).

Note

These pairs are then used to populate the params.config file that is
generated in the pipeline directory. Note that the values are replaced
literally in the config file. For instance, "genomeSize": 2.1, will appear
as genomeSize = 2.1, whereas "adapters": "'None'" will appear as
adapters = 'None'. If you want a value to appear as a string, the double
and single quotes are necessary.

Secondary inputs

Warning

The secondary_inputs attribute has been deprecated since v1.2.1.
Instead, specify the secondary channels directly in the nextflow template
files.

Any process can receive one or more input channels in addition to the main
channel. These are particularly useful when the process needs to receive
additional options from the parameters scope of nextflow.
These additional inputs can be specified via the
secondary_inputs attribute,
which should store a list of dictionaries (a dictionary for each input). Each dictionary should
contains a key:value pair with the name of the parameter (params) and the
definition of the nextflow channel (channel). Consider the example below:

self.secondary_inputs = [
 {
 "params": "genomeSize",
 "channel": "IN_genome_size = Channel.value(params.genomeSize)"
 },
 {
 "params": "minCoverage",
 "channel": "IN_min_coverage = Channel.value(params.minCoverage)"
 }
]

This process will receive two secondary inputs that are given by the
genomeSize and minCoverage parameters. These should be also specified
in the params attribute
(See Parameters above).

For each of these parameters, the dictionary
also stores how the channel should be defined at the beginning of the pipeline
file. Note that this channel definition mentions the parameters (e.g.
params.genomeSize). An additional best practice for channel definition
is to include one or more sanity checks to ensure that the provided arguments
are correct. These checks can be added in the nextflow template file, or
literally in the channel string:

self.secondary_inputs = [
 {
 "params": "genomeSize",
 "channel":
 "IN_genome_size = Channel.value(params.genomeSize)"
 "map{it -> it.toString().isNumber() ? it : exit(1, \"The genomeSize parameter must be a number or a float. Provided value: '${params.genomeSize}'\")}"
 }

Extra input

The extra_input attribute
is mostly a user specified directive that allows the injection of additional
input data from a parameter into the main input channel of the process.
When a pipeline is defined as:

process1 process2={'extra_input':'var'}

FlowCraft will expose a new var parameter, setup an extra input
channel and mix it with process2 main input channel. A more detailed
explanation follows below.

First, FlowCraft will create a nextflow channel from the parameter name
provided via the extra_input directive. The channel string will depend
on the input type of the process (this string is fetched from the
RAW_MAPPING attribute).
For instance, if the input type of
process2 is fastq, the new extra channel will be:

IN_var_extraInput = Channel.fromFilePairs(params.var)

Since the same extra input parameter may be used by more than one process,
the IN_var_extraInput channel will be automatically forked into the
final destination channels:

// When there is a single destination channel
IN_var_extraInput.set{ EXTRA_process2_1_2 }
// When there are multiple destination channels for the same parameter
IN_var_extraInput.into{ EXTRA_process2_1_2; EXTRA_process3_1_3 }

The destination channels are the ones that will be actually mixed with
the main input channels:

process process2 {
 input:
 (...) main_channel.mix(EXTRA_process2_1_2)
}

In these cases, the processes that receive the extra input will process the
data provided by the preceding channel AND by the parameter. The data
provided via the extra input parameter does not have to wait for the
main_channel, which means that they can run in parallel, if there are
enough resources.

Compiler

The compiler attribute
allows one or more channels of the process to be fed into a compiler process
(See Compiler processes). These are special processes that collect
information from one or more processes to execute a given task. Therefore,
this parameter can only be used when there is an appropriate compiler process
available (the available compiler processes are set in the
compilers dictionary). In order to
provide one or more channels to a compiler process, simply add a key:value to the
attribute, where the key is the id of the compiler process present in the
compilers dictionary and the value
is the list of channels:

self.compiler["patlas_consensus"] = ["mappingOutputChannel"]

Link start

The link_start attribute
stores a list of strings of channel names that can be used as secondary
channels in the pipeline (See the Secondary links between process section).
By default, this attribute contains the main output channel, which means
that every process can fork the main channel to one or more receiving
processes.

Link end

The link_end attribute
stores a list of dictionaries with channel names that are meant to be
received by the process as secondary channel if the corresponding
Link start exists in the pipeline. Each dictionary in this list will define
one secondary channel and requires two key:value pairs:

self.link_end({
 "link": "SomeChannel",
 "alias": "OtherChannel")
})

If another process exists in the pipeline with
self.link_start.extend(["SomeChannel"]), FlowCraft will automatically
establish a secondary channel between the two processes. If there are multiple
processes receiving from a single one, the channel from the later will
for into any number of receiving processes.

Dependencies

If a process depends on the presence of one or more processes upstream in the
pipeline, these can be specific via the
dependencies attribute.
When building the pipeline if at least one of the dependencies is absent,
FlowCraft will raise an exception informing of a missing dependency.

Directives

The directives attribute
allows for information about cpu/RAM usage and container to be specified
for each nextflow process in the template file. For instance, considering
the case where a Process has a template with two nextflow processes:

process proc_A_{{ pid }} {
 // stuff
}

process proc_B_{{ pid }} {
 // stuff
}

Then, information about each process can be specified individually in the
directives attribute:

class myProcess(Process):
 (...)
 self.directives = {
 "proc_A": {
 "cpus": 1
 "memory": "4GB"
 },
 "proc_B": {
 "cpus": 4
 "container": "my/container"
 "version": "1.0.0"
 }
 }

The information in this attribute will then be used to build the
resources.config (containing the information about cpu/RAM) and
containers.config (containing the container images) files. Whenever a
directive is missing, such as the container and version from proc_A
and memory from proc_B, nothing about them will be written into the
config files and they will use the default pipeline values:

	cpus: 1

	memory: 1GB

	container: flowcraft_base [https://hub.docker.com/r/ummidock/assemblerflow_base/~/dockerfile/] image

Ignore type

The ignore_type attribute,
controls whether a match between the input of the current process and the
output of the previous one is enforced or not. When there are multiple
terminal processes that fork from the main channel, there is no need to
enforce the type match and in that case this attribute can be set to False.

Process ID

The process ID, set via the
pid attribute, is an
arbitrarily and incremental number that is awarded to each process depending
on its position in the pipeline. It is mainly used to ensure that there are
no duplicated channels even when the same process is used multiple times
in the same pipeline.

Template

The template attribute
is used to fetch the jinja2 template file that corresponds to the current
process. The path to the template file is determined as follows:

join(<template directory>, template + ".nf")

Status channels

The status channels are special channels dedicated to passing information
regarding the status, warnings, fails and logging from each process
(see Dotfiles for more information). They are used only when the
nextflow template file contains the appropriate jinja2 placeholder:

output:
{% with task_name="<nextflow_template_name>" %}
{%- include "compiler_channels.txt" ignore missing -%}
{% endwith %}

By default,
every Process class contains a
status_channels list
attribute that contains the
template string:

self.status_channels = ["STATUS_{}".format(template)]

If there is only one nextflow process in the template and the task_name
variable in the template matches the
template attribute, then
it’s all automatically set up.

If the template file contains more than one nextflow process
definition, multiple placeholders can be provided in the template:

process A {
 (...)
 output:
 {% with task_name="A" %}
 {%- include "compiler_channels.txt" ignore missing -%}
 {% endwith %}
}

process B {
 (...)
 output:
 {% with task_name="B" %}
 {%- include "compiler_channels.txt" ignore missing -%}
 {% endwith %}
}

In this case, the
status_channels attribute
would need to be changed to:

self.status_channels = ["A", "B"]

Sample ID variable

In case you change the standard nextflow variable that stores the sample ID
in the input of the process (sample_id), you also need to change it for
the compiler_channels placeholder:

process A {

input:
set other_id, data from {{ input_channel }}

output:
{% with task_name="B", sample_id="other_id" %}
{%- include "compiler_channels.txt" ignore missing -%}
{% endwith %}

}

Advanced use cases

Compiler processes

Compilers are special processes that collect data from one or more processes
and perform a given task with that compiled data. They are automatically
included in the pipeline when at least one of the source channels is present.
In the case there are multiple source channels, they are merged according
to a specified operator.

Creating a compiler process

The creation of the compiler process is simpler than that of a regular process
but follows the same three steps.

	Create a nextflow template file in flowcraft.generator.templates:

process fullConsensus {

 input:
 set id, file(infile_list) from {{ compile_channels }}

 output:
 <output channels>

 script:
 """
 <commands/code/template>
 """

}

The only requirement is the inclusion of a compiler_channels jinja
placeholder in the main input channel.

	Create a Compiler class in the flowcraft.generator.process
module:

class PatlasConsensus(Compiler):

 def __init__(self, **kwargs):

 super().__init__(**kwargs)

This class must inherit from
Compiler and does not require any
more changes.

3. Map the compiler template file to the class in
compilers attribute:

self.compilers = {
"patlas_consensus": {
 "cls": pc.PatlasConsensus,
 "template": "patlas_consensus",
 "operator": "join"
 }
}

Each compiler should contain a key:value entry. The key is the compiler
id that is then specified in the compiler
attribute of the component classes. The value is a json/dict object that
species the compiler class in the cls key, the template string in the
template string and the operator used to join the channels into the
compiler via the operator key.

How a compiler process works

Consider the case where you have a compiler process named compiler_1 and
two processes, process_1 and process_2, both of which feed a single
channel to compiler_1. This means that the class definition of these
processes include:

class Process_1(Process):
 (...)
 self.compiler["compiler_1"] = ["channel1"]

class Process_2(Process):
 (...)
 self.compiler["compiler_1"] = ["channel2"]

If a pipeline is built with at least one of these process, the compiler_1
process will be automatically included in the pipeline. If more than one
channel is provided to the compiler, they will be merged with the specified
operator:

process compiler_1 {

 input:
 set sample_id, file(infile_list) from channel2.join(channel1)

}

This will allow the output of multiple separate process to be processed by
a single process in the pipeline, and it automatically adjusts according
to the channels provided to the compiler.

Secondary links between process

In some cases, it might be necessary to perform additional links between
two or more processes.
For example, the maximum read length might be gathered in one process, and
that information may be required by a subsequent process. These secondary
channels allow this information to be passed between theses channels.

These additional links are called secondary channels and
they may be explicitly or implicitly declared.

Explicit secondary channels

To create an explicit secondary channel, the origin or source of this channel
must be declared in the nextflow process that sends it:

// secondary channels can be created inside the process
output:
<main output> into {{ output_channel }}
<secondary output> into SIDE_max_read_len_{{ pid }}

// or outside
SIDE_phred_{{ pid }} = Channel.create()

Then, we add the information that this process has a secondary channel start
via the link_start list attribute in the corresponding
flowcraft.generator.process.Process class:

class MyProcess(Process):

 (...)

 self.link_start.extend(["SIDE_max_read_len", "SIDE_phred"])

Notice that we extend the link_start list, instead of simply assigning.
This is because all processes already have the main channel as an implicit
link start (See Implicit secondary channels).

Now, any process that is executed after this one can receive this secondary
channel.

For another process to receive this channel, it will be necessary to add this
information to the process class(es) via the link_end list attribute:

class OtherProcess(Process):

 (...)

 self.link_end.append({
 "link": "SIDE_phred",
 "alias": "OtherName"
 })

Notice that now we append a dictionary with two key:values. The first, link
must match a string from the link_start list (in this case, SIDE_phred).
The second, alias, will be the channel name in the receiving process nextflow
template (which can be the same as the link value).

Now, we only need to add the secondary channel to the nextflow template, as in
the example below:

input:
<main_input> from {{ input_channel }}.mix(OtherName_{{ pid}})

Implicit secondary channels

By default, the main output of the channels is declared as a secondary channel
start. This means that any process can receive the main output channel as a
a secondary channel of a subsequent process. This can be useful in situations
were a post-assembly process (has assembly as expected input and output)
needs to receive the last channel with fastq files:

class AssemblyMapping(Process):

 (...)

 self.link_end.append({
 "link": "MAIN_fq",
 "alias": "_MAIN_assembly"
 })

In this example, the AssemblyMapping process will receive a secondary
channel with from the last process that output fastq files into a channel
called _MAIN_assembly. Then, this channel is received in the nextflow
template like this:

input:
<main input> from {{ input_channel }}.join(_{{ input_channel }})

Implicit secondary channels can also be used to
fork the last output channel into multiple terminal processes:

class Abricate(Process):

 (...)

 self.link_end.append({
 "link": "MAIN_assembly",
 "alias": "MAIN_assembly"
 })

In this case, since MAIN_assembly is already the prefix of the main
output channel of this process, there is no need for changes in the process
template:

input:
<main input> from {{ input_channel }}

Template creation guidelines

Though none of these guidelines are mandatory nor required, their usage is
highly recommended for several reasons:

	Consistency in the outputs of the templates throughout the pipeline,
particularly the status and report dotfiles (see Dotfiles section);

	Debugging purposes;

	Versioning;

	Proper documentation of the template scripts.

Preface header

After the script shebang, a header with a brief description of the purpose and
expected inputs and outputs should be provided. A complete example of such
description can be viewed in flowcraft.templates.integrity_coverage.

Purpose

Purpose section contains a brief description of the script’s objective. E.g.:

Purpose

This module is intended parse the results of FastQC for paired end FastQ \
samples.

Expected input

Expected input section contains a description of the variables that are
provided to the main function of the template script. These variables are
defined in the input channels of the process in which the template is supposed
to be executed. E.g.:

Expected input

The following variables are expected whether using NextFlow or the
:py:func:`main` executor.

- ``mash_output`` : String with the name of the mash screen output file.
 - e.g.: ``'sortedMashScreenResults_SampleA.txt'``

This means that the process that will execute this channel will have the input
defined as:

input:
file(mash_output) from <channel>

Generated output

Generated output section contains a description of the output files that the
template script is intended to generated. E.g.:

Generated output

The generated output are output files that contain an object, usually a string.

- ``fastqc_health`` : Stores the health check for the current sample. If it
 passes all checks, it contains only the string 'pass'. Otherwise, contains
 the summary categories and their respective results

These can then be passed to the output channel(s) in the nextflow process:

output:
file(fastqc_health) into <channel>

Note

Since templates can be re-used by multiple processes, not all generated
outputs need to be passed to output channels. Depending on the job of
the nextflow process, it may catch none or all of the output files
generated by the template.

Versioning and logging

FlowCraft has a specific logger
(get_logger()) and
versioning system that can be imported from
flowcraft.templates.flowcraft_utils:

the module that imports the logger and the decorator class for versioning
of the script itself and other software used in the script
from flowcraft_utils.flowcraft_base import get_logger, MainWrapper

Logger

A logger function is also required to add logs to the script. The logs
are written to the .command.log file in the work directory of each process.

First, the logger must be called, for example, after the imports as follows:

logger = get_logger(__file__)

Then, it may be used at will, using the default logging levels [https://docs.python.org/3.6/library/logging.html#levels] . E.g.:

logger.debug("Information tha may be important for debugging")
logger.info("Information related to the normal execution steps")
logger.warning("Events that may require the attention of the developer")
logger.error("Module exited unexpectedly with error:\\n{}".format(
 traceback.format_exc()))

MainWrapper decorator

This MainWrapper
class decorator allows the program to fetch information on the script version,
build and template name. For example:

This can also be declared after the imports
__version__ = "1.0.0"
__build__ = "15012018"
__template__ = "process_abricate-nf"

The MainWrapper
should decorate the main function of the script.
E.g.:

@MainWrapper
def main():
 #some awesome code
 ...

Besides searching for the script’s version, build and template name this decorator
will also search for a specific set of functions that start with the
substring __get_version. For example:

def __get_version_fastqc():

 try:

 cli = ["fastqc", "--version"]
 p = subprocess.Popen(cli, stdout=PIPE, stderr=PIPE)
 stdout, _ = p.communicate()

 version = stdout.strip().split()[1][1:].decode("utf8")

 except Exception as e:
 logger.debug(e)
 version = "undefined"

 # Note that it returns a dictionary that will then be written to the .versions
 # dotfile
 return {
 "program": "FastQC",
 "version": version,
 # some programs may also contain build.
 }

These functions are used to fetch the version, name and other relevant
information from third-party software and the only requirement is that they
return a dictionary with at least two key:value pairs:

	program: String with the name of the program.

	version: String with the version of the program.

For more information, refer to the
build_versions()
method.

Nextflow .command.sh

When these templates are used as a Nextflow template [https://www.nextflow.io/docs/latest/process.html#template]
they are executed as a .command.sh file in the work directory of each
process. In this case, we recommended the inclusion of
an if statement to parse the arguments sent from nextflow to the python
template. For example, imagine we have a path to a file name to pass as
argument between nextflow and the required template:

code check for nextflow execution
if __file__.endswith(".command.sh"):
 FILE_NAME = '$Nextflow_file_name'
 # logger output can also be included here, for example:
 logger.debug("Running {} with parameters:".format(
 os.path.basename(__file__)))
 logger.debug("FILE_NAME: {}".format(FILE_NAME))

Then, we could use this variable as the argument of a function, such as:

def main(FILE_NAME):
 #some awesome code
 ...

This way, we can use this function with nextflow arguments or without them,
as is the case when the templates are used as standalone modules.

Use numpy docstrings

FlowCraft uses numpy docstrings to document code.
Use
this link [http://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html]
for reference.

Recipe creation guidelines

Recipes are pre-made pipeline strings that may be associated with specific
parameters and directives and are used to rapidly build a certain type of
pipeline.

Instead of building a pipeline like:

-t "integrity_coverage fastqc_trimmomatic fastqc spades pilon"

The user simply can specific a recipe with that pipeline:

-r assembly

Recipe creation

The creation of new recipes is a very simple and straightforward process.
You need to create a new file in the flowcraft/generator/recipes folder
with any name and create a basic class with three attributes:

try:
 from generator.recipe import Recipe
except ImportError:
 from flowcraft.generator.recipe import Recipe

class Innuca(Recipe):

 def __init__(self):
 super().__init__()

 # Recipe name
 self.name = "innuca"

 # Recipe pipeline
 self.pipeline_str = <pipeline string>

 # Recipe parameters and directives
 self.directives = { <directives> }

And that’s it! Now there is a new recipe available with the innuca name and
we can build this pipeline using the option -r innuca.

Name

This is the name of the recipe, which is used to make a match with the recipe
name provided by the user via the -r option.

Pipeline_str

The pipeline string as if provided via the -t option.

Directives

A dictionary containing the parameters and directives for each process in the
pipeline string. Setting this attribute is optional and components
that are not specified here will assume their default values. In general, each
element in this dictionary should have the following format:

self.directives = {
 "component_name": {
 "params": {
 "paramA": "value"
 },
 "directives": {
 "directiveA": "value"
 }
 }
}

This will set the provided parameters and directives to the component, but it is
possible to provide only one.

A more concrete example of a real component and directives follows:

self.pipeline_str = "integrity_coverage fastqc"

Set parameters and directives only for integrity_coverage
and leave fastqc with the defaults
self.directives = {
 "integrity_coverage": {
 "params": {
 "minCoverage": 20
 },
 "directives": {
 "memory": "1GB"
 }
 }
}

Duplicate components

In some cases, the same component may be present multiple times in the pipeline
string of a recipe. In these cases, directives can be assigned to each individual
component by adding a #<id> suffix to the component:

self.pipeline_str = "integrity_coverage (trimmomatic spades#1 | spades#2)"

self.directives = {
 "spades#1": {
 "directives": {
 "memory": "10GB"
 }
 },
 "spades#2": {
 "directives": {
 "version": "3.7.0"
 }
 }
}

Docker containers guidelines

All FlowCraft components require a docker container in order to be executed,
thus if a new component is added, a docker image should be added as well and
uploaded to
.. _docker hub: https://hub.docker.com/ in order to be available to pull in
other machines. Although this can be done in any personal
repository, we recommend that this docker images are added to an already
existing .. _FlowCraft github repository: https://github.com/assemblerflow/docker-imgs
(called here Official) so that docker builds can be automated with github
integration. Also, the centralization of all images will allow other
contributors to easily access and edit these containers instead of forking from
one side to another every time a container needs to be changed/updated.

Official FlowCraft Docker images

Writing docker images

Official FlowCraft Docker images are available in
.. _this github repository: https://github.com/assemblerflow/docker-imgs .
If you want to add your image to this repository please fork it and make a
Pull Request (PR) with the requested new image or create an issue asking to be
added to the organization as a contributor.

Building docker images

Then, after the image has been added to the FlowCraft
.. _docker-imgs https://github.com/assemblerflow/docker-imgs
github repository, they can be built through
.. _FlowCraft docker hub https://hub.docker.com/u/flowcraft/dashboard/ .

Tag naming

Each time a docker image is built using the automated build of docker hub it
should follow this nomenclature: version-patch.
This is used to avoid the override of previous builds for the same images,
allowing for instance users to use different version of the same software using
the same docker image but with different tags.

	Version: Is a string with tree letters like this: 1.1.1. Versions should

change every time a new software is added the container.

	Patch: Is a number that follows a - after the version. Patches should

change every time a change does not affect
the software inside it. For example, updates to database related files required
by some of the software inside the container.

Unofficial FlowCraft Docker images

Although we strongly recommend that all images are stored in FlowCraft
.. _docker-imgs https://github.com/assemblerflow/docker-imgs github repo, it is
not mandatory to do it. Images can be built in another github repo and
also use another docker hub repository to build the images.
However, do make sure that you define it correctly in the directives of the
process as explained in Directives.

Dotfiles

Several dotfiles (files prefixed by a single ., as in .status) are
created at the beginning of every nextflow process that has the following
placeholder (see Create process template):

process myProcess {
 {% include "post.txt" ignore missing %}
 (...)
}

The actual script that creates the dotfiles is found in
flowcraft/bin, is called set_dotfiles.sh and executes the
following command:

touch .status .warning .fail .report.json .versions

Status

The .status file simply stores a string with the run status of the process.
The supported status are:

	pass: The process finished successfully

	fail: The process ran without unexpected issues but failed due to some
quality control check

	error: The process exited with an unexpected error.

Warning

The .warning file stores any warnings that may occur during the execution
of the process. There is no particular format for the warning messages other
than that each individual warning should be in a separate line.

Fail

The .fail file stores any fail messages that may occur during the
execution of the process. When this occurs, the .status channel must have
the fail string as well. As in the warning dotfile, there is no
particular format for the fail message.

Report JSON

Important

The general specification of the report JSON changed in version 1.2.2.
See the issue tracker [https://github.com/assemblerflow/flowcraft/issues/96]
for details.

The .report.json file stores any information from a given process that is
deemed worthy of being reported and displayed at the end of the pipeline.
Any information can be stored in this file, as long as it is in JSON format,
but there are a couple of recommendations that are necessary to follow
for them to be processed by a reporting web app (Currently hosted at
flowcraft-webapp [https://github.com/assemblerflow/flowcraft-webapp]). However, if
data processing will be performed with custom scripts, feel free to specify
your own format.

Information for tables

Information meant to be displayed in tables should be in the following
format:

json_dic = {
 "tableRow": [{
 "sample": "A",
 "data": [{
 "header": "Raw BP",
 "value": 123,
 "table": "qc"
 }, {
 "header": "Coverage",
 "value": 32,
 "table": "qc"
 }]
 }, {
 "sample": "B",
 "data": [{
 "header": "Coverage",
 "value": 35,
 "table": "qc"
 }]
 }]
}

This provides table information for multiple samples in the same process. In
this case, data for two samples is provided. For each sample, values for
one or more headers can be provided. For instance, this report provides
information about the Raw BP and Coverage for sample A and this
information should go to the qc table. If any other information is relevant
to build the table, feel free to add more elements to the JSON.

Information for plots

Information meant to be displayed in plots should be in the following format:

json_dic = {
 "plotData": [{
 "sample": "strainA",
 "data": {
 "sparkline": 23123,
 "otherplot": [1,2,3]
 }
 }],
}

As in the table JSON, plotData should be an array with an entry for each
sample. The data for each sample should be another JSON where the keys are
the plot signatures, so that we know to which plot the data belongs. The
corresponding values are whatever data object you need.

Other information

Other than tables and plots, which have a somewhat predefined format, there
is not particular format for other information. They will simply store the
data of interest to report and it will be the job of a downstream report app
to process that data into an actual visual report.

Versions

The .version dotfile should contain a list of JSON objects with the
version information of the programs used in any given process. There are
only two required key:value pairs:

	program: String with the name of the software/script/template

	version: String with the version of said software.

As an example:

version = {
 "program": "abricate"
 "version": "0.3.7"
}

Key:value pairs with other metadata can be included at will for downstream
processing.

Pipeline reporting

This section describes how the reports of a FlowCraft pipeline are generated
and collected at the end of a run. These reports can then be sent to the
FlowCraft web application [https://github.com/assemblerflow/flowcraft-webapp]
where the results are visualized.

Important

Note that if the nextflow process reports add new types of data, one or
more React components need to be added to the web application for them
to be rendered.

Data collection

The data for the pipeline reports is collected from three dotfiles in each nextflow
process (they should be present in each work sub directory):

	.report.json: Contains report data (See Report JSON for more information).

	.versions: Contains information about the versions of the software used
(See Versions for more information).

	.command.trace: Contains resource usage information.

The .command.trace file is generated by nextflow when the trace scope
is active. The .report.json and .version files are specific to
FlowCraft pipelines.

Generation of dotfiles

Both report.json and .versions empty dotfiles are automatically generated
by the {% include "post.txt" ignore missing %} placeholder, specified in the
Create process template section. Using this placeholder in your processes is all
that is needed.

Collection of dotfiles

The .report.json, .versions and .command.trace files are automatically
collected and sent to dedicated report channels in the pipeline by the
{%- include "compiler_channels.txt" ignore missing -%} placeholder, specified
in the process creation section. Placing this placeholder in your
processes will generate the following line in the output channel specification:

set {{ sample_id|default("sample_id") }}, val("{{ task_name }}_{{ pid }}"), val("{{ pid }}"), file(".report.json"), file(".versions"), file(".command.trace") into REPORT_{{task_name}}_{{ pid }}

This line collects several metadata associated with the process along with the three
dotfiles.

Compilation of dotfiles

As mentioned in the previous section, the dotfiles and other relevant metadata
for are sent through special report channels to a FlowCraft component that is
responsible for compiling all the information and generate a single report
file at the end of each pipeline run.

This component is specified in flowcraft.generator.templates.report_compiler.nf
and it consists of two nextflow processes:

	First, the report process receives the data from each executed process that
sends report data and runs the flowcraft/bin/prepare_reports.py script
on that data. This script will simply merge metadata and dotfiles information
in a single JSON file. This file contains the following keys:

	reportJson: The data in .report.json file.

	versions: The data in .versions file.

	trace: The data in .command.trace file.

	processId: The process ID

	pipelineId: The pipeline ID that defaults to one, unless specified in
the parameters.

	projectid: The project ID that defaults to one, unless specified in
the parameters.

	userId: The user ID that defaults to one, unless specified in
the parameters.

	username: The user name that defaults to user, unless specified in
the parameters

	processName: The name of the flowcraft component.

	workdir: The work directory where the process was executed.

	Second, all JSON files created in the process above are merged
and a single reports JSON file is created. This file will contains the
following structure:

reportJSON = {
 "data": {
 "results": [<array of report JSONs>]
 }
}

Reports

Report JSON specification

The report JSON is quite flexibly on the information it can contain. Here are
some guidelines to promote consistency on the reports generated by each component.
In general, the reports file is an array of JSON objects that contain relevant
information for each executed process in the pipeline:

reportFile = [{<processA/tagA reports>}, {<processB/tagB reports>}, ...]

Nextflow metadata

The nextflow metada is automatically added to the reportFile as a single JSON entry
with the nfMetadata key that contains the following information:

"nfMetadata": {
 "scriptId": "${workflow.scriptId}",
 "scriptName": "${workflow.scriptId}",
 "profile": "${workflow.profile}",
 "container": "${workflow.container}",
 "containerEngine": "${workflow.containerEngine}",
 "commandLine": "${workflow.commandLine}",
 "runName": "${workflow.runName}",
 "sessionId": "${workflow.sessionId}",
 "projectDir": "${workflow.projectDir}",
 "launchDir": "${workflow.launchDir}",
 "start_time": "${workflow.start}"
}

Note

Unlike the remaining JSON entries in the report file, which are generated for
each process execution, the nfMetadata entry is generated only once per
project execution.

Root

The reports contained in the reports.json file for each process execution
are added to the root object:

{
 "pipelineId": 1,
 "processId": pid,
 "processName": task_name,
 "projectid": RUN_NAME,
 "reportJson": reports,
 "runName": RUN_NAME,
 "scriptId": SCRIPT_ID,
 "versions": versions,
 "trace": trace,
 "userId": 1,
 "username": "user",
 "workdir": dirname(abspath(report_json))
}

The other key:values are added automatically when the reports are compiled for each
process execution.

Versions

Inside the root, the signature key for software version information is versions:

"versions": [{
 "program": "progA",
 "version": "1.0.0",
 "build": "1"
}, {
 "program": "progB",
 "version": "2.1"
}]

Only the program and version keys are mandatory.

ReportJson

Table data

Inside reportJson, the signature key for table data is tableRow:

 "reportJson": {
 "tableRow": [{
 "sample": "strainA",
 "data": [{
 "header": "Raw BP",
 "value": 123,
 "table": "qc",
 }, {
 "header": "Coverage",
 "value": 32,
 "table": "qc"
 }],
 "sample": "strainB",
 "data": [{
 "header": "Raw BP",
 "value": 321,
 "table": "qc",
 }, {
 "header": "Coverage",
 "value": 22,
 "table": "qc"
 }]
 }]
}

tableRow should contain an array of JSON for each sample with two key:value pairs:

	sample: Sample name

	data: Table data (see below).

data should be an array of JSON with at least three key:value pairs:

	header: Column header

	value: The data value

	table: Informs to which table this data should go.

Note

Available table keys: typing, qc, assembly, abricate,
chewbbaca.

Plot data

Inside reportJson, the signature key for plot data is plotData:

"reportJson": {
 "plotData": [{
 "sample": "strainA",
 "data": {
 "sparkline": 23123,
 "otherplot": [1,2,3]
 }
 }],
}

plotData should contain an array of JSON for each sample with two key:value pairs:

	sample: Sample name

	data: Plot data (see below).

data should contain a JSON object with the plot signatures as keys, and the relevant
plot data as value. This data can be any object (integer, float, array, JSON, etc).
It will be up to the components in the flowcraft web application to parse this data
and generate the appropriate chart.

Warnings and fails

Inside reportJson, the signature key for warnings is warnings and for
failures is fail:

"reportJson": {
 "warnings": [{
 "sample": "strainA",
 "table": "qc",
 "value": ["message 1", "message 2"]
 }],
 "fail": [{
 "sample": "strainA",
 "table": "assembly",
 "value": ["message 1"]
 }]
}

warnings/fail should contain an array of JSON for each sample with
two key:value pairs:

	sample: Sample name

	value: An array with one or more string messages.

	table [optional]: If a table signature is provided, the warning/fail
messages information will appear on that table. Otherwise, it will appear as
a general warning/error that is associated to the sample but not to any particular
table.

flowcraft package

Subpackages

	flowcraft.generator package
	Subpackages
	flowcraft.generator.components package
	Submodules
	flowcraft.generator.components.annotation module

	flowcraft.generator.components.assembly module

	flowcraft.generator.components.assembly_processing module

	flowcraft.generator.components.distance_estimation module

	flowcraft.generator.components.downloads module

	flowcraft.generator.components.metagenomics module

	flowcraft.generator.components.mlst module

	flowcraft.generator.components.patlas_mapping module

	flowcraft.generator.components.reads_quality_control module

	flowcraft.generator.components.typing module

	Module contents

	Submodules
	flowcraft.generator.engine module

	flowcraft.generator.error_handling module

	flowcraft.generator.footer_skeleton module

	flowcraft.generator.header_skeleton module

	flowcraft.generator.inspect module

	flowcraft.generator.pipeline_parser module

	flowcraft.generator.process module

	flowcraft.generator.process_details module

	flowcraft.generator.recipe module

	Module contents

	flowcraft.templates package
	Subpackages
	flowcraft.templates.flowcraft_utils package
	Submodules
	flowcraft.templates.flowcraft_utils.flowcraft_base module

	Module contents

	Submodules
	flowcraft.templates.assembly_report module
	Purpose

	Expected input

	Generated output

	Code documentation

	flowcraft.templates.fastqc module
	Purpose

	Expected input

	Generated output

	Code documentation

	flowcraft.templates.fastqc_report module
	Purpose

	Expected input

	Generated output

	Code documentation

	flowcraft.templates.integrity_coverage module

	flowcraft.templates.mapping2json module

	flowcraft.templates.mashdist2json module
	Purpose

	Expected input

	Code documentation

	flowcraft.templates.mashscreen2json module

	flowcraft.templates.megahit module
	Purpose

	Expected input

	Generated output

	Code documentation

	flowcraft.templates.metaspades module
	Purpose

	Expected input

	Generated output

	Code documentation

	flowcraft.templates.pATLAS_consensus_json module
	Purpose

	Expected input

	Code documentation

	flowcraft.templates.pipeline_status module
	Purpose

	Expected input

	Code documentation

	flowcraft.templates.process_abricate module

	flowcraft.templates.process_assembly module

	flowcraft.templates.process_assembly_mapping module
	Purpose

	Expected input

	Generated output

	Code documentation

	flowcraft.templates.skesa module
	Purpose

	Expected input

	Generated output

	Code documentation

	flowcraft.templates.spades module
	Purpose

	Expected input

	Generated output

	Code documentation

	flowcraft.templates.trimmomatic module
	Purpose

	Expected input

	Generated output

	Code documentation

	flowcraft.templates.trimmomatic_report module
	Purpose

	Expected input

	Generated output

	Code documentation

	Module contents

	flowcraft.tests package
	Submodules
	flowcraft.tests.data_pipelines module

	flowcraft.tests.test_assemblerflow module

	flowcraft.tests.test_engine module

	flowcraft.tests.test_pipeline_parser module

	flowcraft.tests.test_process_details module

	flowcraft.tests.test_processes module

	flowcraft.tests.test_sanity module

	Module contents

Submodules

	flowcraft.flowcraft module

Module contents

flowcraft.generator package

Subpackages

	flowcraft.generator.components package
	Submodules
	flowcraft.generator.components.annotation module

	flowcraft.generator.components.assembly module

	flowcraft.generator.components.assembly_processing module

	flowcraft.generator.components.distance_estimation module

	flowcraft.generator.components.downloads module

	flowcraft.generator.components.metagenomics module

	flowcraft.generator.components.mlst module

	flowcraft.generator.components.patlas_mapping module

	flowcraft.generator.components.reads_quality_control module

	flowcraft.generator.components.typing module

	Module contents

Submodules

	flowcraft.generator.engine module

	flowcraft.generator.error_handling module

	flowcraft.generator.footer_skeleton module

	flowcraft.generator.header_skeleton module

	flowcraft.generator.inspect module

	flowcraft.generator.pipeline_parser module

	flowcraft.generator.process module

	flowcraft.generator.process_details module

	flowcraft.generator.recipe module

Module contents

Placeholder for Process creation docs

flowcraft.generator.components package

Submodules

	flowcraft.generator.components.annotation module

	flowcraft.generator.components.assembly module

	flowcraft.generator.components.assembly_processing module

	flowcraft.generator.components.distance_estimation module

	flowcraft.generator.components.downloads module

	flowcraft.generator.components.metagenomics module

	flowcraft.generator.components.mlst module

	flowcraft.generator.components.patlas_mapping module

	flowcraft.generator.components.reads_quality_control module

	flowcraft.generator.components.typing module

Module contents

flowcraft.generator.components.annotation module

flowcraft.generator.components.assembly module

flowcraft.generator.components.assembly_processing module

flowcraft.generator.components.distance_estimation module

flowcraft.generator.components.downloads module

flowcraft.generator.components.metagenomics module

flowcraft.generator.components.mlst module

flowcraft.generator.components.patlas_mapping module

flowcraft.generator.components.reads_quality_control module

flowcraft.generator.components.typing module

flowcraft.generator.engine module

flowcraft.generator.error_handling module

	
exception flowcraft.generator.error_handling.ProcessError(value)

	Bases: exceptions.Exception

	
exception flowcraft.generator.error_handling.SanityError(value)

	Bases: exceptions.Exception

Class to raise a custom error for sanity checks

	
exception flowcraft.generator.error_handling.InspectionError(value)

	Bases: exceptions.Exception

	
exception flowcraft.generator.error_handling.ReportError(value)

	Bases: exceptions.Exception

	
exception flowcraft.generator.error_handling.RecipeError(value)

	Bases: exceptions.Exception

flowcraft.generator.footer_skeleton module

flowcraft.generator.header_skeleton module

flowcraft.generator.inspect module

flowcraft.generator.pipeline_parser module

	
flowcraft.generator.pipeline_parser.guess_process(query_str, process_map)

	Function to guess processes based on strings that are not available in
process_map. If the string has typos and is somewhat similar (50%) to any
process available in flowcraft it will print info to the terminal,
suggesting the most similar processes available in flowcraft.

	Parameters

	
	query_str: str

	The string of the process with potential typos

	process_map:

	The dictionary that contains all the available processes

	
flowcraft.generator.pipeline_parser.remove_inner_forks(text)

	Recursively removes nested brackets

This function is used to remove nested brackets from fork strings using
regular expressions

	Parameters

	
	text: str

	The string that contains brackets with inner forks to be removed

	Returns

	
	text: str

	the string with only the processes that are not in inner forks, thus
the processes that belong to a given fork.

	
flowcraft.generator.pipeline_parser.empty_tasks(p_string)

	Function to check if pipeline string is empty or has an empty string

	Parameters

	
	p_string: str

	
	String with the definition of the pipeline, e.g.::

	‘processA processB processC(ProcessD | ProcessE)’

	
flowcraft.generator.pipeline_parser.brackets_but_no_lanes(p_string)

	Function to check if a LANE_TOKEN is provided but no fork is initiated.
Parameters
———-
p_string: str

	String with the definition of the pipeline, e.g.::

	‘processA processB processC(ProcessD | ProcessE)’

	
flowcraft.generator.pipeline_parser.brackets_insanity_check(p_string)

	This function performs a check for different number of ‘(‘ and ‘)’
characters, which indicates that some forks are poorly constructed.

	Parameters

	
	p_string: str

	
	String with the definition of the pipeline, e.g.::

	‘processA processB processC(ProcessD | ProcessE)’

	
flowcraft.generator.pipeline_parser.lane_char_insanity_check(p_string)

	This function performs a sanity check for multiple ‘|’ character
between two processes.

	Parameters

	
	p_string: str

	
	String with the definition of the pipeline, e.g.::

	‘processA processB processC(ProcessD | ProcessE)’

	
flowcraft.generator.pipeline_parser.final_char_insanity_check(p_string)

	This function checks if lane token is the last element of the pipeline
string.

	Parameters

	
	p_string: str

	
	String with the definition of the pipeline, e.g.::

	‘processA processB processC(ProcessD | ProcessE)’

	
flowcraft.generator.pipeline_parser.fork_procs_insanity_check(p_string)

	This function checks if the pipeline string contains a process between
the fork start token or end token and the separator (lane) token. Checks for
the absence of processes in one of the branches of the fork [‘|)' and '(|’]
and for the existence of a process before starting a fork (in an inner fork)
[‘|(‘].

	Parameters

	
	p_string: str

	
	String with the definition of the pipeline, e.g.::

	‘processA processB processC(ProcessD | ProcessE)’

	
flowcraft.generator.pipeline_parser.start_proc_insanity_check(p_string)

	This function checks if there is a starting process after the beginning of
each fork. It checks for duplicated start tokens [‘((‘].

	Parameters

	
	p_string: str

	
	String with the definition of the pipeline, e.g.::

	‘processA processB processC(ProcessD | ProcessE)’

	
flowcraft.generator.pipeline_parser.late_proc_insanity_check(p_string)

	This function checks if there are processes after the close token. It
searches for everything that isn’t “|” or “)” after a “)” token.

	Parameters

	
	p_string: str

	
	String with the definition of the pipeline, e.g.::

	‘processA processB processC(ProcessD | ProcessE)’

	
flowcraft.generator.pipeline_parser.inner_fork_insanity_checks(pipeline_string)

	This function performs two sanity checks in the pipeline string. The first
check, assures that each fork contains a lane token ‘|’, while the second
check looks for duplicated processes within the same fork.

	Parameters

	
	pipeline_string: str

	
	String with the definition of the pipeline, e.g.::

	‘processA processB processC(ProcessD | ProcessE)’

	
flowcraft.generator.pipeline_parser.insanity_checks(pipeline_str)

	Wrapper that performs all sanity checks on the pipeline string

	Parameters

	
	pipeline_strstr

	String with the pipeline definition

	
flowcraft.generator.pipeline_parser.parse_pipeline(pipeline_str)

	
	Parses a pipeline string into a list of dictionaries with the connections

	between processes

	Parameters

	
	pipeline_strstr

	
	String with the definition of the pipeline, e.g.::

	‘processA processB processC(ProcessD | ProcessE)’

	Returns

	
	pipeline_linkslist

	

	
flowcraft.generator.pipeline_parser.get_source_lane(fork_process, pipeline_list)

	Returns the lane of the last process that matches fork_process

	Parameters

	
	fork_processlist

	List of processes before the fork.

	pipeline_listlist

	List with the pipeline connection dictionaries.

	Returns

	
	int

	Lane of the last process that matches fork_process

	
flowcraft.generator.pipeline_parser.get_lanes(lanes_str)

	From a raw pipeline string, get a list of lanes from the start
of the current fork.

When the pipeline is being parsed, it will be split at every fork
position. The string at the right of the fork position will be provided
to this function. It’s job is to retrieve the lanes that result
from that fork, ignoring any nested forks.

	Parameters

	
	lanes_strstr

	Pipeline string after a fork split

	Returns

	
	laneslist

	List of lists, with the list of processes for each lane

	
flowcraft.generator.pipeline_parser.linear_connection(plist, lane)

	Connects a linear list of processes into a list of dictionaries

	Parameters

	
	plistlist

	List with process names. This list should contain at least two entries.

	laneint

	Corresponding lane of the processes

	Returns

	
	reslist

	List of dictionaries with the links between processes

	
flowcraft.generator.pipeline_parser.fork_connection(source, sink, source_lane, lane)

	Makes the connection between a process and the first processes in the
lanes to which it forks.

The lane argument should correspond to the lane of the source process.
For each lane in sink, the lane counter will increase.

	Parameters

	
	sourcestr

	Name of the process that is forking

	sinklist

	List of the processes where the source will fork to. Each element
corresponds to the start of a lane.

	source_laneint

	Lane of the forking process

	laneint

	Lane of the source process

	Returns

	
	reslist

	List of dictionaries with the links between processes

	
flowcraft.generator.pipeline_parser.linear_lane_connection(lane_list, lane)

	
	Parameters

	
	lane_listlist

	Each element should correspond to a list of processes for a given lane

	laneint

	Lane counter before the fork start

	Returns

	
	reslist

	List of dictionaries with the links between processes

	
flowcraft.generator.pipeline_parser.add_unique_identifiers(pipeline_str)

	
	Returns the pipeline string with unique identifiers and a dictionary with

	references between the unique keys and the original values

	Parameters

	
	pipeline_strstr

	Pipeline string

	Returns

	
	str

	Pipeline string with unique identifiers

	dict

	Match between process unique values and original names

	
flowcraft.generator.pipeline_parser.remove_unique_identifiers(identifiers_to_tags, pipeline_links)

	Removes unique identifiers and add the original process names to the
already parsed pipelines

	Parameters

	
	identifiers_to_tagsdict

	Match between unique process identifiers and process names

	pipeline_links: list

	Parsed pipeline list with unique identifiers

	Returns

	
	list

	Pipeline list with original identifiers

flowcraft.generator.process module

flowcraft.generator.process_details module

	
flowcraft.generator.process_details.colored_print(msg, color_label='white_bold')

	
This function enables users to add a color to the print. It also enables
to pass end_char to print allowing to print several strings in the same line
in different prints.

	Parameters

	
	color_string: str

	
The color code to pass to the function, which enables color change as
well as background color change.

	msg: str

	The actual text to be printed

	end_char: str

	The character in which each print should finish. By default it will be
“

	“.

	

	
flowcraft.generator.process_details.procs_dict_parser(procs_dict)

	This function handles the dictionary of attributes of each Process class
to print to stdout lists of all the components or the components which the
user specifies in the -t flag.

	Parameters

	
	procs_dict: dict

	A dictionary with the class attributes for all the components (or
components that are used by the -t flag), that allow to create
both the short_list and detailed_list. Dictionary example:
{“abyss”: {‘input_type’: ‘fastq’, ‘output_type’: ‘fasta’,
‘dependencies’: [], ‘directives’: {‘abyss’: {‘cpus’: 4,
‘memory’: ‘{ 5.GB * task.attempt }’, ‘container’: ‘flowcraft/abyss’,
‘version’: ‘2.1.1’, ‘scratch’: ‘true’}}}

	
flowcraft.generator.process_details.proc_collector(process_map, args, pipeline_string)

	Function that collects all processes available and stores a dictionary of
the required arguments of each process class to be passed to
procs_dict_parser

	Parameters

	
	process_map: dict

	The dictionary with the Processes currently available in flowcraft
and their corresponding classes as values

	args: argparse.Namespace

	The arguments passed through argparser that will be access to check the
type of list to be printed

	pipeline_string: str

	the pipeline string

flowcraft.generator.recipe module

flowcraft.templates package

Subpackages

	flowcraft.templates.flowcraft_utils package
	Submodules
	flowcraft.templates.flowcraft_utils.flowcraft_base module

	Module contents

Submodules

	flowcraft.templates.assembly_report module
	Purpose

	Expected input

	Generated output

	Code documentation

	flowcraft.templates.fastqc module
	Purpose

	Expected input

	Generated output

	Code documentation

	flowcraft.templates.fastqc_report module
	Purpose

	Expected input

	Generated output

	Code documentation

	flowcraft.templates.integrity_coverage module

	flowcraft.templates.mapping2json module

	flowcraft.templates.mashdist2json module
	Purpose

	Expected input

	Code documentation

	flowcraft.templates.mashscreen2json module

	flowcraft.templates.megahit module
	Purpose

	Expected input

	Generated output

	Code documentation

	flowcraft.templates.metaspades module
	Purpose

	Expected input

	Generated output

	Code documentation

	flowcraft.templates.pATLAS_consensus_json module
	Purpose

	Expected input

	Code documentation

	flowcraft.templates.pipeline_status module
	Purpose

	Expected input

	Code documentation

	flowcraft.templates.process_abricate module

	flowcraft.templates.process_assembly module

	flowcraft.templates.process_assembly_mapping module
	Purpose

	Expected input

	Generated output

	Code documentation

	flowcraft.templates.skesa module
	Purpose

	Expected input

	Generated output

	Code documentation

	flowcraft.templates.spades module
	Purpose

	Expected input

	Generated output

	Code documentation

	flowcraft.templates.trimmomatic module
	Purpose

	Expected input

	Generated output

	Code documentation

	flowcraft.templates.trimmomatic_report module
	Purpose

	Expected input

	Generated output

	Code documentation

Module contents

Placeholder for template generation docs

flowcraft.templates.flowcraft_utils package

Submodules

	flowcraft.templates.flowcraft_utils.flowcraft_base module

Module contents

flowcraft.templates.flowcraft_utils.flowcraft_base module

	
flowcraft.templates.flowcraft_utils.flowcraft_base.get_logger(filepath, level=10)

	

	
flowcraft.templates.flowcraft_utils.flowcraft_base.log_error()

	Nextflow specific function that logs an error upon unexpected failing

	
class flowcraft.templates.flowcraft_utils.flowcraft_base.MainWrapper(f)

	Methods

	build_versions()

	Writes versions JSON for a template file

	__call__

	

	
build_versions()

	Writes versions JSON for a template file

This method creates the JSON file .versions based on the metadata
and specific functions that are present in a given template script.

It starts by fetching the template metadata, which can be specified
via the __version__, __template__ and __build__
attributes. If all of these attributes exist, it starts to populate
a JSON/dict array (Note that the absence of any one of them will
prevent the version from being written).

Then, it will search the
template scope for functions that start with the substring
__set_version (For example ``def __set_version_fastqc()`).
These functions should gather the version of
an arbitrary program and return a JSON/dict object with the following
information:

{
 "program": <program_name>,
 "version": <version>
 "build": <build>
}

This JSON/dict object is then written in the .versions file.

flowcraft.templates.assembly_report module

Purpose

This module is intended to provide a summary report for a given assembly
in Fasta format.

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	sample_idSample Identification string.

	
	e.g.: 'SampleA'

	
	assemblyPath to assembly file in Fasta format.

	
	e.g.: 'assembly.fasta'

Generated output

	
	${sample_id}_assembly_report.csvCSV with summary information of the assembly.

	
	e.g.: 'SampleA_assembly_report.csv'

Code documentation

	
class flowcraft.templates.assembly_report.Assembly(assembly_file, sample_id)

	Class that parses and filters an assembly file in Fasta format.

This class parses an assembly file, collects a number
of summary statistics and metadata from the contigs and reports.

	Parameters

	
	assembly_filestr

	Path to assembly file.

	sample_idstr

	Name of the sample for the current assembly.

Methods

	get_coverage_sliding(coverage_file[, window])

	
	Parameters

	

	get_gc_sliding([window])

	Calculates a sliding window of the GC content for the assembly

	get_summary_stats([output_csv])

	Generates a CSV report with summary statistics about the assembly

	
summary_info = None

	OrderedDict: Initialize summary information dictionary. Contains keys:

	ncontigs: Number of contigs

	avg_contig_size: Average size of contigs

	n50: N50 metric

	total_len: Total assembly length

	avg_gc: Average GC proportion

	missing_data: Count of missing data characters

	
contigs = None

	OrderedDict: Object that maps the contig headers to the corresponding
sequence

	
contig_coverage = None

	OrderedDict: Object that maps the contig headers to the corresponding
list of per-base coverage

	
sample = None

	str: Sample id

	
contig_boundaries = None

	dict: Maps the boundaries of each contig in the genome

	
get_summary_stats(output_csv=None)

	Generates a CSV report with summary statistics about the assembly

The calculated statistics are:

	Number of contigs

	Average contig size

	N50

	Total assembly length

	Average GC content

	Amount of missing data

	Parameters

	
	output_csv: str

	Name of the output CSV file.

	
get_gc_sliding(window=2000)

	Calculates a sliding window of the GC content for the assembly

	Returns

	
	gc_reslist

	List of GC proportion floats for each data point in the sliding
window

	
get_coverage_sliding(coverage_file, window=2000)

	
	Parameters

	
	coverage_filestr

	Path to file containing the coverage info at the per-base level
(as generated by samtools depth)

	windowint

	Size of sliding window

flowcraft.templates.fastqc module

Purpose

This module is intended to run FastQC on paired-end FastQ files.

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	fastq_pairPair of FastQ file paths

	
	e.g.: 'SampleA_1.fastq.gz SampleA_2.fastq.gz'

Generated output

The generated output are output files that contain an object, usually a string.

	
	pair_{1,2}_dataFile containing FastQC report at the nucleotide level for each pair

	
	e.g.: 'pair_1_data' and 'pair_2_data'

	
	pair_{1,2}_summary: File containing FastQC report for each category and for each pair

	
	e.g.: 'pair_1_summary' and 'pair_2_summary'

Code documentation

	
flowcraft.templates.fastqc.convert_adatpers(adapter_fasta)

	Generates an adapter file for FastQC from a fasta file.

The provided adapters file is assumed to be a simple fasta file with the
adapter’s name as header and the corresponding sequence:

>TruSeq_Universal_Adapter
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT
>TruSeq_Adapter_Index 1
GATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACGATCTCGTATGCCGTCTTCTGCTTG

	Parameters

	
	adapter_fastastr

	Path to Fasta file with adapter sequences.

	Returns

	
	adapter_outstr or None

	The path to the reformatted adapter file. Returns None if the
adapters file does not exist or the path is incorrect.

flowcraft.templates.fastqc_report module

Purpose

This module is intended parse the results of FastQC for paired end FastQ samples. It parses two reports:

	Categorical report

	Nucleotide level report.

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	sample_idSample identification string

	
	e.g.: 'SampleA'

	
	result_p1Path to both FastQC result files for pair 1

	
	e.g.: 'SampleA_1_data SampleA_1_summary'

	
	result_p2Path to both FastQC result files for pair 2

	
	e.g.: 'SampleA_2_data SampleA_2_summary'

	
	optsSpecify additional arguments for executing fastqc_report. The arguments should be a string of command line arguments, The accepted arguments are:

	
	'--ignore-tests' : Ignores test results from FastQC categorical summary. This is used in the first run of FastQC.

Generated output

The generated output are output files that contain an object, usually a string.

	
	fastqc_healthStores the health check for the current sample. If it

	passes all checks, it contains only the string ‘pass’. Otherwise, contains
the summary categories and their respective results
- e.g.: 'pass'

	
	optimal_trimStores a tuple with the optimal trimming positions for 5’

	and 3’ ends of the reads.
- e.g.: '15 151'

Code documentation

	
flowcraft.templates.fastqc_report.write_json_report(sample_id, data1, data2)

	Writes the report

	Parameters

	
	data1

	

	data2

	

	
flowcraft.templates.fastqc_report.get_trim_index(biased_list)

	Returns the trim index from a bool list

Provided with a list of bool elements ([False, False, True, True]),
this function will assess the index of the list that minimizes the number
of True elements (biased positions) at the extremities. To do so,
it will iterate over the boolean list and find an index position where
there are two consecutive False elements after a True element. This
will be considered as an optimal trim position. For example, in the
following list:

[True, True, False, True, True, False, False, False, False, ...]

The optimal trim index will be the 4th position, since it is the first
occurrence of a True element with two False elements after it.

If the provided bool list has no True elements, then the 0 index is
returned.

	Parameters

	
	biased_list: list

	List of bool elements, where True means a biased site.

	Returns

	
	xindex position of the biased list for the optimal trim.

	

	
flowcraft.templates.fastqc_report.trim_range(data_file)

	Assess the optimal trim range for a given FastQC data file.

This function will parse a single FastQC data file, namely the
‘Per base sequence content’ category. It will retrieve the A/T and G/C
content for each nucleotide position in the reads, and check whether the
G/C and A/T proportions are between 80% and 120%. If they are, that
nucleotide position is marked as biased for future removal.

	Parameters

	
	data_file: str

	Path to FastQC data file.

	Returns

	
	trim_nt: list

	List containing the range with the best trimming positions for the
corresponding FastQ file. The first element is the 5’ end trim index
and the second element is the 3’ end trim index.

	
flowcraft.templates.fastqc_report.get_sample_trim(p1_data, p2_data)

	Get the optimal read trim range from data files of paired FastQ reads.

Given the FastQC data report files for paired-end FastQ reads, this
function will assess the optimal trim range for the 3’ and 5’ ends of
the paired-end reads. This assessment will be based on the ‘Per sequence
GC content’.

	Parameters

	
	p1_data: str

	Path to FastQC data report file from pair 1

	p2_data: str

	Path to FastQC data report file from pair 2

	Returns

	
	optimal_5trim: int

	Optimal trim index for the 5’ end of the reads

	optima_3trim: int

	Optimal trim index for the 3’ end of the reads

See also

trim_range

	
flowcraft.templates.fastqc_report.get_summary(summary_file)

	Parses a FastQC summary report file and returns it as a dictionary.

This function parses a typical FastQC summary report file, retrieving
only the information on the first two columns. For instance, a line could
be:

'PASS Basic Statistics SH10762A_1.fastq.gz'

This parser will build a dictionary with the string in the second column
as a key and the QC result as the value. In this case, the returned
dict would be something like:

{"Basic Statistics": "PASS"}

	Parameters

	
	summary_file: str

	Path to FastQC summary report.

	Returns

	
	summary_info: :py:data:`OrderedDict`

	Returns the information of the FastQC summary report as an ordered
dictionary, with the categories as strings and the QC result as values.

	
flowcraft.templates.fastqc_report.check_summary_health(summary_file, **kwargs)

	Checks the health of a sample from the FastQC summary file.

Parses the FastQC summary file and tests whether the sample is good
or not. There are four categories that cannot fail, and two that
must pass in order for the sample pass this check. If the sample fails
the quality checks, a list with the failing categories is also returned.

Categories that cannot fail:

fail_sensitive = [
 "Per base sequence quality",
 "Overrepresented sequences",
 "Sequence Length Distribution",
 "Per sequence GC content"
]

Categories that must pass:

must_pass = [
 "Per base N content",
 "Adapter Content"
]

	Parameters

	
	summary_file: str

	Path to FastQC summary file.

	Returns

	
	xbool

	Returns True if the sample passes all tests. False if not.

	summary_infolist

	A list with the FastQC categories that failed the tests. Is empty
if the sample passes all tests.

flowcraft.templates.integrity_coverage module

flowcraft.templates.mapping2json module

flowcraft.templates.mashdist2json module

Purpose

This module is intended to generate a json output for mash dist results that
can be imported in pATLAS.

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	mash_outputString with the name of the mash screen output file.

	
	e.g.: 'fastaFileA_mashdist.txt'

Code documentation

	
flowcraft.templates.mashdist2json.send_to_output(master_dict, mash_output, sample_id, assembly_file)

	Send dictionary to output json file
This function sends master_dict dictionary to a json file if master_dict is
populated with entries, otherwise it won’t create the file

	Parameters

	
	master_dict: dict

	dictionary that stores all entries for a specific query sequence
in multi-fasta given to mash dist as input against patlas database

	last_seq: str

	string that stores the last sequence that was parsed before writing to
file and therefore after the change of query sequence between different
rows on the input file

	mash_output: str

	the name/path of input file to main function, i.e., the name/path of
the mash dist output txt file.

	sample_id: str

	The name of the sample being parse to .report.json file

flowcraft.templates.mashscreen2json module

flowcraft.templates.megahit module

Purpose

This module is intended execute megahit on paired-end FastQ files.

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	sample_idSample Identification string.

	
	e.g.: 'SampleA'

	
	fastq_pairPair of FastQ file paths.

	
	e.g.: 'SampleA_1.fastq.gz SampleA_2.fastq.gz'

	
	kmersSetting for megahit kmers. Can be either 'auto', 'default' or a user provided list. All must be odd, in the range 15-255, increment <= 28

	
	e.g.: 'auto' or 'default' or '55 77 99 113 127'

	
	clearIf ‘true’, remove the input fastq files at the end of the

	component run, IF THE FILES ARE IN THE WORK DIRECTORY

Generated output

	
	contigs.faMain output of megahit with the assembly

	
	e.g.: contigs.fa

	
	megahit_statusStores the status of the megahit run. If it was successfully executed, it stores 'pass'. Otherwise, it stores the STDERR message.

	
	e.g.: 'pass'

Code documentation

	
flowcraft.templates.megahit.is_odd(k_mer)

	

	
flowcraft.templates.megahit.set_kmers(kmer_opt, max_read_len)

	Returns a kmer list based on the provided kmer option and max read len.

	Parameters

	
	kmer_optstr

	The k-mer option. Can be either 'auto', 'default' or a
sequence of space separated integers, '23, 45, 67'.

	max_read_lenint

	The maximum read length of the current sample.

	Returns

	
	kmerslist

	List of k-mer values that will be provided to megahit.

	
flowcraft.templates.megahit.fix_contig_names(asseembly_path)

	Removes whitespace from the assembly contig names

	Parameters

	
	asseembly_pathpath to assembly file

	

	Returns

	
	str:

	Path to new assembly file with fixed contig names

	
flowcraft.templates.megahit.clean_up(fastq)

	Cleans the temporary fastq files. If they are symlinks, the link
source is removed

	Parameters

	
	fastqlist

	List of fastq files.

flowcraft.templates.metaspades module

Purpose

This module is intended execute metaSpades on paired-end FastQ files.

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	sample_idSample Identification string.

	
	e.g.: 'SampleA'

	
	fastq_pairPair of FastQ file paths.

	
	e.g.: 'SampleA_1.fastq.gz SampleA_2.fastq.gz'

	
	kmersSetting for Spades kmers. Can be either 'auto', 'default' or a user provided list.

	
	e.g.: 'auto' or 'default' or '55 77 99 113 127'

Generated output

	
	contigs.fastaMain output of spades with the assembly

	
	e.g.: contigs.fasta

	
	spades_statusStores the status of the spades run. If it was successfully executed, it stores 'pass'. Otherwise, it stores the STDERR message.

	
	e.g.: 'pass'

Code documentation

	
flowcraft.templates.metaspades.clean_up(fastq)

	Cleans the temporary fastq files. If they are symlinks, the link
source is removed

	Parameters

	
	fastqlist

	List of fastq files.

	
flowcraft.templates.metaspades.set_kmers(kmer_opt, max_read_len)

	Returns a kmer list based on the provided kmer option and max read len.

	Parameters

	
	kmer_optstr

	The k-mer option. Can be either 'auto', 'default' or a
sequence of space separated integers, '23, 45, 67'.

	max_read_lenint

	The maximum read length of the current sample.

	Returns

	
	kmerslist

	List of k-mer values that will be provided to Spades.

flowcraft.templates.pATLAS_consensus_json module

Purpose

This module is intended to generate a json output from the consensus results from
all the approaches available through options (mapping, assembly, mash screen)

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	mapping_jsonString with the name of the json file with mapping results.

	
	e.g.: 'mapping_SampleA.json'

	
	dist_jsonString with the name of the json file with mash dist results.

	
	e.g.: 'mash_dist_SampleA.json'

	
	screen_jsonString with the name of the json file with mash screen results.

	
	e.g.: 'mash_screen_sampleA.json'

Code documentation

flowcraft.templates.pipeline_status module

Purpose

This module is intended to collect pipeline run statistics (such as
time, cpu, RAM for each tasks) into a report JSON

Expected input

	trace_file : Trace file generated by nextflow

Code documentation

	
flowcraft.templates.pipeline_status.get_json_info(fields, header)

	
	Parameters

	
	fields

	

	
flowcraft.templates.pipeline_status.get_previous_stats(stats_path)

	
	Parameters

	
	workdir

	

flowcraft.templates.process_abricate module

flowcraft.templates.process_assembly module

flowcraft.templates.process_assembly_mapping module

Purpose

This module is intended to process the coverage report from the
assembly_mapping process.

TODO: Better purpose

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	sample_idSample Identification string.

	
	e.g.: 'SampleA'

	
	assemblyFasta assembly file.

	
	e.g.: 'SH10761A.assembly.fasta'

	
	coverageTSV file with the average coverage for each assembled contig.

	
	e.g.: 'coverage.tsv'

	
	coverage_bpTSV file with the coverage for each assembled bp.

	
	e.g.: 'coverage.tsv'

	
	bam_fileBAM file with the alignment of reads to the genome.

	
	e.g.: 'sorted.bam'

	
	optsList of options for processing assembly mapping output.

	
	
	Minimum coverage for assembled contigs. Can be``auto``.

	
	e.g.: 'auto' or '10'

	
	Maximum number of contigs.

	
	e.g.: ‘100’

	
	gsize: Expected genome size.

	
	e.g.: '2.5'

Generated output

	
	${sample_id}_filtered.assembly.fastaFiltered assembly file in Fasta format.

	
	e.g.: 'SampleA_filtered.assembly.fasta'

	
	filtered.bamBAM file with the same filtering as the assembly file.

	
	e.g.: filtered.bam

Code documentation

	
flowcraft.templates.process_assembly_mapping.parse_coverage_table(coverage_file)

	Parses a file with coverage information into objects.

This function parses a TSV file containing coverage results for
all contigs in a given assembly and will build an OrderedDict
with the information about their coverage and length. The length
information is actually gathered from the contig header using a
regular expression that assumes the usual header produced by Spades:

contig_len = int(re.search("length_(.+?)_", line).group(1))

	Parameters

	
	coverage_filestr

	Path to TSV file containing the coverage results.

	Returns

	
	coverage_dictOrderedDict

	Contains the coverage and length information for each contig.

	total_sizeint

	Total size of the assembly in base pairs.

	total_covint

	Sum of coverage values across all contigs.

	
flowcraft.templates.process_assembly_mapping.filter_assembly(assembly_file, minimum_coverage, coverage_info, output_file)

	Generates a filtered assembly file.

This function generates a filtered assembly file based on an original
assembly and a minimum coverage threshold.

	Parameters

	
	assembly_filestr

	Path to original assembly file.

	minimum_coverageint or float

	Minimum coverage required for a contig to pass the filter.

	coverage_infoOrderedDict or dict

	Dictionary containing the coverage information for each contig.

	output_filestr

	Path where the filtered assembly file will be generated.

	
flowcraft.templates.process_assembly_mapping.filter_bam(coverage_info, bam_file, min_coverage, output_bam)

	Uses Samtools to filter a BAM file according to minimum coverage

Provided with a minimum coverage value, this function will use Samtools
to filter a BAM file. This is performed to apply the same filter to
the BAM file as the one applied to the assembly file in
filter_assembly().

	Parameters

	
	coverage_infoOrderedDict or dict

	Dictionary containing the coverage information for each contig.

	bam_filestr

	Path to the BAM file.

	min_coverageint

	Minimum coverage required for a contig to pass the filter.

	output_bamstr

	Path to the generated filtered BAM file.

	
flowcraft.templates.process_assembly_mapping.check_filtered_assembly(coverage_info, coverage_bp, minimum_coverage, genome_size, contig_size, max_contigs, sample_id)

	Checks whether a filtered assembly passes a size threshold

Given a minimum coverage threshold, this function evaluates whether an
assembly will pass the minimum threshold of genome_size * 1e6 * 0.8,
which means 80% of the expected genome size or the maximum threshold
of genome_size * 1e6 * 1.5, which means 150% of the expected genome
size. It will issue a warning if any of these thresholds is crossed.
In the case of an expected genome size below 80% it will return False.

	Parameters

	
	coverage_infoOrderedDict or dict

	Dictionary containing the coverage information for each contig.

	coverage_bpdict

	Dictionary containing the per base coverage information for each
contig. Used to determine the total number of base pairs in the
final assembly.

	minimum_coverageint

	Minimum coverage required for a contig to pass the filter.

	genome_sizeint

	Expected genome size.

	contig_sizedict

	Dictionary with the len of each contig. Contig headers as keys and
the corresponding lenght as values.

	max_contigsint

	Maximum threshold for contig number. A warning is issued if this
threshold is crossed.

	sample_idstr

	Id or name of the current sample

	Returns

	
	xbool

	True if the filtered assembly size is higher than 80% of the
expected genome size.

	
flowcraft.templates.process_assembly_mapping.get_coverage_from_file(coverage_file)

	
	Parameters

	
	coverage_file

	

	
flowcraft.templates.process_assembly_mapping.evaluate_min_coverage(coverage_opt, assembly_coverage, assembly_size)

	Evaluates the minimum coverage threshold from the value provided in
the coverage_opt.

	Parameters

	
	coverage_optstr or int or float

	If set to “auto” it will try to automatically determine the coverage
to 1/3 of the assembly size, to a minimum value of 10. If it set
to a int or float, the specified value will be used.

	assembly_coverageint or float

	The average assembly coverage for a genome assembly. This value
is retrieved by the :py:func:parse_coverage_table function.

	assembly_sizeint

	The size of the genome assembly. This value is retrieved by the
py:func:get_assembly_size function.

	Returns

	
	x: int

	Minimum coverage threshold.

	
flowcraft.templates.process_assembly_mapping.get_assembly_size(assembly_file)

	Returns the number of nucleotides and the size per contig for the
provided assembly file path

	Parameters

	
	assembly_filestr

	Path to assembly file.

	Returns

	
	assembly_sizeint

	Size of the assembly in nucleotides

	contig_sizedict

	Length of each contig (contig name as key and length as value)

flowcraft.templates.skesa module

Purpose

This module is intended execute Skesa on paired-end FastQ files.

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	sample_idSample Identification string.

	
	e.g.: 'SampleA'

	
	fastq_pairPair of FastQ file paths.

	
	e.g.: 'SampleA_1.fastq.gz SampleA_2.fastq.gz'

	
	clearIf ‘true’, remove the input fastq files at the end of the

	component run, IF THE FILES ARE IN THE WORK DIRECTORY

Generated output

	
	${sample_id}_*.assembly.fastaMain output of skesawith the assembly

	
	e.g.: sample_1_skesa.fasta

	
	clearIf ‘true’, remove the input fastq files at the end of the

	component run, IF THE FILES ARE IN THE WORK DIRECTORY

Code documentation

	
flowcraft.templates.skesa.clean_up(fastq)

	Cleans the temporary fastq files. If they are symlinks, the link
source is removed

	Parameters

	
	fastqlist

	List of fastq files.

flowcraft.templates.spades module

Purpose

This module is intended execute Spades on paired-end FastQ files.

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	sample_idSample Identification string.

	
	e.g.: 'SampleA'

	
	fastq_pairPair of FastQ file paths.

	
	e.g.: 'SampleA_1.fastq.gz SampleA_2.fastq.gz'

	
	kmersSetting for Spades kmers. Can be either 'auto', 'default' or a user provided list.

	
	e.g.: 'auto' or 'default' or '55 77 99 113 127'

	
	optsList of options for spades execution.

	
	
	The minimum number of reads to consider an edge in the de Bruijn graph during the assembly.

	
	e.g.: '5'

	
	Minimum contigs k-mer coverage.

	
	e.g.: ['2' '2']

	
	clearIf ‘true’, remove the input fastq files at the end of the

	component run, IF THE FILES ARE IN THE WORK DIRECTORY

Generated output

	
	contigs.fastaMain output of spades with the assembly

	
	e.g.: contigs.fasta

	
	spades_statusStores the status of the spades run. If it was successfully executed, it stores 'pass'. Otherwise, it stores the STDERR message.

	
	e.g.: 'pass'

Code documentation

	
flowcraft.templates.spades.set_kmers(kmer_opt, max_read_len)

	Returns a kmer list based on the provided kmer option and max read len.

	Parameters

	
	kmer_optstr

	The k-mer option. Can be either 'auto', 'default' or a
sequence of space separated integers, '23, 45, 67'.

	max_read_lenint

	The maximum read length of the current sample.

	Returns

	
	kmerslist

	List of k-mer values that will be provided to Spades.

	
flowcraft.templates.spades.clean_up(fastq)

	Cleans the temporary fastq files. If they are symlinks, the link
source is removed

	Parameters

	
	fastqlist

	List of fastq files.

flowcraft.templates.trimmomatic module

Purpose

This module is intended execute trimmomatic on paired-end FastQ files.

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	sample_idPair of FastQ file paths.

	
	e.g.: 'SampleA'

	
	fastq_pairPair of FastQ file paths.

	
	e.g.: 'SampleA_1.fastq.gz SampleA_2.fastq.gz'

	
	trim_rangeCrop range detected using FastQC.

	
	e.g.: '15 151'

	
	optsList of options for trimmomatic

	
	e.g.: '["5:20", "3", "3", "55"]'

	e.g.: '[trim_sliding_window, trim_leading, trim_trailing, trim_min_length]'

	
	phredList of guessed phred values for each sample

	
	e.g.: '[SampleA: 33, SampleB: 33]'

	
	clearIf ‘true’, remove the input fastq files at the end of the

	component run, IF THE FILES ARE IN THE WORK DIRECTORY

Generated output

The generated output are output files that contain an object, usually a string.
(Values within ${} are substituted by the corresponding variable.)

	
	${sample_id}_*P*: Pair of paired FastQ files generated by Trimmomatic

	
	e.g.: 'SampleA_1_P.fastq.gz SampleA_2_P.fastq.gz'

	
	trimmomatic_status: Stores the status of the trimmomatic run. If it was successfully executed, it stores ‘pass’. Otherwise, it stores the STDERR message.

	
	e.g.: 'pass'

Code documentation

	
flowcraft.templates.trimmomatic.parse_log(log_file)

	Retrieves some statistics from a single Trimmomatic log file.

This function parses Trimmomatic’s log file and stores some trimming
statistics in an OrderedDict object. This object contains
the following keys:

	clean_len: Total length after trimming.

	total_trim: Total trimmed base pairs.

	total_trim_perc: Total trimmed base pairs in percentage.

	5trim: Total base pairs trimmed at 5’ end.

	3trim: Total base pairs trimmed at 3’ end.

	Parameters

	
	log_filestr

	Path to trimmomatic log file.

	Returns

	
	xOrderedDict

	Object storing the trimming statistics.

	
flowcraft.templates.trimmomatic.write_report(storage_dic, output_file, sample_id)

	Writes a report from multiple samples.

	Parameters

	
	storage_dicdict or OrderedDict

	Storage containing the trimming statistics. See parse_log()
for its generation.

	output_filestr

	Path where the output file will be generated.

	
flowcraft.templates.trimmomatic.trimmomatic_log(log_file, sample_id)

	

	
flowcraft.templates.trimmomatic.clean_up(fastq_pairs, clear)

	Cleans the working directory of unwanted temporary files

	
flowcraft.templates.trimmomatic.merge_default_adapters()

	Merges the default adapters file in the trimmomatic adapters directory

	Returns

	
	str

	Path with the merged adapters file.

flowcraft.templates.trimmomatic_report module

Purpose

This module is intended parse the results of the Trimmomatic log for a set
of one or more samples.

Expected input

The following variables are expected whether using NextFlow or the
main() executor.

	
	log_files: Trimmomatic log files.

	
	e.g.: 'Sample1_trimlog.txt Sample2_trimlog.txt'

Generated output

	trimmomatic_report.csv : Summary report of the trimmomatic logs for all samples

Code documentation

	
flowcraft.templates.trimmomatic_report.parse_log(log_file)

	Retrieves some statistics from a single Trimmomatic log file.

This function parses Trimmomatic’s log file and stores some trimming
statistics in an OrderedDict object. This object contains
the following keys:

	clean_len: Total length after trimming.

	total_trim: Total trimmed base pairs.

	total_trim_perc: Total trimmed base pairs in percentage.

	5trim: Total base pairs trimmed at 5’ end.

	3trim: Total base pairs trimmed at 3’ end.

	Parameters

	
	log_filestr

	Path to trimmomatic log file.

	Returns

	
	xOrderedDict

	Object storing the trimming statistics.

	
flowcraft.templates.trimmomatic_report.write_report(storage_dic, output_file, sample_id)

	Writes a report from multiple samples.

	Parameters

	
	storage_dicdict or OrderedDict

	Storage containing the trimming statistics. See parse_log()
for its generation.

	output_filestr

	Path where the output file will be generated.

	sample_idstr

	Id or name of the current sample.

flowcraft.tests package

Submodules

	flowcraft.tests.data_pipelines module

	flowcraft.tests.test_assemblerflow module

	flowcraft.tests.test_engine module

	flowcraft.tests.test_pipeline_parser module

	flowcraft.tests.test_process_details module

	flowcraft.tests.test_processes module

	flowcraft.tests.test_sanity module

Module contents

flowcraft.tests.data_pipelines module

flowcraft.tests.test_assemblerflow module

flowcraft.tests.test_engine module

flowcraft.tests.test_pipeline_parser module

	
flowcraft.tests.test_pipeline_parser.test_get_lanes()

	

	
flowcraft.tests.test_pipeline_parser.test_linear_connection()

	

	
flowcraft.tests.test_pipeline_parser.test_two_fork_connection()

	

	
flowcraft.tests.test_pipeline_parser.test_two_fork_connection_mismatch_lane()

	

	
flowcraft.tests.test_pipeline_parser.test_multi_fork_connection()

	

	
flowcraft.tests.test_pipeline_parser.test_linear_lane_connection()

	

	
flowcraft.tests.test_pipeline_parser.test_linear_multi_lane_connection()

	

	
flowcraft.tests.test_pipeline_parser.test_get_source_lane()

	

	
flowcraft.tests.test_pipeline_parser.test_get_source_lane_2()

	

	
flowcraft.tests.test_pipeline_parser.test_parse_pipeline()

	

	
flowcraft.tests.test_pipeline_parser.test_parse_pipeline_file()

	

	
flowcraft.tests.test_pipeline_parser.test_unique_id_len()

	

	
flowcraft.tests.test_pipeline_parser.test_remove_id()

	

flowcraft.tests.test_process_details module

flowcraft.tests.test_processes module

flowcraft.tests.test_sanity module

flowcraft.flowcraft module

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 flowcraft	

 	
 	
 flowcraft.generator	

 	
 	
 flowcraft.generator.components	

 	
 	
 flowcraft.generator.error_handling	

 	
 	
 flowcraft.generator.footer_skeleton	

 	
 	
 flowcraft.generator.header_skeleton	

 	
 	
 flowcraft.generator.pipeline_parser	

 	
 	
 flowcraft.generator.process_details	

 	
 	
 flowcraft.templates	

 	
 	
 flowcraft.templates.assembly_report	

 	
 	
 flowcraft.templates.fastqc	

 	
 	
 flowcraft.templates.fastqc_report	

 	
 	
 flowcraft.templates.flowcraft_utils	

 	
 	
 flowcraft.templates.flowcraft_utils.flowcraft_base	

 	
 	
 flowcraft.templates.mashdist2json	

 	
 	
 flowcraft.templates.megahit	

 	
 	
 flowcraft.templates.metaspades	

 	
 	
 flowcraft.templates.pATLAS_consensus_json	

 	
 	
 flowcraft.templates.pipeline_status	

 	
 	
 flowcraft.templates.process_assembly_mapping	

 	
 	
 flowcraft.templates.skesa	

 	
 	
 flowcraft.templates.spades	

 	
 	
 flowcraft.templates.trimmomatic	

 	
 	
 flowcraft.templates.trimmomatic_report	

 	
 	
 flowcraft.tests	

 	
 	
 flowcraft.tests.data_pipelines	

 	
 	
 flowcraft.tests.test_pipeline_parser	

Index

 A
 | B
 | C
 | E
 | F
 | G
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | W

A

 	
 	add_unique_identifiers() (in module flowcraft.generator.pipeline_parser)

 	
 	Assembly (class in flowcraft.templates.assembly_report)

B

 	
 	brackets_but_no_lanes() (in module flowcraft.generator.pipeline_parser)

 	
 	brackets_insanity_check() (in module flowcraft.generator.pipeline_parser)

 	build_versions() (flowcraft.templates.flowcraft_utils.flowcraft_base.MainWrapper method)

C

 	
 	check_filtered_assembly() (in module flowcraft.templates.process_assembly_mapping)

 	check_summary_health() (in module flowcraft.templates.fastqc_report)

 	clean_up() (in module flowcraft.templates.megahit)

 	(in module flowcraft.templates.metaspades)

 	(in module flowcraft.templates.skesa)

 	(in module flowcraft.templates.spades)

 	(in module flowcraft.templates.trimmomatic)

 	
 	colored_print() (in module flowcraft.generator.process_details)

 	contig_boundaries (flowcraft.templates.assembly_report.Assembly attribute)

 	contig_coverage (flowcraft.templates.assembly_report.Assembly attribute)

 	contigs (flowcraft.templates.assembly_report.Assembly attribute)

 	convert_adatpers() (in module flowcraft.templates.fastqc)

E

 	
 	empty_tasks() (in module flowcraft.generator.pipeline_parser)

 	
 	evaluate_min_coverage() (in module flowcraft.templates.process_assembly_mapping)

F

 	
 	filter_assembly() (in module flowcraft.templates.process_assembly_mapping)

 	filter_bam() (in module flowcraft.templates.process_assembly_mapping)

 	final_char_insanity_check() (in module flowcraft.generator.pipeline_parser)

 	fix_contig_names() (in module flowcraft.templates.megahit)

 	flowcraft (module)

 	flowcraft.generator (module)

 	flowcraft.generator.components (module)

 	flowcraft.generator.error_handling (module)

 	flowcraft.generator.footer_skeleton (module)

 	flowcraft.generator.header_skeleton (module)

 	flowcraft.generator.pipeline_parser (module)

 	flowcraft.generator.process_details (module)

 	flowcraft.templates (module)

 	flowcraft.templates.assembly_report (module)

 	flowcraft.templates.fastqc (module)

 	flowcraft.templates.fastqc_report (module)

 	
 	flowcraft.templates.flowcraft_utils (module)

 	flowcraft.templates.flowcraft_utils.flowcraft_base (module)

 	flowcraft.templates.mashdist2json (module)

 	flowcraft.templates.megahit (module)

 	flowcraft.templates.metaspades (module)

 	flowcraft.templates.pATLAS_consensus_json (module)

 	flowcraft.templates.pipeline_status (module)

 	flowcraft.templates.process_assembly_mapping (module)

 	flowcraft.templates.skesa (module)

 	flowcraft.templates.spades (module)

 	flowcraft.templates.trimmomatic (module)

 	flowcraft.templates.trimmomatic_report (module)

 	flowcraft.tests (module)

 	flowcraft.tests.data_pipelines (module)

 	flowcraft.tests.test_pipeline_parser (module)

 	fork_connection() (in module flowcraft.generator.pipeline_parser)

 	fork_procs_insanity_check() (in module flowcraft.generator.pipeline_parser)

G

 	
 	get_assembly_size() (in module flowcraft.templates.process_assembly_mapping)

 	get_coverage_from_file() (in module flowcraft.templates.process_assembly_mapping)

 	get_coverage_sliding() (flowcraft.templates.assembly_report.Assembly method)

 	get_gc_sliding() (flowcraft.templates.assembly_report.Assembly method)

 	get_json_info() (in module flowcraft.templates.pipeline_status)

 	get_lanes() (in module flowcraft.generator.pipeline_parser)

 	get_logger() (in module flowcraft.templates.flowcraft_utils.flowcraft_base)

 	
 	get_previous_stats() (in module flowcraft.templates.pipeline_status)

 	get_sample_trim() (in module flowcraft.templates.fastqc_report)

 	get_source_lane() (in module flowcraft.generator.pipeline_parser)

 	get_summary() (in module flowcraft.templates.fastqc_report)

 	get_summary_stats() (flowcraft.templates.assembly_report.Assembly method)

 	get_trim_index() (in module flowcraft.templates.fastqc_report)

 	guess_process() (in module flowcraft.generator.pipeline_parser)

I

 	
 	inner_fork_insanity_checks() (in module flowcraft.generator.pipeline_parser)

 	insanity_checks() (in module flowcraft.generator.pipeline_parser)

 	
 	InspectionError

 	is_odd() (in module flowcraft.templates.megahit)

L

 	
 	lane_char_insanity_check() (in module flowcraft.generator.pipeline_parser)

 	late_proc_insanity_check() (in module flowcraft.generator.pipeline_parser)

 	
 	linear_connection() (in module flowcraft.generator.pipeline_parser)

 	linear_lane_connection() (in module flowcraft.generator.pipeline_parser)

 	log_error() (in module flowcraft.templates.flowcraft_utils.flowcraft_base)

M

 	
 	MainWrapper (class in flowcraft.templates.flowcraft_utils.flowcraft_base)

 	
 	merge_default_adapters() (in module flowcraft.templates.trimmomatic)

P

 	
 	parse_coverage_table() (in module flowcraft.templates.process_assembly_mapping)

 	parse_log() (in module flowcraft.templates.trimmomatic)

 	(in module flowcraft.templates.trimmomatic_report)

 	
 	parse_pipeline() (in module flowcraft.generator.pipeline_parser)

 	proc_collector() (in module flowcraft.generator.process_details)

 	ProcessError

 	procs_dict_parser() (in module flowcraft.generator.process_details)

R

 	
 	RecipeError

 	remove_inner_forks() (in module flowcraft.generator.pipeline_parser)

 	
 	remove_unique_identifiers() (in module flowcraft.generator.pipeline_parser)

 	ReportError

S

 	
 	sample (flowcraft.templates.assembly_report.Assembly attribute)

 	SanityError

 	send_to_output() (in module flowcraft.templates.mashdist2json)

 	set_kmers() (in module flowcraft.templates.megahit)

 	(in module flowcraft.templates.metaspades)

 	(in module flowcraft.templates.spades)

 	
 	start_proc_insanity_check() (in module flowcraft.generator.pipeline_parser)

 	summary_info (flowcraft.templates.assembly_report.Assembly attribute)

T

 	
 	test_get_lanes() (in module flowcraft.tests.test_pipeline_parser)

 	test_get_source_lane() (in module flowcraft.tests.test_pipeline_parser)

 	test_get_source_lane_2() (in module flowcraft.tests.test_pipeline_parser)

 	test_linear_connection() (in module flowcraft.tests.test_pipeline_parser)

 	test_linear_lane_connection() (in module flowcraft.tests.test_pipeline_parser)

 	test_linear_multi_lane_connection() (in module flowcraft.tests.test_pipeline_parser)

 	test_multi_fork_connection() (in module flowcraft.tests.test_pipeline_parser)

 	
 	test_parse_pipeline() (in module flowcraft.tests.test_pipeline_parser)

 	test_parse_pipeline_file() (in module flowcraft.tests.test_pipeline_parser)

 	test_remove_id() (in module flowcraft.tests.test_pipeline_parser)

 	test_two_fork_connection() (in module flowcraft.tests.test_pipeline_parser)

 	test_two_fork_connection_mismatch_lane() (in module flowcraft.tests.test_pipeline_parser)

 	test_unique_id_len() (in module flowcraft.tests.test_pipeline_parser)

 	trim_range() (in module flowcraft.templates.fastqc_report)

 	trimmomatic_log() (in module flowcraft.templates.trimmomatic)

W

 	
 	write_json_report() (in module flowcraft.templates.fastqc_report)

 	
 	write_report() (in module flowcraft.templates.trimmomatic)

 	(in module flowcraft.templates.trimmomatic_report)

setup module

Recipe creation guidelines

Under construction.

abricate

Purpose

This component performs anti-microbial gene screening using abricate. It
includes the default databases plus the virulencefinder database.

Note

Software page: https://github.com/tseemann/abricate

Input/Output type

	Input type: Fasta

	Output type: None

Note

The default input parameter for fasta data is --fasta.

Parameters

	abricateDatabases: Specify the databases for abricate.

Published results

	results/annotation/abricate: Stores the results of the abricate screening
for each sample and for each specified database.

Published reports

None.

Default directives

	
	abricate:

	
	container: ummidock/abricate

	version: 0.8.0-1

	
	process_assembly_mapping:

	
	container: ummidock/abricate

	version: 0.8.0-1

Advanced

Template

flowcraft.templates.process_abricate

Reports JSON

	tableRow:

	
	<database>: List of gene names

	plotData:

	
	
	<database>:

	
	contig: Contig ID

	seqRange: Genomic range of the contig

	gene: Gene name

	accession: Accession number

	coverage: Coverage of the match

	identity: Identity of the match

assembly_mapping

Purpose

This component performs a mapping procedure of FastQ files using their assembly
as reference. The procedure is carried out with bowtie2 and samtools and aims
to filter the assembly based on quality criteria of read coverage
and expected genome size.

Note

	bowtie2 documentation can be found here [http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml].

	samtools documentation can be found here [http://www.htslib.org/doc/samtools-1.2.html].

Input/Output type

	Input type: Fasta and FastQ

	Output type: Fasta

Note

The default input parameter for fasta data is --fasta.

Parameters

	minAssemblyCoverage: In auto, the default minimum coverage for each
assembled contig is 1/3 of the assembly mean coverage or 10x, if the mean
coverage is below 10x.

	AMaxContigs: A warning is issues if the number of contigs is over
this threshold.

	genomeSize: Genome size estimate for the samples. It is used to check
the ratio of contig number per genome MB.

Published results

None.

Published reports

None.

Default directives

	
	assembly_mapping:

	
	cpus: 4

	memory: 5GB (dynamically increased on retry)

	container: ummidock/bowtie2_samtools

	version: 1.0.0-2

	
	process_assembly_mapping:

	
	cpus: 1

	memory: 5GB (dynamically increased on retry)

	container: ummidock/bowtie2_samtools

	version: 1.0.0-2

Advanced

Template

flowcraft.templates.process_assembly_mapping

Reports JSON

	plotData:

	
	sparkline: Total number of base pairs.

	warnings:

	
	When the number of contigs exceeds a provided threshold.

	fail:

	
	When the genome size is below 80% or above 150% of the expected genome size.

bowtie

Purpose

This component performs a mapping procedure of FastQ files with a given reference.
The procedure is carried out with Bowtie2.
The reference can a set of Bowtie2 index files or a Fasta file. In the latter, the
necessary index will be created with Bowtie2-build and passed through to Bowtie2.

Note

	Bowtie2 documentation can be found here [http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml].

	Software page: http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

Input/Output type

	Input type: FastQ

	Output type: Bam

Note

The default input parameter for Fastq data is --fastq.

Parameters

	reference: Specifies the reference genome to be provided to to bowtie2-build.

	index: Specifies the reference indexes to be provided to bowtie2.

Note

An index OR a reference fasta file must be provided

Published results

	results/mapping/bowtie: Stores the results of the mapping for each sample.

Published reports

None.

Default directives

	
	bowtie_build:

	
	cpus: 1

	memory: 5GB (dynamically increased on retry)

	container: flowcraft/bowtie2_samtools

	version: 1.0.0-1

	
	bowtie:

	
	cpus: 4

	memory: 5GB (dynamically increased on retry)

	container:flowcraft/bowtie2_samtools

	version: 1.0.0-1

card_rgi

Purpose

This component performs anti-microbial gene screening using CARD rgi.
It uses data from CARD database.

Note

Software page: https://github.com/arpcard/rgi

Input/Output type

	Input type: Fasta

	Output type: None

Note

The default input parameter for fasta data is --fasta.

Parameters

	alignmentTool: Specifies the alignment tool. Options: DIAMOND or BLAST

Published results

	results/annotation/card_rgi: Stores the results of the screening
for each sample.

Published reports

None.

Default directives

	container: flowcraft/card_rgi

	version: 4.0.2-0.1

check_coverage

Purpose

This components estimates the coverage of a given sample based on the number
of base pairs in the FastQ files of a sample and on the expected genome size:

\[\frac{\text{number of base pairs}}{(\text{genome size} \times 1e^{6})}\]

If the estimated coverage of a given sample falls bellow the provided
minimum coverage threshold, the sample is filtered and does not proceed in the
pipeline.

Input/Output type

	Input type: FastQ

	Output type: FastQ

Note

The default input parameter for FastQ data is --fastq. You can change
the --fastq parameter default pattern (fastq/*_{1,2}.*) according
to input file names (e.g.: --fastq "path/to/fastq/*R{1,2}.*").

Parameters

	genomeSize: Genome size estimate for the samples. It is used to
estimate the coverage and other assembly parameters and
checks.

	minCoverage: Minimum coverage for a sample to proceed. Can be set to
0 to allow any coverage.

Published results

None.

Published reports

	reports/coverage: CSV table with estimated sequencing coverage for
each sample.

Default directives

None.

Advanced

Template

flowcraft.templates.integrity_coverage

Reports JSON

	tableRow:

	
	Coverage: Estimated coverage.

	fail:

	
	When estimated coverage is below the provided threshold.

chewbbaca

Purpose

This components runs the allele calling operation of ChewBBACA on a set
of fasta samples to perform a cg/wgMLST analysis

Note

Software page: https://github.com/B-UMMI/chewBBACA

Input/Output type

	Input type: Fasta

	Output type: None

Note

The default input parameter for fasta data is --fasta.

Parameters

	chewbbacaQueue: Specifiy a queue/partition for chewbbaca. This option
is only used for grid schedulers.

	chewbbacaTraining: Specify the full path to the prodigal training file
of the corresponding species.

	schemaPath: The path to the chewbbaca schema directory.

	schemaSelectedLoci: The path to the selection of loci in the schema
directory to be used. If not specified, all loci in the schema will be used.

	chewbbacaJson: If set to True, chewbbaca’s allele call output will be
set to JSON format.

	chewbbacaToPhyloviz: If set to True, the ExtractCgMLST module of
chewbbaca will be executed after the allele calling.

	chewbbacaProfilePercentage: Specifies the proportion of samples that
must be present in a locus to save the profile.

	chewbbacaBatch: Specifies whther a chewbbaca run will be performed on
the complete input batch (all at the same time) or one by one.

Published results

	results/chewbbaca_alleleCall: The results of the allelecall for each

sample.

	results/chewbbaca: The cg/wgMLST schema prepared for phyloviz.

Published reports

None.

Default directives

	
	chewbbaca:

	
	cpus: 4

	container: mickaelsilva/chewbbaca_py3

	version: latest

	
	chewbbaca_batch:

	
	cpus: 4

	container: mickaelsilva/chewbbaca_py3

	version: latest

	
	chewbbacaExtractMLST:

	
	container: mickaelsilva/chewbbaca_py3

	version: latest

diamond

Purpose

This component performs blastx or blastp with diamond. The database
used by diamond can be provided from the local disk or generated in the process.
This component uses the same output type as abricate with the same blast output
fields.

Note

Software page: https://github.com/bbuchfink/diamond

Input/Output type

	Input type: Fasta

	Output type: None

Note

The default input parameter for fasta data is --fasta.

Parameters

	pathToDb: Provide full path for the diamond database. If none is provided
then will try to fetch from the previous process. Default: None

	fastaToDb: Provide the full path for the fasta to construct a diamond
database. Default: None

	blastType: Defines the type of blast that diamond will do. Can wither be
blastx or blastp. Default: blastx

Published results

	results/annotation/diamond*: Stores the results of the abricate screening
for each sample and for each specified database.

Published reports

None.

Default directives

	
	diamond:

	
	container: flowcraft/diamond

	version: 0.9.22-1

	memory: { 4.GB * task.attempt }

	cpus: 2

downsample_fastq

Purpose

downsample_fastq uses seqtk to subsample fastq read data to a target coverage depth
if the estimated coverage is higher than the provided target depth. When
no subsample is required, it outputs the original FastQ files.

Note

Software page: https://github.com/lh3/seqtk

Input/Output type

	Input type: fastq

	Output type: fastq

Parameters

	genomeSize: Genome size estimate for the samples. It is used to
estimate the coverage.

	depth: The target depth to which the reads should be subsampled.

	seed: The seed number for seqtk. By default it is 100.

Published results

	results/sample_fastq: Stores the subsampled FastQ files

Published reports

None.

Default directives

	cpus: 1

	memory: 4GB

	container: flowcraft/seqtk

	version: 1.3.0-3

Advanced

Reports JSON

	tableRow:

	
	Coverage: Estimated coverage.

fast_ani

Purpose

This component performs pairwise comparisons between fastas,
given a multifasta as input for fastANI. It will split the multifasta into
single fastas that will then be provided as a matrix. The output will be the
all pairwise comparisons that pass the minimum of 50 aligned sequences with a
default length of 200 bp.

Input/Output type

	Input type: fasta

	Output type: None

Parameters

	fragLen: Sets the minimum size of the fragment to be passed to

–fragLen argument of fastANI.

Published results

	results/fast_ani/: A text file with the extension .out, which has all

the pairwise comparisons between sequences, reporting ANI.

Published reports

None.

Default directives

	
	fastAniMatrix:

	
	container: flowcraft/fast_ani

	version: 1.1.0-2

	cpus: 20

	memory: { 30.GB * task.attempt }

fasterq_dump

Purpose

This component downloads reads from the SRA public databases from a
list of accessions. This component uses fasterq-dump from
NCBI sra-tools [https://github.com/ncbi/sra-tools]. fasterq-dump
increases the download speed in comparison from fastq-dump by
multi-threading the extraction of FASTQ from SRA-accessions.
The reads for each accession are then emitted through
the main output of this component to any other component (or components) that
receive FastQ data.

Input/Output type

	Input type: accessions

	Output type: fastq

Note

The default input parameter for Accessions data is --accessions.

Parameters

	option_file: This options enables the option-file parameter of

fasterq-dump, allowing parameters to be passed.
- compress_fastq: This options allows users to disable the compression of
the fastq files resulting from this component. The default (true) behavior
compresses the fastq files to fastq.gz.

Published results

	reads/<accession>: Stores the reads for each provided accession.

Published reports

None.

Default directives

	cpus: 1

	memory: 1GB

	container: flowcraft/sra-tools

	version: 2.9.1-1

fastqc

Purpose

This components runs FastQC on paired-end FastQ files.

Note

Software page: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Input/Output type

	Input type: FastQ

	Output type: FastQ

Note

The default input parameter for FastQ data is --fastq. You can change
the --fastq parameter default pattern (fastq/*_{1,2}.*) according
to input file names (e.g.: --fastq "path/to/fastq/*R{1,2}.*").

Parameters

	adapters: Provide a non-default fasta file containing the adapter
sequences to screen overrepresented sequences against.

Published results

None.

Published reports

	reports/fastqc: Stores the FastQC HTML reports for each sample.

	reports/fastqc/run_2/: Stores the summary text files with the category
results of FastQC for each sample.

Default directives

	cpus: 2

	memory: 4GB

	container: ummidock/fastqc

	version: 0.11.7-1

Advanced

Template

flowcraft.templates.fastqc_report

Reports JSON

	plotData:

	
	
	base_sequence_quality: Per base sequence quality data

	
	(This structure is repeated for the other entries)

	status: Status of the category (PASS, WARN, etc)

	data: Plot data

	sequence_quality: Per sequence quality data

	base_gc_content: GC content distribution

	base_n_content: Per base N content

	sequence_length_dist: Distribution of sequence read length

	per_base_sequence_content: Per base sequence content

	warnings:

	
	List of failures or warnings for some non-sensitive FastQC categories

	fail:

	
	Failure message when sensitive FastQC categories fail or do not pass.

fastqc_trimmomatic

Purpose

This component runs Trimmomatic on paired-end FastQ files but uses information
on the per-base GC content variation reported by FastQC to guide the trimming
of the FastQ reads.

Note

Software pages: FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/);
Trimmoatic (http://www.usadellab.org/cms/?page=trimmomatic)

Input/Output type

	Input type: FastQ

	Output type: FastQ

Note

The default input parameter for FastQ data is --fastq. You can change
the --fastq parameter default pattern (fastq/*_{1,2}.*) according
to input file names (e.g.: --fastq "path/to/fastq/*R{1,2}.*").

Parameters

	adapters: Provide a non-default fasta file containing the adapter
sequences used to screen overrepresented sequences against and to filter
the FastQ files.

	trimSlidingWindow: Perform sliding window trimming, cutting once the
average quality within the window falls below a threshold.

	trimLeading: Cut bases off the start of a read, if below a threshold
quality.

	trimTrailing: Cut bases of the end of a read, if below a threshold
quality.

	trimMinLength: Drop the read if it is below a specified length.

Published results

	results/trimmomatic: The trimmed FastQ files for each sample.

Published reports

	reports/fastqc: Stores the FastQC HTML reports for each sample and a
FastQC_trim_report.csv file containing the trimming values suggested
by the analysis of the FastQC report.

	reports/fastqc/run_1/: Stores the summary text files with the category
results of FastQC for each sample.

Default directives

	
	fastqc:

	
	cpus: 2

	memory: 4GB

	container: ummidock/fastqc

	version: 0.11.7-1

	
	trimmomatic:

	
	cpus: 2

	memory: 4GB (dynamically increased on retry)

	container: ummidock/trimmomatic

	version: 0.36-2

Advanced

Template

flowcraft.templates.fastqc_report
flowcraft.templates.trimmomatic
flowcraft.templates.trimmomatic_report

Reports JSON

	tableRow:

	Trimmed (%): Percentage of trimmed nucleotides

	plotData:

	sparkline: Number of nucleotides after trimming

badReads: Number of discarded reads

filter_poly

Purpose

This component removes low complexity sequence from read data
using PrinSeq.

Note

Software page: http://prinseq.sourceforge.net/

Input/Output type

	Input type: FastQ

	Output type: ``FastQ`

Note

The default input parameter for fastq data is --fastq.

Parameters

	
	adapter: Pattern to filter the reads. Please separate parameter values with a space

	and separate new parameter sets with semicolon (;). Parameters are defined by two values:
the pattern (any combination of the letters ATCGN), and the number of repeats or percentage
of occurence. Default: A 50%; T 50%; N 50%

Published results

None.

Published reports

None.

Default directives

	container: flowcraft/prinseq

	version: 0.20.4-1

	memory: 4.GB * task.attempt

	cpus: 1

integrity_coverage

Purpose

This component is intended to test the integrity of the provided FastQ files.
It does so by attempting to parse uncompressed or compressed (gz, bz2
or zip) FastQ files (paired-end or single-end). During this parse, if the
FastQ files are not corrupt, it retrieves the following information:

	sequence encoding: Estimates the sequence encoding based on the quality
scores. This information can then be passed to other components that might
required it.

	estimated coverage: Provides a rough coverage estimation for each sample
based on a user-provided genome size (see Parameters). This estimation
is essentially

\[\frac{\text{number of base pairs}}{(\text{genome size} \times 1e^{6})}\]

This information is written to the reports directory (See
Published reports)

	maximum read length.: Retrieves the maximum read length for each sample.

Important

If the minCoverage parameter value is set to higher than 0, this
component will filter samples with an estimated coverage below that
threshold.

Input/Output type

	Input type: FastQ

	Output type: FastQ

Note

The default input parameter for FastQ data is --fastq. You can change
the --fastq parameter default pattern (fastq/*_{1,2}.*) according
to input file names (e.g.: --fastq "path/to/fastq/*R{1,2}.*").

Parameters

	genomeSize: Genome size estimate for the samples. It is used to
estimate the coverage and other assembly parameters and
checks.

	minCoverage: Minimum coverage for a sample to proceed. Can be set to
0 to allow any coverage.

Note

You can use these parameters as in the following example:
--genomeSize 3.

Published results

None.

Published reports

	reports/coverage: CSV table with estimated sequencing coverage for
each sample.

	reports/corrupted: Text file with list of corrupted samples.

Default directives

None.

Advanced

Template

flowcraft.templates.integrity_coverage

Reports JSON

	tableRow:

	
	Raw BP: Number of nucleotides.

	Reads: Number of reads.

	Coverage: Estimated coverage.

	plotData:

	
	sparkline: Number of nucleotides.

	warnings:

	
	When the enconding and/or phred score cannot be inferred from FastQ files.

	fail:

	
	When estimated coverage is below the provided threshold.

kraken

Purpose

This component performs Kraken to assign taxonomic labels to short DNA
sequences, usually obtained through metagenomic studies.

Note

Software page: https://ccb.jhu.edu/software/kraken/

Input/Output type

	Input type: FastQ

	Output type: None

Note

The default input parameter for fastq data is --fastq.

Parameters

	krakenDB: Specifies kraken database. Default: minikraken_20171013_4GB (in path)

Published results

	results/annotation/kraken: Stores the results of the screening
for each sample.

Published reports

None.

Default directives

	container: flowcraft/kraken

	version: 1.0-0.1

mapping_patlas

Purpose

This component performs mapping (using bowtie2 and samtools) against a
plasmid database in order to find
plasmids contained in high throughoput sequencing data. Then, the resulting file
can be imported into pATLAS [http://www.patlas.site/].

Note

	pATLAs documentation can be found here [https://tiagofilipe12.gitbooks.io/patlas/content/].

	bowtie2 documentation can be found here [http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml].

	samtools documentation can be found here [http://www.htslib.org/doc/samtools-1.2.html].

Input/Output type

	Input type: fastq

	Output type: json

Parameters

	max_k: Sets the k parameter for bowtie2 allowing to make multiple mappings
of the same read against several hits on the query sequence or sequences.
Default: 10949.

	trim5: Sets trim5 option for bowtie. This will become legacy with QC
integration, but it enables to trim 5’ end of reads to be mapped with bowtie2.
Default: 0

	lengthJson: A dictionary of all the lengths of reference sequences.
Default: ‘jsons/*_length.json’ (from docker image).

	refIndex: Specifies the reference indexes to be provided to bowtie2.
Default: ‘/ngstools/data/indexes/bowtie2idx/bowtie2.idx’ (from docker image).

	samtoolsIndex: Specifies the reference indexes to be provided to samtools.
Default: ‘/ngstools/data/indexes/fasta/samtools.fasta.fai’ (from docker image).

Published results

	results/mapping/: A JSON file that can be imported to pATLAS [http://www.patlas.site/]
with the results from mapping.

Published reports

None.

Default directives

	
	mappingBowtie:

	
	container: flowcraft/mapping-patlas

	version: 1.6.0-1

	
	samtoolsView:

	
	container: flowcraft/mapping-patlas

	version: 1.6.0-1

	
	jsonDumpingMapping:

	
	container: flowcraft/mapping-patlas

	version: 1.6.0-1

mash_dist

Purpose

This component executes mash dist to find plasmids
within high throughoput sequencing data, using as inputs fasta files
(e.g. contigs). Then, the resulting file can
be imported into pATLAS [http://www.patlas.site/].
This component calculates pairwise distances between sequences
(one from the database and the query sequence).
However, this process can be user for other purposes, by providing a different
database than the default that is intended for plasmid searches.

Note

	pATLAs documentation can be found here [https://tiagofilipe12.gitbooks.io/patlas/content/].

	MASH documentation can be found here [https://mash.readthedocs.io/en/latest/].

Input/Output type

	Input type: fasta

	Output type: json

Parameters

	mash_distance: Sets the maximum distance between two sequences to be
included in the output. Default: 0.1.

Note

The subtraction of 1 - mash_distance can be used as an approximation to
Average Nucleotide Identity (ANI). For instance a mash distance of 0.1 well
correlates with ANI at 0.9 (90%).

	pValue: P-value cutoff for the distance estimation between two sequences
to be included in the output. Default: 0.05.

	shared_hashes: Sets a minimum percentage of hashes shared between two
sequences in order to include its result in the output. Default: 0.8.

	refFile: Specifies the reference file to be provided to mash. It can either
be a fasta or a .msh reference sketch generated by mash.
Default: ‘/ngstools/data/patlas.msh’. If the component mash_sketch_fasta
is executed before this component, this parameter will be ignored and instead
the secondary link between the two processes will be used to feed this
component with the reference sketch.

Published results

	results/mashdist/: A JSON file that can be imported to pATLAS [http://www.patlas.site/]
with the results from mash dist.

Published reports

None.

Default directives

	
	runMashDist:

	
	container: flowcraft/mash-patlas

	version: 1.6.0-1

	
	mashDistOutputJson:

	
	container: flowcraft/mash-patlas

	version: 1.6.0-1

mash_screen

Purpose

This component performes mash screen to find plasmids
contained in high throughout sequencing data, using as inputs read files
(FastQ files). Then, the resulting file can
be imported into pATLAS [http://www.patlas.site/].
This component searches for containment of a given sequence in read sequencing
data.
However, this process can be user for other purposes, by providing a different
database than the default that is intended for plasmid searches.

Note

	pATLAs documentation can be found here [https://tiagofilipe12.gitbooks.io/patlas/content/].

	MASH documentation can be found here [https://mash.readthedocs.io/en/latest/].

Input/Output type

	Input type: fastq

	Output type: json

Parameters

	noWinner: A variable that enables the use of -w option for mash screen.
Default: false.

	pValue: P-value cutoff for the distance estimation between two sequences to
be included in the output. Default: 0.05.

	identity: The percentage of identity between the reads input and the
reference sequence. Default: 0.9.

	refFile: “Specifies the reference file to be provided to mash. It can
either be a fastq or a .msh reference sketch generated by mash.
Default: ‘/ngstools/data/patlas.msh’. If the component mash_sketch_fastq
is executed before this component, this parameter will be ignored and instead
the secondary link between the two processes will be used to feed this
component with the reference sketch.

Published results

	results/mashscreen/: A JSON file that can be imported to pATLAS [http://www.patlas.site/]
with the results from mash screen.

Published reports

None.

Default directives

	
	mashScreen:

	
	container: flowcraft/mash-patlas

	version: 1.6.0-1

	
	mashOutputJson:

	
	container: flowcraft/mash-patlas

	version: 1.6.0-1

mash_sketch_fasta

Purpose

This component performs mash sketch for fasta input files.

Note

	MASH documentation can be found here [https://mash.readthedocs.io/en/latest/].

Input/Output type

	Input type: fasta

	Output type: msh

Parameters

	kmerSize: Parameter to set the kmer size for hashing. Default: 21.
Default: false.

	sketchSize: Parameter to set the number of hashes per sketch.
Default: 1000.

Published results

None.

Published reports

None.

Default directives

	
	mashSketchFasta:

	
	container: flowcraft/mash-patlas

	version: 1.6.0-1

mash_sketch_fastq

Purpose

This component performs mash sketch for fastq input files. These sketches can
be used by mash_dist and mash_screen components to fetch the
reference file for mash.

Note

	MASH documentation can be found here [https://mash.readthedocs.io/en/latest/].

Input/Output type

	Input type: fastq

	Output type: msh

Parameters

	kmerSize: Parameter to set the kmer size for hashing. Default: 21.
Default: false.

	sketchSize: Parameter to set the number of hashes per sketch.
Default: 1000.

	minKmer: Minimum copies of each k-mer required to pass noise filter for
reads. Default: 1.

	genomeSize: Genome size (raw bases or with K/M/G/T). If specified, will
be used for p-value calculation instead of an estimated size from k-mer
content. Default: false, meaning that it won’t be used. If you want to use
it pass a number to this parameter.

Published results

None.

Published reports

None.

Default directives

	
	mashSketchFastq:

	
	container: flowcraft/mash-patlas

	version: 1.6.0-1

maxbin2

Purpose

This component is an automated binning algorithm to recover genomes from multiple metagenomic datasets

Note

Software page: https://sourceforge.net/projects/maxbin2/

Input/Output type

	Input type: Fasta and FastQ

	Output type: Fasta

Note

The default input parameter for fasta is --fasta. This process also requires FastQ files.
If the FastQ files are input to any upstream process, those will be provided to maxbin2 automatically,
if not, they can be provided with the parameter --fastq.

Parameters

	min_contig_lenght: Minimum contig length. Default: 1000

	max_iteration: Maximum Expectation-Maximization algorithm iteration number. Default: 50

	prob_threshold: Probability threshold for EM final classification. Default: 0.9

Published results

	results/maxbin2/: Stores the results of the binning in a folder
for each sample.

Published reports

None.

Default directives

	container: flowcraft/maxbin2

	version: 2.2.4-1

	cpus: 3

	memory: 5.GB * task.attempt

megahit

Purpose

This components assembles metagenomic paired-end FastQ files using the megahit assembler.

Note

Software page: https://github.com/voutcn/megahit

Input/Output type

	Input type: FastQ

	Output type: Fasta

Note

The default input parameter for FastQ data is --fastq. You can change
the --fastq parameter default pattern (fastq/*_{1,2}.*) according
to input file names (e.g.: --fastq "path/to/fastq/*R{1,2}.*").

Parameters

	megahitKmers: If ‘auto’ the megahit k-mer lengths will be determined
from the maximum read length of each assembly. If ‘default’, megahit will
use the default k-mer lengths.

Published results

	results/assembly/megahit: Stores the fasta assemblies for each sample.

Published reports

None.

Default directives

	cpus: 4

	memory: 5GB (dynamically increased on retry)

	container: cimendes/megahit

	version: v1.1.3-0.1

	scratch: true

Advanced

Template

assemblerflow.templates.megahit

metamlst

Purpose

Checks the ST of metagenomic reads using mlst.

Note

Software page: https://bitbucket.org/CibioCM/metamlst

Input/Output type

	Input type: FastQ

	Output type: None

Note

The default input parameter for fastq data is --fastq.

Parameters

	metamlstDB: Specifiy the metamlst database (full path) for MLST checking

	metamlstDB_index: Specifiy the Bowtie2 metamlst database index (full path) for MLST checking

Published results

	results/annotation/metamlst: Stores the results of the ST for each sample.

Published reports

None.

Default directives

	container: flowcraft/metamlst

	version: 1.1-1

	memory: 4.Gb * task.attempt

metaspades

Purpose

This components assembles metagenomic paired-end FastQ files using the metaSPAdes assembler.

Note

Software page: http://bioinf.spbau.ru/spades

Input/Output type

	Input type: FastQ

	Output type: Fasta

Note

The default input parameter for FastQ data is --fastq. You can change
the --fastq parameter default pattern (fastq/*_{1,2}.*) according
to input file names (e.g.: --fastq "path/to/fastq/*R{1,2}.*").

Parameters

	metaspadesKmers: If ‘auto’ the metaSPAdes k-mer lengths will be determined
from the maximum read length of each assembly. If ‘default’, metaSPAdes will
use the default k-mer lengths.

Published results

	results/assembly/metaspades: Stores the fasta assemblies for each sample.

Published reports

None.

Default directives

	cpus: 4

	memory: 5GB (dynamically increased on retry)

	container: ummidock/spades

	version: 3.11.1-1

	scratch: true

Advanced

Template

assemblerflow.templates.metaspades

midas_species

Purpose

This component performs MIDAS to assign taxonomic labels fro species to short DNA
sequences, usually obtained through metagenomic studies.

Note

Software page: https://github.com/snayfach/MIDAS

Input/Output type

	Input type: FastQ

	Output type: None

Note

The default input parameter for fastq data is --fastq.

Parameters

	midasDB: Specifies MIDAS database. Default: /MidasDB/midas_db_v1.2

Published results

	results/annotation/midas: Stores the results of the screening
for each sample.

Published reports

None.

Default directives

	container: flowcraft/midas

	version: 1.3.2-0.1

	memory: 2.Gb*task.attempt

	cpus: 3

mlst

Purpose

Checks the ST of an assembly using mlst.

Note

Software page: https://github.com/tseemann/mlst

Input/Output type

	Input type: Fasta

	Output type: None

Note

The default input parameter for fasta data is --fasta.

Parameters

	mlstSpecies: Specifiy the expected species for MLST.

Published results

	results/annotation/mlst: Stores the results of the ST for each sample.

Published reports

None.

Default directives

	container: ummidock/mlst

Advanced

Reports JSON

	tableRow:

	
	mlst: Predicted species.

expectedSpecies: Name of the expected species.

species: Name of inferred species.

momps

Purpose

This component performs Multi-Locus Sequence Typing (MLST) on Legionella pneumophila
from reads and assemblies.

Note

Software page: https://github.com/bioinfo-core-BGU/mompS

Input/Output type

	Input type: fasta

	Output type: None

Note

The default input parameter for fasta data is --fasta. This process
also requires FastQ reads provided via the --fastq parameter.

Parameters

None.

Published results

	results/typing/momps: Stores TSV files with the ST and allelic profiles
for each strain.

Published reports

None.

Default directives

	
	momps:

	
	container: flowcraft/momps

	version: 0.1.0-4

Advanced

Reports JSON

	typing:

	
	momps: <typing result>

patho_typing

Purpose

Patho_typing is a software for in silico pathogenic typing
directly from raw Illumina reads.

Note

Software page: https://github.com/B-UMMI/patho_typing

Input/Output type

	Input type: FastQ

	Output type: None

Parameters

	species: Species name. Must be the complete species name with genus
and species, e.g.: ‘Yersinia enterocolitica’.

Published results

	results/pathotyping/<sample id>: Stores the results of patho_typing in
text and tabular format.

Published reports

None.

Default directives

	cpus: 4

	memory: 4GB

	container: ummidock/patho_typing

	version: 0.3.0-1

Advanced

Reports JSON

	typing:

	
	pathotyping: <typing result>

pilon

Purpose

This components Performs a mapping procedure of FastQ files into a their
assembly and performs filtering based on quality criteria of read coverage
and genome size.

Note

Software page: https://github.com/broadinstitute/pilon

Input/Output type

	Input type: Fasta and FastQ

	Output type: Fasta

Note

The default input parameter for fasta data is --fasta.

Parameters

None.

Published results

	results/assembly/pilon: Stores the polished fasta assemblies for each
sample.

Published reports

	reports/assembly/pilon: Table with several summary statistics about the
assembly for each sample.

Default directives

	
	pilon:

	
	cpus: 4

	memory: 7GB (dynamically increased on retry)

	container: ummidock/pilon

	version: 1.22.0-2

	
	process_assembly_mapping:

	
	cpus: 1

	memory: 7GB (dynamically increased on retry)

	container: ummidock/pilon

	version: 1.22.0-2

Advanced

Template

flowcraft.templates.assembly_report

Reports JSON

	tableRow:

	
	Contigs: Number of contigs.

	Assembled BP: Number of assembled base pairs.

	plotData:

	
	size_dist: Distribution of contig size.

	sparkline: Number of assembled base pairs.

	
	genomeSliding:

	
	gcData: Genome sliding window of GC content.

	covData: Genome sliding window of read coverage depth.

	window: Size of sliding window

	xbars: Position of contigs along the genome sliding window.

	assemblyFile: Name of the input assembly file.

	warnings:

	
	When the number of contigs exceeds a given threshold.

	fail:

	
	When the genome size is below 80% or above 150% of the expected genome size.

process_skesa

Purpose

This components processes the assembly resulting from the Skesa software and,
optionally, filters contigs based on user-provide parameters.

Input/Output type

	Input type: Fasta

	Output type: Fasta

Note

The default input parameter for fasta data is --fasta.

Parameters

	skesaMinKmerCoverage: Minimum contigs K-mer coverage. After assembly
only keep contigs with reported k-mer coverage equal or above this value.

	skesaMinContigLen: Filter contigs for length greater or equal than
this value.

	skesaMaxContigs: Maximum number of contigs per 1.5 Mb of expected
genome size.

Published results

None.

Published reports

	reports/assembly/skesa_filter: The filter status for each contig and
each sample. If any contig does not pass the filters, it reports which
filter type it failed and the corresponding value.

Default directives

	container: ummidock/skesa

	version: 0.2.0-3

Advanced

Template

flowcraft.templates.process_assembly

Reports JSON

	tableRow:

	
	Contigs (<assembler>): Number of contigs.

	Assembled BP (<assembler>): Number of assembled base pairs.

	warnings:

	
	When the number of contigs exceeds a given threshold.

	fail:

	
	When the genome size is below 80% or above 150% of the expected genome size.

process_spades

Purpose

This components processes the assembly resulting from the Spades software and,
optionally, filters contigs based on user-provide parameters.

Input/Output type

	Input type: Fasta

	Output type: Fasta

Note

The default input parameter for fasta data is --fasta.

Parameters

	spadesMinKmerCoverage: Minimum contigs K-mer coverage. After assembly
only keep contigs with reported k-mer coverage equal or above this value.

	spadesMinContigLen: Filter contigs for length greater or equal than
this value.

	spadesMaxContigs: Maximum number of contigs per 1.5 Mb of expected
genome size.

Published results

None.

Published reports

	reports/assembly/spades_filter: The filter status for each contig and
each sample. If any contig does not pass the filters, it reports which
filter type it failed and the corresponding value.

Default directives

	container: ummidock/spades

	version: 3.11.1-1

Advanced

Template

flowcraft.templates.process_assembly

Reports JSON

	tableRow:

	
	Contigs (<assembler>): Number of contigs.

	Assembled BP (<assembler>): Number of assembled base pairs.

	warnings:

	
	When the number of contigs exceeds a given threshold.

	fail:

	

	When the genome size is below 80% or above 150% of the expected genome size.

process_assembly: Failure messages

prokka

Purpose

This component performs annotations using the annotations available in
prokka [https://github.com/tseemann/prokka].

Input/Output type

	Input type: fasta

	Output type: None

Note

	Although the component doesn’t have an output channel it writes the results into the publishDir.

Parameters

	centre: sets the center to which the sequencing center id.
Default: ‘UMMI’.

	kingdom: Selects the annotation mode between Archaea, Bacteria,
Mitochondria, Viruses. Default: Bacteria).

	genus: Allows user to select a genus name. Default: ‘Genus’ (same
as prokka). This also adds the use of the –usegenus flag to prokka.

Published results

	results/annotation/prokka_<pid>/<sample_id>: All the outputs from prokka
will be available in these directories.

Published reports

None.

Default directives

	
	prokka:

	
	cpus: 2

	container: ummidock/prokka

	version: 1.12

reads_download

Purpose

This component downloads reads from the SRA/ENA public databases from a
list of accessions. First, it tries to use aspera connect [http://asperasoft.com/download_connect/] to download
reads, if a valid aspera key is provided. Otherwise it uses curl, which is
substantially slower. The reads for each accession are then emitted through
the main output of this component to any other component (or components) that
receive FastQ data.

Input/Output type

	Input type: accessions

	Output type: fastq

Note

The default input parameter for Accessions data is --accessions.

Parameters

	asperaKey: Downloads fastq accessions using Aspera Connect
by providing the private-key file ‘asperaweb_id_dsa.openssh’ normally found
in ~/.aspera/connect/etc/asperaweb_id_dsa.openssh after the installation.

Published results

	reads/<accession>: Stores the reads for each provided accession.

Published reports

None.

Default directives

	cpus: 1

	memory: 1GB

	container: flowcraft/getseqena

	version: 0.4.0-2

remove_host

Purpose

This component performs a mapping procedure of FastQ files using a host
genome as referece (default: hg19). The procedure is carried out with
bowtie2 and samtools and aims to filter the reads that map to host genome.

Note

	bowtie2 documentation can be found here [http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml].

	samtools documentation can be found here [http://www.htslib.org/doc/samtools-1.2.html].

Input/Output type

	Input type: FastQ

	Output type: FastQ

Note

The default input parameter for fastq data is --fastq.

Parameters

	refIndex: Specifies the reference indexes to be provided to bowtie2.

Default: ‘/index_hg19/hg19’ (from docker image).

Published results

	results/mapping/: A txt file from bowtie2 with the mapping statistics.

Published reports

None.

Default directives

	
	remove_host:

	
	cpus: 3

	memory: 5GB (dynamically increased on retry)

	container: flowcraft/remove_host

	version: 2-0.1

Advanced

Template

assemblerflow.templates.remove_host

retrieve_mapped

Purpose

This component retrieves the mapping reads of a previous bowtie mapping process.
The procedure is carried out with samtools and aims to retrieve the reads that map to target reference.

Note

	samtools documentation can be found here [http://www.htslib.org/doc/samtools-1.2.html].

Input/Output type

	Input type: bam

	Output type: FastQ

Note

This process has the bowtie2 process as a dependency.

Parameters

None

Published results

	results/mapping/retrieve_mapped: Contains the resulting FastQ files.

Published reports

None.

Default directives

	
	remove_host:

	
	cpus: 2

	memory: 5GB (dynamically increased on retry)

	container: flowcraft/bowtie2_samtools

	version: 1.0.0-1

seq_typing

Purpose

Seq_typing is a software that determines the type of a given sample using a
read mapping approach against a set of reference sequences. Sample’s reads
are mapped to the given reference sequences and, based on the length of the
sequence covered and it’s depth of coverage, seq_typing decides which reference
sequence is more likely to be present and returns the type associated with
such sequences.

Note

Software page: https://github.com/B-UMMI/seq_typing

Input/Output type

	Input type: FastQ

	Output type: None

Parameters

	referenceFileO: Fasta file containing reference sequences. If more
than one file is passed via the ‘referenceFileH parameter, a reference
sequence for each file will be determined.

	referenceFileH: Fasta file containing reference sequences. If more
than one file is passed via the ‘referenceFileO parameter, a reference
sequence for each file will be determined.

Published results

	results/seqtyping/<sample id>: Stores the results of seq_typing in
text and tabular format.

Published reports

None.

Default directives

	cpus: 4

	memory: 4GB

	container: ummidock/seq_typing

	version: 0.1.0-1

Advanced

Reports JSON

	typing:

	
	seqtyping: <typing result>

sistr

Purpose

Sistr (Salmonella In Silico Typing Resource) is a software for Serovar
predictions from whole-genome sequence assemblies by determination
of antigen gene and cgMLST gene alleles using BLAST. Mash MinHash can also be
used for serovar prediction.

Note

Software page: https://github.com/peterk87/sistr_cmd

Input/Output type

	Input type: Fasta

	Output type: None

Note

The default input parameter for fasta data is --fasta.

Parameters

None

Published results

	results/typing/sistr: Stores the results of sistr in a tab file

Published reports

None.

Default directives

	cpus: 4

	memory: 4GB

	container: ummidock/sistr_cmd

	version: 1.0.2

skesa

Purpose

This components assembles paired-end FastQ files using the Skesa assembler.

Input/Output type

	Input type: FastQ

	Output type: Fasta

Note

The default input parameter for FastQ data is --fastq. You can change
the --fastq parameter default pattern (fastq/*_{1,2}.*) according
to input file names (e.g.: --fastq "path/to/fastq/*R{1,2}.*").

Parameters

None.

Published results

	results/assembly/skesa: Stores the fasta assemblies for each sample.

Published reports

None.

Default directives

	cpus: 4

	memory: 5GB (dynamically increased on retry)

	container: flowcraft/skesa

	version: 2.3.0-1

	scratch: true

Advanced

Template

flowcraft.templates.skesa

spades

Purpose

This components assembles paired-end FastQ files using the Spades assembler.

Note

Software page: http://bioinf.spbau.ru/spades

Input/Output type

	Input type: FastQ

	Output type: Fasta

Note

The default input parameter for FastQ data is --fastq. You can change
the --fastq parameter default pattern (fastq/*_{1,2}.*) according
to input file names (e.g.: --fastq "path/to/fastq/*R{1,2}.*").

Parameters

	spadesMinCoverage: The minimum number of reads to consider an edge in
the de Bruijn graph during the assembly

	spadesMinKmerCoverage: Minimum contigs K-mer coverage. After assembly
only keep contigs with reported k-mer coverage equal or above this value

	spadesKmers: If ‘auto’ the SPAdes k-mer lengths will be determined
from the maximum read length of each assembly. If ‘default’, SPAdes will
use the default k-mer lengths.

Published results

	results/assembly/spades: Stores the fasta assemblies for each sample.

Published reports

None.

Default directives

	cpus: 4

	memory: 5GB (dynamically increased on retry)

	container: ummidock/spades

	version: 3.11.1-1

	scratch: true

Advanced

Template

flowcraft.templates.spades

trimmomatic

Purpose

This component runs Trimmomatic on paired-end FastQ files.

Note

Software page: http://www.usadellab.org/cms/?page=trimmomatic

Input/Output type

	Input type: FastQ

	Output type: FastQ

Note

The default input parameter for FastQ data is --fastq. You can change
the --fastq parameter default pattern (fastq/*_{1,2}.*) according
to input file names (e.g.: --fastq "path/to/fastq/*R{1,2}.*").

Parameters

	adapters: Provide a non-default fasta file containing the adapter
sequences used to filter the FastQ files.

	trimSlidingWindow: Perform sliding window trimming, cutting once the
average quality within the window falls below a threshold.

	trimLeading: Cut bases off the start of a read, if below a threshold
quality.

	trimTrailing: Cut bases of the end of a read, if below a threshold
quality.

	trimMinLength: Drop the read if it is below a specified length.

Published results

	results/trimmomatic: The trimmed FastQ files for each sample.

Published reports

	reports/fastqc: Stores the FastQC HTML reports for each sample.

	reports/fastqc/run_2/: Stores the summary text files with the category
results of FastQC for each sample.

Default directives

	cpus: 2

	memory: 4GB (dynamically increased on retry)

	container: ummidock/trimmomatic

	version: 0.36-2

Advanced

Template

flowcraft.templates.trimmomatic
flowcraft.templates.trimmomatic_report

Reports JSON

	tableRow:

	Trimmed (%): Percentage of trimmed nucleotides

	plotData:

	sparkline: Number of nucleotides after trimming

badReads: Number of discarded reads

abricate

Table data

	AMR table:

	
	<abricate database>: Number of hits for a particular given database

[image: user/reports/../resources/reports/abricate_table.png]

Plot data

	Sliding window AMR annotation: Provides annotation of Abricate hits for
each database along the genome. This report component is only available when
the pilon component was used downstream of abricate.

[image: user/reports/../resources/reports/sliding_window_amr.png]

assembly_mapping

Plot data

	Data loss chart: Gives a trend of the data loss
(in total number of base pairs) across components that may filter this data.

[image: user/reports/../resources/reports/sparkline.png]

Warnings

	Assembly table:

	
	When the number of contigs exceeds the threshold of 100 contigs per 1.5Mb.

Fails

	Assembly table:

	
	When the assembly size if smaller than 80% or larger than 150% of the
expected genome size.

check_coverage

Table data

	Quality control table:

	
	Coverage: Estimated coverage based on the number of base pairs and the expected
genome size.

[image: user/reports/../resources/reports/quality_control_table.png]

Warnings

	Quality control table:

	
	When the enconding and phred score cannot be guessed from the FastQ file(s).

Fails

	Quality control table:

	
	When the sample has lower estimated coverage than the provided coverage threshold.

chewbbaca

Table data

	Chewbbaca table:

	
	Table with the summary statistics of ChewBBACA allele calling, including
the number of exact matches, inferred loci, loci not found, etc.

[image: user/reports/../resources/reports/chewbbaca_table.png]

dengue_typing

Table data

	Typing table:

	
	seqtyping: The sequence typing result (serotypy-genotype).

[image: user/reports/../resources/reports/typing_table_dengue.png]

fastqc

Plot data

	Base sequence quality: The average quality score across the read length.

[image: user/reports/../resources/reports/fastqc_base_sequence_quality.png]

	Sequence quality: Distribution of the mean sequence quality score.

[image: user/reports/../resources/reports/fastqc_per_base_sequence_quality.png]

	Base GC content: Distribution of the GC content of each sequence.

[image: user/reports/../resources/reports/fastqc_base_gc_content.png]

	Sequence length: Distribution of the read sequence length.

[image: user/reports/../resources/reports/fastqc_sequence_length.png]

	Missing data: Normalized count of missing data across the read length.

[image: user/reports/../resources/reports/fastqc_missing_data.png]

Warnings

	The following FastQC categories will issue a warning when they have a WARN flag:

	
	Per base sequence quality.

	Overrepresented sequences.

	The following FastQC categories will issue a warning when do not have a PASS flag:

	
	Per base sequence content.

Fails

	The following FastQC categories will issue a fail when they have a FAIL flag:

	
	Per base sequence quality.

	Overrepresented sequences.

	Sequence length distribution.

	Per sequence GC content.

	The following FastQC categories will issue a fail when the do not have a PASS flag:

	
	Per base N content.

	Adapter content.

fastqc_trimmomatic

Table data

	Quality control table:

	
	Trimmed (%): Percentage of trimmed base pairs.

[image: user/reports/../resources/reports/quality_control_table.png]

Plot data

	Data loss chart: Gives a trend of the data loss
(in total number of base pairs) across components that may filter this data.

[image: user/reports/../resources/reports/sparkline.png]

integrity_coverage

Table data

	Quality control table:

	
	Raw BP: Number of raw base pairs from the FastQ file(s).

	Reads: Number of reads in the FastQ file(s)

	Coverage: Estimated coverage based on the number of base pairs and the expected
genome size.

[image: user/reports/../resources/reports/quality_control_table.png]

Plot data

	Data loss chart: Gives a trend of the data loss
(in total number of base pairs) across components that may filter this data.

[image: user/reports/../resources/reports/sparkline.png]

Warnings

	Quality control table:

	
	When the enconding and phred score cannot be guessed from the FastQ file(s).

Fails

	Quality control table:

	
	When the sample has lower estimated coverage than the provided coverage threshold.

mash_dist

Table data

	Plasmids table:

	
	Mash Dist: Number of plasmid hits

[image: user/reports/../resources/reports/mash_dist_table.png]

Plot data

	Sliding window Plasmid annotation: Provides annotation of plasmid
hits along the genome assembly. This report component is only available
when the mash_dist component is used.

[image: user/reports/../resources/reports/sliding_window_mash_dist.png]

mlst

Table data

	Typing table:

	
	MLST species: The inferred species name.

	MLST ST: The inferred sequence type.

[image: user/reports/../resources/reports/typing_table.png]

patho_typing

Table data

	Typing table:

	
	Patho_typing: The pathotyping result.

[image: user/reports/../resources/reports/typing_table.png]

pilon

Table data

	Quality control table:

	
	Contigs: Number of assembled contigs.

	Assembled BP: Total number of assembled base pairs.

[image: user/reports/../resources/reports/assembly_table_skesa.png]

Plot data

	Contig size distribution: Distribution of the size of each assembled contig.

[image: user/reports/../resources/reports/contig_size_distribution.png]

	Sliding window coverage and GC content: Provides coverage and GC content
metrics along the genome using a sliding window approach and two synchronised
charts.

[image: user/reports/../resources/reports/sliding_window_amr.png]

Warnings

	Quality control table:

	
	When the enconding and phred score cannot be guessed from the FastQ file(s).

Fails

	Quality control table:

	
	When the sample has lower estimated coverage than the provided coverage threshold.

process_mapping

Table data

	Read mapping table:

	
	Reads: Number reads in the the FastQ file(s).

	Unmapped: Number of unmapped reads

	Mapped 1x: Number of reads that aligned, concordantly and discordantly, exactly 1 time

	Mapped >1x: Number of reads that aligned, concordantly or disconrdantly, more than 1 times

	Overall alignment rate (%): Overall alignment rate

[image: user/reports/../resources/reports/read_mapping_remove_host.png]

process_newick

Tree data

Phylogenetic reconstruction with bootstrap values for the provided tree.

[image: user/reports/../resources/reports/phylogenetic_tree.png]

process_skesa

Table data

	Quality control table:

	
	Contigs (skesa): Number of assembled contigs.

	Assembled BP: Total number of assembled base pairs.

[image: user/reports/../resources/reports/assembly_table_skesa.png]

Warnings

	Assembly table:

	
	When the number of contigs exceeds the threshold of 100 contigs per 1.5Mb.

Fails

	Assembly table:

	
	When the assembly size if smaller than 80% or larger than 150% of the
expected genome size.

process_spades

Table data

	Quality control table:

	
	Contigs (spades): Number of assembled contigs.

	Assembled BP: Total number of assembled base pairs.

[image: user/reports/../resources/reports/assembly_table_spades.png]

Warnings

	Assembly table:

	
	When the number of contigs exceeds the threshold of 100 contigs per 1.5Mb.

Fails

	Assembly table:

	
	When the assembly size if smaller than 80% or larger than 150% of the
expected genome size.

process_viral_assembly

Table data

	Quality control table:

	
	Contigs (SPAdes): Number of assembled contigs.

	Assembled BP (SPAdes): Total number of assembled base pairs.

	ORFs: Number of complete ORFs in the assembly.

	Contigs (MEGAHIT): Number of assembled contigs.

	Assembled BP (MEGAHIT): Total number of assembled base pairs.

[image: user/reports/../resources/reports/assembly_table_viral_assembly.png]

Fails

	Assembly table:

	
	When the assembly size if smaller than 80% or larger than 150% of the
expected genome size.

seq_typing

Table data

	Typing table:

	
	seqtyping: The sequence typing result.

[image: user/reports/../resources/reports/typing_table.png]

sistr

Table data

	Typing table:

	
	sistr: The sequence typing result.

[image: user/reports/../resources/reports/typing_table.png]

trimmomatic

Table data

	Quality control table:

	
	Trimmed (%): Percentage of trimmed base pairs.

[image: user/reports/../resources/reports/quality_control_table.png]

Plot data

	Data loss chart: Gives a trend of the data loss
(in total number of base pairs) across components that may filter this data.

[image: user/reports/../resources/reports/sparkline.png]

true_coverage

Table data

	Quality control table:

	
	True Coverage: Estimated coverage based on read mapping on MLST genes.

[image: user/reports/../resources/reports/quality_control_table.png]

Fails

	Quality control table:

	
	When the sample has lower estimated coverage than the provided coverage threshold.

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 FlowCraft

 		
 Overview

 		
 What is Nextflow

 		
 What FlowCraft does

 		
 Who is FlowCraft for

 		
 Why not just write a Nextflow pipeline?

 		
 Installation

 		
 User installation

 		
 Container engine

 		
 Singularity

 		
 Docker

 		
 Developer installation

 		
 About

 		
 Basic Usage

 		
 Build

 		
 Assembling a pipeline

 		
 Pipeline directory

 		
 Parameters

 		
 Execution

 		
 Changing executor and container engine

 		
 Docker images

 		
 Results and reports

 		
 Inspect

 		
 In a terminal

 		
 In a browser

 		
 Want to know more?

 		
 Reports

 		
 Real time reports

 		
 Local visualization

 		
 Offline visualization

 		
 Pipeline building

 		
 Raw input types

 		
 Merge parameters

 		
 Forks

 		
 Directives

 		
 Extra inputs

 		
 Pipeline file

 		
 Pipeline configuration

 		
 Parameters

 		
 Resources

 		
 Containers

 		
 Profiles

 		
 User configutations

 		
 Pipeline inspection

 		
 Requirements for inspect

 		
 Trace fields

 		
 Usage

 		
 Pipeline reports

 		
 abricate

 		
 Table data

 		
 Plot data

 		
 assembly_mapping

 		
 Plot data

 		
 Warnings

 		
 Fails

 		
 check_coverage

 		
 Table data

 		
 Warnings

 		
 Fails

 		
 chewbbaca

 		
 Table data

 		
 dengue_typing

 		
 Table data

 		
 fastqc

 		
 Plot data

 		
 Warnings

 		
 Fails

 		
 fastqc_trimmomatic

 		
 Table data

 		
 Plot data

 		
 integrity_coverage

 		
 Table data

 		
 Plot data

 		
 Warnings

 		
 Fails

 		
 mash_dist

 		
 Table data

 		
 Plot data

 		
 mlst

 		
 Table data

 		
 patho_typing

 		
 Table data

 		
 pilon

 		
 Table data

 		
 Plot data

 		
 Warnings

 		
 Fails

 		
 process_mapping

 		
 Table data

 		
 process_newick

 		
 Tree data

 		
 process_skesa

 		
 Table data

 		
 Warnings

 		
 Fails

 		
 process_spades

 		
 Table data

 		
 Warnings

 		
 Fails

 		
 process_viral_assembly

 		
 Table data

 		
 Fails

 		
 seq_typing

 		
 Table data

 		
 sistr

 		
 Table data

 		
 trimmomatic

 		
 Table data

 		
 Plot data

 		
 true_coverage

 		
 Table data

 		
 Fails

 		
 Components

 		
 Download

 		
 Reads Quality Control

 		
 Assembly

 		
 Post-assembly

 		
 Binning

 		
 Annotation

 		
 Distance Estimation

 		
 Mapping

 		
 Taxonomic Profiling

 		
 Typing

 		
 General orientation

 		
 Codebase structure

 		
 Code style

 		
 Testing

 		
 Documentation

 		
 Process creation guidelines

 		
 Basic process creation

 		
 Create process template

 		
 Create Process class

 		
 Add to available components

 		
 Process attributes

 		
 Input/Output types

 		
 Parameters

 		
 Secondary inputs

 		
 Extra input

 		
 Compiler

 		
 Link start

 		
 Link end

 		
 Dependencies

 		
 Directives

 		
 Ignore type

 		
 Process ID

 		
 Template

 		
 Status channels

 		
 Advanced use cases

 		
 Compiler processes

 		
 Secondary links between process

 		
 Template creation guidelines

 		
 Preface header

 		
 Purpose

 		
 Expected input

 		
 Generated output

 		
 Versioning and logging

 		
 Logger

 		
 MainWrapper decorator

 		
 Nextflow .command.sh

 		
 Use numpy docstrings

 		
 Recipe creation guidelines

 		
 Recipe creation

 		
 Name

 		
 Pipeline_str

 		
 Directives

 		
 Docker containers guidelines

 		
 Official FlowCraft Docker images

 		
 Writing docker images

 		
 Building docker images

 		
 Unofficial FlowCraft Docker images

 		
 Dotfiles

 		
 Status

 		
 Warning

 		
 Fail

 		
 Report JSON

 		
 Information for tables

 		
 Information for plots

 		
 Other information

 		
 Versions

 		
 Pipeline reporting

 		
 Data collection

 		
 Generation of dotfiles

 		
 Collection of dotfiles

 		
 Compilation of dotfiles

 		
 Reports

 		
 Report JSON specification

 		
 Nextflow metadata

 		
 Root

 		
 Versions

 		
 ReportJson

 		
 flowcraft package

 		
 Subpackages

 		
 flowcraft.generator package

 		
 flowcraft.templates package

 		
 flowcraft.tests package

 		
 Submodules

 		
 flowcraft.flowcraft module

 		
 Module contents

_images/abricate_table.png
AMR table o

En n search b column

5] . resfinder resfinder card card vfdb vidb
process_abricate_4_14 process_abricate_6_16 process_abricate_4_14 process_abricate_6_16 process_abricate 4 14 process_abricate_6_16
- DK209_S11_L001 2 2 4 4 383 391
- DK5945_523_L001 2 2 4 4 384 393
- DK7997_S1_L555 2 2 5 5 453 417
- DK7821_S14_L001 2 2 4 4 381 394
- DK7898_S58_L555 2 2 4 4 388 389
- DK123_510_L001 2 2 4 4 379 375
- DK7868_S52_L555 2 2 4 4 383 379
- DK7817_S24_L001 2 2 4 4 386 395
- DK7866_S57_L555 2 2 4 4 387 388
- DK7963_S72_L555 2 2 5 5 401 403
Page 1 of 4 10rows v Next

Current selection: 0

_images/assembly_table_skesa.png
Assembly

Current selection: 0

JMG-0018-2_549_L004

JMG-0161-1_570_L004

JMG-0013-1_546_L004

JMG-0032-1_552_L004

JMG-0108-1_S63_L004

JMG-0136-1_566_L004

JMG-0004_543_L004

JMG-0067-1_561_L004

JMG-0163-1_571_L004

JMG-0158-1_569_L004

Contigs (skesa)
process_skesa_2_7

Page

1

308

583

834

515

437

507

482

215

590

549

of1

Assembled BP (skesa)
process_skesa 2.7

3300387

3317016

3353094

3561159

3308351

3360540

3312769

3368260

3297621

3435759

10 rows

Contigs
pilon_report 2 9

308

583

834

515

437

507

482

215

590

549

Search ID column

Next

Assembled BP

pi

n_report 2 9

3300387

3317014

3353094

3561159

3308352

3360542

3312769

3368260

3297620

3435759

_images/assembly_table_spades.png
Assembly o

B Search ID column

=) e . con Assembled BP Contigs (spades) Assembled BP (spades)
pilon_report_3_13 pilon_report_3_13 process_spades_3_11 process_spades_3_11
= @ DK209_511_L001 82 3351268 86 3351268
= @ DK7821_514_L001 85 3347397 158 3347397
= @ DK7963_572_L555 70 3391577 184 3391708
= @ DK7736_513_L001 113 3360009 195 3360264
= @ DK123_510_L001 57 3618504 68 3618504
= f DK7997_S1_L555 233 3444939 250 3444939
= @ DK7817_524_L001 130 3441629 141 3441761
= @ DK5945_523_L001 139 3439136 148 3439136
= @ DK7223_56_L001 56 3481835 77 3481835
= @ DK7713_513_L555 82 3612759 234 3612759
Page 1 of 4 10rows v Next

Current selection: 0

_images/assembly_table_viral_assembly.png
Assembly

E a Search ID column

e e . Contigs (SPAdes) Assembled BP (SPAdes) ORFs Contigs (MEGAHIT) Assembled BP (MEGAHI Contigs Assembled BP
veport viral assembly 17 report viral assembly 1 7 report viral assembly 17 report viral assembly 17 report viral assembly 17 pilon report 1.9 pilon report 1.9
e & ccoosl 1 1 10267 1 10267
L] & ccoos 1 1 10085 1 10085
e & UCUGO186 0 14 8605 14 8605
Previous Page 5 of 5 1Y Srows v Next

Current selection: 0

_images/fastqc_base_sequence_quality.png
FastQC charts

Quality score

s0

a0

30

20

10

20

40

BASE SEQUENCE QUALITY

60

SEQUENCE QUALITY BASE GC CONTENT SEQUENCE LENGTH

80

Per base sequence quality scores

100 120

Position in read (bp)

130

MISSING DATA

160

Search samples

180

200

220

_images/fastqc_missing_data.png
FastQC charts

Count

0012

0.01

0.008

0.006

0.004

0.002

BASE SEQUENCE QUALITY

SEQUENCE QUALITY

BASE GC CONTENT

g data content

SEQUENCE LENGTH

MISSING DATA

Search samples

20

40

60

0

100

120

Base pair

140

160

180

200

220

_images/contig_size_distribution.png
Wontig size distribution ~
Search samples | v H Q H X ‘

Contig size distribution

150k

125K

.

.
© 00
N .
7 - R L
= I “. LR}
=]
B .
o .
[S B o

- . e

o .

e “ .

256 - I ot
o
s &
5 K
$* e
S (’53
2
N N

Sample

© pilon_report 2. 9

_images/fastqc_base_gc_content.png
FastQC charts

BASE SEQUENCE QUALITY ~ SEQUENCE QUALITY ~ BASE GC CONTENT SEQUENCE LENGTH MISSING DATA

Search samples @\Z\

GC percentage

Normalized read count (%)

o s 1o 15 20 25 30 ES 40 as s0 55 60 65 70 75 80 85 %0 5 100

GC percentage

_images/flowcraft_inspect_broadcast.png
Flowcraft | Inspect vo.x

General Overview ~

Status: running

Pipeline name Pipeline tag Number of processes
campy_assembly.nf extravagant_kalman 35
VIEW FILE
Details v
Process submission ~
Submmited Retrying Failed Completed
Cpus allocated: 226 Memory allocated: 1300Gb
Table overview ~
Lane D Process Running Complete Error Avg Time CPUIHour Max Mem Avg Read Avg Write
.1 1 reads_download 3 258 0 00:01:20 261 281MB 147M8 135MB
.1 2 integrity_coverage 3 251 0 00:01:21 13.96 16MB 156MB omMB
[C) 1 2 report_coverage o 0 0 B - - - -

_images/flowcraft_inspect_terminal.png
Pipeline [hungry meucci] inspection at 2018-06-11 16:01:47. Status: running
Running: 3 Failed: 0 Retrying: 0 Completed: 54

C reads_download_1_1 0 2 0 24 212MB 296118 27218
C integrity_coverage 2 2 0 2 0 03 16MB 32018 oMB
C report_coverage_2_2 0 1 0 00 OMB oMB oMB
C report_corrupt_2_2 0 = = = = = =

R seq_typing_3_3 1 B B B B B B

R patho_typing_4_4 2 o o o S S S

C fastqc_2.5 0 2 0 00:00:23 452MB 33718 M8
C fastqc_report 2.5 0 2 0 00:00:00 10MB 1B oMB
C trin_report_2_5 0 1 0 00:00:00 OMB oMB oMB
C compile_fastqc_status 2.5 0 1 0 00:00:00 OB oMB oMB
C trinmomatic_2_5 0 2 0 00:01:49 2GB 39318 33818
C true_coverage 2 6 0 2 0 00:00:40 71MB 368 368
C fastqc2.2_7 0 2 0 00:00:18 478MB 25018 oMB
C fastqc2_report_2_7 0 2 0 00:00:00 10MB 1B oMB
C compile_fastqc_status2 2. 0 1 0 00:00:00 OMB oMB oMB
C integrity_coverage2_2_8 0 2 0 00:00:11 12MB 22218 oMB
C report_coverage_2_2_8 0 1 0 00:00:00 OB oMB oMB
C spades_2_9 0 2 0 00:10:36 3GB 1168 266B
C process_spades_2_10 0 2 0 00:00:02 19MB 3B oMB
C assembly_mapping_2_11 0 2 0 00:09:02 1GB 368 368
C process_assembly_mapping_ 0 2 0 00:00:43 58MB 54318 17418
C pilon_2_12 0 2 0 00:01:35 3GB 168 3MB
C pilon_report_2_12 0 2 0 00:00:08 46MB 21418 oMB
C compile_pilon_report 2 12 0 1 0 00:00:00 OMB oMB oMB
C mist_2_13 0 2 0 00:00:02 33MB 1B oMB
C compile_mlst_2_13 0 1 0 00:00:00 OB oMB oMB
C abricate_5_14 0 10 0 00:00:06 72MB 1148 7MB
C process_abricate_5_14 0 1 0 00:00:01 20MB 2B oMB
C chewbbaca_6_15 0 2 0 00:15:356 304MB 436B 4118
C chewbbacaExtractMLST_6_15 0 = = = = = =

C sistr_7_16 0 2 0 41318 481MB aB I

_images/fastqc_per_base_sequence_quality.png
FastQC charts

d (bp)

©
3
£
c

500k

400k

300k

200k

100k

BASE SEQUENCE QUALITY

SEQUENCE QUALITY

BASE GC CONTENT

SEQUENCE LENGTH

Per sequence quality scores

Quality score

MISSING DATA

Search samples

40

425

as

_images/fastqc_sequence_length.png
FastQC charts

Count

700k

600k

500k

400k

300k

200k

100k

25

BASE SEQUENCE QUALITY

75

1o

125

SEQUENCE QUALITY

BASE GC CONTENT

SEQUENCE LENGTH

Distribution of sequence length

15

175

20 225

Base pair

25

275

MISSING DATA

30

Search samples

325

35

375

40

_images/flowcraft_report.png
Reports

@ Report overview ~
< Samples Projects Components
Yo So Yo So Yo
O v v v
R4
™ Quality control o -~
Toolbar-
En Search ID column
[5] rd e D Raw BP Reads Coverage Coverage Trimmed (%) Coverage
integrity_coverage integrity_coverage integrity_coverage 1 1 downsample_fastq_1_2 trimmomatic_1_3 check_coverage 1 5
o a DK7821_S14_L001 307941845 1290036 90.57 90.6 112 65.37
o a DK7937_S80_L555 342817546 2298454 100.83 100.8 15.29 59.89
o a DK7963_S72_L555 279468735 1966462 82.2 82.2 12.33 61.99
o a DK209_S11_L001 196025476 825228 57.65 57.7 23.35 29.44
o a DK7669_S13_L0O01 246331652 1044844 7245 725 12.63 55.88
o a DK7729_S73_L555 270814280 1823672 79.65 79.7 15.63 58.31

_images/chewbbaca_table.png
chewBBACA table

Status)

SRR6241931

SRR5292126

Previous

Current selection: 0

EXC INF
chewbbaca_5_14 chewbbaca_5_14

3359 0

3453 0

Page 1 ofl

LNF
chewbbaca,

4212

4122

14

PLOT

chewbbaca_5

19

10 rows

14

NIPH
chewbbaca

a

18

14

Search ID column

ALM
chewbbaca 5_14

2

ASM
chewbbaca

5

14

_images/fork_4.png
integrity_coverage_1_1 trimmomati fastqe_1.3 spades_1_4

o O 19} O

_images/logo_large.png
//

A
FLOWCRARFT

_images/fork_2.png
integrity_coverage 1.1

(o]

trimmomatic_1.2

©

spades 2.4

©)

fastqc 1.3

©

skesa 35

O

assembly_mapping_3_6

1o}

abricate 4.8

10}

pilon 3.7 prokka 5.9

O 19}

chewbbaca_6_10

10}

_images/fork_3.png
seq_typing_1.1

o

integrity coverage 2 2

o

trimmomatic_2_3

o

spades 3.5

0]

fastqc 2.4

©

skesa 4.6

1©]

_images/quality_control_table.png
Quality control

L NN IR < N N TN N IR < B I < B

Current selection: 0

JMG-0013-1_546_L004

JMG-0018-2_549_L004

JMG-0032-1_552_L004

JMG-0004_543_1L004

JMG-0163-1_571_L004

JMG-0161-1_570_L004

JMG-0158-1_569_L004

JMG-0108-1_563_L004

JMG-0067-1_561_L004

JMG-0136-1_566_L004

Raw BP

integrity_coverage 2 2

203305724

207877727

203656585

257209032

331027987

255221325

323116232

339306756

438184474

350680309

Page

1

of1

Reads
integrity_coverage 2 2

2699846

2762796

2707526

3418084

4401814

3390324

4304124

4511816

5820792

4669400

Coverage
integrity_coverage 2 2

10 rows

59.8

61.14

59.9

75.65

97.36

75.07

95.03

99.8

128.88

103.14

2214

2213

2213

2213

2211

2213

22.12

22.12

Search ID column

Coverage
check_coverage_2 5

38.71

405

38.84

50.04

62.85

49.48

63.27

65.29

86.34

68.51

_images/read_mapping_remove_host.png
Read mapping

R A D
92-1094
91-0132_S6_L001
€c0007_S5_L001
€c0010_S8_L0O1
91-0104
Poditivecontrol_S21_L(
cc0030a_s12
€c0030b_S21

91-0105_S2_1001

L B IR < B I < N I B R <

Spike

Pre

Current selection: 0

Reads.

report_remove_host 1.4

3205624

1140886

599297

1107668

5087824

1377418

412626

688541

594166

4085975

Unmapped
report_remove_host 1.4

3772285
1567696
724908
587651
4694753
4129217
951554
1065312
634323

8430326

Page 1 of3

Mapped 1x Mapped >1x
report_remove host 1.4 report remove_host 14
241301 3287490
83755 875719
32445 663912
73652 1217651
531797 4209718
142 2217
11547 168705
187913 220166
72467 307610
146606 2303777

10 rows

Search ID column

Overall alignment rate (%)
report_remove host 1.4

78.38

66.82

76.99

919

77.91

01

29.72

59.78

84.39

39.63

Next

_images/mash_dist_table.png
Plasmids

00 QaEnBn

»°

ID

DK7713_S13_L555

DK7997_S1_L555

DK5799_S3_L555

DK7999_S18_L555

DK123_S10_L001

Mash Dist
mashDistOutputJson_5_15

4

Search ID column

Mash Dist
mashDistOutputdson_7_17

5

_images/phylogenetic_tree.png
Phylogenetic tree

Process: Tree number: Tree type:

raxml_3_13 Tree 0 circular @@ zoomis enabled

_images/flowcraft_report_watch.png
xa@e

Reports

New report data is available

Report overview ~
Samples Projects Components
Yo So Yo So
v v v
Quality control o -~
Toolbar-
Ea Search ID column
a , e ™ Raw BP Reads Coverage Trimmed (%)
integrity_coverage_1 2 integrity_coverage 1 2 integrity_coverage_1 2 trimmomatic_1_3
o a testel 122150905 837372 122.15 14.02

_images/fork_1.png
integrity_coverage 1.1

(o]

trimmom:

o

spades 2.4

o]

fastqe 1.3,

O

skesa 35

_static/ajax-loader.gif

_images/typing_table.png
In silico Typing

Current selection: 0

SRR6241931

SRR5292126

seqtyping
seq_typing 2 2
NT:NT

0157:H7

Page

1

of1

pathotyping
patho_typing_3_3
STEC
STEC

10 rows

mist
mist 1 12

ecoli

ecoli

Search ID column

Next

sistr
sistr_6_15

_images/typing_table_dengue.png
In silico Typing

E a Search ID column

D seqtyping
dengue_typing 2 11

L] 91-0109_S4_L001_NODE_1.length_10219_cov_652.221554_pilon I 2-AsianAmerican

L] CC0116_NODE_1._length_10196_cov_675.686135_pilon &

e CC0061_k77_1_flag=1_multi=4641.2458_len=10267_pilon an

L] ©C0031_k77_16_flag=0_multi=50991.9804_len=10085_pilon 2-AsianAmerican
Previous Page 5 of5 Srows v

Current selection: 0

_static/comment.png

_static/comment-bright.png

_static/comment-close.png

_images/sliding_window_mash_dist.png
Mobile elements

plasmids [-

0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000 2200000 2400000 2600000 2800000 3000000 3200000 3400000

_images/sparkline.png
Data loss trend

_images/sliding_window_amr.png
Genome sliding window ~

GC% content

Pos 102000 (Contig: JMG-0067-1_S61_L004_Contig_131_24.5344_pilon) ‘ HIDE ‘
Value: 0.38 [MPE |
06
05
04 4 '
03
02
3 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000 2200000 2400000 2600000 2600000 3000000 3200000
Coverage depth
Position: 2102000 (Contig: JMG-0067-1_S61_L004_Contig_131_24.5344_pilon) HIDE
Value: 77 [MPE |
750
s00
250
0
3 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000 2200000 2400000 2600000 2600000 3000000 3200000
Antimicrobial resistance and virulence annotations | wioe |
cord I
N TN T O TN TN A T O T T TR A R T T R AT T TR N R T T A T muo
f— 1
3 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000 2200000 2400000 2600000 2600000 3000000 3200000

Search genes: | Select. |~ ‘a

