

Flatlib documentation

Flatlib is a Python 3 library for Traditional Astrology.:

>>> date = Datetime('2015/03/13', '17:00', '+00:00')
>>> pos = GeoPos('38n32', '8w54')
>>> chart = Chart(date, pos)

>>> sun = chart.get(const.SUN)
>>> print(sun)
<Sun Pisces +22:47:25 +00:59:51>

Contents

	Installation
	Windows

	OS X

	Linux

	Testing the installation

	Upgrading from a previous version

	Uninstalling

	Tutorials
	Introduction to Python

	Creating a Chart

	Chart properties and objects

	Frequently Asked Questions

Installation

The following instructions will install flatlib from the source files. In the future, binaries may be made available
and the instructions will be updated accordingly.

Windows

If you don’t have Python 3 installed on your system, download and install the latest Python 3.4 for Windows from
https://www.python.org/downloads/. You can check if the interpreter was correctly installed by executing py on the
command line.

Open a Windows command prompt (or exit the Python interactive shell) and install flatlib using py -m pip install
flatlib.

If you get an error such as Microsoft Visual C++ 10.0 is required (Unable to find vcvarsall.bat), you will have
to install a C compiler. The compiler is required to build pyswisseph - the Python port of the Swiss Ephemeris.

There are several C compilers for Windows, such as Cygwin and MinGW, but Visual C++ 2010 is the most used for compiling
Python 3 extensions on Windows. Download Microsoft Visual C++ 2010 Express from http://go.microsoft.com/?linkid=9709949
(it may require the creation of a free Windows Developer account). After the installation, execute the following on
the command line:

set CL=-DWIN32
py -m pip install flatlib

You should now have flatlib installed in your system.

OS X

Latest versions of OS X are bundled only with Python 2. The preferred way to install Python 3 in OS X is using the
homebrew package manager (http://brew.sh/). Install homebrew and then install Python 3 using brew install python3.

Before you install flatlib, you must have a C compiler in your system. This is because flatlib depends on the Swiss
Ephemeris which is implemented in C. Fortunatelly, Apple provides the Xcode Command Line Tools which bundles a C
compiler. To install it, open the terminal (Applications/Utilities/Terminal) and execute gcc.
You’ll see an alert box if you don’t have a compiler installed:

[image: _images/xcode-command-line-tools.png]
If you don’t need the entire Xcode (about 2.5GB) just press Install..

Finally, to install flatlib use pip3 install flatlib.

Linux

Python 3 is already included on most of the newer distributions. The simplest way to test for the existence of Python 3
is to open the terminal and execute python3 to start the interactive python interpreter.
If the interpreter is not found, you will have to install it from your distribution’s repo.

To install flatlib, use pip3 install flatlib. It may require you to install pip and other python 3 development
libraries.

If you get a Permission Denied error, execute the previous command with sudo.

Testing the installation

Start the python3 interactive interpreter (python3 on Linux and Mac, and py on Windows) and execute the
following:

>>> import flatlib
>>> flatlib
<module 'flatlib' from '/usr/local/lib/python3.4/dist-packages/flatlib/__init__.py'>

If you don’t get an import error, flatlib is installed in your system.

Upgrading from a previous version

To upgrade from a previous version, run:

	pip3 install flatlib --upgrade in Linux and Mac.

	py pip install flatlib --upgrade in Windows.

Uninstalling

Just do pip3 uninstall flatlib on Linux and Mac or py pip uninstall flatlib on Windows.

Tutorials

	Introduction to Python
	Interactive interpreter

	Print command

	Variables

	Basic Operations

	Assignment operator

	Python lists and dictionaries

	Python modules

	More about Python

	Creating a Chart
	Datetime

	GeoPos

	Chart

	Chart properties and objects
	Objects

	Houses

	Angles

	Fixed-stars

	Lists

	Chart functions

Introduction to Python

The purpose of this tutorial is to show you how you can quickly start working with the Python programming language.
It assumes that you have already succesfully installed Python in your computer.
If you already know how to use Python, you can skip this tutorial.

Interactive interpreter

Python is a general purpose programming language that bundles an interactive interpreter.
To start the interactive interpreter, open the terminal (command prompt in Windows) and execute python3
(or py in Windows)

[image: ../_images/python-interpreter-osx.png]
In the interactive interpreter, you can enter commands and the Python interpreter will execute those commands and
return the answers.

Print command

The print command is one of the most useful commands in Python, since it allows us to print the contents of python
variables. For instance, try the following in your Python interpreter:

>>> print('Hello, world!')
Hello, world!

You can see that the interpreter will print the exact contents of whatever you put between quotation marks (called string).
Try to print other strings.

Variables

In computer languages, variables are reserved memory locations to store values. Basically, when you create a variable,
the Python interpreter allocates memory and stores a value in that memory location. The equal sign (=) is used to assign
values to variables. Try the following in your interpreter:

>>> number = 100
>>> miles = 1000.0
>>> name = "John"
>>> print(number)
100
>>> print(miles)
1000.0
>>> print(name)
John

You can assign integer numbers to variables, floating point numbers and strings.

Basic Operations

Since variables may include numbers, strings or other objects, Python allows us to do some basic operations on
variables, such as adding, subtracting, multiplying or divinding. Some of those operations make more sense on numbers,
but others may be applied in strings as well.

Try the following operations on numbers:

>>> num1 = 10
>>> num2 = 20
>>> num1 + num2
30
>>> num1 - num2
-10
>>> num1 * num2
200
>>> num1 / num2
0.5

Now let’s see how it works for strings:

>>> name1 = 'Homer'
>>> name2 = 'Simpson'
>>> name1 + name2
HomerSimpson
>>> name1 - name2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for -: 'str' and 'str'

Some operations do not make sense for strings.

Assignment operator

Something very important in programming languages is the assigment operator. We have already discussed it above when
we assigned numbers and strings to variables using the equal operator (=). The important thing to notice is that we
can assign the result of an operator to a variable like in the following example:

>>> num1 = 10
>>> num2 = 20
>>> result = num1 + num2
>>> print(result)
30
>>> result # This also works in the interpreter
30

Python lists and dictionaries

In Python, there are two special data structures called lists and dictionaries.
A list is basically a sequence of variables which can be or not of the same data type.
Here is a simple example:

>>> mylist = [-5, 0.3, 2.5, 33]
>>> mylist[0]
-5
>>> mylist[1]
0.3
>>> mylist[0] + mylist[1]
-4.7

We can access the individual contents of a list by referring to the index number between brackets.
For instance, mylist[1] returns the contents of mylist at index 1. Lists are zero-based.

A dictionary is a data structure somewhat similar to lists but which do not represent sequences of variables.
Here is an example for dictionaries:

>>> mydict = {'name': 'John Doe', 'age': 32, 'gender': 'male'}
>>> mydict['name']
John Doe
>>> mydict['age']
32
>>> mydict['age'] = 32 * 2
>>> mydict['age']
64

Similarly to lists, you can access the individual contents of a dictionary using the index value between brackets.
But unlike lists, you can also use strings or other objects as key.

Python modules

Python provides different functionalities organized by modules. A module is a file containing Python definitions,
statements and functions.

Python comes with a library of standard modules which provides many functionalities.
To access a module you must explicitly import it using the import command. Here is an example of importing
the math module to use some of its functions:

>>> import math
>>> math.factorial(10)
3628800
>>> math.log(20)
2.995732273553991

The Python Library Reference describes the standard library that is distributed with Python, and can be found at
https://docs.python.org/3.4/library/index.html.

More about Python

The purpose of this tutorial is just to give you enough knowledge on Python to get you started with flatlib.
There are many more tutorials on the internet which may give you deeper knowledge of the Python programming language.

The Python community provides an official tutorial which can be found at https://docs.python.org/3.4/tutorial/index.html.

Creating a Chart

The goal for this tutorial is to help you create a Chart for a specific date and location.
To build a Chart it will be necessary to define:

	the date and time, given by the Datetime object.

	the geographic position, given by the GeoPos object.

Datetime

The Datetime class represents a specific moment in time given by a Date, a Time, an UTC offset
and the calendar type. It assumes, by default, the Gregorian calendar.

To create a Datetime object, we must first import it. Here’s an example that creates a Datetime object for the
13th of March of 2015 at 5pm, assuming UTC+0:

>>> from flatlib.datetime import Datetime
>>> date = Datetime('2015/03/13', '17:00', '+00:00')
>>> date.jd
2457095.2083333335

The jd attribute (as in date.jd) returns the Julian Date [http://en.wikipedia.org/wiki/Julian_day].

The time and UTC offset parameters are optional, and the arguments could be given as lists instead of strings.
Some alternative ways to build the same date object are:

>>> # No UTC Offset argument
>>> date = Datetime('2015/03/13', '17:00')
>>> date.jd
2457095.2083333335

>>> # Build date with date and time lists
>>> date = Datetime([2015,3,13], ['+',17,0,0])
>>> date.jd
2457095.2083333335

The Datetime object provides properties and functions which may be useful for some situations:

>>> # Print date, time and offset
>>> print(date.date)
<2015/03/13>
>>> print(date.time)
<17:00:00>
>>> print(date.utcoffset)
<00:00:00>

>>> # Other properties
>>> date.date.dayofweek()
5 # 5 is Friday
>>> date.time.toList()
['+', 17, 0, 0]

GeoPos

The GeoPos class represents a geographic position on Earth given by a latitude and longitude.
To create a GeoPos object, we must first import the class definition and instantiate an object.
Here’s an example:

>>> from flatlib.geopos import GeoPos
>>> pos = GeoPos('38n32', '8w54')
>>> pos.lat
38.53333333333333
>>> pos.lon
-8.9

When building the geopos object, the first parameter must be the latitude and the second the longitude.
The latitude and longitude properties can be accessed directly (using pos.lat and pos.lon).
Northern latitudes and eastern longitudes have positive values, while southern latitudes and western longitudes
have negative values.

Alternative ways to build a Geopos object can be:

>>> # Using angle strings
>>> pos = GeoPos('+38:32','-8:54')
>>> pos.lat, pos.lon
(38.53333333333333, -8.9)

>>> # Using angle lists
>>> pos = GeoPos(['+',38,32], ['-',8,54])
>>> pos.lat, pos.lon
(38.53333333333333, -8.9)

>>> # Using the float values
>>> pos = GeoPos(38.53333333333333, -8.9)
>>> pos.lat, pos.lon
(38.53333333333333, -8.9)

Chart

The Chart class represents an Astrology chart for a specific datetime and geographic position.
To create a chart object, we must create the Datetime and GeoPos objects and pass them as arguments to the Chart:

>>> # Set datetime and position
>>> from flatlib.datetime import Datetime
>>> from flatlib.geopos import GeoPos
>>> date = Datetime('2015/03/13', '17:00', '+00:00')
>>> pos = GeoPos('38n32', '8w54')

>>> # Finally create the chart
>>> from flatlib.chart import Chart
>>> chart = Chart(date, pos)

By default, the chart will include only the Traditional planets (Sun to Saturn, including Pars Fortuna and
the Moon nodes) and the Alcabitius house system.
To create a chart with other parameters, we must first import the flatlib.const module (where some things are
defined) and pass some arguments in the object constructor:

>>> from flatlib import const

>>> # Build a chart with Regiomontanus houses
>>> chart = Chart(date, pos, hsys=const.HOUSES_REGIOMONTANUS)

>>> # Build a chart including modern planets
>>> chart = Chart(date, pos, IDs=const.LIST_OBJECTS)

>>> # Build a chart with only the Sun and Moon
>>> chart = Chart(date, pos, IDs=[const.SUN, const.MOON])

In the next tutorials it will be shown how we can access the chart’s properties, including objects, houses and angles.

Chart properties and objects

In the previous tutorial it was shown the necessary steps to create a Chart object.
In this tutorial it will be shown which properties, objects and functions are accessible on the chart.
Specifically, you will learn how to access:

	Objects, houses or angles from the chart

	Fixed stars

	Other chart functions

Let’s start by creating a new chart:

>>> from flatlib.datetime import Datetime
>>> from flatlib.geopos import GeoPos
>>> from flatlib.chart import Chart

>>> date = Datetime('2015/03/13', '17:00', '+00:00')
>>> pos = GeoPos('38n32', '8w54')
>>> chart = Chart(date, pos)

Objects

In flatlib an object is a planet, a moon node, the syzygy or pars fortuna.
The following example shows how you can access an object from the chart:

>>> sun = chart.getObject(const.SUN)
>>> print(sun)
<Sun Pisces +22:47:25 +00:59:51>

In this specific example, we use the getObject method and say specifically which object we want to access.
All objects identifiers are defined in const.py (see source code [https://github.com/flatangle/flatlib/blob/master/flatlib/const.py]).

Another possibility is to use the generic get method, which works for objects, houses, angles and fixed-stars:

>>> moon = chart.get(const.MOON)
>>> print(moon)
<Moon Sagittarius +22:22:54 +13:16:01>

By default, when we print an object, it prints its identifier, the sign, sign longitude and travel speed.
However, more information can be accessed from the object. Some of the available properties are:

>>> sun.lon
352.7901809551436
>>> sun.lat
0.00014399505974328042
>>> sun.sign
'Pisces'
>>> sun.signlon
22.790180955143626
>>> sun.lonspeed
0.9976256538994072

Some of the available functions are:

>>> sun.orb()
15
>>> sun.meanMotion()
0.9833
>>> sun.movement()
'Direct'
>>> sun.gender()
'Masculine'
>>> sun.element()
'Fire'
>>> sun.isFast()
True

Most of these properties and functions are self explanatory.

Houses

Similarly to objects, a list of houses is available from the chart.
To retrieve an individual house, we can use the getHouse method or the generic get method:

>>> house1 = chart.get(const.HOUSE1)
>>> print(house1)
<House1 Virgo +03:27:30 29.39933122126604>

Similarly to objects, we can also access the properties of an house:

>>> house1.lon
153.45843823091616
>>> house1.sign
'Virgo'
>>> house1.signlon
3.4584382309161583
>>> house1.size
29.39933122126604

or its functions:

>>> house1.condition()
'Angular'
>>> house1.gender()
'Masculine'

Houses provides also interesting functions to check if an object is in a house, such as:

>>> house1.hasObject(sun)
False

Angles

In some house systems, such as Equal or Whole sign houses, there is a clear distinction between the Ascendant
and MC, and the 1st and 10th house cusps, hence the necessity of angles.
To retrieve an angle from the chart you can use the getAngle method or the generic get method:

>>> asc = chart.get(const.ASC)
>>> mc = chart.get(const.MC)
>>> print(asc)
<Asc Virgo +03:27:30>
>>> print(mc)
<MC Taurus +29:19:03>

Similarly to objects and houses, some properties and functions are also available for angles.

Fixed-stars

To retrieve fixed stars from the chart, we must use the getFixedStar method:

>>> spica = chart.getFixedStar(const.STAR_SPICA)
>>> print(spica)
<Spica Libra +24:03:34 0.97>
>>> spica.mag # magnitude
0.97
>>> spica.orb()
7.5

The list of avaliable fixed stars are defined in the source code [https://github.com/flatangle/flatlib/blob/master/flatlib/const.py].

Lists

In some cases, instead of retrieving objects, houses or angles one by one, it may be useful to get direct access to
their lists. The chart object provides the following lists:

	chart.objects, with a list of all objects

	chart.houses, with a list of all houses

	chart.angles, with a list of all angles

The following example uses the for command to iterate over all objects in the list of objects:

>>> for obj in chart.objects:
... print(obj)
...
<Moon Sagittarius +22:22:54 +13:16:01>
<Venus Aries +25:30:11 +01:12:41>
<Saturn Sagittarius +04:55:45 +00:00:06>
<Mercury Pisces +00:48:57 +01:29:49>
<North Node Libra +11:08:28 -00:03:11>
<Syzygy Virgo +14:50:23 +11:48:44>
<Sun Pisces +22:47:25 +00:59:51>
<South Node Aries +11:08:28 -00:03:11>
<Pars Fortuna Gemini +03:03:00 +00:00:00>
<Mars Aries +16:32:48 +00:45:18>
<Jupiter Leo +13:38:37 -00:04:45>

Lists also provides us with useful functions.
For instance, the house list provides a function to retrieve the house where an object is:

>>> house = chart.houses.getObjectHouse(sun)
>>> print(house)
<House7 Pisces +03:27:30 29.39933122126604>

In this specific case, the sun is in the 7th house.
The lists.py [https://github.com/flatangle/flatlib/blob/master/flatlib/lists.py] file provides a full overview of what is available for each list.

Chart functions

Besides the functions to retrieve objects, houses, angles and fixed-stars, the chart object provides other useful
functions:

>>> chart.isDiurnal()
True
>>> chart.getMoonPhase()
'Third Quarter'

Finally, the chart object also provides a useful function to retrieve the solar return chart for a year:

>>> srchart = chart.solarReturn(2020)
>>> print(srchart.date)
<2020/03/12 22:01:59 00:00:00>

Frequently Asked Questions

Can everyone use it?

Flatlib is open-source software so everyone is free to install and use it.
However, since it is a programming library, some people may not be particularly inclined to use it since it
requires some learning.

So is it not a end-user tool?

Flatlib should really be seen as a traditional astrology software without a graphical user interface.
Therefore, it is really powerful, since users can experiment without the “chains” of a graphical user interface.

How can I install it?

Documentation is still scarce, but I hope to improve it in the future.
You should install the latest Python 3 (3.4) and grab the flatlib package with pip3 install flatlib.
This will install flatlib and its dependencies.

Is there a project page?

You can check the code and simple documentation in the github page at https://github.com/flatangle/flatlib.

Are there any sample code?

There’s a “recipes” folder with some source code at https://github.com/flatangle/flatlib/tree/master/recipes.
You can start with “aspects.py” which is at https://github.com/flatangle/flatlib/blob/master/recipes/aspects.py.

Can I use it on my own work?

Absolutely yes, you are free to use it in your own projects.
The flatlib source code is released under an MIT License, which allows it to be used also on commercial projects.
There is a caveat though: flatlib uses the swiss ephemeris which is licensed GPL.
Therefore, if you want to use flatlib in your commercial projects, you must adhere to the GPL license or buy a
Swiss Ephemeris commercial license.

Why are you open-sourcing flatlib?

I really want to help push forward data-driven research in astrology.
That is only possible with a strong community of researchers and good tools, so there was no point in keeping
flatlib hidden on my hard disk. Flatlib is also a good tool for talking about astrology techniques.
Someone can always point to the source code to explain how things can be done.

Can I contribute to the project?

I accept contributions such as code and documentation, although I suggest to wait a while since things are not stable yet.
The best contribution for now is to spread the news about the existence of this project.

Index

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/python-interpreter-osx.png
®06 __ flatlib.py — Python — 80x24

MacBook-Pro-de-Joao: flatlib.py jventuras python3
Python 3.4.3 (default, Feb 25 2015, 21:29:25)

[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.56)] on darwin
Tynel'heln". copyright", "credits" or "license" for more information.

_static/python-interpreter-win32.png
‘copyright, eredits" or "license” for move information.

_static/comment-bright.png

_images/xcode-command-line-tools.png
(i3 admin — bash — 80x24

s gec 5|
xcode-select: note: no developer tools were found at '/Applications/Xcode.app’,
requesting install. Choose an option in the dialog to download the command line
developer tools.

sl

The "gec” command requires the command line

@ developer tools. Would you like to install the tools
now?

Choose Install to continue. Choose Get Xcode to install Xcode.
and the command line developer tools from the App Store.

[GetXcode | [NotNow | [install]

_static/ajax-loader.gif

_static/comment-close.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Flatlib documentation

 		
 Installation

 		
 Windows

 		
 OS X

 		
 Linux

 		
 Testing the installation

 		
 Upgrading from a previous version

 		
 Uninstalling

 		
 Tutorials

 		
 Introduction to Python

 		
 Interactive interpreter

 		
 Print command

 		
 Variables

 		
 Basic Operations

 		
 Assignment operator

 		
 Python lists and dictionaries

 		
 Python modules

 		
 More about Python

 		
 Creating a Chart

 		
 Datetime

 		
 GeoPos

 		
 Chart

 		
 Chart properties and objects

 		
 Objects

 		
 Houses

 		
 Angles

 		
 Fixed-stars

 		
 Lists

 		
 Chart functions

 		
 Frequently Asked Questions

_images/python-interpreter-osx.png
®06 __ flatlib.py — Python — 80x24

MacBook-Pro-de-Joao: flatlib.py jventuras python3
Python 3.4.3 (default, Feb 25 2015, 21:29:25)

[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.56)] on darwin
Tynel'heln". copyright", "credits" or "license" for more information.

_static/up.png

_static/xcode-command-line-tools.png
(i3 admin — bash — 80x24

s gec 5|
xcode-select: note: no developer tools were found at '/Applications/Xcode.app’,
requesting install. Choose an option in the dialog to download the command line
developer tools.

sl

The "gec” command requires the command line

@ developer tools. Would you like to install the tools
now?

Choose Install to continue. Choose Get Xcode to install Xcode.
and the command line developer tools from the App Store.

[GetXcode | [NotNow | [install]

