

 Navigation

 	
 index

 	
 next |

 	Flask-Orator 0.2.0 documentation

Flask-Orator

Flask-Orator adds Orator ORM [http://orator-orm.com] support to Flask applications.

Since it is merely a wrapper for Orator, it has all its benefits:

	A simple but powerful ORM [http://orator-orm.com/docs/orm.html]

	A database agnostic Schema Builder [http://orator-orm.com/docs/schema_builder.html]

	A low level Query Builder [http://orator-orm.com/docs/query_builder.html] to avoid the overhead of the ORM

	Migrations [http://orator-orm.com/docs/migrations.html]

	Support for PostgreSQL, MySQL and SQLite out of the box

Flask-Orator supports python versions 2.7+ and 3.2+

 Copyright 2015, Sébastien Eustace.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Flask-Orator 0.2.0 documentation

Installation

You can install Flask-Orator in 2 different ways:

	The easier and more straightforward is to use pip

pip install flask-orator

	Install from source using the official repository (https://github.com/sdispater/flask-orator)

Note

The different dbapi packages are not part of the package dependencies,
so you must install them in order to connect to corresponding databases:

	PostgreSQL: psycopg2

	MySQL: PyMySQL or mysqlclient

	SQLite: The sqlite3 module is bundled with Python by default

 Copyright 2015, Sébastien Eustace.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Flask-Orator 0.2.0 documentation

Basic Usage

A Minimal Application

Note

This example application will not go into details as to how the ORM works.
You can refer to the Orator documentation [http://orator-orm.com/docs] for more information.

Setting up Flask-Orator for a single Flask application is quite simple.
Create your application, load its configuration and then create an Orator
object.

The Orator object behaves like a DatabaseManager instance set up
to work flawlessly with Flask.

from flask import Flask
from flask_orator import Orator

app = Flask(__name__)
app.config['ORATOR_DATABASES'] = {
 'development': {
 'driver': 'sqlite',
 'database': '/tmp/test.db'
 }
}

db = Orator(app)

class User(db.Model):

 __fillable__ = ['name', 'email']

 def __repr__(self):
 return '<User %r>' % self.name

Now, you need to create the database and the users table using the embedded CLI application.
Let’s create a file named db.py which has the following content:

from your_application import db

if __name__ == '__main__':
 db.cli.run()

This file, when executed, gives you access to useful commands to manage you databases.

Note

For the exhaustive list of commands see the CLI section.

You first need to make a migration file to create the table:

python db.py make:migration create_users_table --table users --create

This will add a file in the migrations folder named create_users_table
and prefixed by a timestamp:

from orator.migrations import Migration

class CreateTableUsers(Migration):

 def up(self):
 """
 Run the migrations.
 """
 with self.schema.create('users') as table:
 table.increments('id')
 table.timestamps()

 def down(self):
 """
 Revert the migrations.
 """
 self.schema.drop('users')

You need to modify this file to add the name and email columns:

with self.schema.create('users') as table:
 table.increments('id')
 table.string('name').unique()
 table.string('email').unique()
 table.timestamps()

Then, you can run the migration:

python db.py migrate

Confirm and you database and the table will be created.

Once your database set up, you can create some users:

from your_application import User

admin = User.create(name='admin', email='admin@example.com')
guest = Guest.create(name='guest', email='guest@example.com')

The create() method will create the users instantly. But you can also
initiate them and save them later:

admin = User(name='admin', email='admin@example.com')
Do something else...
admin.save()

Note

Optionally you can use a transaction.

from your_application import db, User

with db.transaction():
 admin = User.create(name='admin', email='admin@example.com')
 guest = Guest.create(name='guest', email='guest@example.com')

You can now retrieve them easily from the database:

users = User.all()

admin = User.where('name', 'admin').first()

Relationships

Setting up relationships between tables is a breeze.
Let’s create a Post model with the User model as a parent:

from orator.orm import belongs_to

class Post(db.Model):

 __fillable__ = ['title', 'content']

 @belongs_to
 def user(self):
 return User

And we add the posts relationship to the User model:

from orator.orm import has_many

class User(db.Model):

 @has_many
 def posts(self):
 return Post

Before we can play with these models we need to create the posts table
and set up the relationship at database level:

python db.py make:migration create_posts_table --table posts --create

And we modify the generated file to look like this:

from orator.migrations import Migration

class CreatePostsTable(Migration):

 def up(self):
 """
 Run the migrations.
 """
 with self.schema.create('posts') as table:
 table.increments('id')
 table.string('title')
 table.text('content')
 table.integer('user_id', unsigned=True)
 table.timestamps()

 table.foreign('user_id').references('id').on('users')

 def down(self):
 """
 Revert the migrations.
 """
 self.schema.drop('posts')

Finally we run it:

python db.py migrate

We can now instantiate some posts:

admin_post = Post(title='Admin Post',
 description='This is a restricted post')

guest_post = Post(title='Guest Post',
 description='This is a guest post')

and associate them with users:

Associate from user.posts relation
admin.posts().save(admin_post)

Associate from post.user relation
guest_post.user().associate(guest)

Note

You can also create the posts directly.

admin.posts().create(
 title='Admin Post',
 description='This is a restricted post'
)

Relationships properties are dynamic properties [http://orator-orm.com/docs/orm.html#dynamic-properties]
meaning that user.posts is the underlying collection of posts so we can do things like:

user.posts.first()
user.posts[2:7]
user.posts.is_empty()

But, if we need to retrieve a more fine-grained portion of posts we can actually to so:

user.posts().where('title', 'like', '%admin%').get()
user.posts().first()

Pagination

Flask-Orator supports pagination:

users = User.paginate(15)

This will retrieve 15 users. The current page is determined by default by the ?page query string
parameter of the request.

This behavior can be modified if needed, either by explicitely specifying the current page:

users = User.paginate(15, request.args['index'])

or by changing the default Paginator current page resolver:

from flask import request
from orator import Paginator

def current_page_resolver():
 return request.args.get('index', 1)

Paginator.current_page_resolver(current_page_resolver)

What’s more?

Like said in the introduction Flask-Orator is a wrapper around Orator [http://orator-orm.com] to integrate it
more easily with Flask applications. So, basically, everything you can do with Orator
is also possible with Flask-Orator.

Referer to the Orator documentation [http://orator-orm/docs/] to see the features available.

 Copyright 2015, Sébastien Eustace.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Flask-Orator 0.2.0 documentation

CLI

The following examples assume that a file named db.py has been created with the following content:

from your_application import db

if __name__ == '__main__':
 db.cli.run()

Migrations

Creating Migrations

To create a migration, you can use the make:migration command on the CLI:

python db.py make:migration create_users_table

This will create a migration file that looks like this:

from orator.migrations import Migration

class CreateTableUsers(Migration):

 def up(self):
 """
 Run the migrations.
 """
 pass

 def down(self):
 """
 Revert the migrations.
 """
 pass

By default, the migration will be placed in a migrations folder relative to where the command has been executed,
and will contain a timestamp which allows the framework to determine the order of the migrations.

If you want the migrations to be stored in another folder, use the --path/-p option:

python db.py make:migration create_users_table -p my/path/to/migrations

The --table and --create options can also be used to indicate the name of the table,
and whether the migration will be creating a new table:

python db.py make:migration add_votes_to_users_table --table=users

python db.py make:migration create_users_table --table=users --create

These commands would respectively create the following migrations:

from orator.migrations import Migration

class AddVotesToUsersTable(Migration):

 def up(self):
 """
 Run the migrations.
 """
 with self.schema.table('users') as table:
 pass

 def down(self):
 """
 Revert the migrations.
 """
 with self.schema.table('users') as table:
 pass

from orator.migrations import Migration

class CreateTableUsers(Migration):

 def up(self):
 """
 Run the migrations.
 """
 with self.schema.create('users') as table:
 table.increments('id')
 table.timestamps()

 def down(self):
 """
 Revert the migrations.
 """
 self.schema.drop('users')

Running Migrations

To run all outstanding migrations, just use the migrate command:

python db.py migrate

Rolling back migrations

Rollback the last migration operation

python db.py migrate:rollback

Rollback all migrations

python db.py migrate:reset

Getting migrations status

To see the status of the migrations, just use the migrations:status command:

python db.py migrate:status

This would output something like this:

+--+------+
| Migration | Ran? |
+--+------+
| 2015_05_02_04371430559457_create_users_table | Yes |
| 2015_05_04_02361430725012_add_votes_to_users_table | No |
+--+------+

 Copyright 2015, Sébastien Eustace.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Flask-Orator 0.2.0 documentation

Index

 Copyright 2015, Sébastien Eustace.
 Created using Sphinx 1.3.5.

 _static/comment.png

search.html

 Navigation

 		
 index

 		Flask-Orator 0.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Sébastien Eustace.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/file.png

_static/down.png

_static/down-pressed.png

_static/up-pressed.png

_static/flask-orator-logo-154.png
Flask-Crator

_static/plus.png

_static/comment-bright.png

_static/comment-close.png

_static/up.png

_static/minus.png

