
Flask-Kadabra Documentation
Release 0.1.0

Alex Landau

December 13, 2016

Contents

1 Contents: 3
1.1 Installation . 3
1.2 Usage . 3
1.3 Configuration . 5
1.4 Deploying Your Stack . 5
1.5 API . 7

Python Module Index 9

i

ii

Flask-Kadabra Documentation, Release 0.1.0

How quickly can you figure out how many server errors your Flask app is throwing? Can you determine which of your
routes have the highest error rates? Do you know how long, on average, your SQLAlchemy writes take?

Flask-Kadabra extends the capabilities of the Kadabra metrics library to Flask:

• Enable metrics for your routes with a simple decorator.

• Record metrics from anywhere in your application code, organized by your routes.

• Automatically track basic metrics per route such as timing and errors.

Installation is simple:

$ pip install Flask-Kadabra

Setup is easy:

from flask import Flask
from flask_kadabra import Kadabra, record_metrics

app = Flask()
kadabra = Kadabra(app)

@app.route('/')
@record_metrics
def index():

return "Hello, world!"

You can record whatever metrics you want from anywhere in your application code. They will all be grouped under
the route you decorated, and recorded at the end of your request, with no performance impact:

from flask import g

g.metrics.add_count("userSignup", 1.0)

All you have to do is run a local Redis server and run the Kadabra agent side-by-side with your Flask app, and you
have metrics!

If you’re ready to start, head over to Installation, then Usage.

If you want to jump right into the advanced stuff, you might want to check out Deploying Your Stack.

Contents 1

Flask-Kadabra Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Contents:

1.1 Installation

You can install Flask-Kadabra through the Python package index (pip). Installation is simple:

$ sudo pip install Flask-Kadabra

After installing, you should check out Usage.

1.2 Usage

Using Flask-Kadabra is quite simple. After all, the goal is to enable you to record metrics from your Flask application
with minimal additional code!

• Initialize the Kadabra object with your Flask application object.

• Decorate any of your routes for which you want to record metrics with record_metrics.

• Optionally, instrument your application code with any additional metrics you want to record with the
MetricsCollector object, available as the metrics attribute on the g object. This is shared across your
request, is available anywhere within the Flask application context, and is totally threadsafe. Note that you don’t
need to record request timing nor 400/500 errors; these will be automatically included for each request.

When you run your Flask app, you’ll run a local Redis server along with the Kadabra agent side-by-side with your
app, which will enable you to publish your metrics with no impact to your application’s performance, whatever its
scale. For more information on deployment, check out Deploying Your Stack.

1.2.1 Initialization

You can initialize the Kadabra object directly:

from flask import Flask
from flask_kadabra import Kadabra

app = Flask()
kadabra = Kadabra(app)

Or, you can defer the installation if you are utilizing the flask:patterns/appfactories pattern, using the
init_app() method:

3

https://pypi.python.org/pypi/pip
http://kadabra.readthedocs.io/en/latest/api.html#kadabra.client.MetricsCollector
http://flask.pocoo.org/docs/latest/api/#flask.g

Flask-Kadabra Documentation, Release 0.1.0

from flask import Flask
from flask_kadabra import Kadabra

kadabra = Kadabra()

def create_app():
app = Flask()
kadabra.init_app(app)

You can configure the underlying Kadabra client API by passing a dictionary as the second argument to the Kadabra
constructor:

config = {
'CLIENT_CHANNEL_ARGS': {

'port': 6500
}

}

app = Flask()
kadabra(app, config)

For more information about how to configure the client API, see Kadabra’s Configuration documentation.

There are also some configuration values you can specify for your Flask application object to change the behavior of
the Kadabra object. For more info, check out Configuration.

1.2.2 Enabling Metrics for Your Routes

To record metrics for API requests to one of your routes, simply use the record_metrics decorator:

@api.route('/')
@record_metrics
def index():

return "Hello, World!"

This will record the request time in milliseconds (as a timer called “RequestTime”), whether the HTTP status code of
the response was a server error (as a counter called “Failure” with a value of 0 or 1), and whether the HTTP status
code of the response was a client error (as a counter called “ClientError” with a value of 0 or 1). For more information
on counters and timers, see Collecting Metrics.

These metrics will be grouped under a “Method” dimension whose value is the name of your view function, as
well as any additional dimensions you’ve specified for the CLIENT_DEFAULT_DIMENSIONS key in Kadabra’s
configuration (see Configuration).

Additionally, a metrics attribute will be added to Flask’s g object. This exposes the underlying
MetricsCollector API which allows you to add counters and timers in your application code. They will be
grouped under the same dimensions as the request time, failure, and client error metrics.

1.2.3 Instrument Your Code with Additional Metrics

Using g.metrics you can record additional metrics from your application code. For example, if one of your APIs
calls an external third-party service you may want to time the call:

start = datetime.datetime.utcnow()
response = requests.get(...) # External call
end = datetime.datetime.utcnow()
g.metrics.set_timer("ExternalCallTime", end - start)

4 Chapter 1. Contents:

http://kadabra.readthedocs.io/en/latest/configuration.html#configuration
http://kadabra.readthedocs.io/en/latest/collecting.html#collecting
http://kadabra.readthedocs.io/en/latest/configuration.html#configuration
http://flask.pocoo.org/docs/latest/api/#flask.g
http://kadabra.readthedocs.io/en/latest/api.html#kadabra.client.MetricsCollector

Flask-Kadabra Documentation, Release 0.1.0

Any metrics you record in the context of a request being executed will be grouped together under the same dimen-
sions, meaning the same “Method” and any other dimensions you set via the CLIENT_DEFAULT_DIMENSIONS
configuration key or elsewhere in your application code.

You can control aspects of how your Flask app uses Kadabra via Configuration.

1.3 Configuration

Most of the configuration you’ll do is for the Kadabra client API itself. You’ll pass a dictionary containing all the
configuration keys and values for any defaults you want to override when you initialize the Flask extension:

from flask import Flask
from flask_kadabra import Kadabra

app = Flask()

config = {
"CLIENT_DEFAULT_DIMENSIONS": {

"environment": "development"
}

}

kadabra = Kadabra()
kadabra.init_app(app, config)

Or using the constructor directly:

kadabra = Kadabra(app, config)

Configuration keys, values, and defaults are explained in the Kadabra documentation under Configuration.

However, the Flask extension does support one configuration value itself, which can be stored in the Flask application’s
Config.

DIS-
ABLE_KADABRA

If present in the config and set to True, metrics will not actually be sent to the channel. This is
useful if you are just developing your service and don’t need to actually see metrics flowing yet.

1.4 Deploying Your Stack

Deploying your Flask application involves more than just your application code itself. Even the simplest production
deployment requires a real webserver to route HTTP requests to your application (see Deployment Options). I refer
to the application code plus everything needed for it to smoothly run as a fully-functioning web service as your stack.
Your stack is the unit that is deployed along with your application code to your local host, a remote server, a virtual
machine, or whatever environment from which you’re running everything (more on that in a moment).

Kadabra requires two additions to your application’s stack:

1. A channel to send metrics asynchronously from your application. Channels are described more in Sending
Metrics, but since Redis is currently the only supported channel, this means you will need to be running a Redis
server to which your Flask application can connect. Typically this just means running a local Redis instance
alongside your application.

2. A properly configured Agent running in a dedicated process to publish your application metrics. For more
information see Publishing Metrics.

1.3. Configuration 5

http://kadabra.readthedocs.io/en/latest/api.html#kadabra.Kadabra
http://kadabra.readthedocs.io/en/latest/configuration.html#configuration
http://flask.pocoo.org/docs/latest/api/#flask.Config
http://flask.pocoo.org/docs/latest/deploying/#deployment
http://kadabra.readthedocs.io/en/latest/sending.html#sending
http://kadabra.readthedocs.io/en/latest/sending.html#sending
http://kadabra.readthedocs.io/en/latest/api.html#kadabra.Agent
http://kadabra.readthedocs.io/en/latest/publishing.html#publishing

Flask-Kadabra Documentation, Release 0.1.0

You’ll eventually want a backend database where you can publish metrics. The only backend database currently
supported is InfluxDB. You can setup an InfluxDB server on your hosting provider or use InfluxDB’s hosted options.
Until you have your server setup, you can just use the DebugPublisher to send metrics to a logger.

Note: Having the metrics in a dedicated database like InfluxDB will be extremely helpful for production environments
and allows you to easily set up dashboards and alarming around your service. You should definitely spend some time
setting it up when you’re ready to deploy into production and start acquiring users.

1.4.1 Infrastructure Management

In the modern era, you will want to make it as easy to deploy your application as possible. You don’t want to be
manually installing your dependencies, starting the Redis server, kicking off your application, and so on for every de-
ployment. In addition to saving developer pain, this also helps prevent bugs from being introduced during deployment
time, and makes it simple to deploy to different environments and cloud providers. Furthermore, you don’t want to
have to manually restart processes when they inevitably fail; your infrastructure management system should take care
of process management for you.

Options include configuration management and orchestration tools such as Puppet, Chef, and Ansible. Personally I
like to deploy my applications as containers using Docker. Whatever tool you use, you’ll want to be sure that metrics
flow from your application to the publisher destination of your choice.

1.4.2 The Full Stack

I think of my basic Flask application (say, one that talks to a SQL database) in five components:

1. The Flask application code itself

2. The HTTP webserver to serve the Flask application (typically gunicorn running locally)

3. The reverse proxy that will listen to external requests and proxy them to gunicorn (typically nginx)

4. A local Redis server for queueing metrics to be published and as a cache if needed

5. The Kadabra Agent for publishing metrics

Additionally I usually run an InfluxDB server that can only be accessed by my webserver hosts, which will publish
metrics to that server.

Because I use Docker, I typically author a simple compose file with a service for each of the components above. A
thorough treatment of “dockerizing” the entire stack is beyond the scope of this section, but the agent is worth talking
about.

Running the agent basically consists of configuring it and calling the start() method. You can use the code from
Getting Started and just run it in a dedicated Python process, with the possible addition of configuration e.g. if your
Redis server is refered to as something other than localhost.

You will want to run this process under some sort of a process management system, at a minimum something like
supervisord but ideally a more robust system like Docker. In my compose file I use the command configuration key
with something like python run.py, where run.py contains the agent code. The agent is designed to respond
gracefully to shutdown signals like SIGINT and SIGTERM, and will try to make sure there are no metrics that haven’t
yet been published before shutting down.

6 Chapter 1. Contents:

https://www.influxdata.com/time-series-platform/influxdb/
http://kadabra.readthedocs.io/en/latest/api.html#kadabra.publishers.DebugPublisher
https://puppet.com/
https://www.chef.io/chef/
https://www.ansible.com/
https://www.docker.com/
http://gunicorn.org/
https://www.nginx.com
https://redis.io/
http://kadabra.readthedocs.io/en/latest/api.html#kadabra.Agent
https://docs.docker.com/compose/
http://kadabra.readthedocs.io/en/latest/api.html#kadabra.Agent.start
http://kadabra.readthedocs.io/en/latest/gettingstarted.html#gettingstarted
http://supervisord.org/

Flask-Kadabra Documentation, Release 0.1.0

1.5 API

class flask_kadabra.Kadabra(app=None, config=None)
This object holds ties the Flask application object to the Kadabra library. Each app object gets its own Kadabra
instance, which it uses to generate a MetricsCollector for each request.

Parameters

• app (Flask) – The Flask application object to initialize.

• config (dict) – Dictionary of configuration to use for the Kadabra client API. For
information on the acceptable values see Configuration.

init_app(app, config=None)
Configure the application to use Kadabra. Requests will have access to a MetricsCollector via the
metrics attribute of Flask’s g object. You can record metrics anywhere in the context of a request like
so:
...
g.metrics.add_count("userSignup", 1)
...

The metrics object will be closed and sent at the end of the request if any view that handles the request has
been annotated with record_metrics.

flask_kadabra.record_metrics(func)
Views that are annotated with this decorator will cause any request they handle to send all metrics collected via
the Kadabra client API. For example:

@api.route('/')
@record_metrics
def index():

return 'Hello, world!'

Parameters func (function) – The view function to decorate.

1.5. API 7

http://kadabra.readthedocs.io/en/latest/api.html#kadabra.Kadabra
http://kadabra.readthedocs.io/en/latest/api.html#kadabra.client.MetricsCollector
http://flask.pocoo.org/docs/latest/api/#flask.Flask
https://docs.python.org/3/library/stdtypes.html#dict
http://kadabra.readthedocs.io/en/latest/api.html#kadabra.Kadabra
http://kadabra.readthedocs.io/en/latest/configuration.html#configuration
http://kadabra.readthedocs.io/en/latest/api.html#kadabra.client.MetricsCollector
http://flask.pocoo.org/docs/latest/api/#flask.g

Flask-Kadabra Documentation, Release 0.1.0

8 Chapter 1. Contents:

Python Module Index

f
flask_kadabra, 7

9

Flask-Kadabra Documentation, Release 0.1.0

10 Python Module Index

Index

F
flask_kadabra (module), 7

I
init_app() (flask_kadabra.Kadabra method), 7

K
Kadabra (class in flask_kadabra), 7

R
record_metrics() (in module flask_kadabra), 7

11

	Contents:
	Installation
	Usage
	Configuration
	Deploying Your Stack
	API

	Python Module Index

